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B8 Summary

N\

e The SQPR-tree data structure

* Bend-minimization of planar 3-graphs
— Efficient algorithms

* Bend-minimization of planar 4-graphs
— Exponential-time approaches



SPQR-trees



T Triconnected components and SPQR-trees

p\—

* A biconnected graph can be decomposed into triconnected
components

—J. E. Hopcroft, R. E. Tarjan: Dividing a Graph into Triconnected
Components. SIAM J. Comput. 2(3): 135-158 (1973)

 If G is a planar graph, the planar embeddings of G depend on the
planar embeddings of its triconnected components

—the SPQR-tree data structure provides an implicit representation of the
triconnected components of G and of all planar embeddings of G
[|G. Di Battista, R. Tamassia: On-Line Planarity Testing. SIAM J. Comput.
25(5): 956-997 (1996)]



> Separation pair and split operation
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B8 Recursive split operation




> Recursive split operation




B8 Recursive split operation




B8 Recursive split operation - output
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T Merge operation

* If each G,is a triple bond or (more in general) consists of a set of parallel edges only

* If each G,is a triangle or (more in general) a simple cycle



Recursive merge operation
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> Recursive merge operation — final result
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> Towards SPQR-trees
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P99 Towards SPQR-trees
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> Towards SPQR-trees
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77079 SPQR-trees
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Bend-minimum orthogonal drawings
of planar 3-graphs



T The problem

Problem: planar 3-graph = planar bend-minimum orthogonal drawing

4 bends 4)—()>—(3) 3 bends

plane 3-graph bend-min orthogonal drawing bend-min orthogonal drawing
(fixed embedding) (variable embedding)



o< History reminder

N\

Bend-min orthogonal drawings: fixed embedding

* plane 4-graphs
—0(n? log n)
—0(n”’*log n)
_O(nl.S)

* plane 3-graphs
O(n)

‘Tamassia (1987)]
Garg, Tamassia (2001)]

(Cornelsen, Karrenbauer (2011)]

[Rahman, Nishizeki (2002)]

based on
min-cost flow

not based on

flow techniques



o9 History reminder

p\—

Bend-min orthogonal drawings: variable embedding

* planar 4-graphs: NP-hard [Garg, Tamassia (2001)]

* planar 3-graphs 2018

P A |

O(n° log n) O(n*?) O(n%43logkn) O(n?) Can we do
Di Battista-Liotta- consequence of Chang and Yen next slides better?
Vargiu Cornelsen-Karrenbauer




P99 Result

N\

Theorem. Let G be an n-vertex (simple) planar 3-graph. There
exists an O(n?%)-time algorithm that computes a bend-minimum
orthogonal drawing of G, with at most two bends per edge.

P. S. the algorithm takes O(n) time if we require that a prescribed
edge of G is on the external face

W. Didimo, G. Liotta, M. Patrignani: Bend-Minimum Orthogonal Drawings
in Quadratic Time. Graph Drawing 2018: 481-494



80! General strategy for biconnected graphs
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input: G biconnected planar 3-graph with n vertices
output: bend-min orthogonal drawing I of G

 for each edge e of G
— I', <~ bend-min orthogonal drawing of G with e on the external face

* return I' <~ min-bends{I_}

', is computed in O(n) time



e Strategy for the linear-time algorithm

p\—

* Incremental construction of I,

1. bottom-up visit of the SPQR-tree + orthogonal spirality
- similar to [G. Di Battista, G. Liotta, F. Vargiu: Spirality and optimal
orthogonal drawings, SIAM J. Comput., 27 (1998)]

2. new properties of bend-min orthogonal drawings of planar 3-graphs

3. non-flow based computation of bend-min orthogonal drawings for the
rigid components



80! Orthogonal representations: reminder

N\

orthogonal representation = equivalence class of orthogonal
drawings with the same vertex angles and the same sequence of
bends along the edges

* a drawing of an orthogonal representation can be computed in
linear time

orthogonal component = orthogonal representation H  of a
component GM



80! Orthogonal components: example




>¢ ¢ Orthogonal components: examples




>¢ ¢ Orthogonal components: examples

Rigid (orthogonal) component



>¢ ¢ Orthogonal components: examples
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e Turn number and contour paths

p\—

____________________ . S—
1 = node of the SPQR-tree TT

L J H, P,
? A I
p 0
(N ? t(p) =0
" Lo () =2
N W contour paths Pr) =
| O

t(p) = turn number = |#left turns — # right turns| (along p)



