

Chair for **INFORMATICS I** Efficient Algorithms and Knowledge-Based Systems

l'IliFi

Institute for Informatics

On Arrangements of Orthogonal Circles

Steven Chaplick¹, Henry Förster², **Myroslav Kryven**¹, Alexander Wolff¹

¹Julius-Maximilians-Universität Würzburg, Germany ²Universität Tübingen, Germany

GD 2019, Prague

Arrangements of Curves

Arrangements of

circles pseudocircles [Alon et al. 2001, Pinchasi 2002], [Felsner & Scheucher 2018]

Arrangements of Curves

Classical question: How many faces can an arrangement of certain curves have?

Arrangements of Curves

Classical question: How many faces can an arrangement of certain curves have?

Arrangements of Circles, Digons

 $p_k(\mathcal{A}) = #$ of faces of degree *k* in an arrangement \mathcal{A} .

Any arrangement \mathcal{A} of n unit circles has $p_2(\mathcal{A}) = O(n^{4/3} \log n)$ digonal faces; [Alon et al. 2001]

Arrangements of Circles, Digons

 $p_k(A) = #$ of faces of degree *k* in an arrangement *A*.

Any arrangement \mathcal{A} of n unit circles has $p_2(\mathcal{A}) = O(n^{4/3} \log n)$ digonal faces; [Alon et al. 2001]

if, in addition, every pair of circles in \mathcal{A} intersect, then $p_2(\mathcal{A}) \leq n + 3$. [Pinchasi 2002]

Arrangements of Circles, Digons

 $p_k(A) = #$ of faces of degree *k* in an arrangement *A*.

Any arrangement \mathcal{A} of n unit circles has $p_2(\mathcal{A}) = O(n^{4/3} \log n)$ digonal faces; [Alon et al. 2001]

if, in addition, every pair of circles in \mathcal{A} intersect, then $p_2(\mathcal{A}) \leq n+3$. [Pinchasi 2002]

For any arrangement \mathcal{A} of n circles with arbitrary radii $p_2(\mathcal{A}) \leq 20n - 2$ if every pair of circles in \mathcal{A} intersect. [Alon et al. 2001]

Arrangements of Circles, Triangles

For any arrangement \mathcal{A} of (pseudo)circles $p_3(\mathcal{A}) \leq \frac{2}{3}n^2 + O(n)$. [Felsner & Scheucher 2018]

Arrangements of Circles, Triangles

For any arrangement \mathcal{A} of (pseudo)circles $p_3(\mathcal{A}) \leq \frac{2}{3}n^2 + O(n)$. [Felsner & Scheucher 2018]

Lower bound example A with $p_3(A) = \frac{2}{3}n^2 + O(n)$ can be constructed from a line arrangement A' with

 $p_3(\mathcal{A}') = \frac{1}{3}n^2 + O(n)$. [Füredi & Palásti 1984] [Felsner, S.: Geometric Graphs and Arrangements, 2004]

Arrangements of Circles, Restrictions

Types of restrictions:

Any arrangement \mathcal{A} of n unit circles has $p_2^{\circ}(\mathcal{A}) = O(n^{4/3} \log n)$ digonal faces;

if, in addition, every pair of circles in \mathcal{A} intersect, then $p_2^{\circ}(\mathcal{A}) \leq n+3$.

For any arrangement \mathcal{A} of n circles with arbitrary radii $p_2^{\circ}(\mathcal{A}) \leq 20n - 2$ if every pair of circles in \mathcal{A} intersect.

Two circles α and β are *orthogonal* if their tangents at one of their intersection points are orthogonal.

Two circles α and β are *orthogonal* if their tangents at one of their intersection points are orthogonal.

In an *arrangement of orthogonal circles* every two circles either are disjoint or orthogonal.

Two circles α and β are *orthogonal* if their tangents at one of their intersection points are orthogonal.

In an *arrangement of orthogonal circles* every two circles either are disjoint or orthogonal.

