This Is Time in Graph Drawing

Giuseppe Di Battista Università degli Studi Roma Tre

27th International Symposium on Graph Drawing and Network Visualization – GD2019 Průhonice/Prague, September 17-20, 2019

Here point of view of the InfoVis community Visualization metaphorNode-link or matrices **Span of knowledge on data**Offline if, at any time instant, future data are known and can be used to compose the drawing Online otherwise **Representation of time**Animation or timeline Mental map preservation Modeling of transitions Beck, Burch, Diehl, Weiskopf, The state of the art in visualizing dynamic graphs, Eurovis 2014

Type of graph stories and of drawing stories

- A graph story is a *tree story* or a *forest story* or a *planar* graph story or if all G_i 's are trees or forests or planar graphs or
- A drawing story is *planar* or *straight-line* or if all its drawings are planar or straight-line or

		So	ome re	sults		
Graph story	Drawing story	Memory	Update time	Draw subgraph time	Draw window time	Overall area
Forest of rooted trees	Upward planar straight-line grid	0(n)	<i>O</i> (log <i>n</i>)	$O(k + \log n)$ Subtree	$O(k \log n)$	<i>0</i> (<i>n</i> ²)
Series- parallel digraphs	Upward planar straight-line grid	0(n)	<i>O</i> (log <i>n</i>)	$O(k + \log n)$ Series-parallel subgraph	$O(k \log^2 n)$	<i>O</i> (<i>n</i> ²)
Planar <i>st</i> - digraphs	Upward planar polyline grid	0(n)	0(log n)	$O(k \log n)$	-	$O(n^2)$

targets: a time that is: (1) sublinear in n for updates and (2) linear in the number of

objects to be drawn and sublinear in *n* for drawing queries

Graph story	Drawing story	Objects	Memory	Update time	Number of points in convex position
Degree <i>d</i> Trees (Eulerian Tour only)	planar straight- line, circular layout	edges	0(k)	<i>O(k)</i>	$\left[\frac{k}{2}\right](d-1)+k+1$
Trees (Eulerian Tour only)	planar straight- line, circular layout	edges	0(k)	<i>O(k)</i>	2 <i>k</i> – 1

If we use dynamic graph drawing for streaming

Graph story	Drawing story	Objects	Memory	Update time	Number of points in convex position (streaming)	Area
Trees (Eulerian Tour)	planar straight- line, circular layout	edges	$\frac{O(k)}{O(k)}$	O(k) O(k)	2 <i>k</i> – 1	$\frac{O(k^3)}{O(k^2)}$

k is the persistence (size of the window) Dynamic graph drawing bound

So what? In dynamic graph drawing the objects *move*, even of a linear amount of space for just one update

	Stonding	0 C
	Storyline	QC.
	Animation	Timeline
Offline		Storyline & C.
nline		

A streamgraph paradigm for routing visualization t = 00-3 4

Floater Gotsman Curve – outer face

Suppose the outer face has the same drawing in Γ_0 and in Γ_1

Floater Gotsman Curve

• At each time t, Γ_t is a weighted barycentric (planar) drawing with weights

 $\lambda_{ij}(t) = \lambda_{ij}(0)(1-t) + \lambda_{ij}(1)t$

line drawings

morphs upward planar straight-line drawings of rooted trees

This Is Time for Graph Drawing

Giuseppe Di Battista Università degli Studi Roma Tre

27th International Symposium on Graph Drawing and Network Visualization – GD2019 Průhonice/Prague, September 17-20, 2019