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Abstract
Given a point set P in a metric space and a real number t ≥ 1, an oriented t-spanner is an oriented
graph −→

G = (P,
−→
E ), where for every pair of distinct points p and q in P , the shortest oriented closed

walk in −→
G that contains p and q is at most a factor t longer than the perimeter of the smallest

triangle in P containing p and q. The oriented dilation of a graph −→
G is the minimum t for which −→

G

is an oriented t-spanner.
For arbitrary point sets of size n in Rd, where d ≥ 2 is a constant, the only known oriented

spanner construction is an oriented 2-spanner with
(

n
2

)
edges. Moreover, there exists a set P of four

points in the plane, for which the oriented dilation is larger than 1.46, for any oriented graph on P .
We present the first algorithm that computes a sparse oriented spanner whose oriented dilation

is bounded by a constant. More specifically, for any set of n points in the Euclidean space Rd, where
d is a constant, we construct an oriented (2 + ε)-spanner with O(n) edges in O(n log n) time and
O(n) space. Our construction uses the well-separated pair decomposition and an algorithm that
computes a (1 + ε)-approximation of the minimum-perimeter triangle in P containing two given
query points in O(log n) time.

We further prove that even if the oriented graph is already given, computing its oriented dilation
is APSP-hard for points in a general metric space. We complement this result with an algorithm
that approximates the oriented dilation of a given graph in subcubic time for point sets in Rd, where
d is a constant.

Related Version Full Version arXiv:2412.08165 [cs.CG]

1 Introduction

While geometric spanners have been researched for decades (see [3, 14] for a survey), directed
versions have only been considered more recently. This is surprising since, in many appli-
cations, edges may be directed or even oriented if two-way connections are not permitted.
Oriented spanners were first proposed in ESA’23 [4] and have since been studied in [5] and [6].

Given a point set P in the Euclidean space and a parameter t, an oriented t-spanner−→
G = (P,

−→
E ) is an oriented graph such that for every pair p, q of distinct points in P , the

shortest oriented closed walk in −→
G that contains p and q is at most a factor t longer than

their shortest cycle in the complete undirected graph on P .

∗ Antonia Kalb: This work was supported by a fellowship of the German Academic Exchange Ser-
vice (DAAD).

† Anil Maheshwari, Michiel Smid: funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



1:2 Computing Oriented Spanners and their Dilation

Formally, the oriented dilation is t = maxp,q∈P

{
odil(p, q) = |C−→

G
(p,q)|

|∆∗(p,q)|

}
, where C−→

G
(p, q)

denotes the shortest closed walk containing p and q in the oriented graph −→
G and ∆∗(p, q)

denotes the minimum-perimeter triangle in P . This is the triangle ∆pqx, where x =
arg min{(|px| + |qx|) | x ∈ P \ {p, q}}.

Recall that a t-spanner is an undirected graph G with vertex set P , in which for any two
points p and q, there exists a path between p and q in G whose length is at most t times
the distance |pq|. In contrast to that, in the oriented setting, the shortest closed walk in the
graph is compared to the minimum-perimeter triangle. In an oriented graph, comparing only
the shortest path to the Euclidean distance would lead to arbitrary high dilations even on
point sets with three vertices (see Figure 1). Therefore, the undirected dilation would not
tell us much about the quality of an oriented spanner.

p

p′
p′′

Figure 1 If p and p′ are very close to each other and p′′ is far away from both, any oriented
graph will have arbitrarily high (directed) dilation [4].

Several algorithms are known that compute undirected (1 + ε)-spanners with O(n) edges
for any set of n points in Rd. Examples are the greedy spanner [14], Θ-graphs [13] and
spanners based on the well-separated pair decomposition (WSPD) [17]. Moreover, it is
NP-hard to compute an undirected t-spanner with at most m edges [10].

In the oriented case, while it is NP-hard to compute an oriented t-spanner with at most m

edges [4], the problem of constructing sparse oriented spanners has remained open until now.

Figure 2 An oriented graph
on 4 points with dilation
2
√

3 − 2 ≈ 1.46 [4].

For arbitrary point sets of size n in Rd, where d ≥ 2 is a
constant, the only known oriented spanner construction is a
simple greedy algorithm that computes, in O(n3) time, an
oriented 2-spanner with

(
n
2
)

edges [4]. If P consists of three
vertices of an equilateral triangle in R2 and a fourth point in
its centre, then the smallest oriented dilation for P is 2

√
3 −

2 ≈ 1.46 [4] (see Figure 2). Thus, prior to our work, no
algorithms were known that compute an oriented t-spanner
with a subquadratic number of edges for any constant t.

In this paper, we introduce the first algorithm to construct sparse oriented spanners for
general point sets. For any set P of n points in Rd, where d is a constant, the algorithm
computes an oriented (2 + ε)-spanner with O(n) edges in O(n log n) time and O(n) space.

While our approach uses the WSPD [7, 17], in contrast to undirected spanners, this does
not immediately yield an oriented spanner. An undirected spanner can be obtained from a
WSPD by adding one edge per well-separated pair. This does not work for constructing an
oriented spanner because a path in both directions needs to be considered for every well-
separated pair. To construct such paths, we present a data structure based on approximate
nearest neighbour queries [2], that, given a pair of points, returns a point with an approximate
minimum summed distance to the pair of the points, i.e. the minimum-perimeter triangle.

For the problem of computing the oriented dilation of a given graph, there is a straight-
forward cubic time algorithm. We show a subcubic approximation algorithm.

The hardness of computing the dilation of a given graph, especially in the undirected
case, is a long-standing open question, and only cubic time algorithms are known [12]. It is
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conjectured that computing the dilation is as hard as the all-pairs shortest paths problem
(APSP). In this paper, we demonstrate that computing the oriented dilation is APSP-hard.

2 Sparse Oriented Constant Dilation Spanner

We present the first construction for a sparse oriented (2 + ε)-spanner for multidimensional
point sets. Our algorithm consists of the following steps (a detailed version of Algorithm 1 is
given in the full version of this paper):

Algorithm 1 (2 + ε)-Spanner Construction
1: Compute the WSPD on the given point set.
2: For two points of each well-separated pair, approximate their minimum-perimeter triangle

(see Lemma 2.1).
3: Construct an undirected graph whose edge set consists of edges of approximated triangles.
4: Orient the undirected graph using a greedy algorithm (see Lemma 2.2).

In Step 2, we approximate the minimum-perimeter triangle ∆∗(a, b) of two points a ∈ A

and b ∈ B of a well-separated pair {A, B}. We claim that any third point c in either A or B

forms a triangle ∆abc that is a (1 + ε)-approximation of ∆∗(a, b).
If both subsets have size one, thus no such c exists, we approximate the minimum triangle

by approximate nearest neighbour queries. Therefore, we use the data structure of Arya,
Mount, Netanyahu, Silverman and Wu [2], which can be constructed in O(n log n) time and
has size O(n). Given a real number ε > 0 and a query point q in Rd, we compute a (1 + ε)-
approximate nearest neighbour of q in P in O(log n) time. Given two points p, q ∈ P and
the real numbers ε2 = ε1/2, α = 4/ε1, the following query returns a (1 + ε1)-approximation
of ∆∗(p, q):

Algorithm 2 (1 + ε1)-Approximation of the Minimum-Perimeter Triangle
1: Compute a (1 + ε2)-approximate nearest neighbour r of p (which is neither p nor q).
2: If |pr| > α|pq|, then return ∆pqr.
3: Otherwise, let B be the hypercube with sides of length 3α|pq| that is centred at p and

divided into cells with sides of length of 2
3

√
d

· ε1|pq|.
4: For each cell, compute the (1 + ε2)-approximate nearest neighbour xc of the cell centre c

(which is neither p nor q).
5: Return the triangle ∆pqxc

with the smallest perimeter across all cells.

▶ Lemma 2.1.∗ Let P be a set of n points in Rd and let 0 < ε1 < 2 be a real number. In
O(n log n) time, the set P can be preprocessed into a data structure of size O(n), such that,
given any two distinct query points p and q in P , a (1 + ε1)-approximation of the minimum
triangle ∆∗(p, q) can be computed in O(log n) time.

In Step 4 of Algorithm 1, we modify a greedy algorithm from [4], which originally works
in the following way. Sort the

(
n
3
)

triangles of the complete graph in ascending order by their
perimeter. For each triangle in this order, orient it clockwise or anti-clockwise if possible;
otherwise, we skip this triangle. At the end of the algorithm, all remaining edges are oriented

∗ Due to space restrictions, proofs of results marked by ∗ are given in the full version of this paper.
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arbitrarily. In [4], they show that this greedy algorithm yields an oriented 2-spanner. Note
that this graph has

(
n
2
)

edges. Our modification of the greedy algorithm is to only consider the
approximate minimum-perimeter triangles, rather than all

(
n
3
)

triangles. Lemma 2.2 states
that, for any two points whose triangles are (1 + ε1)-approximated in Step 2 of Algorithm 1,
the dilation between those points is at most (2 + 2ε1) in the resulting orientation.

▶ Lemma 2.2.∗ Let P be a set of n points in Rd, let ε1 > 0 be a real number, and let L be a
list of m point triples (p, q; r), with p, q, and r being pairwise distinct points in P . Assume
that for each (p, q; r) in L, |∆pqr| ≤ (1 + ε1) · |∆∗(p, q)|.

Let G = (P, E) be the undirected graph whose edge set consists of all edges of the m

triangles ∆pqr defined by the triples (p, q; r) in L. In O(m log n) time, we can compute an
orientation −→

G of G, such that odil−→
G

(p, q) ≤ 2 + 2ε1 for each (p, q; r) in L.

▶ Remark. The above lemma only guarantees an upper bound on odil−→
G

(p, q) for (p, q; r)
in L. For such a triple, odil−→

G
(p, r) and odil−→

G
(q, r) can be arbitrarily large.

Now, we show that the algorithm described above constructs a sparse oriented (2 + ε)-
spanner for point sets in the Euclidean space Rd:

▶ Theorem 2.3.∗ Given a set P of n points in Rd and a real number 0 < ε < 2, an oriented
(2 + ε)-spanner for P with O(n) edges can be constructed in O(n log n) time and O(n) space.

Proof sketch. We show that Algorithm 1 returns such a spanner −→
G . For any two points

p, q ∈ P , we prove that |C−→
G

(p, q)| ≤ (2 + ε) · |∆∗(p, q)| by induction on the rank of |pq| in
the sorted sequence of all

(
n
2
)

pairwise distances.
If p, q is a closest pair (for the definition see [17]), then {{p}, {q}} is in the WSPD.

Therefore, a (1+ε1)-approximation of ∆∗(p, q) is added to the list of triangles, that define the
edge set of −→

G and, due to Lemma 2.2 and for ε1 = ε/4, we obtain odil−→
G

(p, q) ≤ 2+2ε1 ≤ 2+ε.

Assume that p, q is not a closest pair. Let {A, B} be the well-separated pair with p ∈ A

and q ∈ B. In Step 2 of Algorithm 1, one point a ∈ A and one point b ∈ B are used to
approximate a minimum-perimeter triangle. We now sketch the case, where p ̸= a and q ̸= b

(see Figure 3). In particular, we show

|C−→
G

(p, q)| ≤ |C−→
G

(p, a)| + |C−→
G

(a, b)| + |C−→
G

(b, q)| ≤ (2 + ε) · |∆∗(p, q)|.

For the other cases, where p = a or p = b, this statement also applies.
Since |pa| < |pq| and |bq| < |pq|, we use induction to bound |C−→

G
(p, a)| and |C−→

G
(b, q)|.

Further, Lemma 2.2 applies to a and b, thus:

|C−→
G

(p, q)| ≤ (2 + ε)|∆∗(p, a)| + (2 + 2ε1)|∆∗(a, b)| + (2 + ε)|∆∗(b, q)|.

Let s > 0 be the real number, such that {A, B} is an s-well-separated pair. Using
properties of the WSPD, if |A| ≥ 3 and |B| ≥ 3, we can bound the perimeter of ∆∗(p, a) and
∆∗(b, q) by 3/s|∆∗(p, q)|. Further, |∆∗(a, b)| is bounded by 6/s|∆∗(p, q).

For ε1 = ε/4, ε < 2 and s = 96/ε, we conclude that |C−→
G

(p, q)| ≤ (2 + ε)|∆∗(p, q)|. ◀

3 Oriented Dilation

Computing the dilation of a given graph is related to the all-pairs shortest paths problem.
There is a well-known cubic-time algorithm for APSP by Floyd and Warshall [9, 18]. Using
their algorithm (and computing the minimum triangles naively), the oriented dilation of a
given graph with n points can be computed in O(n3) time.
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a b

q

A B

≤ (2 + ε)|∆∗(p, a)|

≤ (1 + ε1)|∆∗(a, b)|

≤ (1 + ε1)|∆∗(a, b)|

≤ (2 + ε)|∆∗(b, q)|

p

Figure 3 Visualization of Case 1: |C−→
G

(p, q)| ≤ |C−→
G

(p, a)| + |C−→
G

(a, b)| + |C−→
G

(b, q)| in the proof
of Theorem 2.3. C−→

G
(a, b) is either a (1 + ε1)-approximation of ∆∗(a, b) or a union of two triangles

(red), each of at most (1 + ε1)|∆∗(a, b)|. |C−→
G

(p, a)| and |C−→
G

(b, q)| (blue) are bounded inductively.

We prove APSP-hardness for computing the oriented dilation for a given graph. Since
the APSP-problem is believed to need truly cubic time [15], it is unlikely that computing
the oriented dilation is possible in subcubic time. Note that the following statement applies
to metric graphs, thus we have general metric distances instead of Euclidean.

▶ Theorem 3.1.∗ Let −→
G be an oriented metric graph. It is APSP-hard to compute the

oriented dilation of −→
G .

To compute the oriented dilation, testing all
(

n
2
)

point tuples seems to be unavoidable.
However, to approximate the oriented dilation, we show that, as for approximating undirected
dilation (see [12, 14] for a survey), a linear set of tuples suffices. To complete this, we give
the following approximation algorithm (a detailed version is given in the full version):

Algorithm 3 Oriented Dilation Approximation

1: Compute the WSPD on the point set of the given graph −→
G .

2: For two points of each well-separated pair, approximate their shortest closed walk in −→
G

and their minimum-perimeter triangle. Compute the division of both.
3: Return the smallest approximated oriented dilation across all tuples.

▶ Theorem 3.2.∗ Let P be a set of n points in Rd, let −→
G be an oriented graph on P , and let

ε > 0 be a real number. Assume that, in T (n) time, we can construct a data structure such
that, for any two query points p and q in P , we can return, in f(n) time, a k-approximation
to the length of a shortest path in G between p and q. Then we can compute a value odil in
O(T (n) + n(log n + f(n))) time, such that

(1 − ε) · odil(−→G) ≤ odil ≤ k · odil(−→G).

The precision and runtime of this approximation depend on approximating the length
of a shortest path between two query points. The point-to-point shortest path problem
in directed graphs is an extensively studied problem (see [11] for a survey). Alternatively,
shortest path queries can be preprocessed via approximate APSP (see [8, 16, 19]). For planar
directed graphs, the authors in [1] present a data structure build in O(n2/r) time, such that

EuroCG’25



1:6 Computing Oriented Spanners and their Dilation

the exact length of a shortest path between two query points can be returned in O(
√

r)
time. Setting r = n2/3 minimizes the runtime of our Algorithm 3 to O(n4/3). It should be
noted that even with an exact shortest path queries (k = 1) the oriented dilation remains an
approximation due to the minimum-perimeter triangle approximation.

4 Conclusion and Outlook

We present an algorithm for constructing a sparse oriented (2 + ε)-spanners for multidimen-
sional point sets. Our algorithm computes such a spanner efficiently in O(n log n) time for
point sets of size n. In contrast, [4] presents a plane oriented O(1)-spanner, but only for points
in convex position. Developing algorithms for constructing plane oriented O(1)-spanners for
general two-dimensional point sets remains an open problem. Another natural open problem
is to improve upon t = 2 + ε. For this, the question arises: Does every point set admit an
oriented t-spanner with t < 2? Even for complete oriented graphs this is open.

In the second part of this paper, we study the problem of computing the oriented dilation
of a given graph. We prove APSP-hardness of this problem for metric graphs. We complement
this by a subcubic approximation algorithm. The APSP-hardness of computing the oriented
dilation of metric graphs seems to be dominated by the computation of a minimum-perimeter
triangle. However, for Euclidean graphs, the minimum-perimeter triangle containing two
given points can be computed in o(n) time. This raises the question: Is computing the
oriented dilation of a Euclidean graph easier than for general metric graphs?
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Abstract
We provide a linear time algorithm to determine a minimum flip sequence between two plane
spanning paths on a point set in convex position. In contrast, we show that the happy edge property
does not hold in this setting. This differs from several results on reconfiguration problems where the
absence of the happy edge property implies algorithmic hardness of the problem.

1 Introduction

Let S be a finite point set in the plane in general position, that is, no three points lie on a
common line. We call S a convex point set if no point in S lies in the interior of the convex
hull of S. For a convex point set with n vertices label the points v0,...,vn−1 in clockwise
order starting from an arbitrary vertex. A plane straight-line graph on S is a graph with
vertex set S and whose edges are straight line segments between pairs of points of S such
that no two edges intersect except at a common endpoint. Throughout this paper all graphs
are assumed to be straight line graphs.

Flips in Plane Spanning Paths. A flip is an operation that removes one edge from
a plane spanning path and adds another edge such that the resulting structure is again a
plane path. Given an initial plane spanning path Pin and a target path Ptar on S, a flip
sequence from Pin to Ptar is a sequence of plane paths P0, P1, ..., Pk such that P0 = Pin,
Pk = Ptar and two consecutive paths differ only by a flip. The index k describes the length
of the flip sequence. The flip distance between Pin and Ptar is the minimum k for which a
flip sequence from Pin to Ptar of length k exists. A flip sequence that realizes this minimum
will be called a minimum flip sequence.

In [1] a characterization of flips in plane spanning paths into three types is given. See
Figure 1 for an illustration. Consider a path P = p1p2...pn where the pi denotes the points
in order of traversal by the path. A flip of Type 1 removes an edge (pi−1, pi) and adds an
edge (p1, pi) or (pi−1, pn) resulting in a new path, pi−1, ..., p1pi, ..., pn or p1, ..., pi−1pn, ..., pi,
respectively. A flip of Type 2 adds the edge (p1, pn) assuming this edge does not cross any of
the already existing edges. Afterwards, an arbitrary edge (pi−1, pi) from the original path
can be removed. Note that adding and removing consecutive edges when closing a cycle can
be interpreted as both a Type 1 flip and a Type 2 flip. For simplicity of notation we will
count such flips as Type 2 flips. A flip of Type 3 also adds the edge (p1, pn) but now it is

∗ This research was funded in part by the Austrian Science Fund (FWF) 10.55776/DOC183.
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(a) (b) (c)

Figure 1 Flips in plane spanning paths: (a) Type 1 flip (b) Type 2 flip (c) Type 3 flip

assumed to intersect exactly one edge (pi−1, pi) in P which is then removed within this flip
operation.

It is still unknown, whether every plane spanning path can be transformed into any other
spanning path on the same point set. But, for the special cases of convex point sets [3], wheel
sets and generalized double circles [1], and point sets with at most two convex layers [6], it
is shown that we can always flip from one path to another. In [6] the existance of a large
connected component of plane spanning paths called suffix-independent paths is derived.

Happy Edges. Happy edges are edges that lie in both, the initial configuration and the
target configuration of a graph reconfiguration problem. The so-called happy edge property
says that there always exists a minimum flip sequence between two configurations in which
no edge is removed and later flipped in again. This implies that a happy edge is never flipped
in such a sequence. The happy edge property often is a good indication for the complexity of
a reconfiguration problem. For example, for triangulations of simple polygons [2] and general
point sets [7, 8] finding minimum flip sequences is NP-hard, while the gadgets in the proofs
are built around conterexamples to the happy edge property. Conversely, the happy edge
property holds for plane perfect matchings of convex point sets and a minimum flip sequence
can be found in polynomial time [5]. On the other hand, the happy edge property is known
to hold for triangulations of convex polygons [9], but the complexity of finding minimum flip
sequences is still open.

Our Contributions. In this paper we show that the happy edge property does not
hold for plane spanning paths of convex point sets. This adds to the already known
counterexamples in general point sets [4]. In contrast, we provide an approach for finding
minimum flip sequences between pairs of plane spanning paths on convex point sets in linear
time. Interestingly, this differs from all the previously mentioned results where the absence
of the happy edge property implied hardness of finding minimum flip sequences.

2 Counterexample to the Happy Edge Property

In Figure 2 we show the flip graph of all eight plane spanning paths on four points in convex
position. The initial path Pin and target path Ptar are marked. Both paths share a diagonal,
but no other path contains that particular diagonal. Moreover, the two paths can not be
directly transformed into one another via one flip. Therefore, this pair of paths provides
a counterexample to the happy edge property for finding minimum flip sequences between
plane spanning paths in convex point sets.
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Type 1

Type 1

Type 1

Type 1

Type 3

Type 2

Type 1

Type 1

Type 1

Type 1

Type 1

Type 1

Type 1

Type 1

Type 2

Type 3Pin Ptar

Figure 2 Flip graph of paths on four points in convex position with a counterexample to the
happy edge property. Indicated are the different types of flips and the initial and target paths.

3 Basics on Flips in Paths

In this section we show some basic relations for flips between plane paths. Due to visibility
constraints Type 2 flips can only happen when all edges of the current path lie on the convex
hull. For Type 1 flips we obtain the following result.

▶ Lemma 3.1. Type 1 flips either remove a diagonal or add a diagonal, but not both at the
same time. If diagonals exists, we can always lower the number of diagonals via a Type 1
flip.

Case 1 Case 2

v

vva

vb va

d d

Type 3

Figure 3 Case 1 (left): Adding a convex hull edge (fat), removing a diagonal (dashed). Case 2
(middle): Adding a diagonal (fat), removing a convex hull edge (dashed). For a Type 3 flip (right),
we need all but one diagonal to be on the convex hull.

A proof for Lemma 3.1 can be found in a full version of this paper. The intuition behind
Lemma 3.1 can be seen in Figure 3. It shows all possible flips that can involve diagonals:
Removing the unique diagonal that is visible from an end vertex of the path by adding a
convex hull edge between this end vertex and a vertex incident to the diagonal (Case 1),
adding a diagonal by removing a convex hull edge (Case 2), and performing a Type 3 flip
that exchanges the only diagonal with a diagonal that is rotated by one vertex into some
direction (right).
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Bad happy diagonal Good happy diagonal

d

vi

vjvj

vi+1

vj+1

d d d

vi vi vi

vj vj

vi+1

vj+1

vi−1 vi−1

vj−1 vj−1

Figure 4 Bad happy diagonal D with edges emanating to different sides in different paths (left),
and good happy diagonal d with edges emanating to the same side in different paths (right)

Let d = (vi, vj) be a happy edge that is a diagonal. Note that d splits the convex point set
into two parts and its two adjacent edges emanate into different parts. Let d be adjacent to e1
at vi and f1 at vj in the initial path Pin, and to e2 at vi and f2 at vj in the target path Ptar.
We call d a good happy diagonal if e1 and e2 emanate to the same side of d, that is, the second
vertices of e1 and e2 are either both in {vi+1, vj−1} or both in {vj+1, vi−1}. Otherwise, we
call d a bad happy diagonal if e1 and e2 emanate to different sides (see Figure 4).

▶ Lemma 3.2. Consider two paths Pin and Ptar as defined above.
(a) For every flip sequence from Pin to Ptar any bad happy diagonal d needs to be removed.
(b) For every subpath S of consecutive happy edges that contains at least one good happy

diagonal there exists a flip sequence from Pin to Ptar that preserves all edges of S.

▶ Proof. For (a) observe that we cannot exchange edges e1 and f1 with e2 and f2 in one flip.
For (b) start with Pin, pick one end vertex of Pin and perform flips that remove diagonals

until the next diagonal that is visible from the current endvertex lies in S. Then, repeat the
process for the other endvertex of Pin. The resulting path P ′ will then consist of S and two
(possibly empty) subpaths of convex hull edges. Do the same for Ptar to obtain a path P ′′.
Since S contains a good happy diagonal and there are only two ways how the subpath of
convex hull edges may look like, we get P ′ = P ′′. The required flip sequence from Pin to Ptar

consists of the flips from Pin to P ′ and the flips from Ptar to P ′′ in reverse order. For an
example of such a flip sequence, see Figure 5. ◀

Note that if a subpath of happy edges of length at least 2 contains a diagonal, the diagonal
is already a good happy diagonal.

Figure 5 Illustration of Lemma 3.2(b): A flip sequence that preserves a good happy diagonal

4 Characterization of Minimum Flip Sequences

Based on the structure of good happy diagonals and convex hull edges of the initial path
and the target path, we provide a characterization of pairs of paths into four categories. We
derive lower bounds on the number of flips and argue that for each category there exists a
flip sequence that makes exactly this number of flips, thus providing a minimal flip sequence.
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▶ Theorem 4.1. Let Pin and Ptar be two plane spanning paths for the same convex point
set. Let k and l denote the number of diagonals of Pin and Ptar, respectively. Then the flip
distance between Pin and Ptar is described by the following cases.

Case 1: If good happy diagonals exist, let m ≥ 1 be the maximal number of good happy
diagonals in a subpath of consecutive happy edges. Then the flip distance is k + l − 2m.
Case 2: If no good happy diagonal exists we distinguish three cases

Case 2a: If there exists a pair of diagonals d1 ∈ Pin, d2 ∈ Ptar that can eventually
be exchanged for one another by a Type 3 flip, then the flip distance is k + l − 1.

Case 2b: If no Type 3 flip can be performed and if the diagonals can be flipped to
convex hull edges in both, the initial and target path, such that the paths after flipping all
diagonals coincide, the flip distance is k + l.

Case 2c: Otherwise the flip distance is k + l + 1.

▶ Remark 4.2. Regarding Case 2b: If a path P does not contain the convex hull edge
(vi, vi+1), we say that P has a gap g in the convex hull at (vi, vi+1). If g is a gap of both
paths, Pin and Ptar, we say that Pin and Ptar have a common gap in the convex hull at g.
Observe that by removing diagonals we can flip a path P into a path that contains all convex
hull edges except for the gap g if and only if g is a gap of P . This can be done by adding
convex hull edges incident to each end vertex and removing diagonals until the next added
convex hull edge would lie in g. For an intuitive example see Figure 6.

g g g g

Figure 6 Illustration of Remark 4.2. In every step the to be added convex hull edge is indicated
via a dashed line. First diagonals to the left of the gap g are removed by the left end vertex of the
path. Afterwards, the diagonal to the right gets removed by the right end vertex of the path.

▶ Proof (Theorem 4.1). For a visualization of the different cases, see Figure 7.
Case 1: Consider a decomposition of the point set where points belong to the same

component if and only if they lie on the same side of every good happy diagonal. Then, there
are exactly two components that each contain one of the endpoints of the path. Therefore,
to remove and add edges in components that do not contain endpoints, we need to remove
all good happy diagonals to one side of this component. From this, we get that we need to
remove the good happy diagonals from all but one subpath of happy edges. Let mS denote
the number of good happy diagonals in a subpath of happy edges S.

By Lemma 3.1 and Lemma 3.2, removing all diagonals apart from the ones in S takes at
least k − mS flips and can be done in that number of flips. Similarly, adding all the new
diagonals takes l−mS flips. Therefore, there is a flip sequence from Pin to Ptar that preserves S

with k + l − 2mS flips. The length of the minimum flip sequence is therefore k + l − 2m by
the choice of m and it is attained by applying the flips from the proof of Lemma 3.2.

Case 2a: The only way to exchange more than one diagonal at once is by performing a
Type 3 flip. If we want to exchange one diagonal from Pin directly with a diagonal in Ptar,
all the flips leading up to the Type 3 flip need to remove the k − 1 diagonals that are not
involved in the Type 3 flip from the initial path. Similarly, all the flips that occur after the
Type 3 flip add the l − 1 diagonals of the target path that are not involved in the Type 3
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flip. Further, the two subpaths of convex hull edges need to coincide between the paths
before and after the Type 3 flip, see Figure 3 (right). Therefore, the subpaths of convex
hull edges are already correctly aligned after the Type 3 flip. This shows that k + l − 1 flips
are necessary and sufficient in case a Type 3 flip can occur, k − 1 for removing diagonals
from Pin, one Type 3 flip and l − 1 flips to add diagonals to get Ptar.

Case 2b: If no Type 3 flip can be set up, it follows from Lemma 3.1 that k flips are
necessary and sufficient to remove all diagonals from the initial path, and similarly l flips to
add all the diagonals of the new path. Since the diagonals can be removed in a way that
there is a common gap in the convex hull, k + l flips are indeed necessary and sufficient.

Case 2c: If neither Case 2a and Case 2b hold, so in particular Pin and Ptar do not have
a common gap in the convex hull, it is indeed necessary to remove all diagonals, realign the
convex hull and add all diagonals to get the new path. So k + l + 1 flips are necessary.

To show optimality also for Case 2c assume we could start adding diagonals from the
target path before removing all diagonals from the initial path and realigning the path along
the convex hull. We add the first diagonal d = (vi, vj) ∈ Ptar in the step from Pl to Pl+1.
Assume vi was the end vertex in the previous step. By the assumption of Case 2c, vi is
incident to two convex hull edges in Pin ∪Ptar. One of them, say e1, is in Ptar \Pin, otherwise
there would not be an isolated vertex at vi. Since vi has degree at most two in Ptar the
other convex hull edge, say e2, has to be in Pin \ Ptar. Since we didn’t remove any convex
hull edge from Pin prior to that flip, the edges incident to vi, e1 and e2 emanate to different
sides of d in Pl+1 and Ptar. Therefore, d is a bad happy diagonal and has to be removed
again by Lemma 3.2a. ◀

g

Pin

Ptar,1 Ptar,2a Ptar,2b Ptar,2c

Pint,1 Pint,2a Pint,2b Pint,2c

Figure 7 Visualization of Theorem 4.1: Top row: the initial path Pin. Second row: target paths
where dashed lines hint at the initial path. The cases 1, 2a, 2b and 2c occur from left to right. In
Case 1 good happy edges are marked in red. In Case 2b the two edges involved in a Type 3 flip are
marked red. For Case 2b we labeled the common gap g in the convex hull. Observe that for Case 2c,
none of the other cases occur. Bottom row: intermediate configurations for the corresponding cases.

The exact details on how to implement all the checks of Theorem 4.1 to run in linear
time can be found in a full version of this paper.
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▶ Theorem 4.3. The flip distance between two plane spanning paths in convex point sets
can be determined in O(n) time and space.

5 Conclusion

We disproved the happy edge property for plane spanning paths on convex point sets. At
the same time, we provided a linear time algorithm to compute the shortest flip sequence
between two given plane spanning paths. This contradicts the assumption that the absence
of the happy edge property makes finding minimum flip sequences hard to solve. We are not
aware of any problem for which the opposite direction fails, that is, a reconfiguration problem
for which the happy edge property is true, but it is hard to find minimum flip sequences.

Two interesting open problems are:
1. Can we flip between any two plane spanning paths for point sets in general position?
2. If the answer to the previous question is yes, how many flips does it take in the worst

case and what is the complexity of computing the flip distance between two given paths?
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Abstract
Given a point set P in the Euclidean space, a geometric t-spanner G is a graph on P such that for
every pair of points, the shortest path in G between those points is at most a factor t longer than the
Euclidean distance between those points. The value t ≥ 1 is called the dilation of G. Commonly,
the aim is to construct a t-spanner with additional desirable properties. In graph theory, a powerful
tool to admit efficient algorithms is bounded tree-width. We investigate the problem of computing
geometric spanners with bounded tree-width and small dilation t.

Let d be a fixed integer and P ⊂ Rd be a point set with n points. We give a first algorithm to
compute an O(n/kd/(d−1))-spanner on P with tree-width at most k. The dilation obtained by the
algorithm is asymptotically worst-case optimal for graphs with tree-width k: We show that there
is a set of n points such that every spanner of tree-width k has dilation O(n/kd/(d−1)). We further
prove a tight dependency between tree-width and the number of edges in sparse connected planar
graphs, which admits, for point sets in R2, a plane spanner with tree-width at most k and small
maximum vertex degree.

Related Version Full Version: https://arxiv.org/abs/2412.06316

1 Introduction

Geometric spanners are an extensively studied area in computational geometry, see [4, 13]
for surveys. A geometric spanner for a point set P ∈ Rd is a weighted graph on P , where
the weight of an edge is the Euclidean distance between its endpoints, aiming for sparsity
while avoiding long paths between two points in P . This is formalised by the dilation
t = max

{
d(p,p′)

|pp′|

∣∣∣ p, p′ ∈ P, p ̸= p′
}

, where d(p, p′) is the distance between two points in G

and |pp′| is the Euclidean distance between p and p′. A geometric spanner with dilation at
most t is also called a t-spanner.

When geometric spanners were introduced in 1986 [5], sparsity was obtained by requiring
planarity. Since then, plane geometric spanners have been widely studied [4]. But also other
measures are of interest: Especially spanners with a linearly bounded number of edges or a
bounded vertex degree have been widely researched [10, 13, 18, 8, 3, 6, 9, 2].

In graph theory, an important tool to design efficient algorithms for problems that are
NP-hard in general is to restrict these problems to graphs which are bounded in certain
parameters. Especially graphs with bounded tree-width [14, 15] allow polynomial-time al-
gorithms for many in general NP-hard problems. Thus, geometric spanners with bounded
tree-width would be a strong tool for many geometric applications.

There are spanners with sublinear tree-width. More specifically, since planar graphs have
tree-width O(

√
n) [12] (where n is the number of vertices), for point sets in the Euclidean

plane, constant dilation spanners with tree-width O(
√

n) can be obtained by plane spanner
approaches such as the Delaunay triangulation or the greedy triangulation. For point sets
in Rd, we point out that the greedy spanner has tree-width O(n1−1/d), using separator
results from [11]. While this gives some first results, constructing spanners with tree-width
k ∈ o(n1−1/d) will require other constructions. We present a first algorithm that provides
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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a trade-off between tree-width and the dilation, namely an O(n/kd/(d−1))-spanner of tree-
width k for sets of points in Rd. We complement our result with a corresponding lower bound,
which proves that our algorithm has a worst-case optimal trade-off between tree-width and
dilation. We also turn our attention to bounded tree-width spanners with an additional
property. The most commonly studied property of geometric spanners is planarity. As a
general tool to obtain bounded tree-width plane spanners, we provide a result that establishes
a strong dependency between tree-width and the number of edges in sparse connected planar
graphs. Using this result and an adapted version of the algorithm provided in [1], we obtain
plane spanners with bounded maximum vertex degree as well as bounded tree-width.

2 Bounded tree-width spanners in higher dimensions

In this section, we present an algorithm for constructing bounded tree-width spanners for
points in Rd for constant dimension d.

Algorithm 1 d-DimensionalBoundedTreeWidthSpanner(P, k)

Require: a set of n points P ⊂ Rd and a natural number k ≤ n1−1/d

Ensure: an O(n/kd/(d−1))-spanner G = (P, E) of tree-width k

1: EMST ← Euclidean minimum spanning tree of P

2: if k = 1 then
3: return EMST
4: m←

⌈(
k/(30ηdcd8d)

)d/(d−1) + 1
⌉

5: Compute a set T of m disjoint subtrees of EMST , each containing O(n/m) points.
6: For T ∈ T let R(T ) be the vertices in T incident to edges removed by the previous step.
7: For each T ∈ T iterate through its edges e from long to short. If e lies on a path between

two vertices in R(T ), remove the edge. Let E′(T ) be the set of remaining edges.
8: E′ ← ⋃

T ∈T E′(T )
9: (R, E′′)← greedy 3/2-spanner GS for R =

⋃
T ∈T R(T )

10: return G = (P, E′ ∪ E′′)

The subtrees of line 5 are constructed by the removal of separator edges. Removing a
separator edge from a tree splits the tree into two subtrees of approximately the same size.
For a detailed description of the construction of the subtrees, we refer to the full version of
the paper. Using the separator results from [11] we obtain the following result:

▶ Lemma 2.1. Let P ⊂ Rd be a set of n points and G the greedy 3/2-spanner of P . G

has tree-width at most 15ηdcd8d · n1−1/d, where ηd is the packing constant in d-dimensional
Euclidean space and cd ≤ 2O(d) is a constant.

We call a vertex a representative of a subtree T ∈ T if it was incident to an edge of the EMST
that was removed in the construction of the subtrees in line 5. The set of representatives of
all subtrees has size at most 2m−2, since each representative is incident to one of the m−1
edges removed. Thus, GS is the greedy spanner of at most 2m − 2 points. By Lemma 2.1
and the choice of the number of subtrees the tree-width of GS is at most k. After line 7 of
the algorithm each of the subtrees of the subtrees T ∈ T contains only one representative.
Thus, the graph G consists of GS with a tree attached to each of its vertices. These trees
do not increase the tree-width, since every tree contains only one vertex from GS. The
tree-width of G therefore is at most k.
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Figure 1 The subtrees (green) of the EMST , the edges removed in line 7 (gray) and the greedy
spanner on the representatives (orange).