Two circles α and β are *orthogonal* if their tangents at one of their intersection points are orthogonal.

In an *arrangement of orthogonal circles* every two circles either are disjoint or orthogonal.

No three pairwise orthogonal circles can share the same point.

Two circles α and β are *orthogonal* if their tangents at one of their intersection points are orthogonal.

In an *arrangement of orthogonal circles* every two circles either are disjoint or orthogonal.

No three pairwise orthogonal circles can share the same point.

Inversion of a point *P* with respect to α is a point *P'* on the ray $C_{\alpha}P$ so that $|C_{\alpha}P'| \cdot |C_{\alpha}P| = r_{\alpha}^2$. Properties:

Inversion of a point *P* with respect to α is a point *P'* on the ray $C_{\alpha}P$ so that $|C_{\alpha}P'| \cdot |C_{\alpha}P| = r_{\alpha}^2$. Properties:

• each circle passing through C_{α} is mapped to a line;

Inversion of a point *P* with respect to α is a point *P'* on the ray $C_{\alpha}P$ so that $|C_{\alpha}P'| \cdot |C_{\alpha}P| = r_{\alpha}^2$. Properties:

- each circle passing through C_{α} is mapped to a line;
- ∃ an inversion that maps 2 disjoint circles into 2 concentric circles;

Inversion of a point *P* with respect to α is a point *P'* on the ray $C_{\alpha}P$ so that $|C_{\alpha}P'| \cdot |C_{\alpha}P| = r_{\alpha}^2$. Properties:

- each circle passing through C_{α} is mapped to a line;
- ∃ an inversion that maps 2 disjoint circles into 2 concentric circles;
- inversion preserves angles.

Lem. There are no four pairwise orthogonal circles.

Lem. There are no four pairwise orthogonal circles. **Proof:** Assume for contradiction there exist such four circles.

Lem. Two disjoint circles can be orthogonal to at most two other circles.

Lem. There are no four pairwise orthogonal circles. Proof: Assume for contradiction there exist such four circles.

Lem. Two disjoint circles can be orthogonal to at most two other circles.

Proof:

Lem. There are no four pairwise orthogonal circles. Proof: Assume for contradiction there exist such four circles.

Lem. Two disjoint circles can be orthogonal to at most two other circles. Proof:

X

Lem. There are no four pairwise orthogonal circles. Proof: Assume for contradiction there exist such four circles.

Lem. Two disjoint circles can be orthogonal to at most two other circles.

Proof:

Lem. There are no four pairwise orthogonal circles. Proof: Assume for contradiction there exist such four circles.

Lem. Two disjoint circles can be orthogonal to at most two other circles.

Proof:

Consider an arrangement \mathcal{A} of orthogonal circles.

Def. A *Smallest* circle in \mathcal{A} is a circle with the smallest radius.

Consider an arrangement \mathcal{A} of orthogonal circles.

Def. A *Smallest* circle in \mathcal{A} is a circle with the smallest radius.

Consider an arrangement \mathcal{A} of orthogonal circles.

Def. A *Smallest* circle in \mathcal{A} is a circle with the smallest radius.

Def. Consider a subset $S \subseteq A$ of maximum cardinality such that for each pair of circles one is nested in the other. The innermost circle α in S is called a *deepest* circle in A.

Consider an arrangement \mathcal{A} of orthogonal circles.

Def. A *Smallest* circle in \mathcal{A} is a circle with the smallest radius.

Def. Consider a subset $S \subseteq \mathcal{A}$ of maximum cardinality such that for each pair of circles one is nested in the other. The innermost circle α in S is called a *deepest* circle in \mathcal{A} .

Consider an arrangement \mathcal{A} of orthogonal circles.

Def. A *Smallest* circle in \mathcal{A} is a circle with the smallest radius.

Def. Consider a subset $S \subseteq A$ of maximum cardinality such that for each pair of circles one is nested in the other. The innermost circle α in S is called a *deepest* circle in A.

