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Reconfiguration

Reconfiguration: process of changing a structure
(configuration) into another - either through continuous
motion or through discrete changes, so-called flips
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Reconfiguration

• Configurations:
plane drawings of straight line graphs, labeled vertices

• Reconfiguration step:
flip = exchange of (a bounded number of) edges
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Reconfiguration

• Configurations:
plane drawings of straight line graphs, labeled vertices

• Reconfiguration step:
flip = exchange of (a bounded number of) edges

We always assume points to be in general position, i.e., no three
points are on a common line
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Reconfiguration

Three central questions for a set of configurations:
• Can we transform from any configuration to any other?
• How long does it take in the worst case?
• How long for a specific pair of configurations?
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Three central questions for a set of configurations:
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• How long for a specific pair of configurations?

Reconfiguration graph:
• vertex: each configuration (e.g. triangulation)
• edge: reconfiguration step (e.g. edge flip)
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Reconfiguration

Three central questions for a set of configurations:
• Can we transform from any configuration to any other?
• How long does it take in the worst case?
• How long for a specific pair of configurations?

Reconfiguration graph:
• vertex: each configuration (e.g. triangulation)
• edge: reconfiguration step (e.g. edge flip)

• Is the flip graph connected?
• What is the diameter (or radius) of the flip graph?
• What is the complexity of finding the shortest flip

sequence between two given elements of the flip graph?
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Triangulations

Sometimes also called “near-triangulation”: straight-line embedding
in the plane, where the outerface needs not to be a triangle
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Triangulations
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Triangulations – Edge Flip

Edge flip in triangulations:
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Triangulations – Edge Flip

flippable

Edge flip in triangulations:
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Triangulations – Edge Flip

non-flippable

Edge flip in triangulations:
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Triangulations – Edge Flip

Edge flip in triangulations:
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Triangulations – Convex Position

The convex case: bijection with binary trees.
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Edge Flip – Rotation in Binary Tree



Oswin Aichholzer EuroCG’2025: Flips in Plane Graphs - Old Problems, New Results8 ii
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Edge Flip – Rotation in Binary Tree
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Edge Flip – Rotation in Binary Tree
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What is the shortest rotation sequence between two trees?
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Triangulation Flip Graph

• Vertex: Each triangulation of the given set of points
• Edge: two triangulations can be transformed into each

other by one edge flip.

For points in convex position:
• connected
• Cn−2 elements
• an (n− 3)-dimensional

polytope, called
“associahedron”
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Triangulations

Classic result for Flips in Triangulations:
• In the combinatorial setting all n-triangulations are

connected [Wagner 1936, diameter O(n2)] with diamter
O(n) [Komuro 1997]

• For general point sets [Lawson 1972] showed that the flip
graph is connected with diameter O(n2). He uses a
canonical triangulation, triangulated in x-sorted order.

• Later [Lawson 1977] used the Delaunay triangulation as
canonical triangulation, again O(n2) Delaunay flips.
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Triangulations

Classic result for Flips in Triangulations (cont’):
• Without canonical triangulation: The flipdistance can

be bounded by the number of crossings (there is always
a flip reducing the number of crossings)
[Hanke, Ottmann, Schuierer 1996]

• Computing lower bounds for the flipdistance between
two given triangulations can be computed in polynomial
time [Eppstein 2007]

• Diameter for sets with k onion layers: O(nk)
• Diameter for n-gons with k reflex vertices: O(n+ k2);

both results [Hurtado, Noy, Urrutia, 1995]

• Points in convex position: Diameter 2n− 10 [Sleator,

Tarjan, Thurston 1988]; tight for n > 12 [Pournin 2014]
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Triangulation Flip – Lower Bound

• Double chain with 2n points
• The drawn edges are unavoidable for any triangulation,

that is, they can not be crossed by any other edge
• Only the inner of the polygon is relevant

Lower bound Ω(n2) [Hurtado, Noy, Urrutia 1999]

u1 u2 un

l1 l2 ln
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Triangulation Flip – Lower Bound

Lower bound Ω(n2) [Hurtado, Noy, Urrutia 1999]

• We have a sequence of n− 1 ones and n− 1 zeros
• A flip is possible between a 1 triangle and a 0 triangle
• The two adjacent numbers are switched

0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0

ℓℓ

11000101 11001001
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Triangulation Flip – Lower Bound

Lower bound Ω(n2) [Hurtado, Noy, Urrutia 1999]

• “All zeros have to be moved to the right”
• There are n− 1 zeros and n− 1 ones
• Therefore we need at least (n− 1)2 flips
• The flip graph has (at least) quadratic diameter

00000 ...11111 11111 ...00000
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Triangulations

So we have tight upper bounds O(n) for convex sets, and O(n2) for
general sets, but what is the complexity of computing the shortest flip
sequence between two given triangulations?
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Triangulations

So we have tight upper bounds O(n) for convex sets, and O(n2) for
general sets, but what is the complexity of computing the shortest flip
sequence between two given triangulations?