T P- and R-components: Representative shapes

N\

1 = P-node or R-node

H, is D-shaped < t(p)=0and t(p,) =2 or vice versa ﬂ

H, is X-shaped < t(p)=t(p,) =1 ‘

H, is C-shaped < t(p)=4andt(p,) =2 or vice versa

H, is L-shaped < t(p,) =3 and t(p,) = 1 or vice versa

R [




B8 Inner S-components: spirality

N\

L =inner S-node

Lemma. All paths between the poles of an orthogonal component
H,, have the same turn number

Hu




T Inner S-components: spirality

N\

L =inner S-node

Lemma. All paths between the poles of an orthogonal component
H,, have the same turn number

— t(p) =k
Ty H, is k-spiral
0, 0, . 1 k-spira
v H, has spirality k

o tpq) =t(p,) =2



e Root child S-components: spirality

N\

u = root child S-node

The definition of k-spiral and the lemma are extended by considering
an external alias vertex in place of a pole with in-degree 2

| Hu
O
vI|VY
PET- alias vertex




88 Equivalent orthogonal components

N\

*H, and H'H = two distinct orthogonal representations of G,

*H, and H'  are equivalent if:
—pisaP-oranR-node and H,, H'  have the same representative shape
—pisan S-node and H,, H' , have the same spirality



>¢ ¢ Equivalent orthogonal components

N\

Theorem (substitution). Equivalent orthogonal components are
interchangeable

O O
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>¢ ¢ Equivalent orthogonal components

N\

Theorem (substitution). Equivalent orthogonal components are
interchangeable
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88 Equivalent orthogonal components

N\

Theorem (substitution). Equivalent orthogonal components are

interchangeable |
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>¢ ¢ Equivalent orthogonal components

N\

Theorem (substitution). Equivalent orthogonal components are
interchangeable
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70 Key lemma

N\

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the external
face such that:

O1. every edge has at most two bends

0O2. every inner P- or R-component is D- or X-shaped; if the root
child is a P- or an R-component, it is either D-, C-, or L-shaped

03. every S-component has spirality at most 4



70 Key lemma

N\

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the external
face such that:

O1. every edge has at most two bends

0O2. every inner P- or R-component is D- or X-shaped; if the root
child is a P- or an R-component, it is either D-, C-, or L-shaped

03. every S-component has spirality at most 4

Proof ingredients: partially based on a characterization of no-bend
orthogonal representations [Rahman, Nishizeki, Naznin 2003]



70 Key lemma: Consequence

N\

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the external

face such that:
O1. every edge has at most two bends

0O2. every inner P- or R-component is D- or X-shaped; if the root
child is a P- or an R-component, it is either D-, C-, or L-shaped

03. every S-component has spirality at most 4

Consequence: we can restrict our algorithm to search for a
bend-min representation that satisfies O1, 02, and O3.



\begin{Characterization of no-bend drawings}



e Characterization of no-bend drawings

[Rahman, Nishizeki, Naznin, JGAA 2003] = [RNN'03]

degree-2 vertex

. 3-legged cycle '

T 2-legged cycle [ ]

biconnected plane 3-graph no-bend orthogonal drawing of G



e Characterization of no-bend drawings

N\

Theorem [RNN'03]. Let G be a biconnected plane
3-graph. G admits a no-bend orthogonal drawing <

(i) the external cycle of G has at least 4 degree-2 vertices
(ii) each k-legged cycle of G has at least (4-k) degree-2 vertices

Definition: we call bad a 2-legged or a 3-legged cycle that does
not satisfy (ii)



\end{Characterization of no-bend drawings}



77079 Key-Lemma: O1

N\

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge e;
G admits a bend-min orthogonal representation with e on the external
face and having these properties:

O1. at most two bends per edge



28 Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

Notation
O O
O———O
H
O O O
u V wW

smoothing v

——>

O—0
O—CQ
O []
H

O

4"

.- rectilinear image of H

u

20O



T Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

* H=bend-min representation of G with e on the external face
« g =-edge of Hwith (at least) three bends



28 Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

* H=bend-min representation of G with e on the external face
« g =-edge of Hwith (at least) three bends
 vl,v2,v3=thethree bend-vertices of H corresponding to the bends of g



28 Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

* H=bend-min representation of G with e on the external face

« g =-edge of Hwith (at least) three bends
 vl,v2,v3=thethree bend-vertices of H corresponding to the bends of g