Consider an arrangement \mathcal{A} of orthogonal circles.

Def. A *Smallest* circle in \mathcal{A} is a circle with the smallest radius.

Def. Consider a subset $S \subseteq \mathcal{A}$ of maximum cardinality such that for each pair of circles one is nested in the other. The innermost circle α in S is called a *deepest* circle in \mathcal{A} .

Consider an arrangement \mathcal{A} of orthogonal circles.

Def. A *Smallest* circle in \mathcal{A} is a circle with the smallest radius.

Def. Consider a subset $S \subseteq \mathcal{A}$ of maximum cardinality such that for each pair of circles one is nested in the other. The innermost circle α in S is called a *deepest* circle in \mathcal{A} .

Lem.Among the deepest circles a smallest one has at most 8 neighbours.
Lem. * Let *S* be the set of neighbours of α s.t. *S* does not contain nested circles and each circle in *S* has radius at least as large as α , then $|S| \leq 6$.

Lem. * Let *S* be the set of neighbours of α s.t. *S* does not contain nested circles and each circle in *S* has radius at least as large as α , then $|S| \leq 6$.

Proof:

Lem. * Let *S* be the set of neighbours of α s.t. *S* does not contain nested circles and each circle in *S* has radius at least as large as α , then $|S| \leq 6$.

at least 60°

Proof:

Lem. * Let *S* be the set of neighbours of α s.t. *S* does not contain nested circles and each circle in *S* has radius at least as large as α , then $|S| \leq 6$.

Proof:

Lem. * Let *S* be the set of neighbours of α s.t. *S* does not contain nested circles and each circle in *S* has radius at least as large as α , then $|S| \leq 6$.

at least 60°

Proof: *α* can have at most $\frac{360\circ}{60^\circ} = 6$ neighbours.

Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.

- Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.
- **Proof:** If there are no nested circles, then, by Lem. \star , α has at most 6 neighbours.

- Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.
- Proof:If there are no nested circles, then, by
Lem.*, α has at most 6 neighbours.Otherwise α is nested by
at least one more circle β .

- Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.
- **Proof:** If there are no nested circles, then, by Lem.*, α has at most 6 neighbours. α Otherwise α is nested by at least one more circle β . Consider 2 types of neighbours of α , those that do not intersect β do intersect β

- Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.
- **Proof:** If there are no nested circles, then, by Lem.*, α has at most 6 neighbours. α Otherwise α is nested by at least one more circle β . Consider 2 types of neighbours of α , those that do not intersect β do intersect β • are not nested

- Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.
- **Proof:** If there are no nested circles, then, by Lem.*, α has at most 6 neighbours. α Otherwise α is nested by at least one more circle β . Consider 2 types of neighbours of α , those that do not intersect β do intersect β • are not nested • are larger than α

- Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.
- **Proof:** If there are no nested circles, then, by Lem.*, α has at most 6 neighbours. α Otherwise α is nested by at least one more circle β . Consider 2 types of neighbours of α , those that do not intersect β do intersect β • are not nested • are larger than α ∣∫by Lem.★ • at most 6

Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.

Proof: If there are no nested circles, then, by Lem.*, α has at most 6 neighbours. α Otherwise α is nested by at least one more circle β . Consider 2 types of neighbours of α , those that do not intersect β do intersect β • are orthogonal to • are not nested two disjoint circles, • are larger than α || by Lem.* that is, α and β • at most 6

Recall:

Lem. Two disjoint circles can be orthogonal to at most two other circles.

Proof:

- are not nested
 are larger than α
 ψ by Lem.*
- at most 6

 are orthogonal to two disjoint circles, that is, *α* and *β*

Lem. Among the deepest circles a smallest circle α has at most 8 neighbours.