• Computing the flip distance between two triangulations of a planar
point set is
◦ NP-complete [Pilz 2012] and [Lubiw, Pathak 2012]

◦ APX-hard [Pilz, 2014] (reduction from Vertex Cover), i.e., no
polynomial-time algorithm to approximate the flip distance by
1 + ε, ε ≥ 0.36 exists

◦ fixed-parameter tractable for flip distance k: O∗(k · 32k) [Feng, Li,

Meng, Wang 2021], for convex sets O∗(3.82k) [Li, Xia 2025]
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Triangulations

So we have tight upper bounds O(n) for convex sets, and O(n2) for
general sets, but what is the complexity of computing the shortest flip
sequence between two given triangulations?

• Computing the flip distance between two triangulations of a planar
point set is
◦ NP-complete [Pilz 2012] and [Lubiw, Pathak 2012]

◦ APX-hard [Pilz, 2014] (reduction from Vertex Cover), i.e., no
polynomial-time algorithm to approximate the flip distance by
1 + ε, ε ≥ 0.36 exists

◦ fixed-parameter tractable for flip distance k: O∗(k · 32k) [Feng, Li,

Meng, Wang 2021], for convex sets O∗(3.82k) [Li, Xia 2025]

• Computing the flip distance between two triangulations of a simple
polygon is NP-complete [A., Mulzer, Pilz, 2015] reduction from

Rectilinear Steiner Arborescence
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Triangulations

Open Problem 1: What is the complexity of the flip
distance of two triangulations of a set of points in convex
position (the rotation distance between two binary trees)?

?

Open whether it is in P or NP-hard, but ≤ 2n− 10 flips
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Happy Edge Property

A Happy Edge is an edge that exists in both, the initial
graph and the target graph.
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Happy Edge Property

A Happy Edge is an edge that exists in both, the initial
graph and the target graph.

Happy Edge Property: There exists a shortest
flip-sequence between the initial graph and the target graph
where happy edges are never flipped.
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Happy Edge Property

A Happy Edge is an edge that exists in both, the initial
graph and the target graph.

Happy Edge Property: There exists a shortest
flip-sequence between the initial graph and the target graph
where happy edges are never flipped.

The Happy Edge Property does not hold for triangulations
of general point sets or simple polygons [Hernando, Hurtado,

Noy 2002] ...

... but for triangulations of a set of points in convex
position [Sleator, Tarjan, Thurston 1988]

→ this was the key to construct NP-hardness gadgets

→ so maybe Open Problem 1 is in P?
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Crossing-free Spanning Trees
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Crossing-free Spanning Trees

A reconfiguration step (flip) for a crossing-free spanning
tree removes one edge, and inserts another, such that the
resulting drawing is again a crossing-free spanning tree
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Crossing-free Spanning Trees

A reconfiguration step (flip) for a crossing-free spanning
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resulting drawing is again a crossing-free spanning tree
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Crossing-free Spanning Trees

A reconfiguration step (flip) for a crossing-free spanning
tree removes one edge, and inserts another, such that the
resulting drawing is again a crossing-free spanning tree
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Crossing-free Spanning Trees

A reconfiguration step (flip) for a crossing-free spanning
tree removes one edge, and inserts another, such that the
resulting drawing is again a crossing-free spanning tree
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Crossing-free Spanning Trees

A reconfiguration step (flip) for a crossing-free spanning
tree removes one edge, and inserts another, such that the
resulting drawing is again a crossing-free spanning tree
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Crossing-free Spanning Trees

A reconfiguration step (flip) for a crossing-free spanning
tree removes one edge, and inserts another, such that the
resulting drawing is again a crossing-free spanning tree



Oswin Aichholzer EuroCG’2025: Flips in Plane Graphs - Old Problems, New Results17 vii

