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Drawing Restictions:

> Vertices on consecutive layers

> No two adjacent vertices on the
same layer

» (Major) Common arc direction
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H > Aesthetic layering objectives:

> ‘Compactness’ (Width W,
Height H, Total Arc Length),
» Few Arc Reversals




Sugiyama-Style Drawings of Directed Graphs

Classic Approach
(Sugiyama et al. [1981]):

1. Cycle Removal

2. Vertex Layering

3. Crossing Minimization

4. Horizontal Coordinates &
Arc Routing




Sugiyama-Style Drawings of Directed Graphs

Classic Approach
(Sugiyama et al. [1981]):

1. Cycle Removal

2. Vertex Layering

3. Crossing Minimization

4. Horizontal Coordinates &
Arc Routing

Limitations w.r.t. steps 1 & 2:
Longest path may impede
‘compactness’ / good aspect ratio
from the very beginning.




Visual effects of poor and good aspect ratios

Two drawings of a graph, the right of which has two arcs reversed.




Area-Adaptive Graph Layering

Riiegg et al. [2017]: Adapt Layering w.r.t. target drawing area.

Input: (Relative) Area width ryy and height ry, denoted ryy : ry.

Goal: Maximum Resolution or Scaling Factor S := min{ 35, 7
(plus possibly minimum edge length / number of reversed arcs).




Area-Adaptive Graph Layering

Riiegg et al. [2017]: Adapt Layering w.r.t. target drawing area.
Input: (Relative) Area width ryy and height ry, denoted ryy : ry.

Goal: Maximum Resolution or Scaling Factor S := min{ 5,
(plus possibly minimum edge length / number of reversed arcs).

Maximum-Scale Generalized Layering Problem (GLP-MS)

Given G = (V,A), rw, and ry, find a feasible layering L : V — N

minimizing

Wien (D IL(V) = L(W)]) + wrev {uv € A| L(v) < L)}] = w5 S
uveA



Graph Layering - Evolution of Optimization Problems

Name Objective Exact Approach
DLP > (L(v) = L(w)) Gansner et al. [1993]
uveA
DLP-W 3 wien (L(v) = L(1)) + wwia W Healy, Nikolov [GD 2002]
uveA
GLP D Wien [L(v) = L(u)| +
uveA
wrey |[{uv € A| L(v) < L(u)}| Riiegg et al. [GD 2016]
GLP-W > wien IL(v) = L(u)| +
uveA
wrev |[{uv € A| L(v) < L(u)}| + wwig W Jabrayilov et al. [GD 2016]
GLP-MS* " wien |L(v) — L(u)| +
uveA
Wrey [{uv € A| L(v) < L(u)}| +wsa S Riiegg et al. [JGAA 2017]
=1



Graph Layering and Mixed-Integer Linear Programming

Prior models are based on either assignment or ordering variables.
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Graph Layering and Mixed-Integer Linear Programming

Prior models are based on either assignment or ordering variables.

1, if L(v) =k

Assignment variables: x, x == )
0, otherwise

1, if L(v) > k

Ordering variables: =
& Vi {0, otherwise

Linear expression of restrictions and objectives?

» Easy if arc directions are fixed (DLP cases).
» DLP-W: Dummy vertex variables:
1, if uv € A spans layer k
duv,k = .
0, otherwise

> Additional option to “count” edge lengths.
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But: Variable Arc Directions change the scene:



Graph Layering and Mixed-Integer Linear Programming

But: Variable Arc Directions change the scene:

» Need to count arc reversals in addition
1, if L(v) < L(w)

= Need arc reversal variables: r,, = ]
0, otherwise



Graph Layering and Mixed-Integer Linear Programming

But: Variable Arc Directions change the scene:

» Need to count arc reversals in addition
1, if L(v) < L(w)

0, otherwise
» Need to model |L(v) — L(u)| (instead of L(v) — L(u)).
> Need to model dummy vertices based on two possible arc
directions.

= Need arc reversal variables: r,, =



Graph Layering and Mixed-Integer Linear Programming

But: Variable Arc Directions change the scene:

» Need to count arc reversals in addition

1, if L(v) < L(w)
0, otherwise

» Need to model |L(v) — L(u)| (instead of L(v) — L(u)).

> Need to model dummy vertices based on two possible arc
directions.

= Need arc reversal variables: r,, =

» Case Distinctions: More and weaker linear constraints to
enforce correct values on ry,, and d, k.



