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Layered Drawings of Directed Graphs

Drawing Restictions:

I Vertices on consecutive layers

I No two adjacent vertices on the
same layer

I (Major) Common arc direction

I Aesthetic layering objectives:

I `Compactness' (Width W,
Height H, Total Arc Length),

I Few Arc Reversals
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Sugiyama-Style Drawings of Directed Graphs
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Classic Approach
(Sugiyama et al. [1981]):

1. Cycle Removal

2. Vertex Layering

3. Crossing Minimization

4. Horizontal Coordinates &
Arc Routing

Limitations w.r.t. steps 1 & 2:
Longest path may impede
`compactness' / good aspect ratio
from the very beginning.
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Visual e�ects of poor and good aspect ratios

Two drawings of a graph, the right of which has two arcs reversed.



Area-Adaptive Graph Layering

Rüegg et al. [2017]: Adapt Layering w.r.t. target drawing area.

Input: (Relative) Area width rW and height rH , denoted rW : rH .

Goal: Maximum Resolution or Scaling Factor S := min{ rWW , rHH }
(plus possibly minimum edge length / number of reversed arcs).

1 : 2 1 : 1 2 : 1

Maximum-Scale Generalized Layering Problem (GLP-MS)
Given G = (V ,A), rW , and rH , �nd a feasible layering L : V 7→ N+

minimizing

ωlen
( ∑
uv∈A
|L(v)− L(u)|

)
+ ωrev |{uv ∈ A | L(v) < L(u)}| − ωscl S
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Graph Layering - Evolution of Optimization Problems

Name Objective Exact Approach

DLP
∑
uv∈A

(
L(v)− L(u)

)
Gansner et al. [1993]

DLP-W
∑
uv∈A

ωlen

(
L(v)− L(u)

)
+ ωwid W Healy, Nikolov [GD 2002]

GLP
∑
uv∈A

ωlen |L(v)− L(u)| +

ωrev |{uv ∈ A | L(v) < L(u)}| Rüegg et al. [GD 2016]

GLP-W
∑
uv∈A

ωlen |L(v)− L(u)| +

ωrev |{uv ∈ A | L(v) < L(u)}|+ ωwid W Jabrayilov et al. [GD 2016]

GLP-MS∗
∑
uv∈A

ωlen |L(v)− L(u)| +

ωrev |{uv ∈ A | L(v) < L(u)}|+ ωscl S̄ Rüegg et al. [JGAA 2017]

(S̄ := 1

S )



Graph Layering and Mixed-Integer Linear Programming

Prior models are based on either assignment or ordering variables.

Assignment variables: xv ,k :=

{
1, if L(v) = k

0, otherwise

Ordering variables: yk,v :=

{
1, if L(v) > k

0, otherwise

Linear expression of restrictions and objectives?

I Easy if arc directions are �xed (DLP cases).

I DLP-W: Dummy vertex variables:

duv ,k :=

{
1, if uv ∈ A spans layer k

0, otherwise

I Additional option to �count� edge lengths.
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Graph Layering and Mixed-Integer Linear Programming

But: Variable Arc Directions change the scene:

I Need to count arc reversals in addition

⇒ Need arc reversal variables: ruv :=

{
1, if L(v) < L(u)

0, otherwise

I Need to model |L(v)− L(u)| (instead of L(v)− L(u)).

I Need to model dummy vertices based on two possible arc
directions.

I Case Distinctions: More and weaker linear constraints to
enforce correct values on ruv and duv ,k .
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A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.

u

v u

v

I Arc directions, (absolute) edge lengths, and dummy vertices
are all based on conjunctive vertex placement decisions.

Idea: Model restrictions and objective from a quadratic assignment
perspective (and linearize afterwards).

I There is a stronger and compact linearization technique.
I For any arc uv ∈ A, there is exactly one pair of layers k and `,

k 6= `, such that xu,k · xv ,` = 1. All other products are zero.
I Assignment variables more intuitive than ordering variables.
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A Quadratic Assignment Perspective on Graph Layering

If there are Y layers, the length of uv ∈ A thus equals

Y∑
`=2

`−1∑
k=1

(
(`− k) · (xu,` · xv ,k + xu,k · xv ,`)

) k

`

u

v u

v
k + 1
. . .

An arc uv ∈ A is reversed if and only if the expression

Y∑
`=2

(
xu,` ·

`−1∑
k=1

xv ,k

)

evaluates to one. Otherwise, the expression is zero.
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A Quadratic Assignment Perspective on Graph Layering

An arc uv ∈ A causes a dummy vertex on layer k ∈ {2, . . . ,Y − 1}
if and only if k is between the layers of u and v , i.e., if

k−1∑
`=1

Y∑
m=k+1

(xu,` · xv ,m + xu,m · xv ,`)

evaluates to one. Again, the term will be zero otherwise.

`

k

u

v u

v
k − 1

k + 1
m



A Basic Quadratic Layer Assignment Model (QLA)

Replace the product xu,k · xv ,` by variables pu,k,v ,` for all uv ∈ A

and all k , ` ∈ {1, . . . ,Y }.

Then a feasible layering is characterized by the restrictions:

Y∑
k=1

xv ,k = 1 for all v ∈ V

Y∑
`=1

pu,k,v ,` = xu,k for all uv ∈ A, k ∈ {1, . . . ,Y }

Y∑
k=1

pu,k,v ,` = xv ,` for all uv ∈ A, ` ∈ {1, . . . ,Y }

pu,k,v ,k = 0 for all uv ∈ A, k ∈ {1, . . . ,Y }
xv ,k ∈ {0, 1} for all v ∈ V , k ∈ {1, . . . ,Y }
pu,k,v ,` ∈ [0, 1] for all uv ∈ A, k , ` ∈ {1, . . . ,Y }
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Computational Study

Two runtime competitions:
QLA-W vs. CGL-W (Jabrayilov et al. [2016])
QLA-MS∗ vs. CGL-MS∗ (Rüegg et al. [2017])

Model Sizes:

CGL-W/MS∗ ≈ |V | · Y + |A| · Y variables

QLA-W/MS∗ ≈ |V | · Y + |A| · Y 2 variables

CGL-W ≈ (4|A|+ |V |) · Y + 4|A| constraints

QLA-W ≈ (2|A|) · Y + |V | constraints

QLA-/CGL-MS∗ versions: |V | more constraints each.
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GLP and GLP-W - Results ATTar (Di Battista et al. [1997])

Two experiments (Gurobi 8, timeout at 1800s (30 min.)):

(1) Almost no width emphasis (GLP setting)
(2) Major emphasis on width minimization
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GLP-MS∗ - Results ATTar (Di Battista et al. [1997])

Three experiments (Gurobi 8, timeout at 1800s (30 min.)):
I rW : rH ratios 1 : 2, 1 : 1, and 2 : 1.
I Major emphasis on maximum scaling factor.
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