▶ Lemma 2.2. Given a set P ⊂ Rd of n points for some fixed d and a positive integer
k ≤ n1−1/d, Algorithm 1 computes an O(n/kd/(d−1))-spanner for P .

Proof idea. First ignore that we removed edges in line 7. For two points p, q in the same
subtree the dilation is small, since the edges of the path between p and q in the EMST are
short, and since the path contains only few edges. For points in different subtrees the path
in the EMST contains a representative of each of the two subtrees. We can take the paths
to these representatives and between the representatives the greedy spanner.

Removing edges in line 7 complicates the argument, but we can use the lengths of the
edges removed to bound the distances to the representatives. ◀

The main result of this section now follows:

▶ Theorem 2.3. Given a set P ⊂ Rd of n points for some fixed d and a positive integer k ≤
n1−1/d. There is a geometric spanner of tree-width k on P with a dilation of O(n/kd/(d−1))
and bounded degree that can be computed in time O(n2 log n).

3 Lower bound

In this section, we show that the bound given in Theorem 2.3 for the dilation of a tree-width
bounded spanner on Euclidean point sets is asymptotically tight:

▶ Theorem 3.1. Let d ≥ 2 be a fixed integer. For positive integers n and k ≤ n(d−1)/d ·
(5d)1/d−2, there is a set of n points in Rd, so that every geometric spanner of tree-width k

on this set has dilation Ω(n/kd/(d−1)).

To obtain this result, we construct a set of points resembling a grid. While it is com-
monly known that a two-dimensional grid has high tree-width, the

(
k1/(d−1))d-grid does not

necessarily have tree-width k. We thus construct a set of points resembling the (h+1)d-grid
(which is the d-dimensional (h+1)×...×(h+1)-grid), where h =

⌈
(9d/2 · (k + 2))1/(d−1) − 1

⌉
.

▶ Lemma 3.2. The nd-grid has tree-width ≥ 2
9d · nd−1 − 1.

Thus, the tree-width of our grid is at least 2
9d · (h + 1)d−1 − 1 ≥ k + 1.

The construction of the grid-like set Pd,n,k is as follows: Let m = ⌊n/(d · (h + 1)d + d ·
(h + 1)d−1)⌋, be the number of points representing an edge of the grid in Pd,n,k. For every
dimension i ∈ {1, . . . , d}, we define the set

Pi =
h⋃

j1=0
· · ·

h⋃

jd=0
{(j1 ·m, . . . , ji−1 ·m, xi, ji+1 ·m, . . . , jd ·m) | xi ∈ {0, . . . , h ·m}},
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which consists of (h + 1)d−1 sets of collinear points representing the grid edges parallel to
the axis of the i-th dimension. Each of these collinear sets of points consists of h ·m + 1
points and represents h edges of the grid. We can now define the set Pd,n,k =

⋃d
i=1 Pi which

represents the whole (h + 1)d-grid. (In Figure 2 an example is shown for a 2-dimensional
point set.) We call the points P⊞ = {(j1 ·m, . . . , jd ·m) | j1, . . . , jd ∈ {0, . . . , h}} the grid
points of the set Pd,n,k and two grid points are called neighbouring if the Euclidean distance
between them is m, which corresponds to them being connected through an edge in the
(h + 1)d-grid.

m

Figure 2 The set of points resembling the (4 + 1)2-grid where n = 240 and m = 6.

▶ Lemma 3.3. If G is a geometric o
(
n/kd/(d−1))-spanner on Pd,n,k, then it must be of

tree-width > k.
Proof idea. Let G be a o(n/kd/(d−1))-spanner on Pd,n,k. For every pair p, q of neighbouring
grid points there is a path γp,q in G connecting them that, because of the dilation bound,
roughly follows the points representing the edge in the underlying grid. We can show that
these paths must be disjoint outside some certain area around the grid points and can
be contracted in a specific way so that contracting one of them does not affected the other
paths. Therefore we can look at every pair p, q of neighbouring grid points in some arbitrary
order and contract the path γp,q obtaining a graph that has the (h + 1)d-grid as a subgraph,
proving that G has a (h + 1)d-grid minor and therefore must be of tree-width > k. ◀

. . .
p q

Figure 3 Grid points p and q as well as the path γp,q and paths to the other neighbouring grid
points.

4 Minor-3-cores and the tree-width of planar spanners

We have given an asymptotically tight algorithm to obtain spanners of bounded tree-width,
with a dilation dependent on the chosen tree-width. We now focus on bounded tree-width
spanners with the additional property of being plane.

In general, there are graphs with m edges and tree-width at least m · ε for a constant
ε [7]. We show that this is not true for connected planar graphs, yielding a tight dependency
between tree-width and the number of edges:
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▶ Theorem 4.1. Let G be a planar connected graph with n vertices and n + ⌊(k − 1)2/72⌋
edges, where k ≥ 2 is an integer. The tree-width of G is at most k.

4.1 Minor-3-cores
To obtain this Theorem, we first introduce the concept of minor-3-cores, in reference to the
k-core which was established by Seidman [17] for the study of social networks.

▶ Definition 4.2 (Minor-3-Core). Let G be a graph and H a minor of G with minimum
degree 3. If there is no minor of minimum degree 3 that has more edges than H i.e., H is
an edge maximal minor with this property, we call it a minor-3-core of G.

We will speak of the minor-3-core instead of a minor-3-core meaning the canonical minor-
3-core. For its definition, we refer to the full version of the paper. A useful property of the
minor-3-core is that it preserves the tree-width of the original graph.

▶ Lemma 4.3. Given a graph of tree-width k ≥ 3, the tree-width of the minor-3-core of G

is k as well.

To bound the tree-width of graphs through the size of their minor-3-core we need the fol-
lowing lemma.

▶ Lemma 4.4. Let G be a connected graph with n vertices and n−1+m edges, where m ≥ 1
is some integer. The minor-3-core of G has at most 2 · (m− 1) vertices.

This lemma is the last part we need to prove an upper bound for the tree-width of connected
planar graphs.

v2
v3

v1
v4

v5

v6

v2
v3

v1
v4

v5

v6

G minor-3-core of G

Figure 4 Minor-3-core of a graph G that consists of a tree with 4 additional edges (orange).

Since G is a planar connected graph with n + ⌊(k− 1)2/72⌋ edges, its minor-3-core must
be planar and by Lemma 4.4 have at most ⌊(k−1)2/36⌋ vertices. The tree-width of a planar
graph with n vertices by [16] is at most 6

√
n + 1. The tree-width of the minor-3-core of

G therefore is 6
√
⌊(k − 1)2/36⌋ + 1 ≤ k. By Lemma 4.3 we can now conclude that the

tree-width of G is either ≤ 2 or exactly k, so in both cases at most k.

4.2 Tree-width of planar spanners
Theorem 4.1 allows us a stronger result than Theorem 2.3 in the Euclidean plane: Adjusting
the algorithm given in [1], we obtain a plane spanner with bounded tree-width and degree:

▶ Corollary 4.5. Given a set P ⊂ R2 of n points and some positive integer k ≤ 12
√

n− 3,
a plane spanner with tree-width k, maximum vertex degree 4 and dilation O(n/k2) can be
constructed in O(n log n) time.
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Our main adjustment to the algorithm is to choose a plane constant-dilation spanner
S of P with maximum degree 4, as provided in [9], instead of the Delaunay triangulation
and to utilise a minimum spanning tree of S instead of the Euclidean MST. Since the
constructed spanner then is a subgraph of S, it is plane and has maximum vertex degree 4.
By Theorem 4.1, its tree-width can then be bounded by the given k. Further, the dilation
is not affected, which follows directly by Lemma 4 in [1].
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Abstract
We consider a special case of the Fréchet distance between two polygonal curves, where the curves
bound a simple polygon and distances are measured via geodesics inside this simple polygon. We
significantly improve upon the existing 2-approximation algorithm of Efrat et al. (2002). Namely, we
present a (1+ε)-approximation algorithm, for any ε > 0, that runs in O( 1

ε
(n+m log n) log nm log 1

ε
)

time for curves with n and m vertices, respectively. To do so, we show how to compute the
reachability of specific groups of points in the free space at once and in near-linear time, by
interpreting the free space as one between separated one-dimensional curves. Bringmann and
Künnemann (2015) previously solved the decision version of the Fréchet distance in this setting
in O((n + m) log nm) time. We strengthen their result and compute the Fréchet distance between
two separated one-dimensional curves in linear time. Finally, we give a linear time exact algorithm
if the two curves bound a convex polygon.

Related Version Full version: arXiv:2501.03834

1 Introduction

The Fréchet distance is a well-studied similarity measure for curves in a metric space. Most
results so far concern the Fréchet distance between two polygonal curves R and B in Rd

with n and m vertices, respectively. The Fréchet distance between two such curves can be
computed in Õ(nm) time (see e.g. [1, 5]). There is a (nearly) matching conditional lower
bound: If the Fréchet distance between polygonal curves can be computed in O(n2−ε) time
for the case m = n, then the Strong Exponential Time Hypothesis (SETH) fails [3]. This
lower bound even in one dimension holds for any approximation factor less than three [6].

In fact, so far there is no algorithm for general curves that gives any constant-factor
approximation in strongly-subquadratic time. Van der Horst et al. [12] were the first to
present an algorithm that results in an arbitrarily small polynomial approximation factor
(nε for any ε ∈ (0, 1]) in strongly-subquadratic time (Õ(n2−ε)). However, the polynomial
approximation barrier is yet to be broken in the general case.

For certain families of “realistic” curves, the SETH lower bound does not apply. For
example, when the curves are c-packed, Bringmann and Künnemann [4] give a (1 + ε)-
approximation algorithm, for any ε > 0, that runs in Õ(cn/

√
ε) time. When the curves are

κ-bounded or ϕ-low density, for constant κ or ϕ, Driemel et al. [9] give strongly-subquadratic
(1 + ε)-approximation algorithms as well. Moreover, if the input curves have an imbalanced

∗ Partially supported by the Dutch Research Council (NWO) under project no. VI.Veni.212.260.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



4:2 The Geodesic Fréchet Distance Between Two Curves Bounding a Simple Polygon

number of vertices, then the Fréchet distance of one-dimensional curves can be computed
in strongly-subquadratic time without making extra assumptions about the shape of the
curves. This was recently established by Blank and Driemel [2], who give an Õ(n2α + n)-
time algorithm when m = nα for some α ∈ (0, 1).

In this paper we investigate the Fréchet distance in the presence of obstacles. If the two
polygonal curves R and B lie inside a simple polygon P with k vertices and we measure
distances by the geodesic distance inside P , then neither the upper nor the conditional lower
bound change in a fundamental way. Specifically, Cook and Wenk [8] show how to compute
the Fréchet distance in this setting in O(k + N2 log kN log N) time, with N = max{n, m}.
For more general polygonal obstacles, Chambers et al. [7] give an algorithm that computes
the homotopic Fréchet distance in O(N9 log N) time, where N = m + n + k is the total
number of vertices on the curves and obstacles.

R

B

We are investigating the specific setting where the two curves bound
a simple region, that is, both R and B are simple, meet only at their
first and last endpoints, and lie on the boundary of the region. We
measure distance by the geodesic Fréchet distance inside that region.
If R and B bound a triangulated topological disk D with k faces, then
Har-Peled et al. [11] give an O(log n)-approximation algorithm that
runs in O(k6 log k) time. If the region is a simple polyon P (see figure) then the SETH lower
bound does not apply. Efrat et al. [10] give an O((n + m) log nm)-time 2-approximation
algorithm in this setting. In this paper we significantly improve upon their result. In the
following we first introduce some notation and then describe our contributions in detail.

Preliminaries. A (polygonal) curve R is a piecewise linear function that connects a sequence
r1, . . . , rn of points, which we refer to as vertices. If the vertices lie in the plane, then we say R

is two-dimensional1 and equal to the function R : [1, n] → R2 where R(i+t) = (1−t)ri+tri+1
for i ∈ {1, . . . , n − 1} and t ∈ [0, 1]. A one-dimensional curve is defined analogously. We
assume R is parameterized such that R(i) indexes vertex ri for all integers i ∈ [1, n]. We
denote by R[x1, x2] the subcurve of R over the domain [x1, x2], and abuse notation slightly to
let R[r, r′] to also denote this subcurve when r = R(x1) and r′ = R(x2). Let R : [1, n] → R2

and B : [1, m] → R2 be two simple, interior-disjoint curves with R(1) = B(1) and R(n) =
B(m). The two curves bound a simple polygon P .

A reparameterization of [1, n] is a non-decreasing surjection f : [0, 1] → [1, n]. Two
reparameterizations f and g of [1, n] and [1, m], describe a matching (f, g) between two
curves R and B with n and m vertices, respectively, where any point R(f(t)) is matched to
B(g(t)). The matching (f, g) is said to have cost

max
t

d(R(f(t)), B(g(t))),

where d(·, ·) is the geodesic distance between points in P . A matching with cost at most δ is
called a δ-matching. The (continuous) geodesic Fréchet distance dF(R, B) between R and B

is the minimum cost over all matchings. The corresponding matching is a Fréchet matching.
The parameter space of R and B is the axis-aligned rectangle [1, n] × [1, m]. Any point

(x, y) in the parameter space corresponds to the pair of points R(x) and B(y) on the two
curves. A point (x, y) in the parameter space is δ-close for some δ ≥ 0 if d(R(x), B(y)) ≤ δ.

1 Curves are inherently one-dimensional objects. We abuse terminology slightly to refer to the ambient
dimension as the dimension of a curve.
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The δ-free space Fδ(R, B) of R and B is the subset of [1, n] × [1, m] containing all δ-close
points. A point q = (x′, y′) ∈ Fδ(R, B) is δ-reachable from a point p = (x, y) if x ≤ x′ and
y ≤ y′, and there exists a bimonotone (i.e., monotone in both coordinates) path in Fδ(R, B)
from p to q. Alt and Godau [1] observe that there is a one-to-one correspondence between δ-
matchings between R[x, x′] and B[y, y′], and bimonotone paths from p to q through Fδ(R, B).
We abuse terminology slightly and refer to such paths as δ-matchings.

Organization and results. In this paper, we significantly improve upon the result of
Efrat et al. [10]: we present a (1 + ε)-approximation algorithm, for any ε > 0, that runs in
O( 1

ε (n+m log n) log nm log 1
ε ) time when R and B bound a simple polygon. This algorithm

relies on an interesting connection between matchings and nearest neighbors and is described
in Section 2. There we also explain how to transform the decision problem for far points
on B (those who are not the nearest neighbors of any point on R) into a problem between
separated one-dimensional curves. Bringmann and Künnemann (2015) previously solved
the decision version of the Fréchet distance in this setting in O((n + m) log nm) time. In
Section 3 we strengthen their result and compute the Fréchet distance between two separated
one-dimensional curves in linear time.

Finally, when P is a convex polygon we describe a simple linear-time
algorithm (see the full version of this paper). In this setting, we show
that a Fréchet matching with a specific structure exists (see figure).
We compute the orientation of the parallel part from up to O(n + m)
different tangents, which we find using “rotating calipers”.

▶ Theorem 1. Let R : [1, n] → R2 and B : [1, m] → R2 be two simple curves bounding a
convex polygon, with R(1) = B(1) and R(n) = B(m). We can construct a Fréchet matching
between R and B in O(n + m) time.

2 Approximate geodesic Fréchet distance

In this section we describe our approximation algorithm. Let ε > 0 be a parameter. Our
algorithm computes a (1 + ε)-approximation to the geodesic Fréchet distance dF(R, B).
It makes use of a (1 + ε)-approximate decision algorithm. Given an additional parameter
δ ≥ 0, the decision algorithm reports either that dF(R, B) ≤ (1 + ε)δ or that dF(R, B) > δ.
If δ < dF(R, B) ≤ (1 + ε)δ, we may report either answer. In our setting of the problem, we
show that the geodesic Fréchet distance is approximately the geodesic Hausdorff distance
between R and B, that is, at most three times as large. The geodesic Hausdorff distance
δ can be computed in O((n + m) log nm) time [8, Theorem 7.1]. We then perform binary
search over the values δ, (1 + ε)δ, . . . , 3δ and apply our approximate decision algorithm at
each step. Our decision algorithm runs in O( 1

ε (n + m log n) log nm) time, leading to the
following theorem:

▶ Theorem 2. Let R : [1, n] → R2 and B : [1, m] → R2 be two simple curves bounding a
simple polygon, with R(1) = B(1) and R(n) = B(m). Let ε > 0 be a parameter. We can
compute a (1 + ε)-approximation to dF(R, B) in O( 1

ε (n + m log n) log nm log 1
ε ) time.

In the remainder of this section we focus on our approximate decision algorithm. At its
heart lies a useful connection between matchings and nearest neighbors: for a point r on R

its nearest neighbors are the points on B closest to it. Any δ-matching must match each
nearest neighbor b of r relatively close to r. Specifically, we prove that b must be matched
to a point r′ for which all the entire subcurve of R between r and r′ are within distance δ

EuroCG’25



4:4 The Geodesic Fréchet Distance Between Two Curves Bounding a Simple Polygon

δ

r

b

r

b

Figure 1 (left) Points r and b with b ∈ NN (r). The non-dashed red subcurves of R are within
geodesic distance δ of b. (right) The (r, b, δ)-nearest neighbor fan.

of b. We capture this relation using (r, b, δ)-nearest neighbor fans, illustrated in Figure 1. A
nearest neighbor fan Fr,b(δ) corresponds to the point b and the maximal subcurve R[x, x′]
that contains r and is within geodesic distance δ of b; it is the union of geodesics between b

and points on R[x, x′].
As r moves monotonically along R, so do its nearest neighbors b along B, together with

their nearest neighbor fan Fr,b(δ). While r moves continuously along R, the points b and
their fans might jump discontinuously. We show in the full version of this paper how to use
the matchings from the fans to efficiently answer the decision question for those points that
are part of the fans. See Figure 2 (left) for an illustration of the connection between the
δ-free space and nearest neighbor fans.

For sufficiently large values of δ, which includes δ = δ, every point on R is part of a
nearest neighbor fan. We distinguish the points on B based on whether they are a nearest
neighbor of a point on R. The points that are a nearest neighbor are called near points, and
others are called far points. On B, the near points are part of a nearest neighbor fan, but
the far points are not. Far points pose the greatest technical challenge for our algorithm; as
can be seen from the structure of the δ-free space around these points (see Figure 2 (right)).

In the full version of this paper, we show how to construct a δ-matching for far points in
an approximate manner. Specifically, let b, b′ ∈ B be two points that are involved in nearest
neighbor fans, but all points strictly between b and b′ are not, that is, they are far points.

Figure 2 (left) The (r, b, δ)-nearest neighbor fans correspond to a bimonotone region in the δ-
free space. The middle partly-dashed curve indicates the nearest neighbor(s) on B of points on
R. (right) There is a matching that moves vertically upwards whenever possible. In the dashed
rectangles, B has only far points, and the matching becomes more complex.
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In this case, there is a point r ∈ R for which both b and b′ are nearest neighbors. Hence
d(b, b′) ≤ 2dF(R, B). In other words, the geodesic from b to b′ is short and separates R from
the subcurve B[b, b′].

We are going to use this separating geodesic to transform the decision problem for far
points into K = O(1/ε) one-dimensional problems. Specifically, we discretize the separator
with K points, which we call anchors, and ensure that consecutive ones have distance at
most εδ between them. We snap our geodesics to these anchors, which incurs a small
approximation error. Based on which anchor point a geodesic snaps to, we partition the
parameter space of R and B′ into regions, one for each anchor point. For each anchor point,
the lengths of these geodesics snapped to it can be described as the distances between points
on two separated one-dimensional curves; this is exactly the one-dimensional problem we
now need to solve exactly. We describe our algorithm for handling the one-dimensional
problem efficiently in Section 3.

3 Separated one-dimensional curves and propagating reachability

We consider the following problem: Let R̄ and B̄ be two one-dimensional curves with n and
m vertices, respectively, where R̄ lies left of the point 0 and B̄ right of it. We are given
a set S ⊆ Fδ(R̄, B̄) of O(n + m) “entrances,” for some δ ≥ 0. Also, we are given a set
E ⊆ Fδ(R̄, B̄) of O(n + m) “potential exits.” We wish to compute the subset of potential
exits that are δ-reachable from an entrance. We call this procedure propagating reachability
information from S to E. See Figure 3 for an illustration.

The problem of propagating δ-reachability information has already been studied by
Bringmann and Künnemann [4]. In case S lies on the left and bottom sides of the parameter
space and E lies on the top and right sides, they give an O((n + m) log nm) time algorithm.
We are interested in a more general case however, where S and E may lie anywhere in
the parameter space. We make heavy use of the concept of prefix-minima to develop an
algorithm for our more general setting that has the same running time as the one described
by Bringmann and Künnemann [4] (see Theorem 4). Furthermore, our algorithm is able

δ

Figure 3 (left) A pair of separated, one-dimensional curves R̄ and B̄, drawn stretched vertically
for clarity. (right) The free space Fδ(R̄, B̄) corresponding to the matching, with a set of entrances
(disks) and potential exits (circles). Some matchings between entrances and exits are drawn.
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to actually compute a Fréchet matching between R̄ and B̄ in linear time (see Theorem 3),
while Bringmann and Künnemann require near-linear time for only the decision version.

▶ Theorem 3. Let R̄ and B̄ be two separated one-dimensional curves with n and m vertices.
We can construct a Fréchet matching between R̄ and B̄ in O(n + m) time.

▶ Theorem 4. Let R̄ and B̄ be two separated one-dimensional curves with n and m vertices,
where no two vertices coincide. Let δ ≥ 0, and let S ⊆ Fδ(R̄, B̄) and E ⊆ Fδ(R̄, B̄) be sets
of O(n + m) points. We can compute the set of all points in E that are δ-reachable from a
point in S in O((n + m) log nm) time.
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Abstract
We consider algorithmic problems motivated by modular robotic reconfiguration, for which we are
given n unlabeled square-shaped modules in a starting configuration and need to find a schedule of
sliding moves to transform it into a desired goal configuration, maintaining connectivity at all times.

Recent work has aimed at minimizing the total number of moves, resulting in fully sequential
schedules that can perform reconfigurations in O(n2) moves, or O(nP ) for an arrangement with
bounding box of perimeter P . We provide results in the sliding square model that exploit parallel
robot motion, resulting in an optimal speedup to achieve reconfiguration in worst-case optimal
makespan of O(P ). We also show a tight bound on the complexity of the problem by showing that
even deciding the possibility of reconfiguration within makespan 1 is NP-complete.

Related Version 10.48550/arXiv.2412.05523

1 Introduction

Reconfiguring an arrangement of objects is a fundamental problem in both theory and
practice, often in a setting with strong geometric flavor. A typical task arises from relocating
a (potentially large) collection of agents from a given start into a desired goal configuration in
an efficient manner, while avoiding collisions between objects or violating other constraints,
such as maintaining connectivity of the overall arrangement.

In recent years, the problem of modular robot reconfiguration [7, 18, 19] has enjoyed
particular attention [1, 2, 3, 4, 6, 15] in the context of Computational Geometry: In the
sliding square model introduced by Fitch, Butler, and Rus [13], a given start configuration
of n modules, each occupying a square grid cell, must be transformed by a sequence of
atomic, sequential moves (shown in Figure 1(a)) into a target arrangement, without losing
connectivity of the underlying grid graph. Aiming at minimizing the total number of moves,
the mentioned previous work has resulted in considerable progress, recently establishing
universal configuration in O(nP ) for a 2-dimensional arrangement of n modules with bounding
box perimeter size P [4], and O(n2) in three dimensions [1, 15]. This work on sequential
reconfiguration differ from practical settings, in which modules can exploit parallel motion to
achieve much faster reconfiguration times—which is also a more challenging objective, as it
requires coordinating the overall motion plan to maintain connectivity and avoid collisions.

∗ This work was partially supported by the German Research Foundation (DFG), project “Space Ants”,
FE 407/22-1, by NSF grant CCF-2348067, and by DFG grant 522790373.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Our work focuses on parallel reconfiguration, allowing modules to perform moves simul-
taneously with the objective of minimizing the total time until completion, the makespan.
For a detailed overview of related literature and recent results, we refer to the full version [5].

(i) (ii)

(a) Two types of move can be performed by individ-
ual modules: (i) Slides and (ii) convex transitions.

(b) Some moves can be performed in parallel trans-
formations, as shown here.

Figure 1 Our model allows for two types of moves to be chained into collision-free transformations.
In this paper, we show the symmetric difference of a transformation using turquoise and yellow.

Our contributions. We provide the following tight results for parallel reconfiguration in the
sliding square model. For technical details, we refer to the full version of our paper [5].

1. We prove that the unlabeled version of parallel reconfiguration is NP-complete, even when
trying to decide the existence of a schedule with the smallest possible makespan of 1.

2. We give a weakly in-place algorithm that achieves makespan O(P ), where P is the
perimeter of the union of the bounding boxes of start and target configurations.

Preliminaries. We study reconfiguration in the parallel sliding square model as follows.
An instance I is composed of an initial configuration C1 of n robotic modules that must
be reconfigured into a target configuration C2. In any configuration, each square module
occupies a unique cell of the infinite integer grid. We navigate the grid using cardinal
directions (north, south, east, west) and cell adjacency. To reconfigure C1 into C2, we employ
schedules of atomic, parallel transformations. A transformation selects a subset of modules
to move, each performing either a slide or a convex transition to travel into an adjacent cell,
see Figure 1(a). Note that in our figures, the path denoting a convex transition is shown
containing a circular arc for clarity. Such path would be accurate if the corners of modules
were rounded. In our model, both take an identical (unit) duration to complete, which
allows us to extend the existing notion of move counting in sequential models [4, 9, 16, 10]
to transformation counting for parallel moves. The makespan of a reconfiguration schedule
thus corresponds to the number of transformations.

During each transformation, a connectivity-preserving backbone must be maintained. To
this end, we call a set M of modules in a configuration C free if C \M ′ is a valid configuration
for any M ′ ⊆ M ; a transformation C1 → C2 is legal exactly if the moving modules are free
in C1 and C2. Furthermore, a transformation is collision-free exactly if all modules can move
along their designated path at a constant rate, without overlapping with any other module
in the process. We identify three types of collisions that must be avoided, see Figure 2.

(i) Any two moves collide if their target cells are identical, or if they constitute a swap.
(ii) Two convex transitions collide if they share an intermediate cell (highlighted in red).
(iii) Two moves collide if their paths meet orthogonally at endpoints.

In the full version of our paper, we discuss these in depth and show that some collisions
of type (iii) can be avoided with only a constant overhead in the number of transformations.
Our collision model is less restrictive than some models of previous work on parallel reconfig-
uration [10, 14], which require the motion paths of parallel moves to be pairwise disjoint. On
the other hand, it is more constrained than [11] which does not forbid collisions of type (iii).
(However, note that [11] does not impose the single backbone condition.)
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(i) (ii) (iii)

Figure 2 Examples of all collision types: Modules cannot share or swap cells, convex transitions
cannot share an intermediate cell, and moves with connected paths cannot meet orthogonally.

Consider an instance I = (C1, C2). Throughout this paper, we denote the bounding
boxes of C1 and C2 by B1 and B2 , respectively. As in existing literature, we assume that B1
and B2 share a south-west corner and call a schedule for I in-place exactly if no intermediate
configuration exceeds the union B1 ∪ B2 by more than one module [16, 4]. For technical
reasons, we desire bounding box dimensions that are multiples of three, as well as a three-wide
empty column at the eastern boundary. We define the extended bounding box B′ from B by
expanding it in each of the cardinal directions by at most three units so that the dimensions
of B′ are multiples of three (see Figure 5). We say that a schedule is weakly in-place if and
only if intermediate configurations are restricted to the union of the bounding boxes extended
by a constant amount, e.g., B′

1 ∪ B′
2. We refer to the standard definition as strictly in-place.

2 Computational complexity

In this section, we sketch a reduction from Planar Monotone 3Sat [8] showing that
Parallel Sliding Squares is NP-complete. In particular, we prove the following theorem.

▶ Theorem 2.1. Let I be an instance of Parallel Sliding Squares. It is NP-complete
to decide whether there exists a feasible schedule of makespan 1 for I.

An example of the overall construction is depicted in Figure 3. The involved variable and
clause gadgets are marked in yellow and blue, respectively. While the gadgets mostly retain
their shape in the target configuration (visualized as gray modules), a single module must be
moved per variable gadget. There are two feasible chain moves for this, each representing
either a positive or negative Boolean value assignment, as shown in Figure 3.

pos

neg

x1 x2 x3 x4

Figure 3 Our construction for φ = (x1 ∨x3 ∨x4)∧(x1 ∨x2 ∨x3)∧(x1 ∨x2 ∨x4)∧(x2 ∨x3 ∨x4). The
depicted transformation represents the satisfying assignment α(φ) = (true, false, false, false).

Proof sketch. Due to the way in which both configurations are connected, the transformation
depicted in Figure 3 disconnects each variable gadget from either all its positive or negative
clauses. Thus, a satisfying assignment maps to a feasible schedule. As these chain moves are
unique schedules of makespan 1, we also easily obtain the opposite direction. ◀

It is easy to solve our reduction instances in makespan 2, implying the following.

EuroCG’25
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▶ Corollary 2.2. Unless P = NP, there is no polynomial-time (1+δ)-approximation algorithm
for Parallel Sliding Squares with δ ∈ [0, 1).

Our result highlights a complexity gap between the parallel sliding square model and
closely related models for parallel transformation. In particular, Fekete et al. [11, 12] studied
a related model in which makespan 2 is NP-hard to decide, but makespan 1 is in P.

3 A worst-case optimal algorithm

We now introduce a four-phase, polynomial-time algorithm for Parallel Sliding Squares.
The high-level goal of our algorithm is to transform the entire configuration into meta-modules,
small units of modules that cooperate to provide greater reconfiguration capability, which we
then exploit. Unlike our work, the existence of such meta-modules is a common constraint
on the input in related models [6, 11, 12, 14, 17] due to their high capability.

A meta-module in our work has a distinct center cell v surrounded by eight modules,
such that all vertex-adjacent cells to v are full; the cell v itself may be empty or occupied.

v v

Figure 4 Meta-modules are either clean or solid, depending on whether the center cell is occupied.

Our approach computes reconfiguration schedules linear in the perimeter P1 and P2 of
the bounding boxes B1 and B2 of C1 and C2, respectively. This is asymptotically worst-case
optimal. Instances that induce a matching lower bound can easily be constructed, e.g., an
instance asking for a large “L” to be rotated into “ L” requires at least Ω(P1 + P2) moves.

▶ Theorem 3.1. For any instance I of Parallel Sliding Squares, we can compute a
feasible, weakly in-place schedule of O(P1 + P2) transformations in polynomial time.

Our algorithm consists of four phases: In Phase (I), we identify a subconfiguration used
as a “backbone” (similar to [14]), and gather Θ(P1) many modules around a piece of this
backbone, thereby enhancing its connectivity (as in [4]). We use the flexibility of this piece
to construct a sweep-line structure out of meta-modules in Phase (II), that is then used
in Phase (III) to efficiently compact and transform the remaining configuration into meta-
modules forming an xy-monotone histogram, similar to [1]. In Phase (IV), this histogram
can then be transformed into any other such histogram with the same number of modules,
effectively morphing between a “start histogram” and “target histogram”, using similar
techniques as in [11]. To reach our target configuration, we then simply apply Phases (I-III)
in reverse. We refer to Figure 5 for a visualization of the different phases of the algorithm.
Although several of our techniques are inspired by previous work, they differ substantially in
our context of parallel reconfiguration and considerable changes were needed.

Phase (I): Gathering squares. We use an underlying connected substructure, referred to as
a skeleton, from the initial configuration to guide the reconfiguration. This tree-like skeleton
functions as a backbone around which we move modules toward a “root” module h, making a
subtree of the skeleton “thick” (i.e., the neighborhood of every cell in this part of the skeleton
is occupied). We call this thick subskeleton an exoskeleton, denoted by Xh. The exoskeleton
has a higher connectivity than the skeleton, making it easier to transform into a sweep line.



Akitaya, Fekete, Kramer, Molaei, Rieck, Stock, and Wallner 5:5

B′ B

(a) (b) (c)

(d) (e)

Figure 5 The high-level overview of our approach: We show (a) an initial configuration C and its
skeleton (red border), (b) the gathered exoskeleton (in dark gray and purple) and (c) its resulting
scaffold, (d) the sweep line (in red) in its initial and final state, and finally (e) the xy-monotone
histogram of meta-modules.

A similar idea is also used by Hurtado et al. [14]. However, we achieve a stronger result
in the classic sliding model via careful definition of the skeleton and movement. Upon
completion of the gathering process, the exoskeleton Xh contains Θ(P ) modules.

Phase (II): Scaffolding. Once the exoskeleton Xh is sufficiently large, we reconfigure it
to be “T-shaped” and contain the east edge of the extended bounding box. Note that the
interior (core) cells of the exoskeleton Xh are not necessarily all occupied; connectivity is
instead maintained through their neighborhood. We proceed in three steps:

1. First “compact” Xh so that its core contains no empty cells.
2. Then choose an easternmost node c in the core of Xh and grow a horizontal path from c

eastward (Figures 6(a) to 6(c)), until a 3 × 3 square is formed outside the bounding box.
3. Grow the path north until it reaches the corner of the bounding box, then grow a path

south until it reaches the adjacent corner (Figures 6(d) to 6(f)).

Phase (III): Sweeping into a histogram. Once Phase (II) concludes, we are left with an
intermediate configuration that contains a highly regular “scaffold” configuration with a wall
of modules at the easternmost edge, as shown in Figure 6(f). Using only local operations,
we transform this vertical section into meta-modules, forming our “sweep line” ℓ. We use
local protocols to move the sweep line across the extended bounding box from east to
west, consuming and pushing modules ahead of it, as shown in Figures 7(a) to 7(d). These
consumed modules are pushed ahead of the sweep line, up to the western edge of the bounding
box, at which point they start trailing behind in a “compacted” form, see Figures 7(a) to 7(c).
This compacted form yields a number of histograms attached to ℓ, see Figure 7(f).
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...

...

(a)

...

...

(b)

...

...

(c)

...

... ...

(d)

... ...

... ...

(e)

...

... ...

... ...

(f)

Figure 6 Building the scaffolding. The extended bounding box is shown in blue.

(a) (b) (c)

(d) (e) (f)

Figure 7 Moving the sweep line (red modules). The extended bounding box is shown in blue.
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Phase (IV): Histograms of meta-modules. Once we complete the sweep, i.e., Phase (III),
we have a configuration that has a sweep line at the western boundary, with a compact
configuration of modules east of the sweep line. This configuration resembles an x-monotone
histogram of meta-modules, with at most a constant number of modules at each y-coordinate
not belonging to a meta-module. We group the modules into meta-modules that form a
histogram aligned with a regular grid, creating a scaled histogram, as visualized in Figure 8.

(a) (b)

Figure 8 After the completing the sweep, we construct xy-monotone histogram of meta-modules.

Any two such histograms can be efficiently reconfigured into one another by a schedule
that never places any module outside their union, i.e., a strictly in-place schedule. To realize
this, we employ a simple sweep-line algorithm similar to [11, 12] that incrementally reduces
the symmetric difference between the start and target histograms by mapping between excess
occupied and unoccupied cells using two diagonal bisectors. Once we have obtained the
scaled target histogram, we can begin applying the processes described in the above phases
in reverse, eventually obtaining the target configuration.

Each phase takes O(P1) transformations, so its reverse takes O(P2). We therefore obtain
an overall makespan of O(P1 + P2); a detailed analysis can be found in the full version.

4 Conclusions and future work

We have provided a number of new results for reconfiguration in the sliding squares model,
making full use of parallel robot motion. While these outcomes are worst-case optimal, there
are still a number of possible generalizations and extensions.

We can generalize our hardness results for the labeled setting to show that deciding
whether makespan 2 is possible is NP-complete. Furthermore, we provide an efficient approach
to decide if a schedule of makespan 1 exists. We can adapt our algorithmic results to this
setting by “sorting” the modules in the xy-monotone configuration in O(P ) transformations.

Previous work has progressed from two dimensions to three. Can our approach be
extended to higher dimensions? We are optimistic that significant speedup can be achieved,
but the intricacies of three-dimensional topology may require additional tools.
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Abstract
In general multi-coverage, we are given a set of n points p1, . . . , pn in the plane. The task is to
choose m locations q1, . . . , qm and assign a radius rj to each qj , such that each pi is covered by disks
centered at κ(pi) ≥ 1 different qj with corresponding radius rj , such that the sum of disk areas is
minimized. We provide fast heuristics and exact methods that compute provably optimal solutions,
which we extend to the generalization in which disk centers are subject to separation constraints.