Proof: If there are no nested circles, then, by Lem.*, α has at most 6 neighbours. α Otherwise α is nested by at least one more circle β . Consider 2 types of neighbours of α , those that do not intersect β do intersect β • are orthogonal to • are not nested two disjoint circles, • are larger than α ∥ by Lem.★ that is, α and β • at most 6 • at most 2

Main Result

Thm. Every arrangement of *n* orthogonal circles has at most 16*n* intersection points and 17n + 2 faces.

Main Result

- Thm. Every arrangement of *n* orthogonal circles has at most 16n intersection points and 17n + 2 faces.
- **Proof:** The number of intersection points follows by inductively applying the main lemma.
 - The bound on the number of faces follows then by Euler's formula.

Consider a face *f* with sides formed by circular arcs *a*, *b*, *c*.

Consider a face *f* with sides formed by circular arcs *a*, *b*, *c*.

Let $\angle(f, a)$ be the angle at arc *a* forming a side of *f*.

Consider a face *f* with sides formed by circular arcs *a*, *b*, *c*.

Let $\angle(f, a)$ be the angle at arc *a* forming a side of *f*.

Consider a face *f* with sides formed by circular arcs *a*, *b*, *c*.

Let $\angle(f, a)$ be the angle at arc *a* forming a side of *f*. We call $\sum_{i=1}^{k} \angle(f, a_i)$ the *total angle* of *f*.

Consider a face *f* with sides formed by circular arcs *a*, *b*, *c*.

Let $\angle(f, a)$ be the angle at arc *a* forming a side of *f*. We call $\sum_{i=1}^{k} \angle(f, a_i)$ the *total angle* of *f*.

Thm. (Gauss–Bonnet) [for orthogonal circles] For every face *f* in an arrangement of orthogonal circles its total angle is $2\pi - \frac{|f|\pi}{2}$.

Consider a face *f* with sides formed by circular arcs *a*, *b*, *c*.

Let $\angle(f, a)$ be the angle at arc *a* forming a side of *f*. We call $\sum_{i=1}^{k} \angle(f, a_i)$ the *total angle* of *f*.

Thm. (Gauss–Bonnet) [for orthogonal circles] For every face *f* in an arrangement of orthogonal circles its total angle is $2\pi - \frac{|f|\pi}{2}$. In particular π if |f| = 2 and $\frac{\pi}{2}$ if |f| = 3.

Thm. For every arrangement \mathcal{A} of n orthogonal circles $2p_2(\mathcal{A}) + p_3(\mathcal{A}) \leq 4n$.

Thm. For every arrangement \mathcal{A} of n orthogonal circles $2p_2(\mathcal{A}) + p_3(\mathcal{A}) \le 4n$.

Proof: • Faces do not overlap;

- Thm. For every arrangement \mathcal{A} of n orthogonal circles $2p_2(\mathcal{A}) + p_3(\mathcal{A}) \le 4n$.
- **Proof:** Faces do not overlap;
 - each circle contributes 2π angle to faces, thus, the arrangement has $2n\pi$ total angle available for faces;

- Thm. For every arrangement \mathcal{A} of n orthogonal circles $2p_2(\mathcal{A}) + p_3(\mathcal{A}) \le 4n$.
- **Proof:** Faces do not overlap;
 - each circle contributes 2π angle to faces, thus, the arrangement has $2n\pi$ total angle available for faces;
 - by Gauss–Bonnet each digonal face takes π and each triangular face takes $\pi/2$ of the total angle sum from the arrangement.

- Thm. For every arrangement \mathcal{A} of n orthogonal circles $2p_2(\mathcal{A}) + p_3(\mathcal{A}) \le 4n$.
- **Proof:** Faces do not overlap;
 - each circle contributes 2π angle to faces, thus, the arrangement has $2n\pi$ total angle available for faces;
 - by Gauss–Bonnet each digonal face takes π and each triangular face takes $\pi/2$ of the total angle sum from the arrangement.

$$p_2(\mathcal{A})\pi + p_3(\mathcal{A})\frac{\pi}{2} \leq 2n\pi.$$

[Hliněný and Kratochvíl, 2001]

Orthogonal circle intersection graph:

- a vertex for each circle
- an edge between two circles if they are orthogonal.