Crossing-free Spanning Trees

A reconfiguration step (flip) for a crossing-free spanning
tree removes one edge, and inserts another, such that the
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resulting drawing is again a crossing-free spanning tree
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Crossing-free Spanning Trees

A reconfiguration step (flip) for a crossing-free spanning
tree removes one edge, and inserts another, such that the
resulting drawing is again a crossing-free spanning tree
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Crossing-free Spanning Trees

edge exchange compatible edge exchange

edge slideedge rotation
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Crossing-free Spanning Trees

• The flip graph for general point sets is connected even for edge
slides [A., Aurenhammer, Hurtado 2002] with tight diameter O(n2) [A., Reinhardt 2007].
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Crossing-free Spanning Trees

• The flip graph for general point sets is connected even for edge
slides [A., Aurenhammer, Hurtado 2002] with tight diameter O(n2) [A., Reinhardt 2007].

• Classic results for all other flip types: 1.5n− 5 ≤ diameter
≤ 2n− 4 [Hernando, Hurtado, Márquez, Mora, Noy 1999, Avis, Fukuda 1996].
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• The flip graph for general point sets is connected even for edge
slides [A., Aurenhammer, Hurtado 2002] with tight diameter O(n2) [A., Reinhardt 2007].

• Classic results for all other flip types: 1.5n− 5 ≤ diameter
≤ 2n− 4 [Hernando, Hurtado, Márquez, Mora, Noy 1999, Avis, Fukuda 1996].

• For sets in convex position many new results exist, most recently:
14n/9−O(1) ≤ diameter ≤ 5n/3− 3, where the lower bound
also holds for general point sets. [H.B. Bjerkevik, L. Kleist, T. Ueckerdt., B. Vogtenhuber 2025]
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Crossing-free Spanning Trees

• The flip graph for general point sets is connected even for edge
slides [A., Aurenhammer, Hurtado 2002] with tight diameter O(n2) [A., Reinhardt 2007].

Further details:

• Classic results for all other flip types: 1.5n− 5 ≤ diameter
≤ 2n− 4 [Hernando, Hurtado, Márquez, Mora, Noy 1999, Avis, Fukuda 1996].

• For sets in convex position many new results exist, most recently:
14n/9−O(1) ≤ diameter ≤ 5n/3− 3, where the lower bound
also holds for general point sets. [H.B. Bjerkevik, L. Kleist, T. Ueckerdt., B. Vogtenhuber 2025]
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Open Problems for Trees

Open Problem 2: For which flip types does the Happy
Edge Property hold for crossing-free spanning trees?

Open Problem 3: What is the complexity of computing
the flip distance for crossing-free spanning trees for general
point sets / point sets in convex position?

Open Problem 4: What is the tight bound for the
diameter of the flip graph for crossing-free spanning trees
for general point sets / point sets in convex position?
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Crossing-free Spanning Paths
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Crossing-free Spanning Paths

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .
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Crossing-free Spanning Paths

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .



Oswin Aichholzer EuroCG’2025: Flips in Plane Graphs - Old Problems, New Results22 xi

Crossing-free Spanning Paths

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .



Oswin Aichholzer EuroCG’2025: Flips in Plane Graphs - Old Problems, New Results22 xii

Crossing-free Spanning Paths

• Configuration: crossing-free spanning paths on n points
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Crossing-free Spanning Paths

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .
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Crossing-free Spanning Paths

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .
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Crossing-free Spanning Paths

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .

Type 1: e and f share a vertex
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Crossing-free Spanning Paths

e

f

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .

Type 1: e and f share a vertex
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Crossing-free Spanning Paths

e

f

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .

Type 1: e and f share a vertex

Type 2: path can be closed to a plane cycle
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Crossing-free Spanning Paths

e

f

f

e

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .

Type 1: e and f share a vertex

Type 2: path can be closed to a plane cycle
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Crossing-free Spanning Paths

e

f

f

e

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .

Type 1: e and f share a vertex

Type 2: path can be closed to a plane cycle

Type 3: cycle contains one crossing
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Crossing-free Spanning Paths

e

f

f

e

fe

• Configuration: crossing-free spanning paths on n points
• Flip: exchange of one edge e to an edge f .

Type 1: e and f share a vertex

Type 2: path can be closed to a plane cycle

Type 3: cycle contains one crossing
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Crossing-free Spanning Paths

Open Problem 5: Is the flip graph for crossing-free
spanning paths connected? For which flip-types?
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Crossing-free Spanning Paths

Open Problem 5: Is the flip graph for crossing-free
spanning paths connected? For which flip-types?