A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.
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» Arc directions, (absolute) edge lengths, and dummy vertices
are all based on conjunctive vertex placement decisions.
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Idea: Model restrictions and objective from a quadratic assignment
perspective (and linearize afterwards).
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» Arc directions, (absolute) edge lengths, and dummy vertices
are all based on conjunctive vertex placement decisions.

Idea: Model restrictions and objective from a quadratic assignment
perspective (and linearize afterwards).

» There is a stronger and compact linearization technique.
» For any arc uv € A, there is exactly one pair of layers k and /,
k # ¢, such that x, x - x, o = 1. All other products are zero.



A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.

u v

74 u

» Arc directions, (absolute) edge lengths, and dummy vertices
are all based on conjunctive vertex placement decisions.

Idea: Model restrictions and objective from a quadratic assignment
perspective (and linearize afterwards).

» There is a stronger and compact linearization technique.

» For any arc uv € A, there is exactly one pair of layers k and /,
k # ¢, such that x, x - x, o = 1. All other products are zero.

» Assignment variables more intuitive than ordering variables.



A Quadratic Assignment Perspective on Graph Layering

If there are Y layers, the length of uv € A thus equals

k
u 74
Y =2 k+1
S5 (=K (e Xk + Xuk - x00))
=2

~

>
I

1
v oyt



A Quadratic Assignment Perspective on Graph Layering

If there are Y layers, the length of uv € A thus equals

u v k
Y -1 k+1
SN (=K (ot ek + Xuk e x0) X
=2 k:l g

v u

An arc uv € A is reversed if and only if the expression

Y /-1
Z <Xu,£ : Xv,k)

(=2 k=1

evaluates to one. Otherwise, the expression is zero.



A Quadratic Assignment Perspective on Graph Layering

An arc uv € A causes a dummy vertex on layer k € {2,...,Y — 1}
if and only if k is between the layers of v and v, i.e., if

=

-1

Y
E (Xu,é *Xy,m + Xum * Xv,ﬂ)
1 m=k+1

~
Il

evaluates to one. Again, the term will be zero otherwise.

14

u Vo1
k
k+1



A Basic Quadratic Layer Assignment Model (QLA)

Replace the product x, x - x, ¢ by variables p, x ., for all uv € A
and all k.0 € {1,...,Y}.



A Basic Quadratic Layer Assignment Model (QLA)

Replace the product x, x - x, ¢ by variables p, x ., for all uv € A
and all k.0 € {1,...,Y}.

Then a feasible layering is characterized by the restrictions:

Y

2 Xy, k
k=1

Y

E Puk,ve
/=1

Y

2 Pu.k,v.e
k=1

Pu.k,v k
Xy k

Puk,ve

=1

= Xu,k

= Xv ¢

=0
€ {0,1}
€ [0,1]

forallveVv

foralluv € A, ke {l,...,Y}

foralluve A, L e{1,...,Y}

foralluv € A, ke {l,...,Y}
forallveV, ke{l,...,Y}
foralluv e A, k,0e{l,...,Y}



Computational Study

Two runtime competitions:
QLA-W vs. CGL-W (Jabrayilov et al. [2016])
QLA-MS* vs. CGL-MS* (Riiegg et al. [2017])
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Computational Study

Two runtime competitions:
QLA-W vs. CGL-W (Jabrayilov et al. [2016])
QLA-MS* vs. CGL-MS* (Riiegg et al. [2017])

Model Sizes:
CGL-W/MS* = |V|-Y 4+ |A|-Y variables

QLA-W/MS* =~ |V|-Y + |A| - Y? variables

CGL-W = (4]A| + |V]) - Y + 4|A| constraints

QLA-W ~ (2|A|) - Y + |V| constraints

QLA-/CGL-MS* versions: |V| more constraints each.



GLP and GLP-W - Results AT Tar (Di Battista et al. [1997])

Two experiments (Gurobi 8, timeout at 1800s (30 min.)):
(1) Almost no width emphasis (GLP setting)
(2) Major emphasis on width minimization

ATTar 20 < |V| <30 (#=58)  ATTar 31 < |V| <45 (#=39)  ATTar 46 < |V| < 60 (# = 30)
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Intel Core i7-3770T (2.5 GHz), 1 Thread, 8 GB RAM, Linux



GLP-MS* - Results AT Tar (Di Battista et al. [1997])

ATTar 20 < |V| < 30 (# = 58)
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Three experiments (Gurobi 8, timeout at 1800s (30 min.)):

» ry o ryratios1:2,1:1,and 2: 1.

» Major emphasis on maximum scaling factor.

ATTar 31 < |V| < 45 (# = 39)

ATTar 46 < |V| < 60 (# = 30)
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