 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]



28 Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

* H=bend-min representation of G with e on the external face

« g =-edge of Hwith (at least) three bends
 vl,v2,v3=thethree bend-vertices of H corresponding to the bends of g

 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]

Case 1: g is an internal edge



28 Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

* H=bend-min representation of G with e on the external face

« g =-edge of Hwith (at least) three bends

 vl,v2,v3=thethree bend-vertices of H corresponding to the bends of g
 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]

Case 1: g is an internal edge still satisfies (i)
’//«and(ﬁ)ofTh.
’ [RNN'03]




28 Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

* H=bend-min representation of G with e on the external face

« g =-edge of Hwith (at least) three bends

 vl,v2,v3=thethree bend-vertices of H corresponding to the bends of g
 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]

Case 1: g is an internal edge H' with
no bend

|

H' with less
bends than H




28 Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

* H=bend-min representation of G with e on the external face

« g =-edge of Hwith (at least) three bends
 vl,v2,v3=thethree bend-vertices of H corresponding to the bends of g

 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]

Case 2: g is an external edge (call C,(G) the external boundary of G)
* Case 2.1. C,(G) has more than 4 degree-2 vertices

smooth v1 contradiction

1
Y :> as before

v2 v2
v3 v3



28 Key-Lemma: O1

N\

Proof of O1 (at most two bends per edge)

* H=bend-min representation of G with e on the external face

« g =-edge of Hwith (at least) three bends
 vl,v2,v3=thethree bend-vertices of H corresponding to the bends of g

 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]

Case 2: g is an external edge (call C,(G) the external boundary of G)
* Case 2.2. C,(G) has exactly 4 degree-2 vertices

smooth v1 subdivide

vl [:::::::D> [:::::::t>

v2 v2 v2
v3 v3 v3



28 Key-Lemma: 02

N\

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge e;
G admits a bend-min orthogonal representation with e on the external
face and having these properties:

O2. every inner P- or R-component is D- or X-shaped; if the root
child is a P- or an R-component, it is either D-, C-, or L-shaped



28 Key-Lemma: 02

N\

Proof of O2 (inner P- or R-components are D- or X-shaped)

* H =bend-min representation of G with e on the external face and property O1
 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]



28 Key-Lemma: 02

N\

Proof of O2 (inner P- or R-components are D- or X-shaped)

* H =bend-min representation of G with e on the external face and property O1

 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]

* [RNN'03] gives an algorithm that computes a no-bend representation H' of G
such that every 2-legged (and 3-legged) cycle is either D-shaped or X-shaped




28 Key-Lemma: 02

N\

Proof of O2 (inner P- or R-components are D- or X-shaped)

* H =bend-min representation of G with e on the external face and property O1

 H has no-bend = G satisfies (i) and (ii) of Th. [RNN'03]

* [RNN'03] gives an algorithm that computes a no-bend representation H' of G
such that every 2-legged (and 3-legged) cycle is either D-shaped or X-shaped

... each inner P- and R-component is
a 2-legged cyclein G




77079 Key-Lemma: 02

N\

Proof of O2 (root child P- or R-components are D-, C-, or L-shaped)

* H =bend-min representation of G with e on the external face and property O1

N
J

O C
e has 0 bends e has 1 bend e has 2 bends

e has 3 bends



7Y Key-Lemma: O3

N\

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge e;
G admits a bend-min orthogonal representation with e on the external
face and having these properties:

03. every S-component has spirality at most 4



B8 Key-Lemma: O3

N\

Proof of O3 (S-components have spirality at most 4)

* H =bend-min representation of G with e on the external face and properties
O1 and O2;

e H was computed with the [RNN'03] alg, which we call NoBend-Alg

 we prove that every S-component in H (and thus in H) has spirality at most 4



\begin{NoBend-Alg}



>0 ¢ Step 1 choose 4 external corners

four vertices of degree 2 are
used as corners (in our case,
these vertices may be obtained
by subdividing edges)




>0 ¢ Step 1 choose 4 external corners

four vertices of degree 2 are
used as corners (in our case,
these vertices may be obtained
by subdividing edges)