Known so far:
• n points in convex position: connected with diameter

2n− 6 (n ≥ 5), tight [Akl, Islam, Meijer, 2007 / Chang, Wu, 2009].
• Connected for n ≤ 11 points in general position, even

for Type 1 flips [shown via order types].
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Crossing-free Spanning Paths

Open Problem 5: Is the flip graph for crossing-free
spanning paths connected? For which flip-types?

• Connected for wheel sets (diameter 2n− 4), generalized
double circles (diameter O(n2), include ice cream
cones, double chains, double circles)
[A., Knorr, Löffler, Masárová, Mulzer, Obenaus, Paul, Vogtenhuber, 2023]
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Crossing-free Spanning Paths

Open Problem 5: Is the flip graph for crossing-free
spanning paths connected? For which flip-types?

• Connected for Sets with two Convex Layers
[L. Kleist, P. Kramer, Ch. Rieck, 2024]
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Crossing-free Spanning Paths

Open Problem 5: Is the flip graph for crossing-free
spanning paths connected? For which flip-types?

Open Problem 6: In case of connectedness (convex sets
etc) how fast can the shortest flip-sequence be found?

Open Problem 7: Assume that starting and target paths
are together crossing-free (aka compatible). Can they be
embedded into a triangulation, so that flipping from one to
the other can be done via paths of this triangulation?

Open Problem 8: Is the flip graph for crossing-free
spanning paths connected via compatible paths? Two
paths are compatible if their union is crossing-free.
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Crossing-free Spanning Paths

The Happy Edge Property does NOT hold for crossing-free
spanning-path, not even for points in convex position:

The diagonal is an happy
edge, but is the only one
that can be flipped.
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Crossing-free Spanning Paths

The Happy Edge Property does NOT hold for crossing-free
spanning-path, not even for points in convex position:

The diagonal is an happy
edge, but is the only one
that can be flipped.

Reconfiguration problems seem to get harder when the
happy edge property does not hold, but for Problem 6:
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Crossing-free Hamiltonian Cycles

• aka polygonalizations
• a flip consists of 2 edges

A flip is not always possible:
counterexample with 19 points
[Hernandoa, Houle, Hurtado 2002]

What if we close the path to a crossing-free spanning cycle?
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Crossing-free Hamiltonian Cycles

• aka polygonalizations
• a flip consists of 2 edges

New example (2023) with only 9
vertices, no 2-edge-flip is possible.
Minimal w.r.t. the number of points

What if we close the path to a crossing-free spanning cycle?
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Crossing-free Perfect Matchings

n = 2m points
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Crossing-free Perfect Matchings

A natural reconfiguration step is a flip of 2 edges:
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?

Can we actually show that
for any crossing-free perfect
matching there always exists
at least one 2-flip? For the
flip graph that means that
there are no singletons, that
is, any connected component
has at least two elements.

Only three 2-flips
are possible
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?

Can we actually show that
for any crossing-free perfect
matching there always exists
at least one 2-flip? For the
flip graph that means that
there are no singletons, that
is, any connected component
has at least two elements.

Only three 2-flips
are possible

Can be reduced to 2 flips
- result less than 24h old
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?

Remark: Connected with a linear number of 2-edge flips for
points in convex position [Hernando, Hurtado, Noy 2002]
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?

Flipping 2 edges can be seen as “flipping
the parity” of a crossing-free 4-cycle
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?

Flipping 2 edges can be seen as “flipping
the parity” of a crossing-free 4-cycle

General: Flipping k ≥ 2 edges can be seen as
“flipping the parity” of a crossing-free 2k-cycle.
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?

Flipping 2 edges can be seen as “flipping
the parity” of a crossing-free 4-cycle

General: Flipping k ≥ 2 edges can be seen as
“flipping the parity” of a crossing-free 2k-cycle.

Cycles do not need to be empty in the interior Cycles might self-intersect, but we

consider only crossing-free cycles
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?

Flipping 2 edges can be seen as “flipping
the parity” of a crossing-free 4-cycle

General: Flipping k ≥ 2 edges can be seen as
“flipping the parity” of a crossing-free 2k-cycle.