Related Version arXiv:2502.13773

1 Introduction

Covering a set of geometric locations is an important optimization problem that arises in
different areas. As shown in Figure 1a, this includes scenarios from robotics, e.g., controlling a
set of ground locations from a finite set of drones with downward communication links [15, 7],
requiring a set of different altitudes that balance safe separation between drones with reliable
communication to the ground. The latter requires sufficient signal strength, so communication
areas (and thus energy consumption) depend quadratically on the altitude. For any location,
observation with more than one drone is often needed to ensure sufficiently robust coverage.
Similar problems exist in diverse application domains, including wireless sensor networks
[1, 3, 4, 17, 5], facility placement [2, 6] and pesticide application [14, 8].

In the general multi-coverage (GMC) problem, we are given a point set S, m sensors,
and a coverage function κ : S → N; the goal is to assign a center qi and radius ri for each
disk i ∈ [1, . . . , m] so that each pi ∈ S is covered by at least κ(pi) disks. The objective is
to minimize the sum of disk areas π

∑m
i=1 r2

i . An additional constraint arises by enforcing
sufficient separation between coverage centers: For distance ℓ, the dispersive multi-coverage
problem (DGMC) asks for a GMC with ∥qi − qj∥ ≥ ℓ for all i ̸= j and i, j ∈ [1, . . . , m]. (See
Figures 1b and 1c for examples of optimal solutions.)

2 Related Work

Alt et al. [2] studied the GMC with κ(p) = 1. A related, but simpler, problem explored
in previous works uses a given set C of disk centers; with given coverage multiplicities
κ(pi), this is known as the non-uniform minimum-cost multi-cover (MCMC) problem. If
∀p ∈ S, κ(p) = k it is referred to as the uniform MCMC.

Approximation algorithms with constant factors depending on κ for uniform and non-
uniform MCMC were given by Abu-Affash et al. [1] and BarYehuda and Rawitz [3], re-
spectively. Bhowmick et al. [6] achieved constant approximation for non-uniform MCMC
independent of κ. Huang et al. [12, 13] gave a PTAS for κ(S) > 1.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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(a) Kilobot robots
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(c) DGMC

Figure 1 (a) Ground-based Kilobot robots, commanded by overhead controllers via infrared
communication [16]. Optimal (minimum total area) solutions with n = 10, m = 5, and κ between 1
and 3. (b) Without separation constraints. (c) Enforcing a minimum distance of ℓ = 3.

Also related is placing a minimum number of unit disks to multi-cover a point set of
size |S| = n. Gao et al. [10] gave a 5-approximation with runtime O(n + κmax), and a
4-approximation algorithm with runtime O(n2). Filipov and Tomova studied coverage with
the minimum number of unit disks [9], providing a stochastic algorithm with expected
complexity O(n2).

3 Solving GMC: Lower Bounds

We consider approaches for solving the GMC problem, implying lower bounds for the DGMC.

3.1 GMC heuristic
The heuristic starts with an initial k-means solution to partition the point set into m clusters.
These clusters are expanded to ensure each point p is covered κ(p) times and locally optimized
to minimize the total area of the disks. See full version for a detailed description.

3.2 Integer Programming
To formulate the GMC as an IP, we need a discrete set of candidate sensor positions. We
discuss computing a (preferably small) sufficient set C of candidate disks in Section 3.2.1.
Given C, we can formulate the integer program in Section 3.2.2.

3.2.1 Computing the Candidate Set
Without separation constraints, there are three ways that a set of points S′ ⊆ S can be
covered optimally (i.e., with minimum-area) by a disk.
a) For S′ = {p1}, a disk centered at p1 with radius 0 is optimal.
b) For S′ = {p1, p2}, there is a unique disk with radius ∥pi−pj∥

2 centered at the midpoint of
p1, p2 that is the minimum-area disk that contains both points.

c) For |S′| ≥ 3, any disk covering S′ can be shrunk until it has either (i) two points p1, p2 ∈ S′

on its boundary (see case b) or (ii) at least three points p1, p2, p3 ∈ S′ on its boundary.
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Figure 2 Solutions from uni_lg with n = 30 and m = 30 and different separation constraints.

The above allows us to enumerate all necessary disks for the GMC: We add a disk with
radius 0 and center pi for all points pi ∈ S. Then for all pairs pi, pj ∈ S, we compute the
disk centered between pi, pj . For all triples pi, pj , pk ∈ S, we compute the unique disk that
has pi, pj and pk on its boundary. When the triangle between the points is obtuse, a disk
in C (defined by two of the points) already contains the third point and has a smaller area.
Thus, we only add a disk defined by three points if we encounter an acute triangle.

In total, this yields O(n3) possible positions. Using a k-d- or ball-tree one can find the set
S′ ⊆ S of points that intersect a given disk in O(

√
n + |S′|) time. This yields a worst-case

runtime of O(n4) to enumerate all elements of C, but with better performance in practice.

3.2.2 GMC IP Formulation
For every disk di in the candidate set C, we define integer variables xi that encode how often
each disk is used in the solution. The constraints ensure that at most m disks are placed
and every point pj ∈ S is covered by at least κ(pj) disks.

minimize π ·
∑

di∈C

r2
i xi

subject to
∑

di∈C

xi ≤ m

∑

di∈C
pj∈di

xi ≥ κ(pj), ∀pj ∈ S

xi ∈ {0, . . . , m}, ∀di ∈ C

4 Upper Bounds: Enforcing separation constraints

While the DGMC can be formulated as a quadratic program with non-convex constraints for
disk separation, solving this to optimality is challenging. Thus, we again work with a dis-
cretized candidate set C and modify the Integer Programming formulation from Section 3.2.2.
However, unlike for the GMC, C does not necessarily contain disks of an optimal solution. It
could even be that no selection of disks from C provides any feasible solution to the DGMC.
Therefore, we modify C to improve the quality of our solutions; see Section 4.2.

We use the GMC as a lower bound to the DGMC. Comparing this to any DGMC solution
with a discretized candidate set allows us to evaluate the quality of the solution for the
(non-discretized) DGMC. We found our solutions to be very close to lower bounds provided
by the GMC IP; see Section 5.
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4.1 Introducing Separation Constraints
We start with the integer program from Section 3.2.2. Separation between two disks is
achieved by using binary variables (to ensure that each disk can be selected at most once) and
adding the following constraints to prevent two disks with distance ≤ ℓ (for some distance ℓ)
from being selected.

xi + xj ≤ 1 ∀di, dj ∈ C : ∥qi − qj∥ ≤ ℓ. (1)

For O(n3) possible disks, this would yield O(n6) possible constraints, which is impractical
for interesting instances. Thus, we only add the violating constraints in an iterative fashion.

Due to the separation requirement, we can further add a clique constraint for each
violating disk that ensures at most one disk is selected within a distance < ℓ

2 . For some disk
di this clique constraint can be formulated as

∑

dj∈C
d(qi,qj)<ℓ/2

xj ≤ 1. (2)

Equation (2) includes separations from Equation (1), so we add Equation (1) for distant
violating disk pairs, and Equation (2) for the ℓ

2 neighbors of each violating disk. We limit
the size of the resulting DGMC IP, by only adding Equation (2) for a disk di if no clique
was added for some other disk dj in the clique.

4.2 Modifying the Candidate Set
The next idea is to enhance the candidate set C by promising disks for coverage. In the GMC
solution, single outlier points p with κ(p) > 1 are often covered using κ(p) many drones that
cover only p. This is no longer possible when ensuring disk separation. For each point p with
κ(p) > 1, we extend the candidate set C by κ(p) small disks, that respect the separation
constraints, i.e., we construct a regular κ(p)-gon with side length ℓ centered around p.

To speed up the solver, we can focus on small disks. To that end, we check for the largest
disk di used in the GMC solution and remove all other disks that have a radius that is greater
than α · ri. The factor α compromises between the size of C and solution quality.

5 Results

Experiments were carried out on a regular desktop workstation with an AMD Ryzen 9
7900 (12×3.7 GHz) CPU and 88 GB of RAM. Code and data are available1. Instances were
generated uniformly in a 100 m × 100 m canvas. Values of κ(p) for all points were sampled
uniformly from {1, 2, 3}. This yields the instances sets uni_sm (n = 20, 30, . . . , 200 and
m = 20), uni_lg (n = 30, 40, . . . , 300 and m = 30), and uni_fix_n (m = 5, 10, . . . , 100 and
n = 250). We generated five instances for each parameter combination.

5.1 GMC
We compare the GMC heuristic and the integer program in terms of runtime and total area.
GMC IP requires time to set up the solver, i.e., (i) computing the candidate set C which
takes O(n4) and (ii) building the model which takes O(n|C|). The solver is executed on the
resulting integer program.

1 https://gitlab.ibr.cs.tu-bs.de/alg/disc-covering
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Figure 3 Comparison of runtime, total area, and optimality gap between the GMC IP solver
and the heuristic. On all plots, lower is better. (left) uni_sm; fixed m = 20 variable n. (right)
uni_fix_n; fixed n = 250 variable m.

Figure 3 shows that the runtime of the GMC IP solver is significantly higher than of the
GMC heuristic. Computing the candidate set is challenging for larger instances, but we do
not observe the worst-case behavior in runtime. For uni_fix_n, having m between 20 and 35
the GMC IP needs significantly more time to obtain provable optimal solutions.

The lower row of Figure 3 shows a comparison between GMC heuristic and GMC IP in
terms of solution quality. The plot shows the optimality gap that is the relative gap between
the found solution versus the optimal solution ((Calg − Cip)/Calg). For both fixed m and n,
the optimality gap remains stable at around 27.5 % in different instances. The only exception
being the case where m ≥ n in which the iterative algorithm gives slightly worse results.

5.2 DGMC

In Section 4.2 we presented different candidate set strategies that are now compared in terms
of solution quality and runtime. For all the experiments, we enable clique constraints and
extend the candidate set by small disks.

We ran these exploratory experiments on the benchmark set uni_sm, as the workstations
ran out of memory for larger instances. After identifying the best parameters, we ran another
experiment on the bigger benchmark set uni_lg, i.e., for more points and more drones. For
all the experiments, we chose a fixed ℓ = 5. For a fixed value of ℓ, it is more reasonable
to variate the number of points n, as more drones increase the difficulty of sparsifying the
solution and lead to more infeasibilities.

5.2.1 Parameters of DGMC IP

Figure 4 (left) shows the described tradeoff for the α parameter: α controls the size of
the largest disk in the candidate set C. The top row shows that reducing C improves the
solver times significantly. At the same time, the bottom row shows how the solution quality
decreases with a smaller set. Setting α = 1.2 provides excellent tradeoff between solution
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quality and runtime, reducing runtime while almost maintaining the same solution quality as
the original set, i.e., α = ∞.

0

50

100

ti
m

e
[s

]

DGMC IP + α =

0.8

1.0

1.2

∞

20 40 60 80 100 120 140 160 180 200

number of assets n

0.0

0.1

0.2

0.3

o
p

ti
m

a
li

ty
g

a
p

lower is better

0

250

500

750

ti
m

e
[s

]

DGMC IP+ α = 1.2

50 75 100 125 150 175 200 225 250 275 300

number of assets n

0.00

0.05

0.10

0.15

o
p

ti
m

a
li

ty
g

a
p

lower is better

Figure 4 (left) Tradeoff between reducing the candidate set C and the optimality gap for the
DGMC IP on uni_sm; m = 20 and ℓ = 5. For comparison, we only display instances that were
feasible for all α values, removing 14 of the 95 instances. (right) Runtime and optimality gap of the
DGMC IP on uni_lg; m = 30 and ℓ = 5.

5.2.2 Large benchmark uni_lg

First we ran the GMC IP on the benchmark set to obtain the lower bounds for the DGMC.
There is a single instance with n = 300 that could not be solved within the memory limit;
for the remainder of this section, we will exclude this instance.

Based on the results from uni_sm, we ran the DGMC IP on the larger benchmark set
uni_lg with a time limit of 900 s for the solver and set α = 1.2. Note that without reducing
C (i.e. with α = ∞), we cannot reliably solve the larger instances, i.e., instances with more
than 250 points, as the integer program requires too much memory.

Figure 4 (right) shows that we can solve all instances close to provable optimality.
For smaller instances with n ≤ 100 the optimality gaps are higher than 2 %. For larger
instances, the DGMC IP solver was unable to find optimal solutions for the discretized
DGMC (see Section 4) and was terminated due to a timeout. Despite early termination,
DGMC IP found solutions with an optimality gap below 0.7 % for all these instances. Note
that as we are comparing against the GMC IP solutions (without separation constraints),
the gaps to an optimal solution of the DGMC are smaller than what can be seen here.

6 Conclusions

Directions for future work include an extension to covered assets in 3D, which is natural for
domains such as flying robots, space applications, or undersea sensor networks. Calculating
candidate centers is still possible, but more complicated [11]. The high speed of the iterative
approximation may be applicable for dynamic targets, or for adjusting the sensor positions
and radii when a sensor is added or deleted. A quadratic program for DGMC is suitable for
small problems, and could be initialized with the DGMC IP solutions to speed computation.
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Abstract
We provide a spectrum of new theoretical insights and practical results for finding a Minimum
Dilation Triangulation (MDT), a natural geometric optimization problem of considerable previous
attention: Given a set P of n points in the plane, find a triangulation T , such that a shortest
Euclidean path in T between any pair of points increases by the smallest possible factor compared
to their straight-line distance. No polynomial-time algorithm is known for the problem; moreover,
evaluating the objective function involves computing the sum of (possibly many) square roots. On
the other hand, the problem is not known to be NP-hard. We provide practically robust methods
and implementations for computing the MDT for benchmark sets with up to 30,000 points in
reasonable time on commodity hardware, based on new geometric insights into the structure of
optimal edge sets. Previous methods only achieved results for up to 200 points, so we extend the
range of optimally solvable instances by a factor of 150.

Moreover, we resolve an open problem by establishing a lower bound of 1.44116 on the dilation
of the regular 84-gon (and thus for arbitrary point sets), improving the previous worst-case lower
bound of 1.4308 and greatly reducing the remaining gap to the upper bound of 1.4482 from the
literature. In the process, we provide optimal solutions for regular n-gons up to n = 100.

Related Version arXiv:2502.18189

1 Introduction

Triangulating a set of points to optimize some objective is one of the classical problems in
computational geometry. On the practical side, it has applications in wireless sensor net-
works [25, 26], mesh generation [1], computer vision [23], geographic information systems [24]
and many other areas [5].

In this paper, we provide new results and insights for a previously studied, natural objective
that considers triangulations as sparse structures with relatively low cost for ensuing detours:
The dilation of a triangulation T of a point set P is the worst-case ratio (among all s, t ∈ P )
between the shortest s-t-path πT (s, t) in T and the Euclidean distance d(s, t) between s and
t, i.e. ρ(T ) = max{|πT (s,t)|/d(s,t) | s, t ∈ P, s ≠ t}. The Minimum Dilation Triangulation
(MDT) problem asks for a triangulation T that minimizes the dilation ρ(T ), see Figure 1 for
examples. Despite this importance and attention, actually computing a Minimum Dilation
Triangulation is a challenging problem. Its computational complexity is still unresolved,
signaling that there may not be a simple and elegant algorithmic solution that scales well.

Our contributions We present practically robust methods and implementations for comput-
ing an MDT for benchmark sets with up to 30,000 points in reasonable time on commodity
hardware, based on new geometric insights into the structure of optimal edge sets. Previous
methods only achieved results for up to 200 points (involving one computational routine
of complexity Θ(n4) instead of our improved complexity of O(n2 log n)), so we extend the
range of practically solvable instances by a factor of 150. We also resolve an open problem
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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burma14
ρ ≈ 1.1749

kroE100
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fpg-poly-0000000100
ρ ≈ 1.2652

84-gon
ρ ≈ 1.4412

Figure 1 MDT solutions for four instances. The red edges indicate a dilation-defining path.

from Dumitrescu and Ghosh [9] by establishing a lower bound of 1.44116 on the dilation of
the regular 84-gon. This improves the previous worst-case lower bound of 1.4308 from the
regular 23-gon and greatly reduces the remaining gap to the upper bound of 1.4482 from [22].
In the process, we provide optimal solutions for regular n-gons up to n = 100.

Related work The complexity of finding the MDT is unknown [11, 18]. Giannopoulos
et al. [12] prove that finding the minimum dilation graph with a limited number of edges
is NP-hard. Cheong et al. [4] show that finding a spanning tree of given dilation is also
NP-hard. Kozma [16] proves NP-hardness for minimizing the expected distance between
random points in a triangulation, with edge weights instead of Euclidean distances. All
practical approaches in the literature are based on fixed-precision arithmetic. Klein [14] used
an enumeration algorithm to find an optimal MDT for up to 10 points. Dorzán et al. [8]
present heuristics for the MDT and evaluate their performance on instances with up to 200
points. Instances with up to 70 points were solved by Brandt et al. [3] using integer linear
programming techniques and the edge elimination strategy from Knauer and Mulzer [15].
Recently, Sattari and Izadi [21] presented an exact algorithm based on branch and bound
that was evaluated on instances with up to 200 points.

2 Exact algorithms

Now we present two exact algorithms: IncMDT is an incremental method that uses a SAT
solver for iterative improvement, until it can prove that no better solution exists. BinMDT
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is based on a binary search for the optimal dilation ρ; once the lower and upper bound are
reasonably close, the approach falls back to IncMDT to reach a provably optimal solution.

2.1 Enumerating possible edges
We implemented a novel and practically efficient scheme for enumerating a set of edges that
induces a supergraph of the MDT with dilation strictly less than a given bound ρ. The
approach is based on the well-known ellipse property (used in [3, 12, 15]) and enumerates
candidate edges using a quadtree-based filtered incremental nearest-neighbor search that
identifies potential neighbors while excluding points in so-called dead sectors. Due to space
constraints, all details are deferred to the full version.

Our enumeration scheme significantly reduces the number of edges to consider, improving
runtime efficiency. It also computes a dilation threshold ϑ(st) for each edge st to quickly
exclude edges when lowering the dilation bound. As part of our computation, we also obtain
an initial triangulation and its dilation, as well the intersecting possible edges I(st) for each
possible edge st. In both algorithms, we may gradually discover triangulations with lower
dilation; these are used to exclude additional edges using the precomputed dilation thresholds
ϑ(e). To keep track of the status of each edge, we insert all points and possible edges into a
graph data structure we call triangulation supergraph. In this structure, we mark each edge
as possible, impossible or certain. Initially, all enumerated edges are possible. If, at any point,
all edges intersecting an edge e become impossible, e becomes certain. If an impossible edge
becomes certain or vice versa, the graph does not contain a triangulation any longer. If this
happens, we say we encounter an edge conflict.

2.2 SAT formulation
Given a triangulation supergraph G = (P, E), we model the problem of finding a triangulation
on possible and certain edges using the following simple SAT formulation. Let Ep ⊆ E be
the set of non-impossible edges when the SAT formulation is constructed. For each edge
e ∈ Ep, we have a variable xe. We use the following clauses in our formulation.

¬xe1 ∨ ¬xe2 ∀e1, e2 ∈ Ep : e2 ∈ I(e1) (1)

xe ∨
∨

ej∈I(e)

xej ∀e ∈ Ep (2)

Clauses (1) ensure crossing-freeness and clauses (2) ensure maximality. When an edge e

becomes certain, we add the clause xe; similarly, when an edge becomes impossible, we add
the clause ¬xe. Both algorithms are based on this simple formulation; in the following, we
describe how they use and modify it to find an MDT.

Clause generation The following subproblem, which we call dilation path separation, arises
in both our algorithms: Given a dilation bound ρ, a triangulation supergraph G = (P, E)
excluding only edges that cannot be in any triangulation with dilation less than ρ, a current
triangulation T and a pair of points s, t ∈ P such that |πT (s, t)| ≥ ρ · d(s, t), find a clause
C that is (a) violated by T and (b) satisfied by any triangulation T ′ with ρ(T ′) < ρ. For a
description of how we compute E′ in practice, see the full version.

▶ Lemma 2.1. Assuming a polynomial-time oracle for comparing sums of square roots, there
is a polynomial-time algorithm that solves the dilation path separation problem.

EuroCG’25
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Initial Solution
ρ ≈ 1.3472

Iteration 4
ρ ≈ 1.3370

Iteration 5
ρ ≈ 1.3355

Iteration 6
ρ ≈ 1.3255

Iteration 7
ρ ≈ 1.3249

Iteration 8
ρ ≈ 1.3194

Iteration 9
ρ ≈ 1.3101

Optimal Solution
ρ ≈ 1.3083

Figure 2 Progress of the incremental algorithm on an instance with n = 50 points. Green edges
indicate changes in the triangulation, red edges indicate a dilation-defining path.

Proof. Let Π be the set of all s-t-paths π in G with |π| < ρ · d(s, t). We begin by observing
that, along every path π ∈ Π, there is an edge e ∈ E that is not in T ; otherwise, we get
a contradiction to |πT (s, t)| ≥ ρ · d(s, t). Let E′ ⊆ E \ T be a set of edges such that for
each π ∈ Π, there is an edge e ∈ E′ on π. Then, C =

∨
e∈E′ xe is a clause that satisfies the

requirements; note that if Π is empty, the empty clause can be returned.
T contains no edge from E′, so C is violated by T . Furthermore, if a triangulation T ′

with ρ(T ′) < ρ does not contain any of the edges in E′, it contains none of the paths in
Π. Therefore, πT ′(s, t) uses an edge that is not in E, which has been excluded from all
triangulations with dilation less than ρ; a contradiction. E′ can be computed by repeatedly
computing shortest s-t-paths π; as long as π < ρd(s, t), we find an edge e /∈ T on π, add e to
E′ and forbid it in future paths. The number of edges bounds the number of iterations of
this process; using the comparison oracle, we can efficiently perform each iteration. ◀

2.3 Incremental algorithm
Based on the SAT formulation and the algorithm for the dilation path separation problem,
IncMDT is simple. Given an initial triangulation T with dilation ρ, we enumerate the set of
candidate edges and construct a triangulation supergraph G with bound ρ. We construct the
initial SAT formula M and solve it; if it is unsatisfiable, the initial triangulation is optimal.
Otherwise, we repeat the following until the model becomes unsatisfiable or we encounter an
edge conflict, keeping track of the best triangulation found, see Figure 2.

We extract the new triangulation T ′ from the SAT solver and compute the dilation ρ′

and a pair s, t of points realizing ρ′. If ρ′ is better than the best previously found dilation
ρ, we update ρ and mark all edges e with ϑ(e) ≥ ρ′ as impossible. We then set T = T ′ and
solve the dilation path separation problem for ρ, G, T , s and t. We add the resulting clause
to M and let the SAT solver find a new solution.
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2.4 Binary search
Preliminary experiments with IncMDT showed that we spend almost all runtime for
computing dilations, even for instances for which we could rely exclusively on interval
arithmetic, requiring no exact computations. For many instances, most iterations of IncMDT
resulted in tiny improvements of the dilation. To reduce the number of iterations (and thus,
dilations computed), we considered the binary search-based algorithm BinMDT.

At any point in time, aside from the dilation ρub of the best known triangulation, BinMDT
maintains a lower bound ρlb on the dilation, initialized as described in the full version. As
long as ρub − ρlb ≥ σ for a small threshold value σ, BinMDT performs a binary search. It
computes a new dilation bound ρ = 1

2 (ρlb + ρub). It then uses the SAT model in a similar
way as IncMDT to determine whether a triangulation T with ρ(T ) < ρ exists. If it does, it
updates ρub = ρ(T ); otherwise, it updates ρlb = ρ. Once ρub − ρlb falls below σ, BinMDT
falls back to a slightly modified version of IncMDT to find the MDT, starting from the best
known triangulation with dilation ρub. For more details, see also the full version.

3 Empirical evaluation

Now we present experiments to evaluate our algorithms. Code and data are publicly available1.
We used Python 3.12, with a core module written in C++20 for all computationally heavy
tasks; the code was compiled with GCC 13.2.0 in release mode. We use CGAL 5.6.1 for
geometric primitives and exact number types, Boost 1.83 for utility functions and pybind11
2.12 for Python bindings and use the incremental SAT solver CaDiCaL 1.9.5 via the PySAT
interface for solving the SAT models. All experiments were performed on Linux workstations
equipped with AMD Ryzen 9 7900 CPUs with 12 cores/24 threads and 96 GiB of DDR5-5600
RAM running Ubuntu 24.04.1.

Experiment design We collected and generated a large set of instances, consisting of
instances from the following instance classes. In all cases, the coordinates of points in the
instances are either integers or double precision floating-point numbers.
random-small [3] The 210 instances (30 for each size n ∈ {10, 20, . . . , 70}) were generated

by placing uniformly random points inside a 10 × 10 square.
random Two sets of randomly generated instances (total of 800 instances) with points with

float coordinates chosen uniformly between 0 and 103, ranging from 50 to 10,000 points.
public [7, 6, 20, 19, 10] Well-known publicly available point sets used in the CG:SHOP

challenges [7, 6], TSPLIB instances [19], instances from a VLSI dataset [20] and point
sets from the Salzburg Database of Polygonal Inputs [10]. In total, we collected 486
instances with up to 10,000 points and an additional 38 with up to 30,000 points.

Comparison to state of the art We compare our approaches to two exact algorithms for
the MDT. Note that both use floating-point arithmetic and are not guaranteed to find the
optimal solution (although we can confirm that all previous solutions are within a small
relative error). The first approach is the IP approach from [3] and the second is the branch
& bound (BnB) algorithm from [21].

For random-small, both IncMDT and BinMDT outperform the IP and BnB approach
by a large margin (up to four orders of magnitude), see Figure 3. All instances are solvable

1 Code and data: https://doi.org/10.5281/zenodo.14266122
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Figure 3 (Left) Runtime comparison with the approaches from [3] and [21] on the random-small
set. (Right) BinMDT is significantly faster than IncMDT on the random benchmark set.
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triangulation as an initial solution significantly improved the performance. (Right) The dilation of
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√
2 for all instances.

in less than 0.1 s. Additionally, [21] provided results for TSPLIB [19] instances (part of our
public instance set) with up to 200 points. Our approach is significantly faster than theirs,
solving each of these instances to provable optimality in less than 1 s instead of up to 1248 s;
a table with all instances and runtimes can be found in the full version.

Algorithm comparison We now compare IncMDT to BinMDT; see the full version for
more detail. We conduct our first experiment on the random instances with up to 10,000
points; this experiment confirms that BinMDT achieves a significantly lower runtime. For
more details, see Figure 3.

We also conduct an additional experiment on the public instances up to 10,000 points to
determine whether performing greedy, local improvements to the Delaunay triangulation,
which we use as initial solution, is worthwhile; see Figure 4. The improved Delaunay
triangulation significantly reduces the runtime of BinMDT for almost all instances. Detailed
results for all public instances, as well as an additional experiment on the public instance
set showing that BinMDT can solve instances with up to 30,000 points in less than 17 h to
provable optimality, can be found in the full version.
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Figure 5 Dilations and runtimes for regular n-gons for 4 ≤ n ≤ 100. Red dots improve the
current lower bound of 1.4308 that comes from the regular 23-gon. The dashed black lines mark the
known upper bound of 1.4482 and the previous best lower bound of 1.4308.

Regular n-gons The worst-case dilation of a regular n-gon has received considerable
attention [17, 9, 22], with a lower bound of 1.4308 and an upper bound of 1.4482. Improving
this gap is an open question posed by [9], originating from [2, 13]. With our exact algorithm,
we were able to compute bounds for n ∈ {4, 5, . . . , 100} and found that the dilation of a
regular 84-gon is at least 1.44116, see Figures 1 and 5 and the full version for details.

4 Conclusion

We have presented exact algorithms for minimum dilation triangulations, greatly outperform-
ing previous methods from the literature. This has also yielded insights into the intricate
structure of optimal solutions for regular n-gons, together with new lower bounds on the
worst-case dilation of triangulations. This demonstrates the value of computational tools for
gaining analytic insights that seem out of reach with purely manual analysis.
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Abstract
The Traveling Salesman Problem with Neighborhoods (TSPN) generalizes the classical Traveling
Salesman Problem by requiring a tour to visit polygonal regions rather than fixed points, a natural
goal that arises in various applications. While the geometric TSP allows arbitrarily close approx-
imation and provably optimal solutions for benchmark instances of significant size, the TSPN is
considerably more challenging, both in theory (due to APX-hardness) and practice, for which only
benchmark instances up to 16 regions have been solved to provable optimality. In this paper, we pro-
pose a branch-and-bound algorithm that solves polygonal TSPN instances to optimality. Through
computational experiments on 500 benchmark instances with 50 polygons each, our method achieves
a 85.6 % optimality rate within 60 s. We also explore the impact of key design choices, providing
insights into effective solution strategies for TSPN.

1 Introduction

A natural generalization of the classical Traveling Salesman Problem (TSP) is the Traveling
Salesman Problem with Neighborhoods (TSPN), which asks for a shortest roundtrip that
visits each of a given family P1, . . . , Pn of regions in the plane, see Figure 1 for an example.

50 polygons, solved in 0.75s

Figure 1 Example TSPN instance with a feasible solution.

While the geometric TSP allows both polynomial-time approximation schemes [22, 4]
and solution to provable optimality for point sets of considerable size (such as the 85 900-
city instance solved by [1, 8]), the TSPN is considerably more challenging, both in theory
(with APX-hardness [10, 11]), and practice (with the state of the art being provably optimal
solutions for benchmark instances up to 16 regions [17]).

Contribution. We present a branch-and-bound algorithm that solves TSPN instances
to provable optimality. Across 500 benchmark instances with 50 polygons each, 85.6 % are
solved to optimality within 60 s, significantly advancing the state of the art [17]. We also
evaluate the impact of various algorithmic design choices.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Related Work. A special case of TSPN is the Close-Enough TSP (CE-TSP), where
each neighborhood is a circle, which is also related to the Lawn Mowing Problem [2, 3, 14, 15].
Branch-and-bound algorithms have been studied for CE-TSP [12, 9]; however, the TSPN al-
lows arbitrary (including non-convex) neighborhoods, making it more general. Many heuris-
tics and approximation algorithms for the TSPN rely on assumptions (e.g., fatness [23],
disjoint neighborhoods [10, 11], or comparable region diameters [13]) to manage its APX-
hardness. Specialized approaches address specific settings such as aerial vehicle routing [20],
and hybrid methods combine meta-heuristics with TSP solvers [25]. Non-convex Mixed
Integer Nonlinear Programming (MINLP) formulations have been proposed for TSPN, in-
cluding symmetric and asymmetric variants [17], with algorithmic improvements to reduce
solution times. However, computational tests were limited to smaller or convex neighbor-
hoods. Other work derives approximations and bounds for the metric TSPN using the
Minimum Spanning Tree with Neighborhoods [7].

2 Branch-and-Bound Algorithm

Our algorithm (Algorithm 1) builds on the branch-and-bound framework by Coutinho et
al. [9] for the CE-TSP, improving and extending it to handle the TSPN. We begin by con-
structing a root node using a universal ordering on a subset of the polygons (see Section 2.2).
From there, we branch by selecting a polygon that is not yet visited in the current solution
and creating a new branch for each possible insertion position (Section 2.3).

For the sequence of polygons in each node, we solve a Second-Order Cone Program
(SOCP) to obtain the optimal tour for that ordering (Section 2.1). If this tour intersects all
polygons, it is a feasible solution (see Figure 2); otherwise, the SOCP value provides a valid
lower bound to prune the node if a superior solution is already known. Because evaluating a
single node can yield multiple child nodes, we apply a search strategy to decide which node
to process next (Section 2.4).

Throughout the search, the algorithm keeps track of the incumbent (best known feasi-
ble) solution and the node with the lowest lower bound, which together define the current
optimality gap1. Search is terminated if this gap is smaller than a desired threshold, or if
all nodes are explored.

Figure 2 A sequence with only 4 polygons is feasible for this example instance with 10 polygons.

1 Measured as the relative difference to the lower bound, ub/lb− 1.
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Algorithm 1 Branch-and-Bound Algorithm
Require: Set of polygons I

1: Preprocess and simplify I.
2: Q ← [ ] ▷ Queue of leaf nodes to explore
3: Q.push(getRootNode(I)) ▷ See Section 2.2
4: ub←∞
5: while Q ≠ ∅ ∧min{v′.lb | v′ ∈ Q} < ub do
6: v ← getNextNode(Q) ▷ Search strategy, see Section 2.4
7: Remove v from Q
8: if v.lb ≥ ub then
9: continue

10: end if
11: if Solution in v covers all polygons in I then
12: ub← v.lb

13: else
14: for child ∈ Branch(v) do ▷ Branching, see Section 2.3
15: Q.push(child)
16: end for
17: end if
18: end while
19: return Incumbent solution corresponding to ub, or ⊥ if no solution was found.

2.1 Touring a Sequence of Polygons
▶ Theorem 2.1. Let P0, . . . , Pn−1 ⊂ R2 be convex polygons. Then the shortest tour visiting
these polygons in order can be computed in polynomial time.

Proof. A convex polygon Pi can be represented by linear constraints Si(x, y). We formulate
the problem as a Second-Order Cone Program (SOCP), which can be solved in polynomial
time via interior-point methods [5]. For each i, introduce a point (xi, yi) ∈ R2 constrained
by Si(xi, yi), ensuring (xi, yi) ∈ Pi. For readability, all indices are assumed modulo n.

To encode the total tour length, let di ≥ 0 be the distance between (xi, yi) and (xi+1, yi+1).
We introduce auxiliary variables x̂i, ŷi subject to

x̂i ≥ xi − xi+1, x̂i ≥ xi+1 − xi, ŷi ≥ yi − yi+1, ŷi ≥ yi+1 − yi,

and impose second-order cone constraints d2
i ≥ x̂2

i + ŷ2
i . Minimizing

∑n−1
i=0 di can be done in

polynomial time, and yields the shortest tour as di will be tight in the optimal solution. ◀

To handle non-convex polygons P ′
i , including those with holes, we propose an alternative

constraint set S′
i(x, y) that employs binary variables and can be expressed as a Mixed Integer

Second-Order Cone Program (MISOCP). Suppose each P ′
i can be decomposed into a finite

set of convex polygons Ri, see Figure 3. We introduce a binary variable rc ∈ B for each
c ∈ Ri and require exactly one of these polygons to be active by enforcing

∑
c∈Ri

rc = 1.

For each convex polygon c, let Sc
i (x, y) denote its associated constraints. We then ensure

(x, y) ∈ P ′
i by imposing the implications rc =⇒ Sc

i (x, y) for all c ∈ Ri. These implications
can be enforced via indicator constraints (available in many solvers) or through Big-M
linearizations, where M can be limited by the bounding box of P ′

i .
For polygons without holes, a minimum convex decomposition can be computed in poly-

nomial time [18, 6]. For polygons with holes, a decomposition is always feasible by triangu-
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Figure 3 A non-convex polygon (left) and its decomposition in convex areas (right).

Figure 4 Root node strategies (left to right): Random, longest edge + farthest polygon, convex
hull, and an example demonstrating poor convex hull performance.

lation, but finding a minimal decomposition is NP-hard [21]. Solving the resulting MISOCP
is also NP-hard, and the use of indicator variables or Big-M constraints can lead to weak
relaxations, making these methods computationally expensive in practice. Thus, we will in-
vestigate later to lazily decompose the polygons in our branch-and-bound algorithm, instead
of using the MISOCP formulation directly.

2.2 Root Node

The root node’s initial polygon sequence must be extendable to an optimal solution. Any
sequence of up to three polygons trivially satisfies this condition. We evaluate three meth-
ods for selecting these polygons: Random: Select any three polygons at random. Longest
Edge+Farthest Polygon (LEFP): Pick two polygons with the largest pairwise distance,
then add the polygon farthest from these two. Convex Hull (CHR): Exploit the obser-
vation that any set of disjoint polygons on the instance’s convex hull must appear in the
same order in some optimal solution. Although this strategy may include more than three
polygons in the root sequence, it can perform poorly on certain instances. For example, if
the polygons are strongly protruding inwards, they may not force the initial tour to span
the region effectively. Figure 4 illustrates all three strategies, including a case where CHR
performs poorly.
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2.3 Branching
When the (partial) tour in a node does not cover all polygons, we branch by selecting a
missing polygon and creating a new branch for each possible insertion position. Figure 5
illustrates this approach. We compare two strategies for choosing the polygon to branch on:
Random: Select a missing polygon uniformly at random. Farthest Polygon: Select the
polygon that lies farthest from the current tour.

Figure 5 Branching on the insertion position of the selected farthest polygon.

Because each polygon is initially replaced by its convex hull for efficiency, a polygon may
appear in the partial sequence but still be effectively unvisited. If the MISOCP formulation
is used, we can simply replace the convex hull with the polygon itself. Otherwise, we must
branch on this polygon by decomposing it into convex parts and creating one branch per
part (see Figure 6). This ensures that every leaf node includes the polygon, with at least
one leaf containing its optimal hitting point.

