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Ideally drawings of graphs should avoid crossings ...

Planar graphs can be drawn without crossings

but many graphs cannot be drawn without crossings.

Classical problem in Graph Drawing:
How to minimize the number of crossings?

Lots of different variants.

Our main result concerns
simple circular layouts.

This talk concerns bundled
crossings, def’d next.

simple
avoids:
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Motivation

[Holten ’06]

Bundle the
drawing

Minimize crossings of bundles instead of edges!

[A]
Q
ue
s.

Is there an FPT algorithm for deciding whether a graph
admits a circular layout with k bundled crossings?

F: [Fink et al. ’16]

A: [Alam et al. ’16]

gen. layouts: NP-c for fixed [F] and variable [A] embeddings.

fixed embedding: 10-apx for circular, and O(1)-apx for gen. layouts [F]
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Bundled Crossing

A bundle is a set of pieces of
edges that travel in parallel in
the drawing.

A bundled crosssing is
a set of crossings
inside the region
bounded by the frame edges.

Outer edges of a bundle are
called frame edges
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Bundled Crossing Minimization
Def. For a given graph G

the circular bundled crossing number bc◦(G ) of G is
the minimum number of bundled crossings
over all possible bundlings
of all possible simple circular layouts of G .

Deciding whether bc◦(G ) = k is FPT in k .Thm.

Other results (not covered in this talk, see the paper!):

For general layouts, on inputs (G , k), deciding whether
G has a simple drawing with k bundled crossings is
NPc. For non-simple, this is FPT in k (via genus).

Thm.

For circular layouts, on inputs (G , k), deciding whether
G has a (non-simple) circular drawing with k bundled
crossings is FPT in k (via genus).

Obs.

resolves open
problem of
[Fink et al.;
2016]

resolves an open problem of [Alam et al. 2016]
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Consider a drawing
with k bundled crossings
and observe that:

• Other edges/vertices of the graph partitioned into these regions.

• We can “lift” the drawing onto a surface of genus k

• The graph induced by edges inside a single region has a special
outerplanar drawing.

• and subdivide the surface into regions.

What if a region has
a bridge and a tunnel
corresponding to
the same bundled crossing?

Thm. A region is a topological disk.

• At most k bundled crossings =⇒ at most 4k frame edges.

Each region is a topological disk.Lem.
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Thm (Courcelle): If a property P is expressed as ϕ ∈ MSO2,
then for every graph G with treewidth at most t, P can be
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But, what about?
• Test graphs in each region for a good outerplanar drawing.

This can be stated in MSO2 via a mechanism of
MSO-definition schemes, and the Backwards Translation
Theorem [Courcelle, Engelfriet; 2012]
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Thm.

• Guess the drawing of at most 4k frame edges and their
bundling.

• Partition the edges and vertices into the regions.

• Test graphs in each region for a good outerplanar drawing.
MSO2

• Map the edges of the graph to the guessed frame edges.

• Construct a surface of genus k and a subdivision into regions.

Runtime:

2O(k2)f (k)(|V |+ |E |)

2O(k2)

Thm. A region is a topological disk.

Recall that for correctness of the
algorithm we need to show that

Each region is a topological disk.Thm.
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Open Questions

We have provided an FPT algorithm for deciding whether
bc◦(G ) = k.

Since our algorithm is based on MSO2 the runtime is

Question 1
Is there a faster FPT algorithm for deciding whether
bc◦(G ) = k?

Question 2
Is deciding whether bc◦(G ) = k NP-hard?

(k)×(|V |+ |E |)

Question 3
Is bundle crossing min. also FPT for general simple layouts?