For unbounded k the flip-graph is connected via flips of
crossing-free k-cycles [Houle, Hurtado, Noy, Rivera-Campo, 2005]

Flip distance for crossing-free multi-cycles O(log n)

Lower bound Ω(log n/ log log n) [Razen, 2008]

([A., Bereg, Dumitrescu, Garcia, Huemer, Hurtado, Kano, Marquez, Rappaport, Smorodinsky, Souvaine, Urrutia,
Wood, 2008])
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Crossing-free Perfect Matchings

Maybe surprisingly:
Open Problem 9: Is the flip graph of crossing-free perfect
matchings connected by 2-edge flips?

Flipping 2 edges can be seen as “flipping
the parity” of a crossing-free 4-cycle

General: Flipping k ≥ 2 edges can be seen as
“flipping the parity” of a crossing-free 2k-cycle.

For unbounded k the flip-graph is connected via flips of
crossing-free k-cycles [Houle, Hurtado, Noy, Rivera-Campo, 2005]

Open Problem 10: Is the flip graph of crossing-free perfect
matchings connected via crossing-free ≤ 2k-cycles, k = o(n)?
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Crossing-free Perfect Matchings

• Red matching edges are happy
and should not be flipped

• Respecting happy edges, all black
matching edges must be flipped
at the same time

• Respecting happy edges, at least
half of the edges must be flipped
at the same time

• For sublinear size flips the Happy
Edge Property does not hold

The Happy Edge Property does not hold for crossing-free
perfect matchings with flips of sublinear size:

[M. Schüßler, 2024]
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Crossing-free Almost Perfect Matchings

Almost perfect matching: n = 2m+ 1 points, m edges

A flip involves
only 3 points
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only 3 points
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Crossing-free Almost Perfect Matchings

Almost perfect matching: n = 2m+ 1 points, m edges

The flip graph of almost perfect matchings is connected with
diameter O(n2) [A., Brötzner, Perz, Schnider 2024]
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10 Open Problems

Open Problem 1: What is the complexity of the flip distance of two triangulations of a set of points
in convex position (the rotation distance between two binary trees)?
Open Problem 2: Which flip types have the Happy Edge Property for crossing-free spanning trees?
Open Problem 3: What is the complexity of computing the flip distance for crossing-free spanning
trees for general point sets / point sets in convex position?
Open Problem 4: What is the tight bound for the diameter of the flip graph for crossing-free
spanning trees for general point sets / point sets in convex position?
Open Problem 5: Is the flip graph for crossing-free spanning paths connected? For which flip-types?
Open Problem 6: In case of connectedness (convex sets etc), how fast can the shortest
flip-sequence for crossing-free paths path be found?
Open Problem 7: Assume that starting and target paths are together crossing-free (aka
compatible). Can they be embedded into a triangulation, so that flipping from one to the other can
be done via paths of this triangulation?
Open Problem 8: Is the flip graph for crossing-free spanning paths connected via compatible paths?
Two paths are compatible if their union is crossing-free.
Open Problem 9: Is the flip graph of crossing-free perfect matchings connected by 2-edge flips?
Open Problem 10: Is the flip graph of crossing-free perfect matchings connected by flips of
crossing-free ≤ 2k-cycles with k = o(n)?
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Open Problem 1: What is the complexity of the flip distance of two triangulations of a set of points
in convex position (the rotation distance between two binary trees)?
Open Problem 2: Which flip types have the Happy Edge Property for crossing-free spanning trees?
Open Problem 3: What is the complexity of computing the flip distance for crossing-free spanning
trees for general point sets / point sets in convex position?
Open Problem 4: What is the tight bound for the diameter of the flip graph for crossing-free
spanning trees for general point sets / point sets in convex position?
Open Problem 5: Is the flip graph for crossing-free spanning paths connected? For which flip-types?
Open Problem 6: In case of connectedness (convex sets etc), how fast can the shortest
flip-sequence for crossing-free paths path be found?
Open Problem 7: Assume that starting and target paths are together crossing-free (aka
compatible). Can they be embedded into a triangulation, so that flipping from one to the other can
be done via paths of this triangulation?
Open Problem 8: Is the flip graph for crossing-free spanning paths connected via compatible paths?
Two paths are compatible if their union is crossing-free.
Open Problem 9: Is the flip graph of crossing-free perfect matchings connected by 2-edge flips?
Open Problem 10: Is the flip graph of crossing-free perfect matchings connected by flips of
crossing-free ≤ 2k-cycles with k = o(n)?