Figure 6 Branching on a non-convex polygon by decomposing it into convex pieces.

2.4 Search Strategies
We implement four different strategies to select the next node for exploration during the
branch-and-bound search: Random: Pick a node uniformly at random from the queue.

EuroCG’25
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BFS: Choose the node with the best, i.e., smallest, lower bound. DFS: Continue exploring
the best child of the current node, aiming to quickly achieve feasibility and find a better
incumbent solution. DFS+BFS: Initially proceed like DFS, but whenever a node is pruned
or a new feasible solution is discovered, sort the queue by lower bounds. This combines the
fast incumbent improvements of DFS with the tighter lower-bound focus of BFS.

3 Experiments

In the following, we investigate how various algorithmic choices affect performance. We
tested 500 instances, each containing 50 random polygons: 45 % convex, 45 % concave (up
to 10 units), and 10 % larger concave polygons with holes (up to 20 units), see Figure 7 for
examples. The instance n50_ps70_001 is used for the convergence plots throughout this
section. We regard a solution as optimal if its optimality gap is below 0.01 % within 60 s.

Figure 7 Optimal solutions for n50_ps70_001 (left) and n50_ps70_002 (right).

Our algorithm is implemented in C++ and uses Gurobi 12.0 [19] to solve the mathemat-
ical programs. Geometry operations rely on Boost.Geometry 1.83 [16] and CGAL 6.0.1 [24]
with exact predicates and constructions. We compiled using g++ 13.3 and ran all tests on
an AMD Ryzen 7900 workstation with 96 GiB of DDR5-5200 RAM under Ubuntu 24.04.

Preprocessing Initial preprocessing to simplify the instances showed a modest improve-
ment on some instances and improved average runtimes slightly. However, no additional
instances were solved in time; see Figure 8.

Warm Start Heuristically computing an initial solution only benefited the random search
strategy (Figure 9). For other strategies, the high upfront cost (usually between 10 s to
60 s) of the naive algorithm used outweighed gains.

Root Node The choice of root node sequence critically affects performance (Figure 10).
Using a convex hull root node (CHR) was generally fastest, while a LEFP approach per-
formed better on instances with large polygons. A random strategy is not recommended.

Search Strategy DFS found solutions fastest, whereas BFS increases the lower bound fastest.
A combined DFS+BFS strategy is a good compromise; see Figure 11. It excels when
slightly relaxed optimality tolerances are acceptable.
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Figure 8 Runtime (left) and bound convergence (right) for different preprocessing settings.
Sometimes pre-simplification improved initial bounds and sped up convergence.
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Figure 9 Runtime analysis (left) and random node exploration bound convergence (right) for
different initial solutions. Other exploration strategies showed no improvement from warm starts.
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Figure 10 Runtime (left) and bound convergence (right) for different root node choices. CHR
performed best overall; however, for larger polygons, LEFP was more robust.
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strategies. When allowing a 5 % gap, DFS+BFS terminates quickly.
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Figure 12 Runtime (left) and bound convergence (right) for different polygon selection methods.
Farthest polygon significantly improved performance over random.

Polygon Selection When selecting the next polygon to branch on, choosing the farthest
polygon consistently outperformed random selection (Figure 12).

Decomposition Modeling When handling non-convex polygons, decomposition branching
yields faster and more reliable performance than indicator modeling in Gurobi (Fig-
ure 13). Although indicator modeling is simpler to implement, it leads to weaker relax-
ations.

Optimality Tolerance Relaxing the optimality gap significantly reduces runtime for gaps of
5 % to 10 %; see Figure 14. Differences between 0.01 % and 0.1 % are negligible, but a
gap of 5 % or higher often saves substantial time.

Threats to Validity All solutions were validated, and a set of unit tests ensured cor-
rectness of core components. Results were checked for consistency between upper and lower
bounds. Moreover, the selected 500 instances may not be fully representative of real-world
scenarios, though the set provides diversity by fixing instance size and varying polygon
shapes.

4 Conclusion and Future Work

In this paper, we presented a branch-and-bound algorithm for the TSPN and evaluated the
impact of various design decisions on its performance. While most of the results aligned with
our expectations, it was surprising to find that manually branching on the decomposition
of non-convex polygons outperformed handling them with Gurobi. Looking ahead, we have
several ideas for further improvements, including enhanced early-pruning strategies and more
advanced parallelization techniques.
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Abstract
We consider versions of the Traveling Salesman Problem in which the cost of travel changes
along the way: In the Harmonic TSP (HTSP), the cost of each traversed edge is its length divided
by the number of previously visited vertices, while in the Cumulative TSP (CTSP), it is its length
multiplied by this number. Both problems are related to the Minimum Latency Problem, which
aims at minimizing the average arrival time of a tour; as we show (along with geometric properties),
these problems are distinct. In addition to observations placing these variants into context, our
main contribution is a constant-factor approximation for the HTSP on general metric instances.

1 Introduction

The Traveling Salesman Problem (TSP) is a classical problem of combinatorial opti-
mization, seeking a cheapest round trip that visits each of a given set of points. In its original
formulation, the cost of a TSP tour is simply the sum of edge lengths; however, in many
applications from transportation and logistics, the price of traversing an edge also depends on
the context within a tour: In ride-sharing or group travel, the cost per passenger may decrease
as additional riders join the route and share expenses. Conversely, in some pick-up and freight
services, the total load grows over the course of the route, increasing fuel consumption and
handling costs. This leads to variants in which the travel cost changes along the way, either
inversely proportionally, referred to as the Harmonic variant (HTSP), or proportionally
(the Cumulative variant (CTSP)) to the number of previously visited vertices.

Numerous variants with travel cost that change dynamically have been studied before,
including the Discounted-Reward TSP [9], the Time-dependent TSP, and the Time-
dependent Vehicle Routing Problem [1, 2, 3, 11, 16, 21]. Most closely related to the
variants of this paper is the well-studied Minimum Latency Problem (MLP) of minimizing
the average arrival time of a Hamiltonian path that visits a given set of points. Blum et al. [8]
gave a 144-approximation algorithm for metric instances. Goemans and Kleinberg [15]
improved the factor to 10.78, Archer and Williamson [4] to 9.28, and Chaudhuri et al. [10]
to 3.59 with run-time Õ(n4). Arora and Karakostas [6] also presented a quasi-polynomial
time approximation scheme for the special case of traveling on a tree.

As part of our contribution, we observe that the MLP, the HTSP and the CTSP are distinct.
Furthermore, optimal solutions for the Cumulative TSP and the Minimum Latency
Problem are always within constant factors of each other, whereas this is generally not true
for the Harmonic TSP and the MLP.

Formally, we define the Harmonic and Cumulative TSP variants as follows.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Harmonic Traveling Salesman Problem (HTSP)

Given: A connected, weighted graph G = (V, E) with n vertices, a starting vertex v0 ∈ V ,
and a weight function c : E → R+

0 .
Wanted: A permutation π : {0, ..., n − 1} → V , with π(0) = v0, such that the total cost

C =
n−1∑

i=1

[
ℓ(π(i − 1), π(i))

i

]
+ ℓ(π(n − 1), π(0))

n

is minimized, with ℓ(vi, vj) denoting the weight of a shortest path from vi to vj .

Cumulative Traveling Salesman Problem (CTSP)

Given: A connected, weighted graph G = (V, E) with n vertices, a starting vertex v0 ∈ V ,
and a weight function c : E → R+

0 .
Wanted: A permutation π : {0, ..., n − 1} → V , with π(0) = v0, such that the total cost

C =
n−1∑

i=1
[i · ℓ(π(i − 1), π(i))] + n · ℓ(π(n − 1), π(0))

is minimized, with ℓ(vi, vj) denoting the weight of a shortest path from vi to vj .

In both variants, any solution corresponds to a sequence of edges obtained by concatenating
the shortest paths from π(i) to π(i + 1) for i = 0, ..., n − 1. When traversing an edge e

of weight c(e) as part of a shortest path from π(k) to π(k + 1), we say that the vertices
π(0), ..., π(k) have already been collected at this time. Traversing e increases the cost of the
current tour by an amount of 1/k · c(e) or k · c(e), respectively. We refer to 1/k or k as the
current speed factor, which depends on the number k of previously collected vertices.

Our Contributions We provide the following insights and results.
1. We discuss the relationship to the Minimum Latency Problem, as well as geometric

properties of optimal tours, and show that both CTSP and HTSP can be solved by a
simple dynamic programming approach on trees with a fixed number of leaves.

2. We establish a constant-factor approximation algorithm for the HTSP.

Throughout the remainder of this paper, we assume that the triangle inequality holds.

2 Basic Observations

Relationship to the Minimum Latency Problem Like the HTSP and the CTSP, the
MLP asks for a permutation π of the vertices minimizing a cost function, the latency
L =

∑n−1
i=1 (n − i) · ℓ(vi−1, vi); closing the tour by returning to v0 does not incur any further

latency. Thus, any solution to the MLP can also be considered as a solution to the HTSP or
the CTSP. We now evaluate the respective quality of the solutions.

The instance depicted in Figure 1 shows that no constant or logarithmic approximation
factor can be guaranteed for the HTSP by using an optimal MLP solution: For both problems,
only two options are reasonable: (a) first visiting all the vertices on the left, followed by those
on the right, or (b) vice versa. For the HTSP, the total cost of (a) is in Θ(ln k), while that
of (b) is in Θ(k), making (a) optimal for large k. However, (b) is optimal for the MLP for
any k: in particular, the total latency of (a) is 7k2

/2 + 9k/2 whereas that of (b) is 7k2
/2 + 3k/2.
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v0
k verticesk vertices

k 0 0 0...1 ... 1 1 1 2

Figure 1 An instance showing that the MLP provides no approximation for the HTSP.

An optimal MLP solution does not yield an optimal CTSP solution either, even though
the CTSP cost of a permutation and the MLP latency of the reversed permutation only
differ by the simple tour length: Consider the permutation (v0, ..., vn−1) and its inverse
as solutions for the CTSP and the MLP, respectively. The cost of the CTSP solution
is C =

∑n−1
i=1 (i · ℓ(vi−1, vi)) + n · ℓ(vn−1, v0). The total latency of the MLP solution is

L = (n − 1) · ℓ(v0, vn−1) +
∑n−1

j=1 (n − j − 1) · ℓ(vn−j , vn−j−1) =
∑n−1

i=1 (i − 1) · ℓ(vi−1, vi) +
(n − 1) · ℓ(vn−1, v0) = C −

(∑n−1
i=1 ℓ(vi−1, vi) + ℓ(vn−1, v0)

)
.

Figure 2 illustrates an instance for which the optimal CTSP and the inverted MLP
solutions are distinct: Out of the 24 possible permutations, v0, v4, v2, v3, v1 with C = 75 is
optimal for the CTSP; the optimal MLP solution is v0, v1, v2, v3, v4 with L = 47.

v0

v1 v2

v3v4

6

2

6

5

11

8 6

Figure 2 A simple instance showing that the MLP and the CTSP are not equivalent.

However, the inverse of an optimal solution for the MLP yields a 3-approximation for
the CTSP. Based on the MLP solution, from L = C −

(∑n−1
i=1 ℓ(vi−1, vi) + ℓ(vn−1, v0)

)
,

∑n−1
i=1 ℓ(vi−1, vi) ≤ L, L ≤ C, and ℓ(vn−1, v0) ≤ L, we may infer L ≤ C ≤ 3L. Assume

that (v0, ..., vn−1) is an optimal solution for the MLP with total latency Lopt. Inverting this
permutation yields a CTSP solution with cost C ≤ 3 · Lopt ≤ 3 · Copt.

Dynamic Program for Trees with Bounded Number of Leaves Paths as in Figure 1
and trees with a bounded number of leaves can be solved in polynomial time via dynamic
programming. For the HTSP, consider a path vl, ..., v0(= w0), ..., wr with l vertices on the
left and r on the right of the root v0 = w0. Define ℓm(u, u′) as the cost of moving from u

to u′ after m vertices have been visited (with no additional speed factor changes), with the
exact form of ℓm depending on the problem variant.

For 0 ≤ i ≤ l and 0 ≤ j ≤ r, let si,j be the minimum accumulated cost of a partial tour
that has visited the first i vertices on the left and the first j vertices on the right of the
root, ending at (and thus newly visiting) vi. Define si,j analogously for tours ending at wj .
To compute si,j , we consider the two possible predecessors vi−1 and wj of vi:

si,j =





0 if i = 0 and j = 0,

⊥, if i < 0 or j < 0,

min
{

si−1,j + ℓ i+j−1(v i−1, vi), si−1,j + ℓ i+j−1(w j , vi)
}

, otherwise.

EuroCG’25
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We can compute s i,j analogously, yielding O(n2) states in total, each requiring O(1) time to
compute. Having visited all l + r non-root vertices, we return to v0 = w0, so the total cost is

min
{

sl,r + ℓ l+r(vl, v0), s l,r + ℓ l+r(wr, w0)
}

.

A standard backtracking procedure (storing which minimum was chosen) recovers the tour
in linear time. Analogous arguments are applicable to the CTSP.

More generally, for a tree with k leaves, one extends the state to k dimensions (one per
leaf), each corresponding to a branch of the tree. The first i vertices collected by an optimal
HTSP solution will form an interval (including the root vertex) in each of the branches.
In the CTSP, after the first i vertices have been collected by an optimal solution, the vertices
not yet collected will form an interval in each branch. These properties can be used to
formulate dynamic programs, considering the cost of visiting an additional vertex in any of
the branches, and leading to a run-time of O

(
k · nk

)
.

Edge Crossings for Geometric Instances of the HTSP Due to the triangle inequality,
optimal solutions for the Euclidean TSP never contain any crossing edges, reducing
possible solutions to the set of simple polygonizations, whose worst-case cardinality is
between Ω(4.642n) [12] and O(54.543n) [19, 20], and thus considerably less than the full set
of (n − 1)! permutations. Simple connectedness is also a prerequisite for several geometric
approximation techniques, such as the PTASs by Mitchell [17] and Arora [5].

However, simplicity does not hold for geometric instances of the HTSP; in fact, there
may be Θ(n2) edge crossings in an optimal solution. We demonstrate this by constructing
a set of n points in a polar coordinate system as follows. We define the polar radius ri of
vi as ri := 2i2 , forcing the optimal solution to visit the vertices in the order v0, ..., vn−1, v0,
regardless of their respective polar angles. It is straightforward to show that visiting any
vertex vj with j > i before vi results in a suboptimal total cost, as the additional cost
incurred by collecting vi first is overcompensated by the resulting speed factor improvement
for the exponentially larger distance to vj . Now that the sequence of the vertices vi in the
optimal solution has been determined based on their polar radius, we construct their polar
angles φi, ensuring that the solution contains Θ(n2) crossings. For i = 1, 2, 3, 4, we set φi

to 3π
2 , 0, π

2 , and π. For i > 4, we alternatingly set φi to 0 + εi and π + εi with increasing
εi > 0, such that every edge vi−1vi, each chosen in the optimal solution, crosses every edge
v0v1, v1v2, ..., vi−3vi−2. An example of this construction is shown in Figure 3.

3 Constant-Factor Approximation Algorithm for the HTSP

We propose an approximation technique for the HTSP by applying existing approximation
algorithms for the k-TSP and the k-MST problem; this has some resemblance to the approach
used by Blum et al. [8] for the MLP, but yields a different analysis and approximation factor.

Let π = (v0, v1, ..., vn) be a permutation of V with optimal total weight, and let ℓi

abbreviate the weight ℓ(vi−1, vi) of a shortest path pi from vi−1 to vi. Consider an alternative
solution π′ formed by altering π in the following way: After reaching the 2j-th (new) vertex
of π, j = 0, 1, ..., log n, we retrace our path back to v0. We then repeat the process, following
the same sequence of vertices, until we reach the 2j+1-th vertex of π. The arrows in Figure 4
illustrate this construction.

▶ Lemma 3.1. The total cost of a solution π′ constructed from an optimal solution π as
described above is at most 6 times as high as the cost of π.
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v0

v1

v2v3
v4

v5

v0

v1

v2v3
v4

v5

v6

v0

v1

v2v3
v4

v5

v6

v7

Figure 3 Instance (not to scale) with Θ(n2) crossings in an optimal solution. The latest chosen
edge is highlighted in orange, and the dashed lines represent large distances, growing like 2i2 .

Proof. For each path pi with length ℓi, we compare the sum of the speed factors with which
pi is traversed in π′ to the speed factor of pi in an optimal solution.

Given the decreasing speed factor, we may bound the total cost Cπ′ of π′. Summing up
the speed factors of the pi (as illustrated in Figure 4) yields:

Cπ′ ≤ ℓ1

(
3 · 1+2 · 1

2+2 · 1
4 + 2 · 1

8 + ... + 2 · 1
2⌈log n⌉

)

+ ℓ2

(
1+ 2 · 1

2+2 · 1
4 + 2 · 1

8 + ... + 2 · 1
2⌈log n⌉

)

+ ℓ3

(
1 · 1

2+2 · 1
4 + 2 · 1

8 + ... + 2 · 1
2⌈log n⌉

)

+ ℓ4

(
1 · 1

2+2 · 1
4 + 2 · 1

8 + ... + 2 · 1
2⌈log n⌉

)

+ ℓ5

(
1 · 1

4 + 2 · 1
8 + ... + 2 · 1

2⌈log n⌉

)

+ ...

Rewriting the geometric series yields

EuroCG’25
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
...

1 · `1

...

...

...

< 1
2 · (`1 + `2)

< 1 · (`1 + `2)

< 1
2 · (`1 + `2 + `3 + `4)

< 1
4 · (`1 + `2 + `3 + `4)

< 1
4 · (`1 + `2 + `3 + `4 + `5 + `6 + `7 + `8)

< 1
8 · (`1 + `2 + `3 + `4 + `5 + `6 + `7 + `8)

< 1
8 · (`1 + ...+ `16)

< 1
16 · (`1 + ...+ `16)

`1 `2 `3 `4 `5 `6 `7 `8 `9 `10

< 1 · `1

Figure 4 Illustration for the cost analysis of π′.

Cπ′ ≤ ℓ1 + ℓ1 ·
(

2
⌈log n⌉∑

k=0

(
1
2

)k)
+ ℓ2 ·

(
−1 + 2

⌈log n⌉∑

k=0

(
1
2

)k)

+ ℓ3 ·
(

−1
2 + 2

⌈log n⌉∑

k=0

(
1
2

)k

− 2
0∑

k=0

(
1
2

)k)
+ ... +

+ ℓj ·
(

− 1
2⌈log j⌉−1 + 2

⌈log n⌉∑

k=0

(
1
2

)k

− 2
⌈log j⌉−2∑

k=0

(
1
2

)k)
+ ...

With the convergence of the geometric series, the coefficient of ℓj in this equation becomes

− 1
2⌈log j⌉−1 + 2

⌈log n⌉∑

k=0

(
1
2

)k

− 2
⌈log j⌉−2∑

k=0

(
1
2

)k

≤ −
(

1
2

)⌈log j⌉−1
+ 2 · 2 − 2 ·

(
2 −

(
1
2

)⌈log j⌉−2
)

≤ −2
(

1
2

)⌈log j⌉
+ 8

(
1
2

)⌈log j⌉
≤ 6

(
1
2

)⌈log j⌉
≤ 6 · 1

j
.

Thus, each path weight ℓj is weighted at most 6 times as much as in π (in which it is weighted
with 1/j). It is straightforward to establish this bound for the coefficients of ℓ1 and ℓ2. ◀

For each round k, we need to visit 2k−1 vertices and return to v0 while bounding the cost
with respect to the k-th round of π′. Let Ck be its total cost (accounting for speed factors)
and λk its simple weight (only totaling edge weights). We analyze two options for finding a
round-trip from v0 via k additional vertices.
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The first variant uses the related k-MST problem, asking for a tree of minimum total
length spanning exactly k vertices. In the rooted variant, we are given a vertex v0 that has
to be included in the spanning tree. Clearly, the (unrooted) k-MST problem can be reduced
to the rooted k-MST problem by going through all of the n possible roots. The problem has
been proven to be NP-complete [7, 18]. Garg [14] provides a polynomial-time 2-approximation
for this problem in metric graphs.

▶ Theorem 3.2. There is a 24α-approximation for the HTSP in metric graphs, with α

denoting an approximation factor for the rooted k-MST problem.

Proof. Clearly, the total weight λMST,k of a v0-rooted (2k−1 + 1)-MST is not higher than λk.
Each rooted (2k−1 + 1)-MST yields a tour by traveling every edge exactly twice. Consider
the solution resulting from traversing, one after the other, the v0-rooted (2k−1 + 1)-MST for
k = 1, 2, .... Then, when traversing the (2k−1 + 1)-MST, at least 2k−2 + 1 (1 in case of the
2-MST, i.e., k = 1) have been collected before. Hence, the cost CMST,k of traversing this
particular tree is CMST,k ≤ 1

2k−2+1 · 2λMST,k. In the k-th round of π′, the best speed factor
is at least 1

2k−1+1 . So, the cost Cπ′,k of the round is Cπ′,k ≥ 1
2k−1+1 λk ≥ 1

2k−1+1 λMST,k.
Thus, we obtain CMST,k ≤ 1

2k−2+1 · 2λMST,k ≤ 2 · 2k−1+1
2k−2+1 · Cπ′,k ≤ 4 · Cπ′,k. So, we can

4-approximate π′. With that, Lemma 3.1 yields the theorem. ◀

▶ Corollary 3.3. There is a 48-approximation for the HTSP in metric graphs.

The arguments for using a k-MST algorithm to approximate a round of π′ can be adapted
to using an algorithm for k-TSP, asking for a minimum cost tour visiting exactly k vertices;
clearly the problem is NP-hard [7]. Garg [13] gave a 3-approximation for the rooted variant
of the k-TSP in metric graphs.

By applying the same arguments as in the k-MST approach, but without the factor 2 for
traversing the spanning trees, we obtain the following.

▶ Theorem 3.4. There is a 12α-approximation for the HTSP in metric graphs, with α

denoting an approximation factor for the rooted k-TSP problem.

Proof. Because the v0-rooted (2k−1 + 1)-TSP solution is the shortest tour visiting 2k−1 + 1
vertices including v0, its total weight λTSP,k is not higher than λk. We concatenate the
v0-rooted (2k−1 + 1)-TSP tours, with cost CTSP,k each, for k = 1, 2, ....

By CTSP,k ≤ 1
2k−2+1 · λTSP,k and Cπ′,k ≥ 1

2k−1+1 · λk ≥ 1
2k−1+1 · λTSP,k, we obtain

CTSP,k ≤ 1
2k−2+1 · λTSP,k ≤ 2k−1+1

2k−2+1 · Cπ′,k ≤ 2 · Cπ′,k. By combining this with Lemma 3.1,
the theorem follows. ◀

▶ Corollary 3.5. There is a 36-approximation for the HTSP in metric graphs.

4 Conclusion

We introduced both the Harmonic Traveling Salesman Problem and the Cumulative
Traveling Salesman Problem, in which the cost of traveling an edge depends inversely
proportional (or proportional, respectively) on the number of previously visited vertices. We
provided a number of new results, including exact solutions in trees with a fixed number of
leaves, and approximation for general metric instances.

There are numerous open questions, including the existence of better approximation
algorithms, possibly making use of special geometric properties, as well as exact methods for
computing provably optimal solutions for benchmark instances of interesting size.
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Abstract
We consider a geometric optimization problem that generalizes both the Lawn Mowing Problem
of covering all of a given region with a unit-sized cutter and the Milling Problem of additionally
not leaving the covered area during coverage: For a given polygonal region P and a set of ob-
stacles O, the Lawn Mowing Problem with Obstacles asks for a shortest tour that has Euclidean
distance 1 to each point in P \ O and distance at least 1 to every point in O. We present constant
factor approximations. For the case where the obstacles are strictly contained in P , we present
a 21.5-approximation algorithm and a 6.5-approximation for large obstacles. If the obstacles are
additionally well-separated, i.e., at least distance 2 + π apart, we provide a polynomial time 4.96-
approximation algorithm.

1 Introduction

The Lawn Mowing Problem (LMP) is a well-studied problem in geometric optimization that
occurs in a wide range of appplications, such as sensing, surveillance and manufacturing: For
a given region P (the lawn) and a unit-radius disk D (the cutter), find a closest roundtrip of
shortest Euclidean length that moves the center of D within distance 1 from every point in P .
If in addition, the disk is not allowed to cover any point outside of P , we are dealing with the
Milling Problem (MP), a natural variant motivated by applications such as cutting a desired
shape from a block of material. As generalizations of the Traveling Salesman Problem (TSP),
both problems are NP-hard, with previous work [2] providing approximation algorithms.

In this paper, we consider a generalization of both problems: In the Lawn Mowing
Problem with Obstacles (LMPO), we seek a shortest tour of D that covers a given region P

without intersecting the interior of a designated set O of obstacles. We focus on the enclosed
LMPO (e-LMPO) with convex polygonal obstacles of positive area strictly contained in P

and separated by at least a distance of 2 from each other to ensure the existence of a feasible
tour. Figure 1 illustrates solutions to the LMP, MP, and the LMPO.

Figure 1 Three examples of a feasible tour for the LMP, MP, and LMPO with a circular cutter.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Our contribution We provide a (4π + 4
√

3 + 2) < 21.5-approximation algorithm for the
e-LMPO that can be improved to 6.46 for instances with large obstacles. For the de-LMPO
in which obstacles are well-separated, i.e., at least 2+π apart, we provide a (2

√
3α+1.5) < 5-

approximation algorithm, with α being the performance guarantee for a TSP approximation
algorithm.

Related work There is a wide range of practical applications for lawn mowing variants, in-
cluding manufacturing [3, 14, 15], cleaning [7], robotic coverage [8, 9, 13, 16], inspection [12],
CAD [11], farming [5, 10, 18] and pest control [6]. The LMP was first introduced by Arkin
et al. [1], who later gave the currently best approximation algorithm with a performance
guarantee of 2

√
3α < 3.5α [2], where α can be set to (1 + ε) for any ϵ > 0 based on the

methods of Arora [4] or Mitchell [17]. The algorithm computes a TSP tour on the dual
graph of a hexagonal tiling of the lawn; see Figure 2 (left) for an example.

▶ Theorem 1.1. (Theorem 3 in [2]) The lawn mowing problem has a 2
√

3α-approximation
algorithm.

Figure 2 (Left) A hexagonal tiling of the lawn. (Right) The offset boundary ∂O consists of
segments and circular arcs. Its total lentgth is given by |∂O| = |∂o| + 2π.

2 e-LMPO approximation

In this section, we present an approximation algorithm for the e-LMPO. For our analysis,
we make use of the following simple fact on the offset boundaries of the obstacles; the offset
boundary ∂O of an obstacle o ∈ O consists of all points at distance 1 of the boundary ∂o

of o. For convex obstacles, we have |∂O| = |∂o| + 2π, and we define ∂O :=
∑

o∈O ∂O; see
Figure 2 (right).

▶ Lemma 2.1. For the e-LMPO, any feasible tour contains the segments of ∂O.

Proof. For an obstacle o, its offset boundary ∂O consists of segments and circular arcs, see
Figure 2. For each inner point p of a segment of ∂o, there exists a unique point in ∂O at
distance 1. Hence, all segments of ∂O belong to any feasible tour, see Figure 2. ◀

We now adapt the 2
√

3α-approximation algorithm by Arkin et al. [2] to handle obstacles.

▶ Theorem 2.2. The e-LMPO admits an (4π + 4
√

3 + 2) < 21.5-approximation algorithm.

Proof. For an instance (P, O), the idea is to first cover the boundary of the obstacles and
then cover the rest of P using a tiling of the plane with regular hexagons of sidelength 1,
see Figure 3. Let G = (V, E) denote the plane graph that has a vertex for each hexagon
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Figure 3 Illustration for the proof of Theorem 2.2. (Left) Spanning trees of the components of
G[Vp − Vo] are depicted in blue, offset boundaries in pink and connectors in orange. (Right) The
partially traversed tour T is obtained by walking around H and the offset boundary once.

center and an edge (of length
√

3) between any two hexagons sharing a side. Let Vp ⊂ V and
Vo ⊂ V denote the sets of vertices whose hexagons intersect P \O and an obstacle boundary,
respectively. We compute a (minimum) spanning tree for each connected component of
G[Vp − Vo]. We enhance the union of all spanning trees and the offset boundaries to a(n)
(abstract) tree H by inserting so-called connector edges in a Kruskal-fashion; the length
of an edge between v ∈ Vp (or an ∂Oj) to some ∂Oi is the minimum Euclidean distance
between any point of ∂Oi and v (or any point of ∂Oj). Note that each connector has length
at most

√
3. Moreover, each obstacle of positive area intersects some hexagon in an interior

point. Such a hexagon is not intersected by any other obstacle as they have pairwise distance
2. Consequently, |O| ≤ |Vo|. Therefore, we insert at most |Vp| − |Vo| + |O| ≤ |Vp| connectors
and H has at most (2|Vp| − |Vo| − 1) edges of length

√
3.

By doubling all edges of H and inserting the offset boundaries as curves, we obtain a
Eulerian graph. It contains a tour T of length at most 2(2|Vp| − |Vo|)

√
3 + |∂O| that visits

all vertices Vp \ Vo and traverses all offset boundaries of the obstacles, see Figure 3.
By Lemma 2.1, the segments of the offset boundary of an obstacle are contained in any

feasible tour. The total length of all segments is |∂O| − |O|2π. Because any point p in the
interior of a segment belongs to at most two offset boundaries, we have 1

2 (|∂O| − |O|2π) ≤
opt; here we use the fact that the obstacles are convex. Together with the fact |O| ≤ |Vo|,
it follows that

|∂O| ≤ 2opt + |O|2π ≤ 2opt + |Vo|2π (1)

and hence

|T | ≤ (4|Vp| − 2|Vo|)
√

3 + |∂O| ≤ (4|Vp| + 2(π/
√

3 − 1)|Vo|)
√

3 + 2opt.

Note that by disregarding the obstacles, a lawn mowing tour of P \ O is a natural lower
bound for an optimal tour in our instance. The tour computed in Theorem 1.1 has length
at least

√
3|Vp| and is a 2

√
3α-approximation where α can be arbitrarily close to 1 [4, 17].

This yields an approximation ratio of

|T |
opt ≤

(
4
√

3 + 2(π/
√

3 − 1)
√

3√
3

· 2
√

3 + 2
)

= (4π + 4
√

3 + 2). ◀

A better approximation factor can be achieved by restricting the e-LMPO to well-
separated obstacles. This allows for better lower bounds.
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3 A better approximation for well-separated obstacles

In contrast to the LMP, the presence of obstacles imposes specific structures on the optimal
(and any feasible) tour, which can be utilized to establish lower bounds; cf. Lemma 2.1.

3.1 Traversing the boundary of obstacles
Lemma 2.1 motivates the use of the length |∂O| as a lower bound for the length of an optimal
tour. However, when the obstacles are close to each other, this bound may not hold; see
the example in Figure 4. The (black dotted) circular arcs are longer than the connecting
(orange) segments. When reducing the height ε of the triangular obstacles, the total length
of the circular arcs approaches limε→0 2π. For obstacles with distance δ < π the total length
of the orange segments approaches limε→0 2δ < 2π. In the case of e-LMPO, we can show
an even better bound; |∂O| is a lower bound to the length of an optimal tour if and only if
obstacles are well-separated, i.e., each pair of obstacles has distance ≥ 2 + π. We call this
variant de-LMPO.

Figure 4 When obstacles are close, then |∂O| may not be a lower bound for opt (in red).

▶ Theorem 3.1. For an instance of de-LMPO with a set of well-separated obstacles O, the
optimal solution has length at least |∂O|. Moreover, the distance bound is best possible, i.e.,
for each ε > 0, there exists an example where the obstacles have distance at least 2 + π − ε

and the length of the optimal solution is less than |∂O|.

Proof. As each obstacle o ∈ O is enclosed, its entire boundary ∂o must be visited. The
offset boundary ∂O consists of all points of the cutter center that visit ∂o. Because oi is
a convex polygon, ∂Oi consists of segments and circular arcs where each circular arc has
length at most π and the total length of the circular arcs sums to 2π; see Figure 2. By
Lemma 2.1, all segments of ∂O belong to any feasible tour, which hence has a total length
of |∂O| − 2π|O|. In particular, ∂o is a lower bound.

Let T ∗ be an optimal tour. We call a (maximal) subcurve γ of T ∗ a part visiting o ∈ O if
its endpoints belong to segments of ∂O and γ contains no point of another ∂O′. Furthermore,
a connector is a subcurve connecting a part visiting o with a part visiting o′. Note that each
connector has length at least π. When traversing T ∗ in some direction, we associate each
part visiting o with its proceeding connector. We aim to show that the parts visiting o and
their connectors contribute 2π besides the segments contained in ∂O.

If each obstacle o has at least two parts visiting it, then its associated connectors sum to
at least 2π. If an obstacle o is visited by just one part, then this part is shortest if it consists
of ∂O minus one arc and hence the contribution is at least π (as each arc has a length of at
most π). Together with the associated connector, this yields a total contribution of ≥ 2π.

Now, we show that the bound is best possible. Let ϵ > 0, let δ := 2 + π − ε, and consider
an n-gon Q with side length δ. Each corner of Q is incident to a triangular obstacle, and
the lawn P consists of the neighborhood of the obstacle as illustrated in Figure 5.
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(a) n = 3, δ = 2 (b) n = 5, δ = 2

(c) For very large n, δ = 2 (d) For very large n, δ = 4

Figure 5 In each example, the polygon P is shaded green, and the red tour T is feasible and has
length |T | < |∂O| if δ < 2 + π − ϵ for any ϵ > 0.

Except for the inner circular arcs, the optimal tour T ∗ traverses ∂O and the connecting
segments. The lawn is defined such that T ∗ covers it. When increasing n and decreasing
the width of the obstacles, the unused arc of each offset boundary converges to a length of
π, and the length of each connecting segment coverges to δ − 2 = π − ε. Consequently, in
the limit, the tour has length |∂O| − nε < |∂O|. Thus the bound is best-possible. ◀

3.2 Approximation algorithm for the de-LMPO
In the de-LMPO variant, all obstacles have distance at least 2 + π to all other obstacles
which allows us to use Theorem 3.1 to obtain a better approximation factor than that of
Theorem 2.2.

▶ Theorem 3.2. The de-LMPO has an (2
√

3α + 1.5) < 5-approximation algorithm.

Proof. For a well-seperated instance (P, O), the idea is to cover P using the approximation
algorithm from Arkin et al. [2] that uses a tiling of the plane with regular hexagons of
sidelength 1 and then introduce detours following ∂O to cover the lawn around the obstacles.
Let G = (V, E) be the plane graph that corresponds to the tiling that has a vertex for each
hexagon center and an edge (of length

√
3) between any two hexagons sharing a side. Let

Vp ⊂ V and Vo ⊂ V denote the set of vertices whose hexagon intersects P \ O and an
obstacle boundary, respectively. We compute an α-approximate TSP tour T ′ that visits all
hexagon centers in Vp, where α can be (1 + ε) (and thus arbitrarily close to 1) based on the
methods of [4, 17].

We proceed by removing parts of T ′ that lie in the offset region of the obstacles O
and obtain a set of disconnected paths {π1, π2, . . . }; see Figure 6a. Each path πi =

EuroCG’25
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(v1, v2, . . . , vni−1, vni
) contains points v2, . . . , vni−1 ∈ Vp \ Vo and intersects ∂O in its end-

points v1, vni
. Let ki ≥ 0 be the number of endpoints that lie on the offset boundary of an

obstacle oi. We call the union of all endpoints the connection points Vc with |Vc| =
∑

oi∈O ki.

(a) TSP approximation on Vp. (b) Eulerian graph H ′.

Figure 6 de-LMPO approximation with blue TSP tour, pink graph H and Eulerian graph H ′.

Consider the graph H with vertices (Vp \ Vo) ∪ Vc and edges according to the paths
π1, . . . , πk that is further enhanced by adding edges between the connection points on the
offset boundaries of the obstacles. We order the ki connection points on each offset boundary
∂Oi in counterclockwise order and connect them via edges that follow ∂Oi. By Theorem 3.1,
the total length of the newly added edges is |∂O| ≤ opt. Adding a second copy of every
second edge around each offset boundary ensures that every connection point has an even
degree, see Figure 6b. The last step can be done by inserting edge of total length at most
1
2 |∂O| ≤ 1

2 opt. The resulting Eulerian graph H ′ contains a feasible tour T that traverses
all offset boundaries ∂O and visits all vertices in Vp \ Vo as well as all connection points Vc.