B8 Step 2: find maximal bad cycles w.r.t. the corners

 2-legged cycles not passing
through (at least) 2 corners

 3-legged cycles not passing
through (at least) 1 corner




B8 Step 2: find maximal bad cycles w.r.t. the corners

 2-legged cycles not passing
through (at least) 2 corners

 3-legged cycles not passing
through (at least) 1 corner

- bad 2-legged,
but not maximal

.. bad 2-legged
maximal




B8 Step 3: collapse maximal bad cycles

new desighated
/" corner




T Step 4: compute a rectangular representation

] o—CO)
®—O—®




> Step 5: recourse into the collapsed nodes

>0 |
O8© i

| 10—)
O—O—@




and plug the components

>0 |
o D@
10—

B—- o—O n O—G—=0
—(© @3
—0O0—® — <s4> OO0
= O—@ = © ®




\end{NoBend-Alg}



7Y Key-Lemma: O3

N\

Proof of O3 (inner S-components have spirality at most 4)

Case 1. the S-component is not inside a maximal bad cycle and all its edges are internal

collapsed cycles will stay
along the same side of a O

rectangular face
\ —O
. maximal bad ,
| cycles —> O - 4
O P
O ——0

and yield spirality O for
the S-component




7Y Key-Lemma: O3

N\

Proof of O3 (inner S-components have spirality at most 4)

Case 2. the S-component is inside a maximal bad cycle that traverses the component

the collapsed cycle has
one of these two
configurations in the

_\_maximal bad rectangular representation

cycle

‘ which yield spirality 0 or 1 —O=
O—




7Y Key-Lemma: O3

N\

Proof of O3 (inner S-components have spirality at most 4)

Case 2. the S-component is inside a maximal bad cycle that traverses the component

the collapsed cycle has
one of these two
configurations in the

_\_maximal bad rectangular representation

cycle (M
> -
‘ which yield spirality 0 or 1 —O=
O—
Other cases may lead up to spirality 4




7Y Key-Lemma: O3

N\

Proof of O3 (a root child S-component has spirality at most 4)

at most 4-spiral at most 3-spiral at most 2-spiral
| | ' e
e
> e > D> e
)
e has 0 bend e has 1 bend e has 2 bends

Higher values of spirality may only increase the number of bends



80! Algorithm

N\

* input: biconnected planar 3-graph G with a reference edge e
e output: bend-min representation H of G with e on the external face

construct the SPQR-tree T of G with respectto e

2. visit the nodes u of T bottom-up:

—pinner node = store in p a candidate set of bend-min representations of G-
one for each distinct representative shape, thanks to the substitution theorem

— 1 the root child = construct H by suitably merging e with the candidate
representations stored at the children of u; consider {0, 1, 2} bends for e,
thanks to O1 of the key-lemma



80! Candidate sets for the tree nodes

N\

* Q-node: a representation for each number of bends in {0, 1, 2}
—thanks to O1 of the key-lemma
I l—@ —0
_O

* P/R-node: the cheapest D- and X-shaped representations for the inner nodes
and the cheapest D-, C-, and L-shaped representations for the root child

—thanks to O2 of the key-lemma

* S-node: the cheapest representation for each value of spirality in {0, 1, 2, 3, 4}
—thanks to O3 of the key-lemma



88 Candidate set of a P-node

D-shaped

/‘\ ‘/‘} 0-spiral 2-spiral X-shaped
1-spiral 1-spiral
C-shaped

/‘\ 4-spiral 2-spiral L-shapec
R A || ? 1-spiral

L O(1) time




88 Candidate set of an R-node

N\

Each child of an R-node is either a Q- or an S-node

YES NO
R R

BN >




e Candidate set of an R-node (sketch)

skel(p)
constrained
O(n)-time bend-min repr. bend-min
variant of of skel(p) D-shaped
[RNN'99] 9)- 9
o P
; bend-min Gy O—0)—G)r)
3-connected
cubic (with 3)--- 3
. constraints)
[RNN'§9] S. Rahman, S.-I. Nakano, T. Nishizeki: O(nu) time

A Linear Algorithm for Bend-Optimal Orthogonal Drawings
of Triconnected Cubic Plane Graphs. J. Graph Algorithms Appl. 3(4): 31-62 (1999)



88 Candidate set of an S-node

YES ?

skeleton I component

g




O-spiral Q 1-spiral 2-spiral
O— O
5 :
min ! )
O——4 . :
min min
O O—— O——
X | min ,
O
min min
O O O—o0

e Candidate set of an S-node

O

3-spiral

min

5

4-spiral

/

#(extra bends) = max{0, spirality — (#D-shaped + #Q-nodes — 1)}



B8 Question

p\—

* Is there a subquadratic-time algorithm to compute a bend-minimum
orthogonal drawing of a planar 3-graph?