[Hliněný and Kratochvíl, 2001]

- Orthogonal circle intersection graph:
- a vertex for each circle
- an edge between two circles if they are orthogonal.

Properties:

• are *K*₄-free and induced *C*₄-free;

[Hliněný and Kratochvíl, 2001]

- Orthogonal circle intersection graph:
- a vertex for each circle
- an edge between two circles if they are orthogonal.

Properties:

- are K_4 -free and induced C_4 -free;
- always have a vertex of degree at most 8.

[Hliněný and Kratochvíl, 2001]

- Orthogonal circle intersection graph:
- a vertex for each circle
- an edge between two circles if they are orthogonal.

Properties:

- are K_4 -free and induced C_4 -free;
- always have a vertex of degree at most 8.
- Lem. \exists an orthogonal circle intersection graph that contains K_n as a minor for each n.

[Hliněný and Kratochvíl, 2001]

- Orthogonal circle intersection graph:
- a vertex for each circle
- an edge between two circles if they are orthogonal.

Properties:

- are K_4 -free and induced C_4 -free;
- always have a vertex of degree at most 8.
- Lem. \exists an orthogonal circle intersection graph that contains K_n as a minor for each n.

Intersection Graphs of Unit Circles

Orthogonal unit circle intersection graph:

- a vertex for each unit circle
- an edge between two circles if they are orthogonal.

Intersection Graphs of Unit Circles

- *Orthogonal unit circle intersection graph*: – a vertex for each unit circle
- an edge between two circles if they are orthogonal.

Properties:

• are a subclass of the *contact graphs of unit circles* also known as *penny* graphs.

Intersection Graphs of Unit Circles

- *Orthogonal unit circle intersection graph*: – a vertex for each unit circle
- an edge between two circles if they are orthogonal.

Properties:

• are a subclass of the *contact graphs of unit circles* also known as *penny* graphs.

Intersection Graphs of Unit Circles

Thm. Recognizing orthogonal unit circle intersection graphs is NP-hard.

Intersection Graphs of Unit Circles

Thm. Recognizing orthogonal unit circle intersection graphs is NP-hard. [Di Battista et al., GD'99]

 $x \wedge \neg y \wedge \neg z$

 $\neg x \wedge y \wedge \neg z$

 $x \wedge \neg y \wedge \neg z$

Proof (idea): Logic engine which emulates Not-All-Equal-3-Sat (NAE3SAT) problem.

	digonal faces	triangular faces	all faces
upper bound	2 <i>n</i>	4 <i>n</i>	17n + 2
	[Gauss–Bonnet]	[Gauss–Bonnet]	Main Thm.
lower bound	2 <i>n</i> – 2		

	digonal faces	triangular faces	all faces
upper bound	2 <i>n</i>	4 <i>n</i>	17n + 2
	[Gauss–Bonnet]	[Gauss–Bonnet]	Main Thm.
lower bound	2n - 2	3n - 3	

	digonal faces	triangular faces	all faces
upper bound	2 <i>n</i>	4 <i>n</i>	17n + 2
	[Gauss-Bonnet]	[Gauss–Bonnet]	Main Thm.
lower bound	2 <i>n</i> – 2	3n - 3	?

	digonal faces	triangular faces	all faces
upper bound	2 <i>n</i>	4 <i>n</i>	17n + 2
	[Gauss-Bonnet]	[Gauss–Bonnet]	Main Thm.
lower bound	2n - 2	3n - 3	?

Bounds on the # of faces that we have so far:

	digonal faces	triangular faces	all faces
upper bound	2 <i>n</i>	4 <i>n</i>	17n + 2
	[Gauss–Bonnet]	[Gauss–Bonnet]	Main Thm.
lower bound	2n - 2	3n - 3	?

What is the complexity of recognizing general orthogonal circle intersection graphs?