By Theorems 1.1 and 3.1 the edges in H cost at most 2
√

3αopt and the additional edges
in H ′ cost at most 1.5opt. Thus, in the worst case, |T ′| ≤ (2

√
3α + 1.5)opt. ◀

4 Approximation for large obstacles

In some practical applications, the perimeter of the obstacles is large compared to the cutter.
This motivates e-LMPO[ρ] where each obstacle has perimeter at least ρ. For e-LMPO[ρ], we
can bound |∂O| by inserting ρ into Equation (1), which yields |∂O| ≤ 2

(
1 + π

ρ

)
opt. Using

this bound, we modify the analysis of the algorithm from Theorem 3.2 from 1.5|∂O| ≤ 1.5opt
to 1.5|∂O| ≤ 3

(
1 + π

ρ

)
opt.

▶ Corollary 4.1. The e-LMPO[ρ] has an
(

2
√

3α + 3
(

1 + π
ρ

))
-approximation algorithm.

For large ρ, the approximation factor converges to 2
√

3α + 3 < 6.5.

5 Conclusion

We introduced the e-LMPO and provided a < 21.5-approximation algorithm in Section 2.
For the de-LMPO with obstacles at least 2 + π apart, we achieved a < 5-approximation
algorithm. A new analysis of the first algorithm also leads to a 6.46-approximation for
large obstacles. Several open questions remain, such as algorithms for LMPO with arbitrary
obstacles (not necessarily convex or inside P ) or the existence of a PTAS. Better lower
bounds for any variant could lead to improved approximations and exact algorithms.
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Abstract
We consider the problem of reconfiguring a two-dimensional connected grid arrangement of passive
building blocks from a start configuration to a goal configuration, using a single active robot that
can move on the tiles, remove individual tiles from a given location and physically move them to a
new position by walking on the remaining configuration. The objective is to determine a reconfig-
uration schedule that minimizes the overall makespan, while ensuring that the tile configuration
remains connected. We provide the following: (1) We present a generalized version of the problem,
parameterized by weighted costs for moving with or without tiles, and show that this is NP-hard.
(2) We give a polynomial-time constant-factor approximation for the case of disjoint start and target
bounding boxes. Our algorithm yields optimal carry distance for 2-scaled instances.

Related Version arXiv:2502.09299

1 Introduction

Building and modifying structures consisting of many basic components is an important
objective, both in fundamental theory and in a spectrum of practical settings. Transforming
such structures with the help of autonomous robots is particularly relevant in very large [9]
and very small dimensions [25] that are hard to access for direct human manipulation, e.g.,
in extraterrestrial space [7] or in microscopic environments [5].

Progress in material sciences has spawned discrete, light-weight materials that allow
building large lattice structures of tiles that can be manipulated by simple robots for
reconfiguration [21], as shown in Figure 1: The robot can move on the tile arrangement,
remove individual tiles and physically relocate them to a new position by walking on the
remaining configuration, which needs to remain connected at all times.

∗ Work from the University of Houston was partially supported by NSF grant IIS-2130793. Work from
TU Braunschweig and HS Bochum was partially supported by the German Research Foundation (DFG),
project “Space Ants”, FE 407/22-1 and SCHE 1931/4-1. Work from the University of Kassel was
partially supported by DFG grant 522790373.
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Figure 1 A simple Bill-E robot that can move on a configuration of digital, light-weight material
and relocate individual voxels for overall reconfiguration. Photos adapted from [21].

How can we use such a robot to transform a given start configuration into a desired goal
arrangement, as quickly as possible? We provide the following results.

1. We present a generalized version of the problem, parameterized by weighted costs for
moving with or without tiles, and show that this is NP-hard.

2. We give a polynomial-time constant-factor approximation in case of disjoint start and
target bounding boxes. Our approach yields optimal carry distance for 2-scaled instances.

Due to limited space, details for statements marked by (⋆) can be found in the full version [6].
However, we provide a concise overview of the ideas.

Related work. Garcia et al. [15, 16] showed that computing optimal schedules for robotic
reconfiguration is NP-hard. They designed heuristic approaches exploiting rapidly exploring
random trees (RRT), and a time-dependent variant of the A∗ search algorithm.

A different context for reconfiguration arises from programmable matter [17, 18, 19]. Here,
even finite automata are capable of building bounding boxes from tiles around polyominoes,
as well as scale and rotate them while maintaining connectivity at all times [12, 24].

For arrangements that are composed of active, self-moving objects (or agents), a number
of related results have been obtained. For the sliding cube model [13, 14], Akitaya et al. [3]
show that universal sequential reconfiguration in two dimensions is possible, even while
maintaining connectivity of all intermediate configurations, but minimizing the makespan of a
schedule is NP-complete. Abel et al. [1] and Kostitsyna et al. [22] gave similar results in three
dimensions. Most recently, Akitaya et al. [4] give results for the parallel sliding square model.
In a related model, Fekete et al. [10, 11] show that parallel connected reconfiguration of a
swarm of (labeled) agents is NP-complete, even for deciding whether there is a schedule of
makespan 2, and present algorithms for computing constant stretch schedules, i.e., the ratio
between the makespan of a schedule and a natural lower bound (the maximum minimum
distance between an individual start and target position) is bounded by a constant.

Preliminaries. For the following, we refer to Figure 2. We are given a fixed set of n

indistinguishable square tile modules located at discrete, unique positions in the infinite
integer grid Z2. If this set induces a connected subgraph, where two positions are considered
connected if either their x- or y-coordinate differs by 1, we say that the tiles form a connected
configuration or polyomino. Let C(n) refer to the set of all polyominoes of n tiles.

Consider a robot that occupies a single tile at any given time and uses cardinal directions
to navigate; the unit vectors (1, 0) and (0, 1) correspond to east and north, respectively. In
discrete time steps, the robot can either move to an adjacent tile, pick up an adjacent tile (if
it is not carrying one), or place a tile at an adjacent unoccupied position (if it is carrying
a tile). A tile may only be picked up if the configuration remains connected without it.
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Figure 2 An example schedule for some Cs ⇒ Ct: The robot moves in cardinal directions, walking
on and modifying tiles. Tiles in Cs ∩ Ct are marked in gray, Cs \ Ct in cyan, and Ct \ Cs in orange.

Given two connected configurations Cs and Ct, a (reconfiguration) schedule S is a finite,
connectivity-preserving sequence of operations to be performed by the robot for Cs ⇒ Ct

exactly if it transforms Cs into Ct. Let dC(S) denote the carry distance, which is the sum of
geodesic distances between consecutive pickups and drop-offs in S. This represents the total
distance the robot travels while carrying a tile, with an additional unit of distance added
each time the robot either picks up or places a tile. Similarly, the empty distance dE(S) is
the geodesic distance walked without carrying a tile.

In this paper, we consider the Single Robot Reconfiguration problem: Given two
connected configurations Cs and Ct, and a rational weight factor λ ∈ [0, 1], our goal is
to compute a schedule S for Cs ⇒ Ct of minimum makespan |S| := λ · dE(S) + dC(S).
The associated decision problem is defined as expected with an upper bound on the length
of a schedule. We refer to the minimum weighted makespan for a given instance as OPT.

2 Computational complexity of the problem

We start by investigating the computational complexity of the decision variant of the
generalized reconfiguration problem. In particular, we prove that the problem is NP-hard for
any rational factor λ ∈ [0, 1]. This generalizes a result by Garcia et al. [16] for λ = 1.

▶ Theorem 2.1 (⋆). Single Robot Reconfiguration is NP-hard, parameterized by λ.

We distinguish between two cases. If λ ∈ (0, 1], we reduce from the Hamiltonian path
problem in induced subgraphs of the infinite grid graph [20]. The high-level idea is to expand
the grid graph of a given Hamiltonian path instance, placing small reconfiguration tasks at
each vertex of the graph.

For λ = 0, we reduce from Planar Monotone 3Sat [8]. We utilize and adapt the
reduction given by Akitaya et al. [3] for the sequential sliding squares problem. As λ = 0, the
robot is effectively allowed to “teleport” across the configuration. Therefore, we construct
variable and clause gadgets in a way that a unit square must be carried through one side of a
variable in order to perform a constant number of reconfiguration steps within the clauses.

3 Constant-factor approximation

We now turn to a special case of the optimization variant in which the configurations have
disjoint bounding boxes, i.e., there exists an axis-parallel bisector that separates them. Let this
bisector be horizontal such that the target configuration lies south. We present an algorithm
that computes schedules of makespan at most c · OPT for some fixed c ≥ 1.

3.1 2-scaled instances
We additionally impose the constraint that both the start and target configurations are
2-scaled, i.e., they consist of 2 × 2-squares of tiles aligned with a 2 × 2 integer grid, and show:

EuroCG’25
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▶ Theorem 3.1 (⋆). There exists a constant c such that for any pair of 2-scaled configurations
Cs, Ct ∈ C(n) with disjoint bounding boxes, we can efficiently compute a schedule for Cs ⇒ Ct

with weighted makespan at most c · OPT.

Our algorithm utilizes a type of intermediate configuration called histogram. A histogram
consists of a base strip of unit height and (multiple) orthogonal unit width columns attached
to its base. The direction of its columns determines the orientation of a histogram, e.g., the
histogram Hs in Figure 3 is north-facing. We proceed in three phases, see Figure 3.

Cs

Hs

Ct

HtH ′
s

Phase (I)

Phase (II) Phase (III)

Figure 3 An example for a start and target configuration Cs and Ct, the intermediate histograms
Hs and Ht sharing a baseline, and the horizontally translated H ′

s that shares a tile with Ht.

Phase (I). Transform the configuration Cs into a north-facing histogram Hs.
Phase (II). Translate Hs to overlap with the target bounding box and transform it into a

south-facing histogram Ht contained in the bounding box of Ct.
Phase (III). Finally, apply Phase (I) in reverse to obtain Ct from Ht.

Since Phases (I) and (III) are largely identical, we reduce to two subroutines: Transforming
a 2-scaled configuration into a 2-scaled histogram and converting two such histograms into
one another. We denote the optimal carry distance for any schedule Cs ⇒ Ct by σ(Cs, Ct).

Phase (I): Transform a configuration into a histogram. We proceed by describing a
subroutine that constructs a histogram from an arbitrary 2-scaled configuration by moving
tiles strictly in one cardinal direction. The resulting histogram faces the opposite direction.

▶ Lemma 3.2 (⋆). Let Cs be a 2-scaled polyomino and let Hs be a histogram that can be
created from Cs by moving tiles in only one cardinal direction. We can efficiently compute a
schedule of makespan O(n + σ(Cs, Hs)) for Cs ⇒ Hs with optimal carry distance.

Our strategy is simply as follows: We iteratively move sets of tiles by two units into
the respective target direction, until the histogram is constructed. We give a high-level
explanation of our approach by example of a north-facing histogram, as depicted in Figure 4.

Figure 4 Left: A walk across all tiles (red), the set H (gray) and two free components (green).
Right: Based on the walk, the free components are iteratively moved south to reach a histogram
shape. The free component that is going to be translated south next is highlighted in yellow.
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Let P be any intermediate 2-scaled polyomino obtained by moving tiles south while
realizing Cs ⇒ Hs. Let H be the set of maximal vertical strips of tiles that contain a base
tile in Hs, i.e., all tiles that do not need to be moved further south. We define the free
components of P as the set of connected components in P \ H. By definition, once a tile
becomes part of H, it is not moved again until the target histogram Hs is obtained.

The robot now simply walks across the entire polyomino, and whenever it enters a free
component, it performs a subroutine that translates the component south by two units by
repeatedly moving the northernmost tile in a column south. As the configuration is 2-scaled,
this guarantees connectivity; we refer to Figure 4 for an illustration.

▶ Lemma 3.3 (⋆). Given a free component F of a 2-scaled polyomino P , we can efficiently
compute a schedule of makespan O(|F |) to translate F in the target direction by two units.

By applying Lemma 3.3 on the whole polyomino P instead of just a free component, we
can translate P in any direction with asymptotically optimal makespan.

▶ Corollary 3.4. Any 2-scaled polyomino can be translated by k units in any cardinal direction
by a schedule of weighted makespan O(n · k).

Phase (II): Reconfigure a histogram into a histogram. By the assumption of the existence
of a horizontal bisector between the bounding boxes of Cs and Ct, the histogram Hs is
north-facing, whereas Ht is south-facing. The bounding box of Cs is vertically extended to
share exactly one y-coordinate with the bounding box of Ct, and this is where both histogram
bases are placed; see Figure 3. By Corollary 3.4, the tiles in Hs can be moved toward Ht in
asymptotically optimal makespan until the histogram bases share a tile.

▶ Lemma 3.5 (⋆). Let Hs be a north-facing and Ht a south-facing histogram that share at
least one base tile. We can efficiently compute a schedule of makespan O(n + σ(Hs, Ht)) for
Hs ⇒ Ht with optimal carry distance.

Figure 5 illustrates our approach: We iteratively move the northernmost westernmost tile
of Hs to the northernmost westernmost unoccupied position in Ht until Ht is constructed.
That position may not be reachable initially, in which case we first extend the histogram
base in western direction. This ordering ensures that tiles are moved on shortest paths to Ht.

Ht

Hs1

2

4

3

5

6

7

8

10

9

11

1

2 4

3 5 6 7

8

10

9

11

12

12

1

2

123

3
Hs

Ht

Figure 5 Left: Ordering of tile moves for Hs ⇒ Ht. Right: If the westernmost unoccupied
position in Ht is unreachable, the base may need to be extended first.

By Lemmas 3.2 and 3.5, tiles are moved with optimal carry distance in Phases (I), (II),
and (III). We can show that the combined paths remain shortest possible, yielding an optimal
schedule for λ = 0, i.e., if there is no movement cost when the robot is not carrying a tile.

▶ Corollary 3.6. For any pair of 2-scaled configurations Cs, Ct ∈ C(n) with disjoint bounding
boxes and λ = 0, we can efficiently compute an optimal schedule for Cs ⇒ Ct.
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3.2 General instances
The key advantage of 2-scaled instances is the absence of cut vertices, which simplifies the
maintenance of connectivity during the reconfiguration, which we now tackle separately.

Most parts of our previous method already work independent of the configuration scale.
The only required modification concerns the translation of free components, as the polyomino
may become disconnected while moving free components that are not 2-scaled. The key
technique here is that two auxiliary tiles can be used to preserve connectivity at cut vertices
that need to be moved; an example is illustrated in Figure 6. The use of auxiliary tiles to
preserve connectivity is also exploited in other models [2, 23]. For this, we can use any two
non-cut vertex tiles from the starting configuration, e.g., any leaf from a spanning tree of Cs.

Figure 6 Translating a corridor (in cyan) of width 4 south, using two auxiliary (hatched) tiles.

The high level idea of the adjustment is as follows: We decompose each free component F

into its elements; (1) maximal vertical strips of unit width and (2) maximal horizontal
corridors of unit height. As translating a single element may cause disconnection to adjacent
elements, we apply a recursive strategy that handles the elements blocking our translation,
i.e., that would yield a disconnected configuration, first. We then move the current element,
and finally process all other adjacent elements. Finally, we obtain the following.

▶ Theorem 3.7 (⋆). There exists a constant c such that for any pair of configurations
Cs, Ct ∈ C(n) with disjoint bounding boxes, we can efficiently compute a schedule for Cs ⇒ Ct

with weighted makespan at most c · OPT.

4 Conclusions and future work

Our paper presents progress on the reconfiguration problem for tile-based structures with a
single active robot. In particular, we showed that the problem is NP-hard for any weighted
cost function based on walking and carrying. Complementarily, we developed an constant-
factor approximation algorithm to reconfigure two polyominoes into one another in the case
that both configurations are contained in disjoint bounding boxes.

Several open questions remain: It seems plausible that our methods can be generalized
to be performed by many robots in parallel. Much more intricate is the question on whether
a fully distributed approach is possible. Finally, can we adapt our approach to instances in
which the bounding boxes of the configurations are intersecting, i.e., overlapping or nested?
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Abstract
We consider the task of drawing a graph on multiple horizontal layers, where each node is assigned
a layer, and each edge connects nodes of different layers. Known algorithms determine the orders
of nodes on each layer to minimize crossings between edges, increasing readability. Usually, this is
done by repeated one-sided crossing minimization for each layer. These algorithms allow edges that
connect nodes on non-neighboring layers, called “long” edges, to weave freely throughout layers of
the graph, creating many “gaps” in each layer. As shown in a recent work on hive plots – a similar
visualization drawing vertices on multiple layers – it can be beneficial to restrict the number of such
gaps. We extend existing heuristics and exact algorithms for one-sided crossing minimization in a
way that restricts the number of allowed gaps. The extended heuristics maintain approximation
ratios, and in an experimental evaluation we show that they perform well with respect to the number
of resulting crossings when compared with exact ILP formulations.

1 Introduction

Drawing graphs is a non-trivial task, and many visualization approaches exist. One such
approach, known as layered graph drawing, draws the nodes on horizontal layers L =
{L1, L2, . . . , Lℓ}, each edge connects nodes of different layers. Sugiyama et al. pioneered
the automation of such drawings [12] in the well-known Sugiyama-framework consisting of
multiple steps. The first step assigns nodes to the ℓ layers such that nodes connected by an
edge are on different layers (Figure 1a). In the next step so-called long edges connecting
nodes u and v of non-neighbouring layers Li and Lj , i < j − 1, are replaced by a path of
length j − i. The newly created dummy nodes are assigned to layers i + 1, i + 2, . . . , j − 1
(Figure 1b). Original nodes are called real nodes. After this process each edge connects nodes
of adjacent layers. In the next step edge crossings are reduced by permuting the nodes of
each layer. Usually, this is performed for neighboring layers, whereby the order of nodes
in one layer is fixed and the other layer is permuted. This is known as one-sided crossing
minimization (OSCM) [4]. OSCM is performed iteratively, “up” and “down” the layers
of the graph, i.e. for i = 1, 2, . . . , ℓ − 1 layer Li is fixed and layer Li+1 is permuted. Then,
for i = ℓ, ℓ − 1, . . . , 2, layer Li is fixed and layer Li−1 is permuted. Several such “up” and
“down” runs may be performed until reaching a termination condition. The last step replaces
dummy nodes by the original edges, and assigns x-coordinates to nodes.

We are concerned with the second step of the above framework. In existing algorithms,
dummy and real nodes are treated equally during the crossing minimization step. This can
lead to many gaps in the resulting visualization in each layer. Formally, a gap in layer Li is
a maximal consecutive sequence of dummy nodes (Figure 1c). We argue that this hinders
readability; thus, we extend algorithms for OSCM to only allow (1) side gaps, that is, one
gap on the left and one gap on the right of a layer, or (2) at most k gaps for each layer.
Gaps have already been motivated by Nöllenburg and Wallinger for hive plots [10], which
is essentially a circular variant of the Sugiyama framework with some additional features.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
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Figure 1 (a) A layered graph drawing. (b) Long edges are replaced by paths of dummy nodes,
shown as violet squares. (c) A drawing of two layers with the two node orderings π1 and π2 such
that π2 has 4 gaps (shown with dashed rectangles), two of which are side gaps.

Nöllenburg and Wallinger have introduced gaps at fixed positions of each layer, including the
variant of side gaps. We extend their work by introducing the variant of k gaps, where the
gaps can be placed arbitrarily. Furthermore, we consider the problem from a more theoretical
perspective, proving approximation ratios of our algorithms. For both variants, side gaps and
k gaps, we propose approximations and exact algorithms that are experimentally evaluated.

Related work. The well-known Sugiyama framework [12] for layered graph drawing serves as
the main motivation of this work. As mentioned, a key step of this framework is to minimize
crossings between two adjacent layers by permuting the order of nodes of one layer while
keeping the second layer fixed, which is a known NP-hard problem called one-sided crossing
minimization (OSCM) [4]. There exist heuristics with approximation guarantees [4, 12, 9],
FPT-algorithms parameterized by the number of crossings [3, 8], and exact algorithms based
on integer linear programs [6].

A restricted variant of OSCM has already been studied by Forster [5], where the relative
order of node pairs can be restricted; thus the computed order has to conform to a given
partial order. This is different to restrictions on gaps, which cannot be represented by partial
orders. Further, Nöllenburg and Wallinger [10] have considered gaps in a circular drawing
style of graphs, called hive plots. Our theoretical results are of independent interest to their
work, and we extend their setting of gaps at fixed positions to gaps at arbitrary positions.

Gaps can also be regarded as groups of edges that can be bundled together. Edge bundling
has already been applied in the context of layered graph drawing [11].

Structure. We state the formal problems for our OSCM-variants in Section 2. In Section 3
and Section 4 we give polynomial time approximation algorithms for the respective problems.
In the full version of this paper [1] we give complete proofs for statements marked with ⋆,
exact ILP formulations, and an experimental evaluation of selected algorithms. The source
code is available online [2].

2 Preliminaries

Permutations. We treat permutations π as lists of a set X. Two permutations π, π′ of
disjoint sets can be concatenated by π ⋆ π′. For x, y ∈ π we write x ≺π y if x comes before y

in π. For X ′ ⊆ X, π[X ′] is the induced permutation on X ′, i.e., for all x, y ∈ X ′, x ≺π y iff.
x ≺π[X′] y. Further, Π(X) denotes the set of all permutations of X, and π[i : j] is the set of
elements in π whose index is between i and j inclusively, using 1-indexing.
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One-sided crossing minimization. The problems discussed in this paper have as input a
bipartite graph G = (V1∪̇V2, E), E ⊂ V1 × V2. We set n := |V1 ∪ V2| and m := |E|. The
classic one-sided crossing minimization (OSCM) problem is given G and a permutation π1 of
V1. The task is to find a permutation π2 of V2 that minimizes the number of edge crossings
in a two-layer straight-line drawing of G such that nodes in V1 are ordered according to π1
on the bottom layer and nodes in V2 are ordered according to π2 on the top layer. Such
crossings can be determined combinatorially by π1 and π2; namely, edges e = (u1, u2) and
e = (v1, v2), ui, vi ∈ Vi, cross w.r.t. π1 and π2 if u1 ≺π1 v1 and u2 ≻π2 v2, or u1 ≻π1 v1 and
u2 ≺π2 v2. Let cr(G, π1, π2) be the number of crossings determined in such a way. Given G

and π1, OSCM asks for π2 minimizing cr(G, π1, π2). Throughout the paper we assume π1 as
fixed. By slightly abusing the notation of cr, we furthermore define for S, S′ ∈ V2, S ∩ S′ = ∅
the value cr(G, S, S′) as follows. Let π2 be any permutation such that all nodes in S come
before all nodes in S′. The value cr(G, S, S′) is the number of pairs e, e′ that cross w.r.t. π1
and π2 such that e ∩ S ̸= ∅ and e′ ∩ S′ ̸= ∅.

We extend the OSCM problem by restricting the amount of allowed gaps. For this, we
note that V2 consists of the disjoint union of V r

2 and V dm
2 , where V r

2 is the set of real nodes
and V dm

2 is the set of dummy nodes obtained by the preprocessing steps performed by the
Sugiyama framework [12]. It is important to note that dummy nodes have degree one, which
we exploit in all our algorithms. A gap in π2 is a maximal consecutive sequence of dummy
nodes, and gaps(π2) is the amount of gaps in π2. Furthermore, a side gap is a gap that either
contains the leftmost or rightmost dummy nodes in π2, π2 is a side-gap permutation if all of
its gaps are side-gaps. In our restricted OSCM variants, we either allow only side gaps in π2,
or at most k gaps overall. The formal problems are given below, starting with side gaps.

▶ Problem 1 (OSCM-SG). Given a bipartite graph G = (V1∪̇V2, E) and a permutation π1
of V1, find a permutation π2 ∈ Π(V2) such that π2 is a side-gap permutation and cr(G1, π1, π2)
is minimal.

▶ Problem 2 (OSCM-kG). Given a bipartite graph G = (V1∪̇V2, E), a permutation π1 of
V1, and k ∈ N, find a permutation π2 ∈ Π(V2) such that gaps(π2) ≤ k and cr(G1, π1, π2) is
minimal.

Clearly, both problems are NP-hard as they are equivalent to classic OSCM which is
NP-hard [4], if we have no dummy nodes.

3 Approximation Algorithms for OSCM-SG

We show that any approximation algorithm for the classic OSCM problem can be transformed
to an approximation algorithm for OSCM-SG with the same approximation ratio. First, we
show in the below lemma that there will never be edge crossings that involve two edges that
are both incident to a dummy node in an optimal solution to OSCM-SG and OSCM-kG.

▶ Lemma 3.1 (⋆). Given π1, π2 such that a pair of edges e, e′ ∈ V1 × V dm
2 crosses, there

is π′
2 such that (1) cr(G, π1, π′

2) < cr(G, π1, π2), (2) gaps(π′
2) ≤ gaps(π2), and (3) if π2 is a

side-gap permutation, so is π′
2.

Due to the above lemma, we fix in the rest of the paper πdm
2 as the order of V dm

2
determined by sorting V dm

2 ascending by their neighbor’s position in π1. Dummy nodes with
the same neighbor can be ordered arbitrarily. If for any solution π2, π2[V dm

2 ] ̸= πdm
2 , we can

transform π2 into π′
2 having properties (1)-(3) of Lemma 3.1 and with π′

2[V dm
2 ] = πdm

2 .
Now, given an algorithm A for OSCM with approximation ratio α, we get an approxima-

tion algorithm for OSCM-SG with the same approximation ratio, as given below.

EuroCG’25



12:4 Layered Graph Drawing with Few Gaps and Few Crossings

▶ Theorem 3.2 (⋆). Let A be an algorithm for OSCM with approximation ratio α and
runtime O(f(n, m)). Then there exists an algorithm B for OSCM-SG with approximation
ratio α and runtime O(f(n, m) + m).

The key idea for the algorithm B is that we can in polynomial time compute the optimal
placement of gap nodes and this placement is independent of the ordering of real nodes. If
A is for example the median heuristic [4], then Theorem 3.2 gives us a polynomial time
3-approximation algorithm for OSCM-SG. For an exact algorithm, we can substitute for A
any exact algorithm for OSCM (α = 1) such as ILP formulations [6].

4 Approximation Algorithms for OSCM-kG

Adapting heuristics for OSCM-kG is not as straight-forward. This is because once we have
determined π2[V r

2 ], we have to consider all possibilities of inserting dummy nodes without
having more than k gaps. Furthermore, now the optimal placement of dummy nodes is
dependent on π2[V r

2 ]. We will only be able to extend OSCM heuristics with the following
property.

▶ Definition 4.1. Let A be an algorithm for OSCM, (G, π1) be any instance of OSCM with
G = (V1∪̇V2, E). Consider a set of new nodes V ′, E′ ⊆ V1 × V ′, and G′ = (V1∪̇(V2 ∪ V ′), E ∪
E′). Now apply A to (G, π1) and to (G′, π1) to obtain solutions π2 and π′

2, respectively. The
algorithm A is dummy-independent if π2[V2] = π′

2[V2] always holds.

Examples of dummy-independent algorithms are for example the barycenter-, and median-
heuristic. By plugging V ′ = V dm

2 in the above definition, we see that the order of real nodes
computed by A is independent of the dummy nodes in G, when A is dummy-independent.

We can now extend any dummy-independent approximation algorithm A to OSCM-kG
maintaining the approximation ratio.

▶ Theorem 4.2. Let A be a dummy-independent algorithm for OSCM with approximation
ratio α and runtime O(f(n, m)). Then there exists an algorithm B for OSCM-kG with
approximation ratio α and runtime O(f(n, m) + |V r

2 | · |V dm
2 |2 · k).

Proof. The algorithm B first determines πr
2 := π2[V r

2 ] by applying A to the OSCM in-
stance (G[V1 ∪ V r

2 ], π1). We define a dynamic program to merge the two orders πr
2 and

πdm
2 . The dynamic programming table DP contains entries DP [g, i, j] which represents the

minimum number of crossings between edge pairs e, e′, e being incident to V r
2 and e′ being

incident to V dm
2 , using at most g gaps when merging the first i nodes in πr

2 and the first j

nodes in πdm
2 ; further, g goes from 0 to k, i goes from 0 to |V r

2 |, and j goes from 0 to |V dm
2 |.

The base cases are
DP [0, i, 0] = 0 for 0 ≤ i ≤ |V r

2 |,
DP [0, i, j] = ∞ for 0 ≤ i ≤ |V r

2 |, 1 ≤ j ≤ |V dm
2 |,

and the transitions for g > 0 can be computed as

DP [g, i, j] = min
0≤j′≤j

[DP [g − 1, i, j′]

+ cr(G, πr
2[1 : i], πdm

2 [j′ + 1 : j]) + cr(G, πdm
2 [j′ + 1 : j], πr

2[i + 1 : |V r
2 |])].

The optimal number of crossings can be read from DP [k, |V r
2 |, |V dm

2 |], and the corresponding
permutation can be reconstructed from the entries in DP . The runtime can be achieved by
precomputing cr(G, πr

2[1 : i], πdm
2 [j′ + 1 : j]) and cr(G, πdm

2 [j′ + 1 : j], πr
2[i + 1 : |V r

2 |]).
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For correctness, consider an optimal solution πopt
2 with c crossings. By Lemma 3.1 no

edge pairs incident to V dm
2 cross. Now contract each set of dummy nodes that appear in

a gap together, obtaining the graph G′. Apply A to (G′, π1), obtaining a solution π′
2 with

at most α · c crossings. Now revert the contraction and replace each contracted node by its
original sequence of dummy nodes in π′

2. The newly obtained permutation is in the solution
space of the dynamic program because πr

2 = π′
2[V r

2 ] (A is dummy-independent), hence we
have an α-approximation. ◀

5 Summary of the Experimental Evaluation and Conclusion

In an experimental evaluation (see full version [1]) we compared exact ILP formulations,
and heuristics for OSCM-SG and OSCM-kG. In particular, we applied the algorithms of
Theorem 3.2 and Theorem 4.2 to the barycenter and median heuristics. Our evaluation
showed that both heuristics perform well when compared with the exact algorithms, with
optimality gaps below five percent. This is in line with the performance of the original median
and barycenter heuristic when compared with exact algorithms for OSCM [7]. Further, the
exact ILP formulations could solve all instances with up to 70 nodes per layer in under ten
seconds. We also investigated the impact of the number of gaps k on the number of crossings,
showing diminishing returns for increasing k. Namely, the number of crossings decreases
significantly from k = 1 to k = 2, but only slightly for larger k.

Further research is required to properly integrate our algorithms into the Sugiyama
framework. In particular, adjustments might be required to guarantee few edge crossings
over all layers, not just between a pair of layers. One might also investigate larger instances,
i.e., with more vertices or higher edge densities. Additionally, case studies could show how
few gaps can reduce the amount of clutter in the layered graph drawing.
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Abstract
We show the following problems are in P:

1. The contiguous art gallery problem – a variation of the art gallery problem where each guard
can protect a contiguous interval along the boundary of a simple polygon. This was posed at
the open problem session at CCCG ’24 by Thomas C. Shermer.

2. The polygon separation problem for line segments – For two sets of line segments S1 and S2,
find a minimum-vertex convex polygon P that completely contains S1 and does not contain or
cross any segment of S2.

3. Minimizing the number of half-plane cuts to carve a 3D polytope.

To accomplish this, we study the analytic arc cover problem – an interval set cover problem over the
unit circle with infinitely many implicitly-defined arcs, given by a function.

Related Version Full Version: [18]

1 Introduction

Many classic problems in computational geometry are minimum covering problems. One
class of examples are art gallery problems [15, 21, 24, 16] which asks for the minimum number
star-shaped polygons that cover a given polygon. Each star-shaped polygon describes a
region that can be seen by a single guard. Some variants of art gallery allow guards to be
placed anywhere, while others only allow guards to be placed at a finite set of points (such
as vertices of a polygon). Many variants of the former type are ∃R-complete, while variants
of the latter type are almost universally in NP, and are often in P. This distinction is not
surprising: When there are infinitely many choices for the covering sets, it is often not clear
if the problem is even in NP.

In this work, we study three problems with no immediate proofs that they are in any
complexity class smaller than ∃R. The first problem is a variant of the art gallery problem
with a restriction that each guard can only be responsible for a contiguous region along
the boundary. The other two problems relate to separation of geometric objects. We will
show that each of these problems can be reduced to a problem we call the analytic arc cover
problem, which is a set cover problem permitting infinitely many possible sets with some
additional structure. We establish machinery for dealing with some “well-behaved” infinite
classes of possible covering sets, allowing us to show all three of our problems are in P.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 Some examples of ContiguousArtGallery, with optimal solutions. On the right, it
is necessary to place a guard at a non-vertex point.

1.1 Art Gallery Problem
Given a simple polygon P and points x, y ∈ P , a guard standing at x sees the point y if
the line segment xy is contained in P . A set S of points is said to guard the polygon P if
every point of P can be seen by some guard. Minimizing the cardinality of S is known as
the ArtGallery problem1, and is a very well-studied problem in computational geometry
(see one of the numerous surveys dedicated to the problem [15, 21, 24, 16]). This problem
was first formulated by Victor Klee in 1976 (see O’Rourke [15]). Many variations have been
studied since then, such as when the guards are restricted to the boundary or the vertices
of the polygon. There are other variants like the BoundaryArtGallery problem where
guards are allowed to be anywhere but only the boundary of P needs to be guarded.

All of the aforementioned variants were shown to be NP-hard [3, 13, 12]. It can be seen
that variants that allow for guards in the interior may not even be in NP, since it was shown
that an optimal solution to ArtGallery may need guards at irrational points [1]. Further
evidence towards this was recently given by Abrahamsen, Adamaszek, and Miltzow [2],
who showed that Victor Klee’s original formulation is ∃R-complete. Subsequent work by
Stade [22] shows that many of the variants of art gallery are also ∃R-complete.

One salient feature of many of the hardness proofs for ArtGallery and its variations is
that a single guard may be responsible for disjoint regions of the polygon, even with respect to
guarding just the boundary of P . In contrast, we can consider the ContiguousArtGallery
problem – a variation of the BoundaryArtGallery problem where each guard can only be
responsible for a contiguous section of the boundary (see fig. 1). This problem was described
by Thomas C. Shermer at the CCCG ’24 open problem session, where he asked the following
question:

Is the guarding of disjoint regions necessary for the hardness proofs of ArtGallery and
variations like BoundaryArtGallery?

What is the complexity of ContiguousArtGallery? Is it even in NP?

1.2 Minimum Polygon Separation
Given a convex polygon P contained inside another convex polygon Q, the minimum polygon
separation problem asks for the polygon S with the minimum number of vertices such that
S contains P and is contained within Q. We denote this problem as PolygonSeparation.
PolygonSeparation was first studied by Aggarwal, Booth, O’Rourke, Suri, and Yap [4],

1 Throughout this paper, we will abuse notation and refer to problems like ArtGallery as both the
optimization variant to minimize the set of guards, as well as the decision variant, where we wish to
decide if k guards are sufficient.
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Figure 2 An instance of SegmentSeparation, and two potential solutions (one sub-optimal).

who also showed that any minimal S is convex. This problem is related to the problem of
finding a convex polygon with the minimum number of sides that separates two sets of points
S1 with S2 that was studied by Edelsbrunner and Preparata [10]. We denote this problem
as PointSeparation.

One feature of the algorithm of [4] is that they work in the real RAM model of com-
putation [20], where it is assumed that elementary operations (like +, −, ×, and ÷) can
be performed in O(1) time on real numbers. However, the algorithm they present involves
iteratively composing many functions together, and ultimately solving an equation. While [4]
claim that their algorithm runs in O(n log n) time when the input consists of n points, it
is unclear what the runtime of the algorithm is in other models of computation (e.g. in a
Turing Machine model where inputs are points with rational coordinates). This is because
their algorithm may compose O(n) different functions, leading to a function with very high
bit complexity, while [4] assumes an equation with such a function can be solved in O(1)
time.

One can also consider another similar problem: The problem of separating two collections
of line segments by a convex polygon with the minimum number of sides. Feasibility for this
problem is easy — one only needs to verify that the convex hull of the “inner” line segments
does not contain any part of any of the “outer” line segments in its interior. We call this
problem SegmentSeparation. It can be seen that SegmentSeparation generalizes the
problem of PolygonSeparation when we wish to separate the edges of an outer polygon
with the inner polygon. Furthermore, the PointSeparation problem is a special case of
SegmentSeparation when all segments are of zero length. To the best of our knowledge,
SegmentSeparation has not been studied before, and the algorithms of [4] and [10] do not
immediately work for this problem.

Moreover, while the problems PolygonSeparation and PointSeparation were im-
plicitly shown to be in P using the algorithms of [4] and [10] respectively (with a larger time
complexity in the Turing Machine model of computation rather than the real RAM models
used in those papers), the same techniques do not immediately apply to SegmentSepara-
tion, so it is not immediately clear that SegmentSeparation is even in NP.

1.3 Polytope Carving
Related to PolygonSeparation is the problem of carving one shape out of another. One
could also carve a shape out of an arbitrary containing shape, which is equivalent to asking
for a set of cuts separating the shape from the ambient space. Two-dimensional carving was
first studied by Overmars and Welzl [17], where they aimed to find the cheapest sequence

EuroCG’25
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Figure 3 A polytope that can be carved by 10 half-plane cuts.

of line cuts to carve out a convex polygon out of a piece of flat material. It has also been
studied in the context of rays cuts [7, 23] and line segments cuts [8, 9].

