Level-Planar Drawings with Few Slopes

Guido Brückner Nadine Krisam Tamara Mchedlidze

- directed graph G = (V, E)
- level assignment $\ell: V \to \mathbb{N}$ s.t. $\forall (u, v) \in F : \ell(v) \leq \ell(v)$
 - $\forall (u, v) \in E : \ell(u) < \ell(v)$

- directed graph G = (V, E)
- level assignment $\ell : V \to \mathbb{N}$ s.t. $\forall (u, v) \in E : \ell(u) < \ell(v)$

- directed graph G = (V, E)
- level assignment $\ell : V \to \mathbb{N}$ s.t. $\forall (u, v) \in E : \ell(u) < \ell(v)$

• embedding is fixed

 \iff left-to-right order of the vertices on each level is fixed

- directed graph G = (V, E)
- level assignment $\ell : V \to \mathbb{N}$ s.t. $\forall (u, v) \in E : \ell(u) < \ell(v)$

• embedding is fixed

 \iff left-to-right order of the vertices on each level is fixed

λ -Drawing Model

$\lambda\text{-}\mathsf{Drawing}$ Model

$\lambda\text{-}\mathsf{Drawing}$ Model

$\lambda\text{-}\mathsf{Drawing}$ Model

le U Flow on e = distancebetween *u* and *v* Constraint $\varphi(e) \geq 1$ Flow = slopeof dual edge Constraint $0 \leq \varphi(\cdot) \leq 1$

 $\begin{array}{c|c}
\bullet & & \\
 u & & \\
e & v \\
\hline
Flow on e = distance \\
between u and v \\
\hline
Constraint \varphi(e) \ge 1
\end{array}$

Flow = slopeof dual edge

 $\begin{array}{l} \mathsf{Constraint} \\ \mathsf{0} \leq \varphi(\cdot) \leq 1 \end{array}$

Lemma

Every admissible flow corresponds to a 2-slope drawing.

Flow = slopeof dual edge

 $\begin{array}{l} \mathsf{Constraint} \\ \mathsf{0} \leq \varphi(\cdot) \leq 1 \end{array}$

Lemma

Every admissible flow corresponds to a 2-slope drawing.

max-flow: $O(n \log^3 n)$

min-cost flow: $O(n^2 \log^2 n)$

Advanced Problems:

 partial drawing extension (simple in connected case)

Advanced Problems:

- partial drawing extension (simple in connected case)
- simultaneous drawings: given graphs G_1 , G_2 with $G_{1\cap 2} \neq \emptyset$, are there drawings Γ_1 , Γ_2 of G_1 , G_2 s.t. $G_{1\cap 2}$ is drawn identically in Γ_1 , Γ_2 ?
 - real relaxation?

Advanced Problems:

- partial drawing extension (simple in connected case)
- simultaneous drawings: given graphs G_1 , G_2 with $G_{1\cap 2} \neq \emptyset$, are there drawings Γ_1 , Γ_2 of G_1 , G_2 s.t. $G_{1\cap 2}$ is drawn identically in Γ_1 , Γ_2 ?
 - real relaxation?

t_1 t_2 **Advanced Problems:** • partial drawing 1/21/2extension (simple V 1/2in connected case) • simultaneous U 1/21/2drawings: given graphs G_1, G_2 with U' U $G_{1\cap 2} \neq \emptyset$, are there 1/2drawings Γ_1, Γ_2 of G_1, G_2 s.t. $G_{1\cap 2}$ is **S**₁ *S*₂ drawn identically in $\Gamma_1, \Gamma_2?$

- real relaxation?

Advanced Problems:

- partial drawing extension (simple in connected case)
- simultaneous drawings: given graphs G_1 , G_2 with $G_{1\cap 2} \neq \emptyset$, are there drawings Γ_1 , Γ_2 of G_1 , G_2 s.t. $G_{1\cap 2}$ is drawn identically in Γ_1 , Γ_2 ?

max. simultaneous real flow has values 1 and 2, but no simultaneous integer flows with these values exists

Max-Flow in Planar Graphs (w/o lower bounds)

- construct directed dual G^{\star} , set $\ell(e^{\star}) = c(e)$
- search for shortest s^*-t^* path
- set $\varphi(u, v) = d(f_{right}) d(f_{left})$ for $(u, v)^* = (f_{left}, f_{right})$

Max-Flow in Planar Graphs (w/o lower bounds)

- construct directed dual G^* , set $\ell(e^*) = c(e)$
- search for shortest s^*-t^* path
- set $\varphi(u, v) = d(f_{right}) d(f_{left})$ for $(u, v)^* = (f_{left}, f_{right})$

Max-Flow in Planar Graphs (w/ lower bounds)

lower bounds on the flow:

- definition: $\varphi(u, v) = d(f_{right}) - d(f_{left})$ • $d(f_{right}) \le d(f_{left}) + b$ $\Rightarrow \varphi(u, v) \le b$
- $d(f_{\text{left}}) \leq d(f_{\text{right}}) a$ $\Rightarrow \varphi(u, v) \geq a$

-2 $-1 - 1 |_{V}$ 1 _1 • Drawing $O(n\log^2 n/\log\log n)$ ()() partial drawing 1 extension -2 0 $O(n^{4/3} \log n)$ ()()1 V_{ref} -2 _1 $\left(\right)$

 $egin{aligned} & (v_{
m ref},v): d(v) \leq d(v_{
m ref}) - 1 \Rightarrow d(v) \leq -1 \ & (v,v_{
m ref}): d(v_{
m ref}) \leq d(v) - (-1) \Rightarrow d(v) \geq -1 \end{aligned}$

- Drawing $O(n \log^2 n / \log \log n)$
- partial drawing extension $O(n^{4/3} \log n)$
- simultaneous drawings O(n^{10/3} log n)

the generated drawings are *rightmost* $d_1(v) < d_2(v) \Rightarrow$ add constraint $d_2(v) \le d_1(v)$ to G_2

- Drawing $O(n \log^2 n / \log \log n)$
- partial drawing extension $O(n^{4/3} \log n)$
- simultaneous drawings O(n^{10/3} log n)
- works for $\lambda \in \mathbb{N}$
- NP-complete for "short long" edges, i.e., ℓ(v) − ℓ(u) ≤ 2

Rectilinear Planar Monotone 3-SAT

Variable Gadget

Variable Gadget