O(n?) Can we do
better?



B8 Question

N\

* Is there a subquadratic-time algorithm to compute a bend-minimum
orthogonal drawing of a planar 3-graph?

Ingredients:

* new data structure for the
rigid components

* |abeling procedure for the
candidate sets

* reusability principle for the

SPQR-tree nodes

1
1

O(n?) O(n)-time
algorithm

7’



Bend-minimum orthogonal drawings
of planar 4-graphs



>-¢< Bend-min of planar 4-graphs

p\—

* Branch-and-bound algorithm for a biconnected graph G

—P. Bertolazzi, G. Di Battista, W. Didimo: Computing Orthogonal Drawings
with the Minimum Number of Bends. IEEE Trans. Computers 49(8): 826-
840 (2000)

* Ingredients:
—enumeration scheme for the planar embeddings of G
— effective lower bounds on the number of bends
—simple upper bounds on the number of bends



D)

Enumeration scheme

t skel (u;)

0/1 0/1 0/1 \ \

Mg | o] Hs

SPQR-tree

skel (11,)
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Enumeration scheme

t skel (u;)

SPQR-tree

skel (11,)
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Enumeration scheme
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Enumeration scheme
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SPQR-tree
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Enumeration scheme

t
G
u
e
S
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X= (1111

SPQR-tree

skel (11,)




> Search tree




P99 Search tree

partial graph

00| -




88 Branch-and-Bound algorithm

p\—

* mb <« +00 // minimum number of bends known so far
* visit the search tree from the root (use a BFS or DFS)

* when a node x is visited:

— compute an upper bound ub on the number of bends of an orthogonal
representation with embedding in the subtree rooted at x
e If (ub<mb)then mb « ub

— compute a lower bound /b on the number of bends of an orthogonal
representation with embedding in the subtree rooted at x

* If (Ib > mb) then cut x and its subtree

* return mb



80! Upper bound

- random path




Tamassia'si %

algorithm

o2 Upper bound TT- —| —o




> Lower bound: Notation

partial graph

EV = set of virtual edges

ER = set of real edges

b.r(H)=# of bends of H along the real edges



o ¢ Lower bound: Preliminary lemma

e H'=representation of G' with minimum bends on ER
* H =bend-min representation of G that preserves the
embedding of G'

partial graph G'

ber(H') < ber(H) ber(H') can be

computed by
O

imposing cost O for
ber (H) =3 ber (H') =2

the bends on the
virtual edges in
Tamassia's flow
network

®
O




o2 Lower bound: Recursive approach

* |b,=lower bounds on the # of bends in the pertinent

partial graph G graph of a component G,

Ib=bg(H') + =, Ib,

the set of Ib, can be
computed through a

% | bottom-up visit of
the SPQR-tree in a
b, =1

T

Ib,=1

pre-processing step

Ib

I
D

beg (H') = 2



o ¢ Lower bound: Further improvement

* If some lb. is zero, replace the corresponding virtual
edge with a simple path © between the poles of G,
and regard the edges of 7 as real edges

partial graph G'

Ib=bg(H') + = Ib,




>0 ¢ Some experimental data

)

density/vertices 10 20 30 40 50 60 70 80 90 100
1.1 6 10 10 25 25 10 10 4 13.33 0
1.2 37.5 32.38 27 26.33 41.3 38.67 32.1 17.32 33.28 31.76
1.4 20.82 22.31 19.99 19.92 22.35 28.99 24.88 16.59 20.36 14.2
1.6 19.75 15.05 20.76 12.16 13.14 12.4 15.92 11.87 14.61 12.65
1.8 13.04 11.05 10.46 10.08 8.15 9.94 4.07 4.77 4.21

% avg. improvement on the number of bends w.r.p. to a bend-minimum
orthogonal drawing in the fixed embedding setting

Additional reading
* P Mutzel, R. Weiskircher: Bend Minimization in Planar Orthogonal Drawings Using
Integer Programming. SIAM Journal on Optimization 17(3): 665-687 (2006)



"L Bend-min of planar 4-graphs: Open problem

N\

* Problem: Let G be a biconnected 4-planar graph with a given
combinatorial embedding. is there an o(n?)-time algorithm that
computes a bend-minimum orthogonal drawing of G overall
possible choices of the external faces? (the combinatorial
embedding is preserved)