Three dimensional versions of carving have also been studied in the form of plane cuts [5],
line cuts [11], half-plane cuts [19], and “sweeping” ray cuts [19]. The prior work of Robson,
Spalding-Jamieson and Zheng [19] on half-plane cuts classified the polytopes that could be
carved, but they left open the question of computing the minimum number of half-plane cuts
needed to carve out a specified 3D polytope from the ambient space of R3.

1.4 Our Contribution
We answer the question posed by Thomas C. Shermer with the following theorem, showing that
adding contiguity constraints for BoundaryArtGallery makes the problem significantly
simpler. We also show that SegmentSeparation is in P.

▶ Theorem 1.1. ContiguousArtGallery is in P.

▶ Theorem 1.2. SegmentSeparation is in P.

We show that a question about minimizing the number of half-plane cuts to carve a 3D
polytope, reduces to multiple instances of SegmentSeparation. By the theorem above, we
can conclude that finding the minimum cuts to carve a polytope is also in P.

▶ Theorem 1.3. Minimizing the number of half-plane cuts to carve a 3D polytope is in P.

To prove our results, we reduce both SegmentSeparation and ContiguousArt-
Gallery to a problem we call AnalyticArcCover. This problem is a version of the
interval cover problem on a circle with infinite number of intervals. Each interval is described
by the counterclockwise segment between two points a and b on the circle S1. We denote
this as a half-open interval [a, b), containing a, and not containing b, and call this an arc.
This infinite set of intervals is given implicitly as a function, as can be seen in the following
definition.

▶ Definition 1.4. Let g : S1 → S1 be a function that maps points on the unit circle S1 to
other points on the unit circle S1. AnalyticArcCover asks: given g, find the minimum
set X ⊂ S1 such that the set of counter-clockwise arcs {[x, g(x)) : x ∈ X} covers S1.

We show that ContiguousArtGallery reduces to AnalyticArcCover with piecewise
linear-rational functions over a unit-interval representation, and SegmentSeparation
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reduces to AnalyticArcCover with a two-dimensional analogue. We crucially use the fact
that a compositions of two linear rational functions yields another linear rational function,
and our two-dimensional analogue also has an analogous property.

1.5 Concurrent work
Two other groups also concurrently investigated the ContiguousArtGallery problem.
Surprisingly, both groups devised different high-level approaches to the problem.

Merrild, Rysgaard, Schou, and Svenning [14] give a polynomial time algorithm for the
ContiguousArtGallery problem in the real RAM model of computation, but do not
bound the bit complexity of the intermediate numbers produced by the algorithm. They
posed the question of membership in Pas an open problem, which our results address. They
also posed the question of an algorithm for polygons with holes, to which our methods extend
(see the end of Section 3 in the full version [18]).

Biniaz, Maheshwari, Mitchell, Odak, Polishchuk, and Shermer [6] also provide a polynomial
time algorithm for the ContiguousArtGallery problem. In particular, like us, they were
able to provide one running on a Turing machine, implying membership in P. Their approach
is more combinatorial than ours, although some small aspects of their proof bear similarities
to ours.

In our work, we give a framework for solving a larger class of problems in polynomial
time on a Turing machine (i.e., membership in P), including the ContiguousArtGallery
problem.

1.6 Organization
We give an outline of our approach in the next section, and we include a full version of this
paper in the appendix.

2 Outline of approach

Analytic Arc Cover

We study the AnalyticArcCover problem, which is a variation of the interval cover
problem on a circle S1. The analytic part of the problem comes from how there are an
infinite number of intervals that are defined implicitly by a function. Formally, we have a
function f : S1 → S1, such that we can use any interval of the form [x, f(x)]. We show that
this problem is solvable in polynomial time when f is a piecewise linear rational function with
rational coefficients and first-order radical endpoints (that is: of the form a + b

√
c for integers

a, b, c). Importantly, such functions are closed under (finite) max and min operations.

Contiguous Art Gallery

We reduce the contiguous art gallery problem to the analytic arc cover problem for a function
f which is piecewise linear rational. For intuition, consider a fixed point x on the boundary
of a polygonal art gallery P , and consider a guard that can see x and can see as much of the
boundary of P as possible in the counterclockwise direction. We show that the behavior of
this point as x varies can be described by a piecewise rational function.

To show this, we start by proving it for an extremely simplified form of the problem.
Then, we take progressively less simplified forms of the problem, and show that the function

EuroCG’25
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for each can be expressed as the minimum or maximum of a polynomial number of cases of
the preceding form.

Polygon Separation and Polytope Carving

Similarly, we can reduce the problem of SegmentSeparation where we wish to separate
two sets of line segments to an instance of AnalyticArcCover with a piecewise rational
function. The function is in some sense less complex than the one for the contiguous art
gallery problem, but we make use of a special case of piecewise linear rational functions over
two variables instead of one.

We also show that the problem of determining the minimum number of cuts to cut out a
3D polytope reduces to a polynomial number of instances of SegmentSeparation.
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Abstract
Shape formation is one of the most thoroughly studied problems in most algorithmic models of
programmable matter. However, few existing shape formation algorithms utilize similarities between
an initial configuration and a desired target shape. In the hybrid model, an active agent with the
computational capabilities of a deterministic finite automaton can form shapes by lifting and placing
passive tiles on the triangular lattice. We study the shape reconfiguration problem where the agent
needs to move all tiles in an input shape to so-called target nodes, which are distinguishable from
other nodes. We present a worst-case optimal O(mn) algorithm for simply connected target shapes
where m is the initial number of unoccupied target nodes and n is the size of the target shape.

Related Version arXiv:2501.08663

1 Introduction

In the field of programmable matter, small (possibly nano-scale) particles are envisioned to
solve tasks like self-assembling into desired shapes, making coordinated movements, or coating
small objects [20]. The particles may be controlled by external stimuli or act on their own
with limited computational capabilities. In the future, programmable matter could become
relevant for targeted medical treatments [1] or in the form of self-assembling structures in
environments that are not easily accessible by humans such as in space [13]. There are
multiple computational models of programmable matter that differ in the types of particles,
their capabilities, and the underlying graph populated by the particles. The particles in each
model generally fall into one of the following two categories: active agents that can perform
(typically limited) computations and move on the underlying graph by themselves [4, 5, 22],
and passive entities that do not move or act without external influence [19, 21]. The hybrid
model combines both aspects [8, 9, 14, 18]. Here, passive hexagonal tiles and an active agent
with the computational power of a finite automaton populate the triangular lattice.

A central research problem in programmable matter is shape formation [3, 6, 15, 16, 17].
In the hybrid model, the agent needs to rearrange tiles from an arbitrary initial configuration
into a predefined shape such as a line or a parallelogram [9, 10, 11]. Once a shape is formed,
it is typically assumed that the agent is finished and the shape will remain intact. Thus,
existing shape formation algorithms are not designed to repair small shape defects such as
individually misplaced tiles. For example, if an agent executes the triangle construction
algorithm presented by Gmyr et al. [9] on a set of tiles that already closely resembles a
triangle, it deconstructs the entire structure and rebuilds the shape from scratch.

∗ This work was supported by the DFG projects SCHE 1931/4-1 and SCHE 1592/10-1.
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Our contributions. In this extended abstract, we present an algorithm that can take
advantage of similarities between an initial and a target shape. A problem instance for the
shape reconfiguration problem is given by a set of target nodes, which are distinguishable from
non-target nodes by the agent. The algorithm solves the problem for simply connected target
shapes with asymptotically worst-case optimal runtime, yielding a speedup over existing
shape formation algorithms on instances where the initial and target shape largely overlap.
Due to space constraints, many details are deferred to the full version of this paper, where we
additionally present an algorithm for a large class of target shapes that may contain holes [7].

2 Preliminaries

In the hybrid model, the triangular lattice G△ = (V△, E△) is occupied by a single active
agent r with limited computational capabilities and a finite number of passive tiles. We
call a node v ∈ V tiled if it is occupied by a tile and denote the set of tiled nodes with T .
At any time, a node may be occupied by at most one tile and each tile may only occupy
a single node. Similarly, the agent may only occupy a single (tiled or untiled) node at a
time. It cannot distinguish any two tiles from one another and it can carry up to one tile.
A tuple C = (T, p), where p ∈ V△ is the node occupied by r, is called a configuration. A
configuration C = (T, p) has size |T |. All initial and target configurations in this work have
size n. We call a configuration C connected if G△|T is connected or G△|T ∪{p} is connected
and r is carrying a tile. Similarly, C is simply connected if G△|T is simply connected, i.e.,
G△|V△\T is connected, or G△|T ∪{p} is simply connected and r is carrying a tile.

n
ne

se
s

sw

nw

Figure 1 An agent on tiles and the compass directions on the triangular lattice.

The agent has an internal compass to differentiate between the six edge directions on the
graph G△ (n, ne, se, s, sw, nw). For ease of presentation, we assume that this compass
aligns with the global directions on the triangular lattice shown in Figure 1. We denote the
set of compass directions by D := {n, ne, se, s, sw, nw} and define D to be isomorphic to the
ring of integers modulo six Z/6Z with n ≡ 0, ne ≡ 1, and so on, up to nw ≡ 5. With a slight
abuse of notation, this allows us to perform simple additions on directions, e.g., ne + 2 = s.
Intuitively, by adding ℓ ∈ Z to a direction d ∈ D, you obtain the next direction from d after ℓ

clockwise turns of 60 degrees around the compass shown in Figure 1. For a node v ∈ V△ and
a direction d ∈ D, the node adjacent to v in direction d on G△ is called a neighbor of v (in
direction d). We denote the set of all neighbors of v by N(v).

The agent acts in look-compute-move cycles. Its “vision” in the look phase is limited to
neighboring nodes, i.e., it can only see tiles within a hop-distance of ≤ 1 to p. In the compute
phase, r uses the gathered information to determine its next internal state and its action
on the graph. The agent has the computational capabilities of a finite-state automaton.
Consequently, it has only constant memory and cannot store a map of the configuration.
Finally, r enters the move phase, where it may perform any of the following actions: (i) Move
to an adjacent (tiled or untiled) node, (ii) lift the tile at p if r is not carrying a tile and
connectivity is maintained, and (iii) place a tile at p if r is carrying a tile and p is untiled.
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Problem statement. Consider two connected sets of nodes I, T ⊆ V△ with |I| = |T | = n

and a non-empty and connected intersection I ∩ T , and an initial position p0 ∈ I for
the agent r. We refer to I and T as the input and target shape, respectively, with the
corresponding nodes being referred to as input and target nodes. An algorithm solves the
Shape Reconfiguration Problem, if its execution results in a sequence of connected
configurations C0 = (T 0, p0), . . . , Ct = (T t, pt) for some pt ∈ V△ with T 0 = I and T t = T
such that each configuration Cℓ results from configuration Cℓ−1 by applying the agent’s
legal move actions (i)–(iii) to pℓ−1 for 0 < ℓ ≤ t. In the remainder of this extended abstract,
we drop the superscripts for ease of presentation. A node v ∈ T \ T is called a supply node
and a node w ∈ T \ T is called a demand node. Throughout this work, the initial number
of supply nodes is denoted by m := |I \ T | = |T \ I|. Finally, tiles on target nodes are
called target tiles and tiles on supply nodes are called supply tiles. Thus, to solve the Shape
Reconfiguration Problem, an agent needs to move all m supply tiles to the m demand
nodes, see Figure 2.

(a) (b)

Figure 2 An example instance of the Shape Reconfiguration Problem. The light blue line
encircles the target shape T . The blue tiles are target tiles. The yellow tiles are supply tiles and
need to be moved to demand nodes. (a) shows the tiles in the input shape I and (b) shows the final
shape after all supply tiles have been moved to the target shape T .

When r is in the look phase of a look-compute-move cycle, it can determine which of
the nodes within its visibility range are target nodes. This assumption does not make our
agent more powerful than an agent r′ that can only query T for its own position p′ as r′

could simply visit all six adjacent nodes within a constant number of steps to get the same
information. Some adjacent nodes may be unreachable without violating the connectivity
constraint, but our agent ignores these nodes in the algorithm presented here.

Boundaries and holes. Let S ⊆ V△ be a finite subset of nodes and let M be the unique
infinite node set among the node sets of all connected components of G△|V△\S . All finite
connected components of G△|V△\S are called holes of S. If S is simply connected, it has no
holes. The set B(S) :=

⋃
v∈M S ∩ N(v) is called the boundary and M is called the outside

of S. For any node w ∈ S, let Sw be the node set of the connected component of G△|S
containing w and let Mw be the unique infinite node set among the node sets of all connected
components of G△|V△\Sw

. Then Bw(S) :=
⋃

v∈Mw
S ∩ N(v) is called the w-boundary of S.

We refer to B(T ) as the target boundary, to B(T ∩ T ) as the target tile boundary, and to
Bw(T \ T ) as the boundary of a supply component for a supply node w ∈ T \ T , see Figure 3.
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r

(a)

r

(b)

r

(c)

Figure 3 Boundaries (a) B(T ), (b) B(T ∩ T ), and (c) Bp(T \ T ). The agent r is on node p.

3 Simply Connected Shape Reconfiguration

We present a worst-case optimal algorithm to solve the Shape Reconfiguration Problem
for simply connected target shapes. Note that the input shape may contain holes. The
algorithm we present here is non-terminating, i.e., the agent does not stop its execution even
after the target shape is already built. In the full version of this paper, we also present a
terminating algorithm that works on a larger class of target shapes [7].

The algorithm is subdivided into four phases which are executed one after another. The
last three phases are repeated until the target shape is formed.

FindBoundary: The agent r traverses T until it enters the target tile boundary B(T ∩T ).
FindSupply: Since the target shape T is simply connected, every connected component
of supply tiles is adjacent to this boundary. Thus, to reach a supply tile, r merely needs
to traverse B(T ∩ T ) by the well-known left-hand rule (LHR), see Figure 4a.
CompactSupply: Once r reaches a supply tile, it traverses the corresponding supply
component until it finds a safely removable tile, i.e., a that can be lifted without breaking
connectivity. This requires the agent to first reconfigure the component itself since a
finite automaton cannot always find safely removable tiles on tile shapes with holes
whereas finding tiles that can be moved to adjacent nodes without violating connectivity
is possible [9]. The agent strategically compacts the supply component by moving supply
tiles away from the outside of the component’s boundary Bp(T \ T ) whenever possible.
This way, it “creates” safely removable tiles. Once r reaches such a tile, it lifts it and
returns to B(T ∩ T ). An example execution of this phase is given in Figure 5.
FindDemand: Traversing the boundary of the target shape is not sufficient as some
components of demand nodes may be fully enclosed by tiled target nodes. To find them,
the agent traverses all columns of the target shape, which are maximal connected lines
of target nodes. Since T is simply connected, all columns have nodes on the target
boundary B(T ). Thus, the agent can simply traverse B(T ) by the LHR and traverse a
column after each step until it eventually finds a demand node where it can place its
carried tile, see Figure 4b.

In phase FindBoundary, we make use of an existing shape formation algorithm where
all tiled nodes are eventually visited. The agent stops as soon as it finds a tiled target node
with a non-target neighbor to initialize a pointer to the outside of B(T ∩ T ). In the full
version [7], we show that r reaches the target tile boundary within O(mn) time steps by
executing the block formation algorithm presented by Gmyr et al. [9].

▶ Lemma 3.1. An agent can find the target tile boundary B(T ∩ T ) in O(mn) time steps on
instances of the Shape Reconfiguration Problem with simply connected target shapes.
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(a) (b)

Figure 4 The traversal paths of an agent in phases (a) FindSupply and (b) FindDemand.

d

d+1

d−1

r

(a)

r

(b)

r

(c)

Figure 5 Phase CompactSupply. The agent r traverses Bp(T \ T ) (gray line) until it enters a
supply tile in (a) that can be moved inward. Direction d = n is the next LHR movement direction,
but the highlighted node in direction d + 1 = ne is untiled, so r moves its current tile there and
then continues its traversal by moving in direction d − 1 = nw. In (b), the agent continues the same
process for the following two tiles. Finally, r ends on a safely removable tile in (c).

vi

vi+1
αi =60

vi+1
αi =120

vi−1/vi+1
αi =180

Impossible
αi =−120

vi+1
αi =−60

vi+1
αi =0

Figure 6 Path turn degrees αi and successor nodes vi+1 in the proof sketch of Lemma 3.2.
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The agent then spends at most O(n) time steps in the remaining phases between each
pickup and placement of a tile. We focus on the technically more challenging phase Com-
pactSupply. For details, we refer to the full version [7].

▶ Lemma 3.2. If the agent is in phase CompactSupply, it switches to phase FindDemand
carrying a tile within O(n) time steps.

Proof Sketch. It suffices to show that r encounters a safely removable supply tile during
phase CompactSupply. If the supply component is simply connected, this happens within
an LHR traversal of Bp(T \ T ). We thus focus on the case where the component is not
simply connected and no safely removable supply tile is encountered during the traversal.

The agent r traverses Bp(T \ T ) by the LHR. Internally, it stores a pointer d to the next
node in an LHR traversal which is updated at each step. If the nodes in directions d−3, d−2,
d − 1, and d + 1 are untiled (or in T ), r moves the tile at p in direction d + 1, see Figure 5a.

Let P = (v1, . . . , vk) with v1 = p and k = O(n) be the path of a full LHR traversal
around Bp(T \ T ), i.e., the traversal repeats after vk. We can show that r encounters a
safely removable tile while traversing P and moving tiles as specified above. To do so, let
αi ∈ (−180, 180] be the degree by which r needs to turn to the right to move from vi to vi+1,
see Figure 6. Note that the tile at vi is safely removable if |αi| > 60.

Assume |αi| ≤ 60 for all i. Since P is a clockwise circular path,
∑

i αi = 360. Thus, there
must be a pair (i, j) with αi = αj = 60 and αi′ = 0 for i < i′ < j. This is the case on the
path between r’s positions in Figures 5a and 5c. One can now show that the tiles at all nodes
vi′ for i ≤ i′ < j are moved in direction d + 1. After the tile at node vj−1 is moved, it is not
hard to show that lifting the tile at vj does not disconnect the configuration, see Figure 5c,
and that r can return to B(T ∩ T ) by continuing to apply the LHR on Bp(T \ T ). ◀

Consequently, moving all m supply tiles to demand nodes takes O(mn) time steps.

▶ Theorem 3.3. An agent can solve an instance of the Shape Reconfiguration Problem
with simply connected target shapes within O(mn) time steps.

Existing shape formation algorithms typically have runtimes of O(n2) or O(nD) where D

is the diameter of the configuration [9, 10]. Thus, due to the robot’s ability to distinguish
target from non-target nodes, our algorithm is faster for m = o(n), i.e., whenever the input
and target shape largely overlap. In fact, the algorithm is worst-case optimal as some
instances cannot be solved in fewer than Ω(mn) time steps; see, e.g., Figure 7.

▶ Theorem 3.4. Any agent requires Ω(mn) time steps to solve the Shape Reconfiguration
Problem in general.

4 Conclusion and Outlook

We have shown that a single agent can solve the Shape Reconfiguration Problem
for simply connected target shapes in worst-case optimal O(mn) time steps. In the full
version [7], we additionally present an O(n4) algorithm for scaled target shapes with holes,
which can be adjusted to solve the Shape Reconfiguration Problem for arbitrary target
shapes in O(mn3) time steps if the agent is equipped with two pebbles.

It remains an open question whether the Shape Reconfiguration Problem can be
solved in general without pebbles. We believe that this is not the case, just like exploring
a grid maze is impossible for a finite automaton [2, 12]. Another natural follow-up is to
examine the Shape Reconfiguration Problem for multiple agents.
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Figure 7 The agent requires Ω(mn) time steps to move all m = 5 supply tiles to demand nodes.
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Abstract
We study exact algorithms for two chromatic variants of the Art Gallery Problem, motivated by
radio frequency signal interference. For the Chromatic AGP with vertex guards, we demonstrate
that a SAT-based algorithm can solve instances with up to 40,000 vertices, vastly outperforming a
previous MIP-based approach. We also present SAT- and MIP-based algorithms for the Conflict-Free
Chromatic AGP with vertex guards, solving instances with up to 2500 vertices to optimality. Our
formulation works unchanged for instances with holes. However, our empirical evaluation indicates
that introducing holes renders instances with as few as 300 vertices and 30 holes challenging for the
Chromatic AGP.

1 Introduction

Achieving comprehensive indoor signal coverage is vital, yet overlapping signals can cause
interference. To avoid interference, one may assign distinct frequencies in overlapping areas
(chromatic assignment) or ensure at least one unique frequency at each point (conflict-free
assignment); these problems are usually modeled as graph or hypergraph coloring problems.
Covering a polygon using the minimum number of guards gives rise to the Art Gallery
Problem (AGP). Combining these problems by modeling the range of a base station g as
straight-line visibility polygon V(g) in a given (possibly non-simple) polygon P leads to the
Chromatic Art Gallery Problem (CAGP) and the Conflict-Free Chromatic AGP (CFCAGP),
see Fig. 1 for examples. Given a polygon P with vertex set V , we seek a set of (vertex)
guards S ⊆ V and a coloring c : S → N with a minimum number K of colors such that⋃

g∈S V(g) = P and:
CAGP if p ∈ P sees guards g1 ̸= g2, then c(g1) ̸= c(g2),
CFCAGP for each p ∈ P , some guard g for p has a unique color among all guards seeing p.

We study exact algorithms for these two problems using geometric insights to discretize
the problems, and then employ SAT and MIP solvers to find optimal solutions. Our empirical
study shows that the SAT-based approach for the CAGP significantly outperforms the
MIP-based method of Zambon et al. [13], enabling us to solve instances with up to 40,000
vertices (see Fig. 2), compared to the previous limit of 2500 vertices.

We also introduce new formulations for the CFCAGP, which has not been previously
explored from a practical standpoint and appears to be considerably more challenging.
Despite the increased complexity, all tested random simple polygons with up to 2500 vertices
(see Fig. 3) were solved within 600 s on commodity hardware using SAT solvers. Introducing
holes raises the difficulty, leaving some instances with 300 vertices and 30 holes unsolved.

∗ This work was supported by DFG project “Computational Geometry: Solving Hard Optimization
Problems" (CG:SHOP), FE407/21-1.
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Figure 1 Example for the CAGP with 3 colors (left), and for the CFCAGP with 2 colors (right).

Related Work In [7, 8], it was shown that the CAGP is NP-hard for K ≥ 2 colors in
non-simple polygons and can require up to Θ(n) colors in simple polygons on n vertices; this
holds even if one is not restricted to vertex guards. In [9], NP-hardness is also established for
K ≥ 2 in orthogonal polygons. On the positive side, [5] proves that, given a polygon P and a
guard set S, an optimum coloring of S that assigns distinct colors to every pair of guards with
intersecting visibility regions can be computed in polynomial time. Furthermore, [8] presents a
polynomial-time algorithm for finding a 2-colorable guard set in a simple polygon if one exists,
given a discrete set of candidate guard locations; the authors also present a O(log(χG(P )))-
approximation algorithm. A linear-time 6-approximation for simple orthogonal polygons and
an exact algorithm for histogram polygons appear in [9].

Lower and upper bounds on the required number of colors have been extensively studied.
In [6], it was shown that for K ≥ 3, there is a polygon with 4K vertices requiring at least K

colors, and a strictly monotone polygon with 3K2 vertices also requiring K colors. For odd
K ≥ 3, the same work constructs a monotone orthogonal polygon RK with 4K2 + 10K + 10
vertices and χG(RK) ≥ K. Meanwhile, in [1], it was shown that for K ≥ 1, there is a polygon
with 3K vertices needing at least K/2 colors, and a monotone orthogonal polygon with 4K2

vertices needing at least K/4 colors. Regarding upper bounds, in [6] it was shown any spiral
polygon can be colored with at most 2 colors, and any staircase polygon with at most 3.

The only practical work on the CAGP so far is [13], which proposes a MIP formulation
which is the foundation for our work.

For the CFCAGP, [10] proves NP-hardness for two colors in non-simple polygons, while [1]
shows that O(log n) colors suffice for monotone polygons and O(log2 n) for general polygons.
To our knowledge, no prior work addresses practical solutions to the CFCAGP.

2 Preliminaries

Consider a (possibly non-simple) polygon P with vertex set V . We seek to cover P using
guards placed at a subset of vertices S ⊆ V , where each guard g ∈ S covers its visibility
polygon V(g). We say that a set S with

⋃
g∈S V(g) = P is a guard set. Conversely, a set

of points W is called a witness set if covering W with vertex guards guarantees that all
of P is covered. In other words, W is a witness set if, for any S′ ⊆ V , W ⊆ ⋃

g∈S′ V(g)
implies

⋃
g∈S′ V(g) = P . Points in a witness set are witnesses. We derive finite witness sets

by partitioning P into atomic visibility polygons (AVPs).

▶ Definition 2.1. Overlaying the visibility polygons V(g) for all g ∈ V produces a planar
arrangement. Each face of this arrangement is an atomic visibility polygon (AVP).
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Figure 2 Optimal solution for an instance with 40,000 vertices of the CAGP.

Figure 3 Optimal solution for an instance with 2500 vertices of the CFCAGP.
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Let F be the set of all AVPs. Because visibility remains the same within each face, if
a guard g covers any point in the interior of an AVP f ∈ F , then g covers every point of
f . For each f ∈ F , define Vf =

{
g ∈ V | V(g) ⊇ f

}
. We introduce a partial order ≺ on F

where f ≺ f ′ if and only if Vf ⊂ Vf ′ . An AVP f is called a shadow AVP if it is minimal in
(F , ≺), and a light AVP if it is maximal; see Fig. 4.

Figure 4 AVP arrangement with shadow AVPs (in blue) and light AVPs (in orange).

By placing one witness in the interior of each shadow AVP, we obtain a shadow witness
set W . Let Vw equal Vf for shadow witness w ∈ W in shadow AVP f ∈ F . It was shown
in [3] that S′ ⊆ V is a guard set if and only if S′ covers all witnesses in any shadow witness
set W , i.e., ∀w ∈ W : Vw ∩ S′ ̸= ∅. We compute the AVPs by first calculating the visibility
polygon for each vertex, then recursively dividing the list of arrangements in halves and
overlaying them using CGAL [11, 12].

3 Formulations

Here, we describe the MIP and SAT formulations for both the CAGP and CFCAGP.

3.1 Chromatic AGP
Our CAGP formulations use the 2-link visibility graph Gvis = (V, Evis) that has an edge
{g, h} ∈ Evis exactly when V(g)∩V(h) ̸= ∅. The graph Gvis is sufficient to model the coloring
constraints and can be obtained efficiently from the AVPs because the Vf of the light AVPs
f ∈ F yield all intersections.

MIP formulation As a MIP formulation, we use the approach by Zambon et al. [13].

SAT formulation We also use the following SAT formulation to model whether K colors
suffice; this formulation is then used in a binary search to identify the minimum number
of colors. For each color k ∈ {1, . . . , K} and each guard g ∈ V , we have a variable xgk

indicating whether g is used with color k. For each edge gh in Gvis and each color k, the
clause ¬xgk ∨ ¬xhk ensures guard colors are distinct. For each shadow witness w in an
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arbitrary shadow witness set W , we include the clause
∨

g∈Vw,k∈{1,...,K}
xgk (1)

to ensure coverage. Finally, for each pair i ̸= j of colors and each guard g, the clauses
¬xgi ∨ ¬xgj ensure that each guard has at most one color.

Lazy Constraints While we can restrict ourselves to shadow witnesses for the CAGP, the
number of shadow witnesses can still be quite large. We therefore initially limit ourselves
to the |V | shadow witnesses w with smallest Vw. In the MIP approach, we detect and add
possible missing witnesses using Gurobi’s callback interface when we encounter an integral
feasible solution. In the SAT approach, we detect and add missing witnesses whenever we
find an optimal solution for the current witness set. The incrementality of the SAT solvers
supported by PySAT means that the ensuing solve is usually much cheaper than a fresh
start.

3.2 Conflict-Free Chromatic AGP

For modeling conflict-free coloring, we unfortunately cannot just use Gvis, but instead must
work with all AVPs in F . By enforcing that for every AVP f ∈ F there is a guard with a
unique color in Vf , we implicitly ensure coverage.

MIP formulation Our MIP formulation of the CFCAGP introduces a binary variable
ck ∈ {0, 1} for each color k ∈ {1, . . . , K} to indicate whether color k is used, and a binary
variable xgk ∈ {0, 1} for each guard g ∈ V to indicate whether g is assigned color k.
Additionally, we introduce a binary variable ufk ∈ {0, 1} for each AVP f ∈ F and color k,
indicating whether there is exactly one guard g ∈ Vf guarding f with color k. The constraints

∑

g∈V

xgk ≥ ck,
∑

g∈V

xgk ≤ |V | · ck ∀k ∈ {1, . . . , K} (2)

ensure that ck = 1 if and only if color k is used. The constraints
∑

g∈Vf

xgk ≥ ufk,
∑

g∈Vf

xgk ≤ 1 + |Vf | · (1 − ufk) ∀f ∈ F , k ∈ {1, . . . , K} (3)

enforce that ufk = 1 precisely if color k occurs exactly once in Vf . In addition,

K∑

k=1
ufk ≥ 1,

K∑

k=1
xgk ≤ 1 ∀f ∈ F (4)

ensures each AVP f ∈ F is guarded by at least one uniquely colored guard and that each
guard is assigned at most one color. Finally, for each k < K, we optionally add the following
symmetry-breaking constraints:

ck ≥ ck+1,
∑

g∈V

xgk ≥
∑

g∈V

xg(k+1). (5)

EuroCG’25
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SAT formulation We also present a SAT formulation to test whether K colors suffice for
the CFCAGP. This formulation uses binary variables xgk and ufk, defined analogously to
the MIP, where g ∈ V , k ∈ {1, . . . , K}, and f ∈ F . For each AVP f and color k, the clauses

¬ufk ∨
∨

g∈Vf

xgk,
∧

(i,j)∈(Vf
2 )

(
¬ufk ∨ ¬xik ∨ ¬xjk

)
∀f ∈ F , k ∈ {1, . . . , K} (6)

ensure ufk can only be true if exactly one guard in Vf is colored k. Note that, compared to
the MIP formulation, where a single constraint with O(|Vf |) non-zeros suffices to enforce that
at most one guard in Vf can have color k if ufk is true, we use O(|Vf |2) three-element clauses
to enforce this, making the formulation slightly less succinct. To guarantee conflict-free
coverage for each AVP, the clause

∨
k∈{1,...,K} ufk is added for every f ∈ F . Finally, to

enforce that each guard can be assigned at most one color, the clause ¬xgi ∨ ¬xgj is included
for all guards g ∈ V and every pair of distinct colors i ̸= j.

4 Experimental evaluation

In the following, we evaluate how the approaches perform on benchmark instances. All
experiments are performed on WSL2 (Windows 11, version 22H2) using an AMD Ryzen
7 7800X3D with 28 GB of RAM. Geometric operations are implemented using CGAL [11];
all solvers are implemented in Python 3.10.14, using Gurobi version 11.0.1 as MIP solver
and PySAT version 0.1.8.dev9 for SAT solvers. All solvers run with a time limit of 600 s,
excluding the time to geometrically process the instances.

Deciding for a SAT Solver Unlike the MIP field, dominated by a few commercial solvers,
the SAT solver landscape remains diverse, with heterogeneous performance across instances
and no clear leader. We begin by comparing different SAT solvers on randomly generated
simple polygons [2] with 100–2500 vertices for CAGP and polygons with holes with 100–300
vertices for CFCAGP to select the most suitable solvers for subsequent experiments. All
evaluated SAT solvers are provided by PySAT with a uniform interface.

For the CAGP, we consider two SAT formulation variants: version 1, which allows guards
to have redundant additional colors, and version 2, which enforces exactly one color. As
shown in Fig. 5, CaDiCaL103 performs best on both versions. In contrast, for the CFCAGP,
Fig. 6 reveals that Minisat22 and Minicard excel. Perhaps surprisingly, CaDiCaL103 is weak
for CFCAGP, while Minisat22 and Minicard underperform for CAGP.

Because all solvers are single-threaded, we build a portfolio to run them in parallel,
stopping as soon as one solver finishes. For the CAGP, we use CaDiCaL103 and Glucose42
with both versions, and Glucose4 with version 2. For the CFCAGP, our portfolio includes
Minisat22, Minicard, Gluecard 3, Gluecard 4, and Glucose 3.

CAGP We now compare our SAT-based approach with the MIP-based method of Zambon
et al. [13] on polygons with and without holes. As shown in Fig. 7, our SAT-based method
nearly instantly solves the benchmark instances without holes from [2, 13]. Although the
MIP approach benefits from modern hardware and a recent Gurobi version, it still takes
considerably longer than our SAT-based method to solve the same instances. For polygons
with holes, which we also take from [2], neither approach solves all instances (smallest
unsolved instance having 300 vertices), but the SAT method visibly solves more within the
time limit, as seen in Fig. 8. A more thorough investigation of this observed increase in
practical difficulty is a possible direction for future research. To evaluate scalability, we used
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Figure 5 CAGP instances solved over time for different PySAT backends (higher is better).
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Figure 7 CAGP instances solved over time (higher is better); the SAT-based approach vastly
outperforms the MIP. Both approaches could solve all instances within the time limit.

larger instances generated by the fast polygon generator (fpg) from the Salzburg Database [4].
The largest instance the MIP approach solved in time had 9000 vertices, taking 181.19 s. Our
SAT method solved the same instance in 1.7 s and handled instances up to 40,000 vertices,
solving one in 156.29 s. Beyond this size, memory consumption becomes a limiting factor.

CFCAGP Finally, let us compare the performance of the SAT and MIP approaches for
the CFCAGP. On the simple polygons from [2], the SAT approach again outperforms the
MIP approach (see Fig. 9), which times out on instances with 60 vertices that took the
SAT approach less than 1 s. This was also true on the fpg instances; here, the SAT solver
solved instances with up to 2500 vertices. For larger instances, we run out of memory during
geometric preprocessing and the construction of the SAT model.

5 Conclusion

We empirically evaluated exact algorithms for the Chromatic Art Gallery Problem (CAGP)
and the Conflict-Free Chromatic Art Gallery Problem (CFCAGP) using both MIP and
SAT solvers. Our SAT-based approach solved CAGP instances with up to 40,000 vertices,
surpassing the 2500 vertex limit achieved by Zambon et al. [13] in 2014. For the CFCAGP,
we successfully solved instances with up to 2500 vertices. Despite the popularity and
sophistication of modern MIP solvers, our findings show that simpler SAT solvers perform
significantly better on these problems, highlighting the importance of selecting the right
technology in optimization.
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Figure 8 Number of CAGP instances with holes solved over time (higher is better).
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Figure 9 Number of CFCAGP instances solved over time; instances limited to 300 vertices due
to poor MIP performance. SAT solves all instances from the full benchmark set in less than 6 s.
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Abstract
In this paper we show that two-dimensional nearest neighbor queries can be answered in opti-
mal O(log n) time while supporting insertions in O(log1+ε n) time. No previous data structure was
known that supports O(log n)-time queries and polylog-time insertions. In order to achieve logarith-
mic queries our data structure uses a new technique related to fractional cascading that leverages the
inherent geometry of this problem. Our method can be also used in other semi-dynamic scenarios.

1 Introduction

In the nearest neighbor problem a set of points S is stored in a data structure so that for
a query point q the point p ∈ S that is closest to q can be found efficiently. The nearest
neighbor problem and its variants are among the most fundamental and extensively studied
problems in computational geometry; we refer to e.g. [17] for a survey. In this paper we study
dynamic data structures for the Euclidean nearest neighbor problem in two dimensions. We
show that the optimal O(log n) query time for this problem can be achieved while allowing
insertions in time O(log1+ϵ n).
Previous Work. See Table 1. In the static scenario the planar nearest neighbor problem
can be solved in O(log n) time by point location in Voronoi diagrams. However the dynamic
variant of this problem is significantly harder because Voronoi diagrams cannot be dynamized
efficiently: it was shown by Allen et al. [2] that a sequence of insertions can lead to Ω(

√
n)

amortized combinatorial changes per insertion in the Voronoi diagram. A static nearest-
neighbor data structure can be easily transformed into an insertion-only data structure using
the logarithmic method of Bentley and Saxe [3] at the cost of increasing the query time to
O(log2 n). Several researchers [9, 11, 18] studied the dynamic nearest neighbor problem in
the situation when the sequence of updates is random in some sense (e.g. the deletion of any
element in the data structure is equally likely). However their results cannot be extended
to the case when the complexity of a specific sequence of updates must be analyzed.

