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Lemma

Flow = slope

T Every admissible flow corresponds

to a 2-slope drawing.

Constraint max-flow: O(n Iog3 n)

0<p()<1 min-cost flow: O(n?log® n)
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Flow Network

Advanced Problems:

e partial drawing
extension (simple
in connected case)

e simultaneous
drawings: given
graphs Gy, G with
Gino # 0, are there
drawings 1, > of
G1, Gy s.t. Gy IS

drawn identically in max. simultaneous real flow has
1,127 values 1 and 2, but no

— et arE O - - -
simultaneous integer flows with

these values exists




Max-Flow in Planar Graphs (w/o lower bounds)

e construct directed dual G*, set £(e*) = c(e)
e search for shortest s*-t* path

o set p(u,v) = d(fight) — d(fiert) for (u, v)* = (fieft, Ffright)
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Max-Flow in Planar Graphs (w/ lower bounds)

lower bounds on the flow:

e definition:

p(u, v) = d(fight) —d(fieft)
o d(fright) S d(fleft) -+ b

= o(u,v) < b
o d(fleft) S d(ﬁight) — d

= o(u,v) > a
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Max-Flow and Shortest Paths

e Drawing
O(nlog® n/ log log n

(Vief, V) 1 d(v) < d(Veef) — 1 = d(v) < —1
(V, Vief) 1 d(Veef) < d(v) — (—1) = d(v) > —1
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Max-Flow and Shortest Paths

e Drawing
O(nlog® n/ log log n
e partial drawing
extension
O(n*/3 log n)
e simultaneous
drawings
O(n'%/3 log n)

the generated drawings are rightmost

di1(v) < d>(v) = add constraint
dg(V) < dl(V) to G,



e works for A € N

Max-Flow and Shortest Paths

Drawing

O(nlog® n/ log log n
partial drawing
extension

O(n*/3 log n)
simultaneous
drawings

O(n'%/3 log n)

e NP-complete for

“short long” edges,
e, {(v)—4(u) <2
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