Using a lifting transformation [10], 2-d nearest neighbor queries can be reduced to ex-
treme point queries on a 3-d convex hulls. Hence data structures for the dynamic convex
hull in 3-d can be used to answer 2-d nearest neighbor queries. The first such data struc-
ture (without assumptions about the update sequence) was presented by Agarwal and Ma-
toušek [1]. Their data structure supports queries in O(log n) time and updates in O(nε)
time; another variant of their data structure supports queries in O(nε) time and updates
in O(log n) time. A major improvement was achieved in a seminal paper by Chan [4]. The
data structure in [4] supports queries in O(log2 n) time, insertions in O(log3 n) expected
time and deletions in O(log6 n) expected time. The update procedure can be made deter-
ministic using the result of Chan and Tsakalidis [6]. The deletion time was further reduced
to O(log5 n) [15] and to O(log4 n) [5]. This sequence of papers makes use of shallow cuttings,
a general powerful technique, but, alas, all uses of it for the point location problem in 2-d
have resulted in O(log2 n) query times.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Query Insert Delete

Bentley and Saxe 1980 [3] O(log2 n) O(log2 n) Not supported

Agarwal and Matoušek 1995 [1] O(log n) O(nε) O(nε)

'' O(nε) O(log n) O(log n)

Chan 2010 [4] O(log2 n) O(log3 n) † O(log6 n) †

Chan and Tsakalidis 2016 [6] O(log2 n) O(log3 n) O(log6 n)

Kaplan et al. 2020 [15] O(log2 n) O(log3 n) O(log5 n)

Chan 2020 [5] O(log2 n) O(log3 n) O(log4 n)

Here O(log n) O(log1+ε n) Not supported
Table 1 Known results. Insertion and deletion times are amortized, † denotes in expectation.

Even in the insertion-only scenario, the direct application of the 45-year-old classic tech-
nique of Bentley and Saxe [3] remains the best insertion-only method with polylogarithmic
update before this work; no data structure with O(log2−ϵ n) query time and polylogarithmic
update time was described previously for any ϵ > 0.
Our Results. We demonstrate that optimal O(log n) query time and poly-logarithmic
update time can be achieved in some dynamic settings:

1. We describe a semi-dynamic insertion-only data structure that uses O(n) space, supports
insertions in O(log1+ε n) amortized time and answers queries in O(log n) time.

2. In the semi-online scenario, introduced by Dobkin and Suri [12], we know the deletion
time of a point p when a point p is inserted, i.e., we know how long a point will remain
in a data structure at its insertion time. We describe a semi-online fully-dynamic data
structure that answers queries in O(log n) time and supports updates in O(log1+ε n)
amortized time. The same result is also valid in the offline scenario when the entire
sequence of updates is known in advance.

3. In the offline partially persistent scenario, the sequence of updates is known and every
update creates a new version of the data structure. Queries can be asked to any version
of the data structure. We describe an offline partially persistent data structure that uses
O(n log1+ε n) space and construction time and answers queries in O(log n) time.

All three problems considered in this paper can be reduced to answering point location
queries in (static) Voronoi diagrams of O(log n) different point sets. For example, we can
obtain an insertion-only data structure by using the logarithmic method of Bentley and
Saxe [3], which we now briefly describe. The input set S is partitioned into a logarithmic
number of subsets S1, . . ., Sf of exponentially increasing sizes. In order to find the nearest
neighbor of some query point q we locate q in the Voronoi diagram of each set Si and report
the point closest to q among these nearest neighbors. Since each point location query takes
O(log n) time, answering a logarithmic number of queries takes O(log2 n) time.

The fractional cascading technique [7] applied to this problem in one dimension decreases
the query cost to logarithmic by sampling elements of each Si and storing copies of the
sampled elements in other sets Sj , j < i. Unfortunately, it was shown by Chazelle and
Liu [8] that fractional cascading does not work well for two-dimensional non-orthogonal
problems, such as point location: in order to answer O(log n) point location queries in
O(log n) time, we would need Ω̃(n2) space, even in the static scenario.
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To summarize, the two obvious approaches to the insertion-only problem are to maintain
a single search structure and update it with each insertion, the second is to maintain a
collection of static Voronoi diagrams of exponentially-increasing size and to execute nearest
neighbor queries by finding the closest point in all structures, perhaps aided by some kind of
fractional cascading. The first approach cannot obtain polylogarithmic insertion time due
to the lower bound on the complexity change in Voronoi diagrams caused by insertions [2],
and the second approach cannot obtain O(log n) search time due to Chazelle and Liu’s
lower bound [8]. Our main intellectual contribution is showing that the lower bound of
Chazelle and Liu [8] can be circumvented for the case of point location in Voronoi diagrams.
Specifically, a strict fractional cascading approach requires finding the closest point to a
query point in each of the subsets Si; we loosen this requirement: in each Si, we either find
the closest point or provide a certificate that the closest point in Si is not the closest point
in S. This new, powerful and more flexible form of fractional cascading is done by using a
number of novel observations about the geometry of the problem. We imagine our general
technique may be applicable to speeding up search in other dynamic search problems.

2 Overview of method

Here we provide a high-level overview of our method, with details deferred to the full version.
We let S denote the set of points currently stored in the structure, and use n to denote |S|.
Let S = {S1, S2, . . . Sf } denote a partition of S into sets of exponentially-increasing size
where f := |S| = Θ(log n) and |Si| = Θ(2i). Let NN (P, q) be the nearest neighbor of q in
a point set P . Given a point q, the computation of NN (S, q) is the query that our data
structure will support.

We now define a sequence of point sets T1, . . . Tf . The intuition is that, as in classical
fractional cascading [7], the set Ti contains all elements of Si and a sample of elements from
the sets Tj where j > i; this implies the last sets are equal: Tf = Sf . This sampling will be
provided by the function Samplej(k) which returns a subset of Tj of size O(|Tj |/22k); while
it will have other important properties, for now only the size matters.

We now can formally define Ti: Ti := Si ∪ ⋃f
j=i+1 Samplej(j − i). From this defini-

tion we have several observations: (i) Tf = Sf , (ii) Ti is a function of the Sj , for j ≥ i,
(iii) S = ∪f

i=1Ti, (iv) NN (S, q) ∈ ⋃f
i=1{NN (Ti, q)}, (v) |Ti| = Θ(2i), and (vi) For any i∑f

j=i+1 |Samplej(j − i)| = Θ(|Ti|).
Voronoi and Delaunay. Let Vor(P ) be the Voronoi diagram of point set P , let Cell(P, p)
be the cell of a point p in Vor(P ), that is the locus of points in the plane whose closest
element in P is p. Thus q ∈ Cell(P, p) is equivalent to NN (P, q) = p. Let |Cell(P, p)| be
the complexity of the cell, that is, the number of edges on its boundary. Let G(P ) refer to
the Delaunay graph of P , the dual graph of the Voronoi diagram of P ; the degree of p in
G(P ) is thus |Cell(P, p)| and each point in P corresponds to a unique vertex in G(P ). We
will find it useful to have a compact notation for expressing the union of Voronoi cells; thus
for a set of points P ′ ⊆ P , let Cells(P, P ′) denote

⋃
p∈P ′ Cell(P, p).

Pieces and Fringes. Given a graph, G = (V, E), and a set of vertices V ′ ⊆ V , the fringe
of V ′ (with respect to G) is the subset of V ′ incident to edges whose other endpoint is
in V \ V ′. Let G = (V, E) be a planar graph. For any r, Frederickson [13] showed the
vertices of G can be decomposed1 into Θ(|V |/r) pieces, so that: (i) Each vertex is in at

1 We use the word decomposed to mean a division of a set into into a collection sets, the decomposition,
whose union is the original set, but, unlike with a partition, elements may belong to multiple sets.
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Figure 1 Part of a Voronoi diagram for a point set Tj . Two elements of Piecesj(k) have been
highlighted, one in striped blue, call it Piece1

j (k), and one in striped green, call it Piece2
j (k). For

each piece, the cells of fringe vertices are shaded red. Thus, the set Samplej(k) are the red ver-
ticies, and the region Cells(Tj , Samplej(k)) is shaded red. The green-and-red shaded region is
Cells(Tj , Sep2

j (k)) and the green-but-not-red shaded region is Cells(Tj , Sep2
j (k))

.

least one piece. (ii) Each piece has at most r vertices in total and only O(
√

r) vertices on
its fringe. (iii) If a vertex is a non-fringe vertex of a piece (with respect to G), then it is
not in any other pieces. (iv) The total size of all pieces is in Θ(|V |). Intuitively, the pieces
are almost a partition of V where those vertices on the fringe of each piece may appear in
multiple pieces. Such a decomposition of G can be computed in time O(|V |) [14, 16]. We
will apply this decomposition to Ti, which is both a point set and the vertex set of G(Ti),
for exponentially increasing sizes of r.

Given integers 1 ≤ k < j < f , let Piecesj(k) := {Piece1
j (k), . . . Piece|Piecesj(k)|

j (k)}
be a decomposition of Tj into r = Θ(|Tj |/24k) subsets such that each subset Piecel

j(k)
has size O(24k) and a fringe of size O(22k) with respect to G(Ti). We let Sepsj(k) :=
{Sep1

j (k), . . . Sep|Piecesj(k)|
j (k)} be defined so that Sepℓ

j(k) denotes the fringe of Pieceℓ
j(k) ,

and let Sep
ℓ

j(k) be Pieceℓ
j(k) \ Sepℓ

j(k). Thus each Pieceℓ
j(k) is partitioned into its fringe

vertices, Sepℓ
j(k), and its interior non-fringe vertices Sepℓ

j(k); note that Sepℓ

j(k) may be
empty if all elements of Pieceℓ

j(k) are on the fringe. Finally, we define Samplej(k) to be
the union of all the fringe vertices: Samplej(k) :=

⋃
Sep∈Sepsj(k) Sep. Thus, Sepsj(k) is a

partition decomposition of Samplej(k).
For any k ∈ [1..j − 1], the decomposition of Tj into Piecesj(k), the partition of each

Pieceℓ
j(k) into Sepℓ

j(k) and Sep
ℓ

j(k), and the set Sepsj(k) can all be computed in time
O(|Tj |) using [16] if the Delaunay triangulation is available; if not it can be computed in time
O(|Tj | log |Tj |). Thus computing these for all valid i takes time and space O(|Tj | log2 |Tj |)
as k < j = O(log |Tj |).
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Figure 2 High complexity cells can occur in Voronoi diagrams. Such cells must be included in
fringe verticies Samplej(k), illustrated in red for some point set Tj . This results in the complexity of
the boundary of the interior sets Cells(Tj , Sep_jℓ(k)), the connected components of white Voronoi
cells, are of complexity O(24(j−i)).

One property of this sampling technique is that points in Tj with Voronoi cells in Vor(Tj)
of complexity at least k are included in Ti if j > i and j − i = O(log k).

▶ Lemma 2.1. If p ̸∈ Ti and p ∈ Tj, i < j, then the complexity of Cell(Tj , p) is O(24(j−i)).

The Jump function: definition. At the core of our nearest neighbor algorithm is the
function Jump, defined as follows. We will find it helpful to use NN R(q) for a range R = [l, r]
to denote NN (∪i∈[l,r]Ti, q).

Intuitively, a call to Jump(i, j, q, pi, ei) is used when trying to find the nearest neighbor
of q, and assuming we know the nearest neighbor of q in T1, T2 . . . T(i+j)/2 seeks to provide
information on whether there are any points that could be the nearest neighbor of q in
T(i+j)/2+1 . . . Tj . This information could be either a simple no, or it could provide the
nearest neighbor of q for some prefix of these sets. Additionally, the edge of an the Voronoi
cell of the currently known nearest neighbor in the direction of the query point is always
passed and returned to aide the search by limiting it to a single triangular piece of a Voronoi
cell, the complexity of which we can bound in a way which does not hold for the full cell.

Input to Jump(i, j, q, pi, ei):
Integers i and j, where j − i is required to be a power of 2. We use m to refer to
(j + i)/2, the midpoint.
Query point q.
Point pi where pi = NN (Ti, q).
The edge ei on the boundary of Cell(Ti, pi) that the ray −→piq intersects.

Output: Either one of two results, Failure or a triple (j′, pj′ , ej′)
If Failure, this is a certificate that NN (m,min(j,f)](q) ̸= NN [1,min(j,f)](q)
If a triple (j′, pj′ , ej′) is returned, it has the following properties:
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pi
pi+3

Ti+3

Ti+2

Ti+1

Ti

Failure (i + 3, pi+3, ei+3)

ei

Figure 3 Two iterations of the Jump procedure. The query point q is shown in red. Points
pi = NN(Ti, q), pi+3 = NN(Ti+3, q), and edges ei and ei+3 are shown in blue.

∗ The integer j′ is in the range (m, j] and NN (m,j′)(q) ̸= NN [1,j′)(q).
∗ The point pj′ is NN (Tj′ , q).
∗ The edge ej′ is on the boundary of Cell(Tj′ , pj) that the ray −−→pj′q intersects.

We show in the full version that Jump runs in O(j − i) time.
The nearest neighbor procedure. A nearest neighbor query can be answered through a
series of calls to the Jump function:

Initialize i = 1, j = 2, p1 to be NN (T1, q), and e1 to be the edge of Cell(T1, p1) crossed by
the ray −→p1q; all of these can be found in constant time as |T1| = Θ(1). Initialize pnearest
to p1.
Repeat the following while i+j

2 ≤ f :
Run Jump(i, j, q, pi, ei). If the result is failure:
∗ Set j = j + (j − i)
Else a triple (j′, pj′ , ej′) is returned:
∗ If d(pj′ , q) < d(pnearest , q) set pnearest = pj′

∗ Set i = j′ and set j = j′ + 1
Return pnearest

In the full version we provide the jump function’s implementation, and via an amortized
analysis show that we can answer a nearest neighbor query in O(log n) amortized time.
Obtaining polylogarithmic insertion time is via the straightforward use of Bentely-Saxe
rebuilding, and reducing is further to O(log1+ε) is described in the full version.
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Abstract
For compatible flip sequences between plane spanning trees on point sets in convex position we
prove the happy edge property, show fixed-parameter tractability of the flip distance, and provide
an upper bound of 5

3 (n − 1) for the flip distance. Additionally, we provide a framework to compare
different happy edge properties.

1 Introduction

Let S be a finite point set in the plane in general position, that is, no three points lie on a
common line. We call S a convex point set if the points in S no point in S lies in the interior
of the convex hull of S. A plane straight-line graph of S is a graph with vertex set S and
whose edges are straight line segments between pairs of points of S such that no two edges
intersect except at a common endpoint. All graphs considered in this paper are straight-line
graphs. For brevity we will omit the term straight-line.

Flip Graphs of Plane Spanning Trees. A flip between two plane spanning trees of S is the
operation that removes an edge from a tree and adds another edge such that the resulting
structure is again a plane spanning tree. We also denote this operation as an unrestricted flip.
A restricted version of flips are so-called compatible flips, for which the removed edge and
the added edge are not allowed to cross. The (compatible) flip graph of plane spanning trees
of S has as its vertex set all such trees. Two vertices T1, T2 of this flip graph are connected
with an edge if and only if T1 can be transformed into T2 by a single (compatible) flip. See
Figure 1 for an example of flips in plane spanning trees .

Figure 1 Two flips in a plane spanning tree starting from the tree in the middle. The flip to the
left is not compatible since the added and removed added cross. The flip to the right is compatible.

Given an initial tree Tin and a target tree Ttar, a (compatible) flip sequence from Tin to
Ttar is a path from Tin to Ttar in the (compatible) flip graph. The (compatible) flip distance
between Tin and Ttar is the length of a shortest path between Tin and Ttar in the flip graph.
Any (compatible) flip sequence of this length is called a shortest (compatible) flip sequence.
See Figure 2 for an illustration of the concepts.

∗ This research was funded in part by the Austrian Science Fund (FWF) 10.55776/DOC183.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 2 Flip graph of plane spanning trees on four vertices in convex position. Dashed edges
denote flips that are part of the flip graph, but not the compatible flip graph. One pair of two plane
spanning trees is marked in orange. Their shortest flip sequence of length one is marked in red
(thicker dashed). A shortest compatible flip sequence of length two is marked in blue (thicker).

For any n-point set S, the flip graph of plane spanning trees on S is known to be connected
and has radius exactly n − 2 [3, 4]. Hence the diameter always lies between n − 2 and 2n − 4.
Since a lower bound for the diameter of

⌊ 3
2 n

⌋
− 5 for convex n-point sets in [9], the flip

graph of plane spanning trees on convex point sets has received considerable attention. In
the last few years, the upper bound for its diameter was improved to 2n − Ω(log(n)) in [1]
and soon after to 2n − Ω(

√
n) in [7]. In the latter work, it was conjectured that the diameter

is at most 3
2 n. The upper bound from [7] is constructive and, though not stated explicitly,

only uses compatible flips. Hence it also provides an upper bound for the diameter of the
according compatible flip graph. In [6], the diameter was bounded from above by cn with
c = 1

12
(
22 +

√
2
)

≈ 1.95, which marked the first linear improvement over the initial bound
from [3]. Very recently, a lower bound of 14

9 n − O(1) and an upper bound of 5
3 n − 3 on the

diameter were achieved in [4], where the upper bound in general requires non-compatible flips.

Happy Edges. For any graph reconfiguration problem, happy edges are edges that lie in
both the initial and target graph. A flip graph fulfills the happy edge property if there exists a
shortest flip sequence between any two graphs that never flips happy edges. The happy edge
property often is a good indication for the complexity of a graph reconfiguration problem.
For example, for triangulations of simple polygons [2] and general point sets [11, 13], finding
shortest flip sequences is computationally hard. The hardness proofs use counterexamples
to the happy edge property as a key ingredient. Conversely, the happy edge property is
known to hold for triangulations of convex polygons [14]. Though the complexity of finding
shortest flip sequences is still open, the property yields multiple fixed-parameter tractable
algorithms [5, 8, 12]. Moreover, the happy edge property holds for plane perfect matchings
of convex point sets and shortest flip sequences can be found in polynomial time [10].
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Contribution and Outline. In this work, we study different happy edge properties and the
compatible flip graph of plane spanning trees on a convex point set.

Section 2 is dedicated to a more refined framework of happy edge properties that allows
us to compare different graph reconfiguration problems. In Section 3, we prove that a happy
edge property holds for compatible flips on plane spanning trees on convex point sets. From
this happy edge property we derive a fixed-parameter tractable algorithm for finding shortest
compatible flip sequences between pairs of spanning trees (Section 4), which moreover can be
adapted for unrestricted flips in case they also fulfill the happy edge property. In Section 5,
we show how to adapt strategies from [4] to obtain an upper bound of 5

3 (n − 1) for the
diameter of the compatible flip graph of plane spanning trees on convex n-point sets.

2 Relations of Happy Edge Properties

In this section, we introduce a more refined distinction of happy edge properties.

▶ Definition 2.1. A graph reconfiguration problem where flips exchange edges fulfills the . . .
. . . (Weak) Happy Edge Property if, from any initial graph Gin to any target graph Gtar,
there exists a shortest flip sequence that does not flip happy edges.
. . . Strong Happy Edge Property if, from any initial graph Gin to any target graph Gtar,
any shortest flip sequence does not flip happy edges.
. . . Perfect Flip Property if, whenever we can perform a flip f in Gin such that the
resulting graph G1 has one edge more in common with Gtar than Gin has (a.k.a. a perfect
flip), then there exists a shortest flip sequence from Gin to Gtar that has G1 as its first
intermediate graph (that is, the flip sequence starts with f).

In a full version of the paper we prove the following relation to compare happy edge
properties.

▶ Proposition 2.2. Let P be a graph reconfiguration problem where flips exchange one edge.
(i) If any flip sequence in P that flips at least one happy edge can be shortened by at least

two flips, then P fulfills the Perfect Flip Property.
(ii) If for any flip in P from G to (G \ {e1}) ∪ {e2}, e1 and e2 can never be in the same

configuration, then the reverse direction in (i) holds.

We remark that all the introduced properties may or may not hold for certain graph
reconfiguration problems. While the condition in Proposition 2.2(ii) is not fulfilled for trees,
it does hold for example for triangulations.

3 Happy Edges in Plane Spanning Trees on Convex Sets

In [1], the authors formulated the Weak Happy Edge Conjecture for trees on convex point
sets:

▶ Conjecture 3.1 (Conjecture 17 in [1]). For any two plane spanning trees Tin and Ttar

on a convex point set, there is a shortest flip sequence from Tin to Ttar that does not flip
happy edges.

Based on an example from [1] for a different context, we first observe that the Perfect
Flip Property holds neither for the unrestricted flip nor for the compatible flip on trees.

In contrast, we will show in this section that the Strong Happy Edge Property does hold
for compatible flips on trees. Our first proof ingredient is the following lemma, which is an
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Tin Ttar

≥ 3 flips
≥ 4 compatible flips

Perfect
flip

Perfect
flip

Perfect
flip

Perfect
flip

Perfect
flip

Perfect
flip

T ∗

Figure 3 Counterexample to the Perfect Flip Property based on [1, Figure 7]. The top shows the
shortest flip sequence. The bottom sequence starts with two perfect flips, but reaches a point where
no more perfect flips are possible. Since there are two edges in the tree T ∗ that both cross two edges
from the target tree, at least three additional flips or four additional compatible flips are needed.

extension of [1, Proposition 18] for compatible flips. Its proof can be found in a full version
of our paper.

▶ Lemma 3.2. Consider any point set S and any two plane spanning trees Tin and Ttar on S

and any shortest compatible flip sequence from Tin to Ttar. If some edge e is removed and
later added back, then some flip during that subsequence must add an edge f that crosses e.

In [1], a parking edge is defined as an edge that appears in a flip sequence and that is not
contained in Tin ∪ Ttar. A second ingredient of our proof is Lemma 3.4, which verifies the
compatible flip analogue (Lemma 3.4) of the following conjecture from [1].

▶ Conjecture 3.3 (Conjecture 21 in [1]). For any convex point set S and any two plane
spanning trees Tin and Ttar on S, there is a shortest flip sequence from Tin to Ttar that only
uses parking edges from the boundary of the convex hull of S.

We Remark that in [1, Claim 22] it is shown that for unrestricted flips Conjecture 3.3
implies Conjecture 3.1.

▶ Lemma 3.4. The analogue of Conjecture 3.3 for compatible flips holds.

The proof of Lemma 3.4 can be found in the full version of the paper. Figure 4 shows
the intuition behind that proof: One by one, we replace a parking edge f that is not on the
boundary of the convex hull with a parking edge h on the convex hull boundary. To make
this replacement possible, we change the order of the flips that happen while f is part of
the tree. The edge f splits the convex point set into two sides, say A and B. Flips in either
of the two sides can be executed independently from flips in the other side. Assume f is
added when flipping from the tree Ti1−1 to Ti1 and removed in the flip from Ti2 to Ti2+1.
Exactly one of the sides, say side B, of Ti1−1 entirely contains a path that connects the two
endpoints of f . The flips in the other side, say side A, can be executed before f gets added.
Afterwards, we close a cycle in side A by adding the convex hull parking edge h and execute
all the flips in side B. We conclude the new subsequence of flips by removing h and obtain
the tree Ti2 .

We now show the Strong Happy Edge Property for compatible flips on trees.

▶ Theorem 3.5. For any convex point set S and any two plane spanning trees Tin and Ttar

on S, no shortest compatible flip sequence from Tin to Ttar removes and adds a happy edge.
Any flip sequence that removes (and adds) a happy edge is at least one step longer.
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h
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Figure 4 Reordering flips in Lemma 3.4. The top path is the part of the original flip sequence
that contains f , the bottom path is the part of the reordered flip sequence that contains h.

Proof. Let Tin = T0, T1,...,Tk = Ttar be a compatible flip sequence that removes a happy
edge e in a flip from Ti to Ti+1. By Lemma 3.4, there exists a shortest compatible flip
sequence from Ti+1 = T ′

i+1,T ′
i+2,...,T ′

tar = Ttar that only uses parking edges from the convex
hull boundary. Since e crosses neither and edge of Tin ∩ Ttar nor one on the convex hull
boundary, e crosses no edge in the flip sequence T0,...,Ti,T ′

i+1,...,Ttar. Hence, by Lemma 3.2,
we can construct a shorter flip sequence that preserves e. ◀

By Proposition 2.2(i) and the example in Figure 3, Theorem 3.5 is best possible in the
sense that there are flip sequences that flip a happy edge and cannot be shortened by two
flips.

4 A Fixed-Parameter Tractable Algorithm

We next study the impact of Conjecture 3.1 on the complexity of finding the flip distance be-
tween two plane spanning trees on a convex point set. For that, we assume that Conjecture 3.1
is true, that is, shortest flip sequences preserve happy edges.

▶ Theorem 4.1. If Conjecture 3.1 is true, then the flip distance k between two plane spanning
trees on a convex point set is fixed-parameter tractable in k. This implication still holds if we
only consider compatible flip sequences.

The proof of Theorem 4.1 can be found in a full version of the paper. Here we show that
the stronger assumption of Conjecture 3.3 implies fixed-parameter tractability.

Proving fixed-parameter tractability assuming Conjecture 3.3 holds. We divide the point
set into components by cutting along happy edges and then find the shortest flip sequence
for every remaining component individually, see Figure 5. Observe that all the happy edges
in these components are boundary edges. If all edges in a component are happy, do not flip
any edge in it. By Conjecture 3.3 there exists a shortest flip sequence that only uses edges
from Tin, Ttar or the convex hull. Thus, in every step we need to choose one out of at most
k unhappy edges to be removed. Further, there are at most 3k positions to add an edge,
namely k from Ttar \ Tin and 2k from gaps in the convex hull. Every component has one
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gap in the convex hull and gets an additional gap for every unhappy diagonal it contains.
This yields a total of (3k2)k flip sequences to check. ◀

Tin Ttar

Figure 5 We split the initial tree Tin along its happy edges (colored in green) into three parts.
From there we flip every part individually into its corresponding counterpart in Ttar.

▶ Corollary 4.2. The compatible flip distance kc between two plane spanning trees on a
convex point set is fixed-parameter tractable in kc.

5 Improving the Upper Bound of the Compatible Flip Graph

By Lemma 3.4 there always exists a shortest compatible flip sequence that only flips edges
from the symmetric difference Tin∆Ttar and the convex hull. All the currently known
improvements to the upper bound of the length of shortest flip sequences for unrestricted
flips are built around this idea and use two different ways to flip edges: either invest two flips
to flip an edge from Tin \ Ttar to a convex hull edge and later flip that convex hull edge to
an edge of Ttar \ Tin; or perform a single perfect flip from an edge of Tin \ Ttar to an edge of
Ttar \ Tin. Upper bounding the length of a flip sequence is then achieved by lower bounding
the number of perfect flips.

In [4], edges of Tin are paired with edges of Ttar via a bijective mapping between the
edges of each tree and n − 1 convex hull edges. Roughly speaking, three sets of pairs of edges
are identified such that ≈ n

3 perfect flips can be guaranteed by the following procedure: Flip
all edges except the ones from the largest set to the convex hull, flip all pairs of edges in the
largest set perfectly, flip all other edges from the convex hull to their designated location.

Since one of the three described sets consists of pairs of edges that cross, the flip sequence
resulting from this approach is not applicable for compatible flips. However, all other
performed flips are compatible. In a full version of the paper we develop an approach how to
regroup the pairs of crossing edges such that the resulting flip sequence is compatible while
the length of the flip sequence increases by only one flip. This yields the following theorem.

▶ Theorem 5.1. Between any two plane spanning trees T and T ′ on a convex point set with n

vertices there exists a compatible flip sequence with at most 5
3 (n − 1) flips.

A complete proof of Theorem 5.1 can be found in a full version of the paper.



O. Aichholzer, J. Dorfer, and B. Vogtenhuber 17:7

6 Conclusion

We discussed a framework for different happy edge properties and showed relations between
these properties. For the reconfiguration of plane spanning trees in convex point sets with
compatible flips we showed that the happy edge property holds and that it implies fixed-
parameter tractability of the flip distance. Further, we improved the upper bound for the
compatible flip graph to match the upper bound of 5

3 (n−1) that is known for the unrestricted
flip. Some open problems related to our work are:

1. Can we close the gap between upper and lower bounds for the flip distance for both
unrestricted and compatible flips? Do the flip distances differ or do they coincide?

2. Does the happy edge property still hold for flipping plane spanning trees if we drop one
of the restrictions that either the point set is convex or the flips are all compatible?

3. What is the time complexity of finding shortest flip sequences for plane spanning trees?
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Abstract
We present a program for enumerating all pseudoline arrangements with a small number of pseu-
dolines and abstract order types of small point sets. This program supports computer experiments
with these structures, and it complements the order-type database of Aichholzer, Aurenhammer,
and Krasser. This system makes it practical to explore the abstract order types for 12 points, and
the pseudoline arrangements of 11 pseudolines.

1 Introduction

Questions about finite configurations of points or lines are at the core of discrete geometry.
As one example of an outstanding open question, we mention the rectilinear crossing number
problem for the complete graph Kn: For a given set S of n points in the plane, draw all
straight segments between points in S, and count the pairs of segments that cross. What is
the smallest number that can be obtained?

The order type of a point set. This question and many other questions and algorithms in
discrete and computational geometry depend only on the “combinatorial structure”, which is
typically captured by an orientation predicate: Consider a finite point set S = {p1, . . . , pn}.
For each triplet pi, pj , pk ∈ S, we need to know whether they lie in clockwise or counter-
clockwise order, or whether they are collinear. This information is enough to determine,
say, the number of convex hull vertices, or the crossing number.

The order-type database. It is useful if one can let the computer exhaustively check small
examples. This may provide a sanity check for wild conjectures, or it may form the basis for
quantitative results that hold in general. We will mention one example below. The prime
tool that facilitates this approach is the order-type database of Aichholzer, Aurenhammer,
and Krasser [1, 2] at Graz University of Technology from the early 2000’s. Originally,
it contained a point set (given explicitly by coordinates) for each of the 14,309,547 order
types of 10 points, as well as for the smaller sets. These point sets are optimized to avoid
degeneracies as much as possible. Later, the database was extended [4] to include the 2.3
billion order types of 11 points (see the second column of Table 1).

Over the years, the database has been enriched with useful information about each order
type, ranging from the size of the convex hull to advanced characteristics that are hard
to compute, such as the number of triangulations or the number of crossing-free Hamilton
cycles. The database of order types with up to 10 points can be obtained from the website of
the project1, and it can be queried via an e-mail interface. The database for 11 points needs

1 http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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102.7 GBytes (44 bytes per order type for two 16-bit coordinates per point). Obviously, the
approach of storing a representative of every order type has currently reached its limits with
11 points. We take an alternative approach: generating order types from scratch.

Big results from small sets. We mention just one example of a result that rests on the
order-type database. Aichholzer et al. [3, Theorem 1] proved that every set S of n points
in general position contains Ω(n log4/5 n) convex 5-holes, i.e., 5-tuples of points in convex
position with no points of S in the interior. Harborth [11] showed in 1978 that every set of
10 points contains a convex 5-hole. From this, one gets an immediate lower bound of ⌊n/10⌋
5-holes by partitioning S into groups of size 10 by vertical lines. Various improvements of
the constant factor of this linear bound were obtained over the years. The superlinear bound
Ω(n log4/5 n) goes beyond what can be reached by this simple technique. Nevertheless, at
the basis of its proof, there are some structural lemmas about sets of 11 points. These
lemmas were checked with the help of a computer by exhaustive enumeration of order types.

1.1 Line arrangements and pseudoline arrangements
The well-known duality

point (a, b) ←→ line y = ax− b (1)

is a bijection between points and non-vertical lines. It swaps the role of points and lines,
and it preserves incidences and above-below relationships. Thus, problems about points can
be translated into problems about lines and vice versa.

Pseudoline arrangements and abstract order types of points. Pseudoline arrangements
are a generalization of line arrangements. A pseudoline arrangement (PSLA) is a collection
of unbounded curves, with the condition that any two curves intersect exactly once, and
they cross at this intersection point. We refer to these curves as pseudolines or simply as
lines. See Figure 1 for an example with 5 pseudolines. The middle and the right picture
show a standard representation as a wiring diagram, in two different styles, as produced by
our program. In a wiring diagram, the pseudolines run on n horizontal tracks, and they
cross by swapping between adjacent tracks.

1

2

3

4

5 1

2

3

4

5

0 0 1 2-2-2-2 4-4-4-4 5
X X X

2 1 3-3 4 2 3-3 5 4
X X X X

3-3 1 4 3-3 2 5 3-3
X X

4-4-4 1 5-5-5 2-2-2
X

5-5-5-5 1-1-1-1-1-1

Figure 1 An arrangement of 5 pseudolines, extended by a pseudoline 0 “at infinity”.

By duality, there is an analogous notion for point configurations, an abstract order type
(AOT). We will elucidate this relation in Section 3. There are many other notions for these
objects (rhombus tilings, oriented matroids of rank 3, signotopes), see [6, Chapter 6].

Our program focuses on pseudoline arrangements as the primary objects. The main
reason is that they are easy to generate in an incremental way. Another reason is that they
are easy to draw and to visualize.
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Throughout this paper, we will assume general position. In other words, we restrict our
attention to simple pseudoline arrangements, where no three lines go through a common
point. In the setting of point sets, this corresponds to excluding collinear point triples.

[A006247] [A063666] ∆ = [A006245]
n #AOT #OT #nonr. AOT

∆
#AOT #PSLA

3 1 1 0 0 2
4 2 2 0 0 8
5 3 3 0 0 62
6 16 16 0 0 908
7 135 135 0 0 24,698
8 3,315 3,315 0 0 1,232,944
9 158,830 158,817 13 0,01 % 112,018,190

10 14,320,182 14,309,547 10,635 0,07 % 18,410,581,880
11 2,343,203,071 2,334,512,907 8,690,164 0,37 % 5,449,192,389,984
12 691,470,685,682 2,894,710,651,370,536
13 366,477,801,792,538 2,752,596,959,306,389,652

Table 1 #AOT = number of abstract order types for n points. #OT = number of order
types. #PSLA = number of (x-monotone) pseudoline arrangements with n pseudolines. These
are the objects that the program actually enumerates one by one (almost, because we try to apply
shortcuts). The column headings link to the Online Encyclopedia of Integer Sequences [15].

1.2 Overview
We will describe our algorithm for enumerating pseudoline arrangements, and we will apply
it to enumerate abstract order types. None of the techniques that we use are novel, but we
have tried to streamline and simplify the algorithms. In terms of speed, we can compete with
the order type database, see [14, Appendix A] in the full version of this paper. The main
distinction is, of course, that the order type database contains only realizable order types,
and that they come with coordinates. For many applications, the restriction to realizable
order types is not important, and coordinates are not needed. In these applications, our
approach shows its strength. Mustering the 14 million 10-point abstract order-types takes
10–20 seconds. The 11-point sets can be handled in half an hour, and the 12-point sets take
about 200 CPU hours. To this, one must of course add the time for whatever one wants
to do with those order types. The program is trivially parallelizable, and with a powerful
compute-cluster, it is feasible to go even for 13 points, see [14, Appendix E].

The program is available on GitHub [13]. It is written in C, using the CWEB system of
structured documentation of Donald E. Knuth and Silvio Levy2. We have occasionally used
the enumeration for research questions, and we hope that it finds other users.

2 Enumeration of pseudoline arrangements

We concentrate on x-monotone pseudoline arrangements, in which the curves are x-monotone.
Every pseudoline arrangement can be drawn in an x-monotone way, but this incurs a choice:
One of the unbounded faces must be selected as the top face T , and the opposite unbounded

2 http://tug.ctan.org/info/knuth/cwebman.pdf

EuroCG’25
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face will become the bottom face B. Then the lines run from left to right, and we number
them from 1 to n as they appear from top to bottom on the left side. If they were straight
lines, they would be numbered by increasing slope.

2.1 Representing a pseudoline arrangement

The vertices and edges of a pseudoline arrangement form a plane graph. Navigation in this
graph and manipulation of it is greatly simplified by the fact that we have precise control
over the vertices: There is a vertex for each pair of lines, and every vertex has degree 4. We
thus store the edges in two 2-dimensional arrays succ and pred of successor and predecessor
pointers. The entries succ[j, k] and pred[j, k] refer to the crossing between line k and the
line j. We think of the lines as oriented from left to right. Then succ[j, k] and pred[j, k]
point to the next and previous crossing on line j. For the reversed index pair [k, j], we get
the corresponding information for line k. Thus, in the example of Figure 1, succ[2, 3] = 5,
and accordingly, pred[2, 5] = 3.

We can easily determine which of j and k enters the intersection (k, j) from the top and
bottom: By our numbering convention, the line with the smaller index always enters above
the other line, and to the right of the crossing, it lies below the other line.

The infinite rays on line j are represented by the additional line 0: succ[j, 0] is the first
(leftmost) crossing on line j, and pred[j, 0] is the last crossing. The intersections on line 0
are cyclically ordered 1, . . , n. Thus, succ[0, i] = i + 1 and succ[0, n] = 1.

2.2 Incremental generation of pseudoline arrangements

We generate a PSLA with n lines by inserting line n into a PSLA with n − 1 lines, in all
possible ways. Then each PSLA has a unique predecessor PSLA, and this imposes a tree
structure on the PSLAs, see Figure 2. Our program explores this enumeration tree in depth-
first order. If we number the children of each node in the order in which they are visited,
this leads to a unique identifier for every node, and thus for every PSLA, analogous to the
Dewey decimal classification that is used to classify books in libraries.

Inserting the n-th pseudoline into a PSLA of n−1 lines corresponds to threading a curve
from the bottom face B to the top face T , see Figure 3. (We temporarily relax the require-
ment that the extra pseudoline has to be x-monotone.) Following Knuth [12, Section 9,
p. 38], such a curve is called a cutpath [7]. This corresponds to a source-to-target path in
the dual graph of the PSLA. Orienting the dual edges in the way how line n can cross them,
namely, from below to above, leads to a directed acyclic graph (a DAG). We can enumerate
all such paths in a backtracking manner. Since the DAG has no sinks other than the target
vertex T , a path cannot get stuck, and thus the enumeration of the paths is simple and fast.

The whole algorithm is thus a double recursion. The outer recursion extends a PSLA by
adding a pseudoline n. The inner recursion extends a partially drawn pseudoline n to the
next crossing, see Figure 4. It is implemented by walking along the boundary of the face that
has been entered through the last crossing. All upper edges of the face are candidate edges
for the next crossing of line n, and we try them in succession. We have decided to walk in
counterclockwise order around the face. This means that the paths for line n are generated
in “lexicographic” order from right to left, as can be checked in Figure 2. [14, Appendix F]
gives a self-contained Python program that implements this enumeration algorithm.
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11
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2

62

...

1

2.3.1 2.3.5

1.2

Figure 2 The first three three levels of the enumeration tree and a few nodes of the fourth level.
The last inserted pseudoline is highlighted in red. For some nodes, the decimal notation is indicated.

3 Duality between pseudoline arrangements and abstract order types

The duality between pseudoline arrangements and abstract order types is not as straight-
forward as one would hope for. Figure 5 shows the intricate network of relationships. At
the lower left corner, we find our favorite objects, the (x-monotone) PSLAs. The top right
box refers to oriented abstract order types (OAOTs), where a point set is still distinguished
from its reflection. (AOTs don’t make this distinction.) The relations are discussed in [14,
Appendix B]. The (x-monotone) PSLAs with n pseudolines correspond to OAOTs or AOTs
with n+1 points, but the correspondence is not one-to-one. Different PSLAs may give rise to
the same OAOT and AOT, and the algorithm has to take care of this ambiguity in order to
enumerate OAOTs or AOTs without duplication. The details are given in [14, Appendix D].
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bottom face B
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1bottom face B

top face T

Figure 3 Left: Threading line 6 through a PSLA of 5 lines. Right: The dual DAG of this PSLA
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n

Figure 4 Continuing line n after entering a face.

projective PSLA (n + 1)

affine PSLA (n)

select an oriented circle
as the “line at infinity”

x-monotone PSLA (n)

select an outer face
as the “top face”

select an
oriented edge ~e

x-sorted OAOT (n)
duality

= marked OAOT (n + 1)

(with k points on
the upper hull)

(with k + 1 points
on the convex hull)

=

A006245

projective PSLA (n + 1)
with a marked face

OAOT (n + 1)
polarity

=select a face

projective PSLA (n + 1)
with a marked face and edge

select an edge on that face

polarity
=

mark a convex
hull vertex

Figure 5 Relation between different concepts. A unidirected arrow indicates a specialization.

4 Parallelization

We have implemented a trivial way to parallelize the enumeration. The user can choose a
split level, usually 8. The program will then work normally up to level 8 of the tree, that is, it
will enumerate all 1,232,944 PSLAs with 8 lines, but it will only expand a selection of these
PSLAs. The selection is determined as follows. As the PSLAs with 8 lines are enumerated,
a running counter is incremented, thus assigning a number between 1 and 1,232,944 to each
PSLA. We specify a modulus m and a value k. Then the program will expand only those
nodes whose number is congruent to k modulo m. By running the program for k = 1, . . . , m,
the work is split into m roughly equal parts.

5 Enumerating only the realizable AOTs

We implemented a provision to enumerate only the (realizable) order types of points sets,
for up to 11 points, to make the results comparable with those of the order-type database:
There is an option to specify an exclude-file for the program. The exclude-file is a sorted list
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of decimal codes for tree nodes that should be skipped.3 The exclude-files were prepared
with the help of the order-type database. Essentially, we are storing the AOTs that are not
realizable, which is a tiny minority compared to the realizable ones, see Table 1. Still, the
exclude-file for up to 11 points has 8,699,559 entries and needs 184.6 MBytes. (With some
technical effort, like eliminating common prefixes or a compressed binary format, one could
reduce this space requirement significantly.)

6 Experiments and Extensions

We have gathered some statistics about various quantities for PSLAs and AOTs, such as the
number of cutpaths, the number of hull vertices, the number of halving-lines, or crossing
numbers. The results are reported in [14, Appendix E].

There are many ways in which one could think of extending the program.
1. We have concentrated on AOTs. PSLAs were used only as a tool to enumerate AOTs, but

PSLAs could also be considered in their own right. They might be counted or classified
with respect to different criteria, like projective equivalence classes or affine equivalence
classes (cf. Figure 5).

2. “Partial” pseudoline arrangements, in which lines are not forced to cross; see Figure 6.

1

1

2 3

4

5

6

7

7

6

5
3

4

8

8

2

Figure 6 Example of a partial PSLA

3. Non-simple pseudoline arrangements, in which more than two pseudolines are allowed to
cross in a point. In the language of oriented matroids, they correspond to nonuniform
oriented matroids, and they have be enumerated by a method of Finschi and Fukuda [9],
also in higher dimensions, see [8] for a catalog. These are much more numerous, see also
Table 1 in [10], where also the realizability is considered. Handling them by our approach
would involve a redesign of the data structures from scratch.

4. Random generation. It is easy to generate a random PSLA by diving into the tree ran-
domly. This random selection will, however, be far from uniform, see [14, Appendix E.2].

5. A side issue are nice drawings of pseudoline arrangements. The wiring diagram is simple
to obtain but it is very jagged. Stretchability can be a very hard problem. Constructing

3 Currently the exclude-file feature does not work together with the parallelization feature. (For 11
points, the program should anyway be fast enough without parallelization.)
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a drawing in which the pseudolines don’t “bend too much” would be an interesting
challenge. (Maybe it would be an idea for a Geometric Optimization Challenge4, perhaps
in connection with the random generation method mentioned above.)

Acknowledgements. We thank the High-Performance-Computing Service of FUB-IT, Freie
Universität Berlin [5] for computing time.
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Abstract
We classify the special families of dihedral folding tilings of the sphere induced by the Möbius
triangle (2, 3, 4). Tilings in general are challenging to enumerate. The ones in our study emerge from
the study of isometric foldings in the sphere and meet at a juncture of the triangle group ∆(2, 3, 4)
and monohedral tilings of the sphere. The juxtaposition enables us to overcome the challenges in
enumerating the tilings as a constraint satisfaction problem and unify the related classifications.

Related Version arXiv:2411.05973

1 Introduction

Tilings have been continuously studied for the long-held fascination with them. Milestones
include the classification of the Wallpaper groups [15, 23], the solution to Hilbert’s 18th
problem [10, 19, 24], the discovery of Penrose tilings [25], the classification of the isohedral
tilings of the plane [17], and most recently the discovery of aperiodic monotiles [29] of
the plane as well as the classification of edge-to-edge monohedral tilings of the sphere
[8, 9, 13, 14, 18, 20, 30, 32, 33].

The essence of many tiling problems concerns the existence of tilings under a set of
constraints. The existence can be formulated as the solutions to the corresponding constraint
satisfaction problems. The constraints are defined by the chosen types of tiles and how the
tiles can be put together. In general, these constraint satisfaction problems are however not
easy to solve merely by brute force. For example, despite the compactness of the sphere
S2 and a concrete choice of tiles, without strong assumptions (such as global symmetry),
the construction of a tiling can only start at a single tile and goes from tile to tile. The
recurrence is further complicated by the multiple ways of arranging incident tiles at a vertex
and the available choices of tiles. This is why the heavy machinery in [13, 14] is in vain in
front of certain problems. Ours is one of them. The problem is a part of the programme
to classify spherical tilings of folding type and the concrete choices of tiles emerge from a
natural progression. Unlike the previous effort, enumeration in this one would be challenging
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by recursion, let alone by hand. By identifying a choice of tiles as the Möbius triangle
(2, 3, 4), the problem is placed under a unifying framework, as the hardest case in a three-case
problem. It then reveals that all three cases originate from two mother tilings. This not only
grants us clarity on the complexity but also unifies the current work in the classification.

The subject of this paper can be traced back to the juxtaposition of two topics. One
centres on the function spaces of isometric foldings between Riemannian manifolds. An
f-tiling is the set of singularities of an isometric folding g : S2 → S (definition in [26]) where
S is a smooth oriented Riemannian surface. Foldings help to explain structural stability
in catastrophes (catastrophe theory) [27]. It has been conjectured for S = S2 that any
isometric folding is homotopic, through isometric foldings, to the trivial isomeric folding
f(x, y, z) := (x, y, |z|) or to f composed with the reflection in the xy-plane [26, Example
4]. The classification of f-tilings provides ample testing cases for the conjecture, which were
previously unavailable. Another topic is geometric group theory where the triangle groups
are studied as realisations via reflections across the edges of Möbius triangles. In general,
Möbius triangles are Schwarz triangles ∆(l,m, n) with l,m, n ∈ N. They are related to the
solutions of hypergeometric functions [21] and the symmetry study of graphs and maps [28].

1.1 The Problem
The spherical tilings we study are dihedral, meaning that in each tiling some tiles are congruent
to one polygon while the others are congruent to a different polygon. The polygons are called
the prototiles of a tiling. If a tiling has exactly one prototile, then it is called monohedral. A
tiling is called edge-to-edge if no vertex lies in the interior of an edge.

We focus on spherical dihedral tilings of folding type (or f-tilings for short), meaning that
1) they are edge-to-edge, and 2) at each vertex, its degree is even and ≥ 4, and the sums of
alternate angles are π. The sums of alternate angles at a vertex of even degree means that
for the 2k (for some integer k ≥ 2) angles α1, α2, ..., α2k labeled cyclically,

k∑

i=1
α2i−1 =

k∑

i=1
α2i = π. (1)

The degree of a vertex is necessarily even if (1) is satisfied. Note that these two conditions on
a vertex are consequences of the Hopf degree of an isometric folding f (necessarily continuous)
and S2 being closed and orientable [26, Theorem 5]. The even degree condition implies a
triangle in the tiling, explained by the following lemma.

I Lemma 1.1. A triangle-free edge-to-edge spherical tiling has a vertex of degree 3.

Proof. In the underlying graph of such a tiling, let fm, vk denote the numbers of m-gons for
m ≥ 4 and vertices of degree k for k ≥ 3, and let v, e, f denote the total numbers of vertices,
edges and faces, respectively. Then f =

∑
m≥4 fm and v =

∑
k≥3 vk. Recall the Euler’s

polyhedral formula and the Dehn-Sommerville formulae [22],

v − e+ f = 2, (2)

2e =
∑

k≥3
kvk, (3)

2e =
∑

m≥4
mfm. (4)
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For m ≥ 4, the last formula implies 2e ≥ 4f . Combining the first two formulae gives

2 = v − e+ f ≤ v − e+ e
2 = v − e

2 =
∑

k≥3

(
1− k

4
)
vk,

which implies v3 > 0. Namely there is a degree 3 vertex. J

In view of the realisation of the triangle group ∆(2, 3, 4), we explain below how the
prototiles in this paper can be understood under a general framework. As one of the
reflection groups of the sphere, ∆(2, 3, 4) is represented as follows,

∆(2, 3, 4) = 〈u, v, w |u2 = v2 = w2 = (uv)2 = (vw)3 = (wu)4〉,
where u, v, w are the three generators. The group is the automorphism group of a spherical
tiling by the spherical triangle with angles 1

2π,
1
3π,

1
4π, which is known as the Möbius triangle

(2, 3, 4). The angles α = 1
4π, β = 1

3π, γ = 1
2π (first picture of Figure 1) means that the

opposite edges have distinct lengths a, b, c, pictorially represented by ‖, and | respectively.
The Möbius triangle is one of the two prototiles in each case. The other prototile is

induced by the Möbius triangle under the reflections of the triangle group ∆(2, 3, 4). The
induced prototile is one of the three cases given by gluing two mirror images of the Möbius
triangle along an edge: a kite (the second picture) along the c-edge, an isosceles triangle (the
third picture) along the b-edge, or an isosceles triangle (the fourth picture) along the a-edge.
The angles of the kite are denoted by α2, β2, γ, γ, where α2 (resp. β2) denotes 2 copies of α
(resp. β). The angle notations in the isosceles triangles are defined similarly. Let x̄ = 2x for
x = a, b. Then the prototiles are referred to as the Möbius triangle, the kite and the isosceles
triangles 4āc2,4b̄c2. The dihedral f-tilings with the Möbius triangle and one of the three
induced prototiles are referred to as the dihedral f-tilings induced by the Möbius triangle.

a

b

c

β

α

γ

Möbius triangle (2, 3, 4)

a

b

a

b

β2

α2

γγ

kite

c

β

c

β

ā = 2a

α2

4āc2

c

α

c

α

b̄ = 2b

β2

4b̄c2

Figure 1 The Möbius triangle 4abc, the kite �a2b2, and the isosceles triangles 4āc2 and 4b̄c2,
α = 1

4π, β = 1
3π and γ = 1

2π

The complexity in enumerating the tilings having the kite is beyond manual effort, which
has led to the above framework. In general, the framework unifies significant classifications of
dihedral f-tilings under Möbius triangles. The tiling having automorphism group ∆(2, 3, 4) is
one of the two mother tilings. Both mother tilings in plane drawings are shown in Figure 2.

We state below the problem and the version in terms of a constraint satisfaction problem.
I Problem. Determine the dihedral f-tilings induced by the Möbius triangle (2, 3, 4).
I Problem (The Related Constraint Satisfaction Problem). Subject to the constraints
of the chosen prototiles together with each vertex having an even degree and its sums of
alternate angles equal to π, enumerate the unique tilings up to isometry.

2 Main Result

I Theorem 2.1. There are a total of 123 dihedral f-tilings induced by the Möbius triangle
(2, 3, 4). Among them, there are

EuroCG’25
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1. 104 dihedral f-tilings by the Möbius triangles and the kites; and
2. 12 dihedral f-tilings by the Möbius triangles and the 4āc2-triangles; and
3. 7 dihedral f-tilings by the Möbius triangles and the 4b̄c2-triangles.

The last two cases were previously completed in [4] and [7] respectively.

Sketch of the Proof. Reversing the gluing in the second prototile results in two identical
Möbius triangles. Then in a dihedral tiling, dividing each tile congruent to the second
prototile into the Möbius triangles results in a monohedral tiling. The classification theorem
in [13, 30] states that such a tiling is either the barycentric subdivision BO of the octahedron
O and its flip modification FBO (plane drawings in Figure 2).

BO FBO

Figure 2 The plane drawings of the barycentric subdivision of the octahedron BO and its flip
modification FBO; the arrows in each picture converge to a single vertex

In view of the “universality” of the mother tilings BO, FBO, the dihedral f-tilings are
determined by the presence (or the absence) of each division edge x in one of BO, FBO,
subject to the folding conditions for a fixed x = a, b or c. We call a result from this process an
x-edge assignment (in BO or FBO) or simply an edge assignment. For example, when x = c,
the dashed lines in BO and FBO in Figure 3 indicate the locations where c-edges is assigned
or otherwise. In BO, the labels, Ti for i ∈ I := {1, ..., 8} and Sj for j ∈ J := {1, ..., 6},
represent the vertices corresponding to the cube (dual to the octahedron) and the octahedron,
respectively. In FBO, the vertices after a 1

4π-rotation in the inner hemisphere of BO are
denoted as T ′1, T ′2, T ′3, T ′4 and S′2, S′3, S′4, S′5.

S1 S2

S3

S4

S5

S6S6

S6

S6

T1T2

T3 T4

T5T6

T7 T8

S1 S2

S3

S4

S5

S′
3S′

4

S′
5 S′

2

S6S6

S6

S6

T ′
1

T ′
2

T ′
3

T ′
4

T5T6

T7 T8

Figure 3 Locations of c-assignments in BO and FBO marked by dashed lines

Since the dihedral f-tilings are obtained by x-edge assignments in BO and FBO for fixed
x = a, b or c. It suffices to determine which assignments are unique up to isometry. For that,
we use the geometric models (Figure 4) having equivalent position vectors of the vertices
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in R3 and then use their corresponding automorphism group to check for isometry between
assignments. The models for BO and FBO are the spherical deltoidal icositetrahedron o C
(Conway’s notation) and the spherical pseudo-deltoidal icositetrahedron Fo C respectively.
From Figure 4, it can be seen that the two are related via rotating the lower hemisphere (corr.
to the inner hemisphere in Figure 3) along the equator. The automorphism group of o C is
the triangle group G = ∆(2, 3, 4) (the octahedral symmetry), whereas the automorphism
group G′ of Fo C follows from the orbit-stabiliser theorem [16, Theorem 16.16]. J

Figure 4 Models used for the c-edge assignment – the spherical deltoidal icositetrahedron o C
and the spherical pseudo-deltoidal icositetrahedron Fo C

3 The Algorithm

Pseudocode in Algorithm 1 outlines the algorithm for the c-edge assignment based on Figure
3 where the dashed lines mark where a c-edge is to be assigned or not. The degree assignment
procedure counts how many c-edges are to be assigned to a vertex Ti. Since the existing
degree of Ti is 3, to have an eventual even degree, only 1 or 3 is assigned to Ti. After filtering
out the duplicates, c-edges are assigned based on the non-isomorphic degree assignments.
Finally, duplicates in c-edge assignment are filtered out. The other cases are done similarly.

EuroCG’25
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Algorithm 1 Degree & Edge Assignments for the c-Edge Assignment
procedure Assign suitable degree to each Ti for i = 1, ..., 8

for each Ti do
Deg_Assignment: assign suitable degree to Ti so that Ti is even
keep Deg_Assignment
if Deg_Assignment_List is empty then

add Deg_Assignment to Deg_Assignment_List
else

for σ ∈ G do
if σDeg_Assignment ∈ Deg_Assignment_List then

Is_isomorphic: true
if Is_isomorphic = true then

add Deg_Assignment to Deg_Assignment_List
procedure Assign edge(s) to each Ti for i = 1, ..., 8 and neighbouring Sj for
j = 1, ..., 6 w.r.t. assigned degree

for each Deg_Assignment do
Edge_Assigment: assign edge(s) adjacent Ti, Sj
if Edge_Assigment satisfy folding conditions then

keep Edge_Assigment
if Edge_Assignment_List is empty then

add Edge_Assignment to Edge_Assignment_List
else

for σ ∈ G do
if σEdge_Assignment ∈ Edge_Assignment_List then

Is_isomorphic: true
if Is_isomorphic = true then

add Edge_Assignment to Edge_Assignment_List

4 Conclusion

We conclude with the plane drawings of the c-edge assignment (unique up to isometry) and
the link to all the tilings in 3D, https://www.geogebra.org/m/zfnap4pe.

Acknowledgments. The authors express their sincere gratitude for all the helpful comments
and constructive criticisms from the reviewers. The second author also thanks the organisers
for their assistance with all the submission-related matters.
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a b c d e
f g h i j
k l m n

BcO1

a b c d e
f g h i j
k l m n

BcO2

a b c d e
f g h i j
k l m n

BcO3

a b c d e
f g h i j
k l m n

BcO4

a b c d e
f g h i j
k l m n

BcO5

a b c d e
f g h i j
k l m n

BcO6

a b c d e
f g h i j
k l m n

BcO7

a b c d e
f g h i j
k l m n

BcO8

a b c d e
f g h i j
k l m n

BcO9

a b c d e
f g h i j
k l m n

BcO10

a b c d e
f g h i j
k l m n

BcO11

a b c d e
f g h i j
k l m n

BcO12

a b c d e
f g h i j
k l m n

BcO13

a b c d e
f g h i j
k l m n

BcO14

a b c d e
f g h i j
k l m n

BcO15

a b c d e
f g h i j
k l m n

BcO16

a b c d e
f g h i j
k l m n

BcO17

a b c d e
f g h i j
k l m n

BcO18

a b c d e
f g h i j
k l m n

BcO19

a b c d e
f g h i j
k l m n

BcO20

a b c d e
f g h i j
k l m n

BcO21

a b c d e
f g h i j
k l m n

BcO22

a b c d e
f g h i j
k l m n

BcO23

a b c d e
f g h i j
k l m n

BcO24

a b c d e
f g h i j
k l m n

BcO25

a b c d e
f g h i j
k l m n

BcO26

a b c d e
f g h i j
k l m n

BcO27

a b c d e
f g h i j
k l m n

BcO28

a b c d e
f g h i j
k l m n

BcO29

a b c d e
f g h i j
k l m n

BcO30

a b c d e
f g h i j
k l m n

BcO31

a b c d e
f g h i j
k l m n

BcO32

a b c d e
f g h i j
k l m n

BcO33

a b c d e
f g h i j
k l m n

BcO34

a b c d e
f g h i j
k l m n

BcO35

a b c d e
f g h i j
k l m n

BcO36

a b c d e
f g h i j
k l m n

BcO37

a b c d e
f g h i j
k l m n

BcO38

a b c d e
f g h i j
k l m n

BcO39

a b c d e
f g h i j
k l m n

BcO40

Figure 5 The c-edge assignments in BO up to isomorphism
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a b c d e
f g h i j
k l m n
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a b c d e
f g h i j
k l m n

BcO42

a b c d e
f g h i j
k l m n

BcO43

a b c d e
f g h i j
k l m n

BcO44

a b c d e
f g h i j
k l m n

BcO45

a b c d e
f g h i j
k l m n

BcO46

a b c d e
f g h i j
k l m n

BcO47

a b c d e
f g h i j
k l m n

BcO48

a b c d e
f g h i j
k l m n

BcO49

a b c d e
f g h i j
k l m n

BcO50

a b c d e
f g h i j
k l m n

BcO51

a b c d e
f g h i j
k l m n

BcO52

a b c d e
f g h i j
k l m n

BcO53

a b c d e
f g h i j
k l m n

BcO54

a b c d e
f g h i j
k l m n

BcO55

a b c d e
f g h i j
k l m n

BcO56

a b c d e
f g h i j
k l m n

BcO57

a b c d e
f g h i j
k l m n

BcO58

a b c d e
f g h i j
k l m n

BcO59

a b c d e
f g h i j
k l m n

BcO60

a b c d e
f g h i j
k l m n

BcO61

a b c d e
f g h i j
k l m n

BcO62

a b c d e
f g h i j
k l m n

BcO63

a b c d e
f g h i j
k l m n

BcO64

a b c d e
f g h i j
k l m n

BcO65

a b c d e
f g h i j
k l m n

BcO66

a b c d e
f g h i j
k l m n

BcO67

a b c d e
f g h i j
k l m n

BcO68

a b c d e
f g h i j
k l m n

BcO69

a b c d e
f g h i j
k l m n

BcO70

a b c d e
f g h i j
k l m n

BcO71

a b c d e
f g h i j
k l m n

BcO72

a b c d e
f g h i j
k l m n

BcO73

a b c d e
f g h i j
k l m n

BcO74

a b c d e
f g h i j
k l m n

BcO75

Figure 5 The c-edge assignments in BO up to isomorphism (cont.)
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a b c d e
f g h i j
k l m n

F BcO1

a b c d e
f g h i j
k l m n

F BcO2

a b c d e
f g h i j
k l m n

F BcO3

a b c d e
f g h i j
k l m n

F BcO4

a b c d e
f g h i j
k l m n

F BcO5

a b c d e
f g h i j
k l m n

F BcO6

a b c d e
f g h i j
k l m n

F BcO7

a b c d e
f g h i j
k l m n

F BcO8

a b c d e
f g h i j
k l m n

F BcO9

a b c d e
f g h i j
k l m n
F BcO10

a b c d e
f g h i j
k l m n
F BcO11

a b c d e
f g h i j
k l m n
F BcO12

a b c d e
f g h i j
k l m n
F BcO13

a b c d e
f g h i j
k l m n
F BcO14

a b c d e
f g h i j
k l m n
F BcO15

a b c d e
f g h i j
k l m n
F BcO16

a b c d e
f g h i j
k l m n
F BcO17

a b c d e
f g h i j
k l m n
F BcO18

a b c d e
f g h i j
k l m n
F BcO19

a b c d e
f g h i j
k l m n
F BcO20

a b c d e
f g h i j
k l m n
F BcO21

a b c d e
f g h i j
k l m n
F BcO22

a b c d e
f g h i j
k l m n
F BcO23

a b c d e
f g h i j
k l m n
F BcO24

a b c d e
f g h i j
k l m n
F BcO25

a b c d e
f g h i j
k l m n
F BcO26

a b c d e
f g h i j
k l m n
F BcO27

a b c d e
f g h i j
k l m n
F BcO28

a b c d e
f g h i j
k l m n
F BcO29

Figure 6 The c-edge assignments in FBO up to isomorphism
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Abstract
The traveling salesman problem (TSP) famously asks for a shortest tour that a salesperson can take
to visit a given set of cities in any order. In this paper, we ask how much faster k ≥ 2 salespeople
can visit the cities if they divide the task among themselves. We show that, in the two-dimensional
Euclidean setting, two salespeople can always achieve a speedup of at least 1

2 + 1
π

≈ 0.818, for any
given input, and there are inputs where they cannot do better. We also give (non-matching) upper
and lower bounds for k ≥ 3.

1 Introduction

The traveling salesman problem (TSP) asks, given n cities and their pairwise distances, for
the shortest tour that visits each city. It is one of the best studied optimization problems,
well-known to be NP-hard even in the planar Euclidean case, i.e., if the cities are points in
R2, and the distance between any two points is the Euclidean distance [11]. This restricted
version of the problem admits a polynomial-time approximation scheme (PTAS) [3, 14],
whereas the more general case of metric distances is known to admit an approximation
ratio slightly below 1.5 (from the recent breakthrough [13] that improved the longstanding
approximation ratio of 1.5 due to Christofides [8]).

In this paper, we focus on the two-dimensional Euclidean case and study the following
natural question: How much faster can all cities be visited if multiple salespeople can
collaborate on performing the task, and each city has to be visited by at least one salesperson?
More formally, we wish to cover a given point set P with multiple (say, k) closed curves,
instead of a single one, minimizing the maximum length among the k curves. Intuitively, the
k salespeople execute their tours simultaneously, and all have to return to their respective
(arbitrary) starting points before a given deadline.

The specific question we ask is: How does the cost improve with the parameter k, when
compared to the normal TSP cost, in the worst case? This ratio, which we precisely define
next, can be seen as an inherent measure of decomposability of the TSP problem.

A tour of a point set P ⊂ R2 is a closed polygonal curve that contains each point in P .
A tour is optimal if its length is minimal among all tours.1 The length of an optimal tour of
P is denoted by TSP(P ). Note that the optimal tour is necessarily a simple polygon, and
in particular, it visits each point in P exactly once. (We still allow degenerate cases, such

1 We do not require vertices of a tour to be from P , though this is clearly the case for optimal tours.
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as polygons with one or two corners, or polygons on multiple collinear points.) Let Sk(P )
denote the set of partitions of P into at most k subsets, and let

TSPk(P ) = min
R∈Sk(P )

max
Q∈R

TSP(Q).

Intuitively, the quantity TSPk(P ) corresponds to the least amount of time k salespeople need
to serve the points in P . In particular, TSP1(P ) = TSP(P ).

The ratio γ(P, k) = TSPk(P )/ TSP(P ) indicates the advantage that k salespeople have
over a single one. Observe that always γ(P, k) ≤ 1, but γ(P, k) can be arbitrarily small (e.g.,
if P consists of two very small clusters that are far apart from each other). In consequence,
it makes sense to ask how large γ(P, k) can get, i.e., how much of an improvement we can
guarantee when using multiple salespeople. Accordingly, we define:

γ(k) = sup
P

γ(P, k) = sup
P

(
TSPk(P )
TSP(P )

)
.

Clearly, γ(1) = 1. The main result of this paper is the precise determination of γ(2).
▶ Theorem 1.1. γ(2) = 1

2 + 1
π ≈ 0.818.

We further give some lower and upper bounds for γ(k) when k ≥ 3.
▶ Theorem 1.2. For all k ≥ 2, we have γ(k) ≥ 1

k + 1
π sin π

k .

▶ Theorem 1.3. For all a, b ∈ N, we have γ(a · b) ≤ γ(a) · γ(b).

▶ Theorem 1.4. For all a, b ∈ N, we have

γ(a + b) ≤
(
1 + 2

π

)
· γ(a) · γ(b)

γ(a) + γ(b) .

From our results we can derive, e.g., γ(3) ∈ (0.609, 0.737), γ(4) ∈ (0.475, 0.670). For
a table of approximate results for larger k, and proof details omitted in this abstract, we
refer to the arXiv version of the paper. We leave determining tight bounds for k ≥ 3 as a
challenging open question. A generalization of the problem to higher dimensions or to more
general metric spaces is likewise interesting.

Related work. Although many variants of TSP with multiple salespeople have been studied
in the literature, we are not aware of the ratio γ(k) being explicitly considered before. We
mention a few works that study problems of a similar flavor.

The min-max cycle cover problem refers to a quantity essentially equivalent to TSPk

in a more general weighted graph setting; e.g., see [17]. In the TSP literature, closely
related problems include the k-person TSP, multiple TSP, and multi-depot vehicle routing,
e.g., see [4, 16, 15, 6] (and references therein). These problems are studied under various
optimization criteria and often with additional constraints; for instance, in several formulations
a starting point for each salesperson, or alternatively, a common starting point for all, are
specified. A “depot-free” variant essentially matching our setting has been studied in [9]. All
these works aim at computing optimal or approximate solutions for given input instances,
whereas our concern is the worst-case ratio γ(k) in a geometric/Euclidean case.

In a geometric setting, a cost-ratio similar to ours has been studied for the minimum
spanning tree (MST) problem, but with sum, rather than maximum criterion, e.g., see [1, 10].
Bereg et al. [5] study a partitioned MST and TSP problem, where starting points are given
and the parts must have equal cardinality. Arkin et al. [2] and Johnson [12] study optimization
problems under a two-partitioning similar to ours, but with a pairing of points given as part
of the input, requiring each pair to be separated.
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2 Preliminaries

A curve C is the image of a continuous function c : [0, ℓ] → R2, for some ℓ ∈ R+. We call c

a parametrization of C. If c(0) = c(ℓ), then the curve is closed. It is sometimes useful to
extend the domain of c to R≥0; in this case, we set c(x) = c(x) mod ℓ if x > ℓ. Observe that
this function is still continuous.

We define polygons and polygonal curves in the usual way. Observe that a polygonal
curve C can be parametrized with a function c : [0, ℓ] → R2 such that for two points c(x) and
c(y) on the curve, the distance in clockwise direction along the curve between c(x) and c(y)
is precisely |x − y|. We then call c a canonical parametrization of C. We write |C| = ℓ for
the length of C.

Given a closed curve C and two distinct points p, q on C, we call the line segment pq a
diagonal, and we denote by C(p, q) the subpath of C from p to q in the positive direction
according to the parametrization. Formally, let c : [0, ℓ] → R2 be a parametrization of C

and let p = c(x1) and q = c(x2). Then C(p, q) is the curve parametrized by c′, where c′ is c

restricted to the interval [x1, x2] if x1 < x2, or to the interval [x2, ℓ + x1] otherwise.

C

(a) (b)

q

p

C(q, p)
C(p, q)

Figure 1 (a) A curve C. (b) Curves C(p, q) and C(q, p), assuming a clockwise parametrization.

Width. Given an angle θ, let uθ = (cos θ, sin θ) be the unit vector in direction θ. The
(directional) width of a closed curve P in direction θ is the minimum distance between two
parallel lines, orthogonal to uθ, that enclose P (see fig. 2). Equivalently, it is the length of
the projection of P to a line parallel to uθ. Formally, we write:

w(uθ, P ) = max
p∈P

⟨uθ, p⟩ − min
p∈P

⟨uθ, p⟩.

The width of a closed curve P is the minimum width over all directions:

w(P ) = min
θ∈[0,π)

w(uθ, P ).

It is well known [7] that the mean width (computed by integration over all directions)
of a closed convex curve is precisely its length divided by π. Since the width of a curve is
clearly at most its mean width, we have:

▶ Lemma 2.1. For any convex closed curve C on R2, w(C) ≤ |C|/π.

3 Lower bounds: the circular point set

We start with an illustrative special case that will also provide our lower bound for the case
k = 2. Let Pn be a set of n ≥ 2 points, arranged regularly-spaced along the unit circle. More
precisely, define Pn = {pi | 1 ≤ i ≤ n} with pi = (cos(2π i

n ), sin(2π i
n )). See fig. 3 (a).

EuroCG’25
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w(P, θ1)

P

w(P, θ2)

θ1

θ2

Figure 2 A polygon and its width with respect to directions θ1 and θ2. Here w(P, θ1) < w(P, θ2).

p1p9

p2

(a) (b)

Figure 3 (a) Point set P16. (b) Balanced partition of P16.

Clearly, the shortest tour of Pn goes around the circle, approaching a length of 2π as n

goes to infinity. Thus, we have TSP(Pn) → 2π. Now, consider the case k = 2. The intuitively
best way of splitting the point set is shown in fig. 3 (b): Divide the circle with a straight cut
into equal parts (assume for simplicity that n is even). For both parts, take the half-circle
plus the diagonal as a tour. As n goes to infinity, the length of each of these tours will tend
towards π + 2 (half the circumference plus twice the radius). Thus, the following holds:

lim
n→∞

γ(Pn, 2) ≤ π+2
2π = 1

2 + 1
π .

Later, in section 4, we show that this upper bound holds for every point set, using a
similar technique of “halving” the optimal tour.

For our circular point set, it turns out that the bound is tight, since the above construction
is optimal, as we show now. The main technical lemma is the following (proof omitted).

▶ Lemma 3.1. Let P2n = {pi | 1 ≤ i ≤ 2n} with pi = (cos(2π i
2n ), sin(2π i

2n )). Let
m ≤ 2n, let Am = {p1, p2, . . . , pm}, and let B ⊆ P2n be an arbitary subset of size m. Then
TSP(Am) ≤ TSP(B).

Let us argue how it implies our claim. Take any partition of P2n into two sets A

and B. Without loss of generality, we have |B| ≥ n. Thus, by Lemma 3.1, we have
TSP(B) ≥ TSP(An). Therefore, the partition {An, P2n\An} is optimal, as desired. As argued
above, we have limn→∞ TSP(An)/ TSP(P2n) = 1

2 + 1
π . Hence, we have γ(P2n, 2) → 1

2 + 1
π ,

and thus γ(2) ≥ 1
2 + 1

π . This proves the lower bound of Theorem 1.1.
Using Lemma 3.1, it is not hard to extend the lower bound to larger k, by considering

the set Pkn and its partition into k sets of n consecutive points on the circle.
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▶ Theorem 1.2. For all k ≥ 2, we have γ(k) ≥ 1
k + 1

π sin π
k .

4 Upper bounds via short diagonals

We now prove several upper bounds for γ(k). Recall that to show γ(k) ≤ α, we need
to argue that for every point set P , there is a partition into k subsets Q1, . . . , Qk with
TSP(Qi) ≤ α · TSP(P ) for all i ∈ [k].

Our upper bound for γ(2) adapts the idea for the circular point set from section 3.
Essentially, we take the optimal tour C of P , split it in two at some point p and its
antipodal point q, and split the point set accordingly into Q1, Q2. Let C1 = C(p, q) ∪ pq and
C2 = C(q, p) ∪ pq. Observe that C1, resp. C2 are tours of Q1, resp. Q2, and |C1| = |C2| =
|C|/2 + |pq|. It turns out that we can always find an antipodal pair p, q on C such that the
diagonal |pq| is short.

▶ Lemma 4.1. Let C be a closed polygonal curve. Then, there exists a diagonal pq of C

such that |C(p, q)| = |C|/2 and |pq| ≤ 1
π |C|.

Proof sketch. Let H be the convex hull of C. Then the width of H is at most 1
π |H| ≤ 1

π |C|,
by Lemma 2.1. This means that there exists a direction θ such that the width of H in
direction θ is at most 1

π |C|. Clearly, the same is true for C, so any diagonal of C that is
parallel to uθ has length at most 1

π |C|. Finally, for every direction θ, there exists an antipodal
pair p, q such that the diagonal pq is parallel to uθ. (Essentially, we can rotate p around the
curve, obtaining every possible direction.) For a full proof, see Lemma 4.3 below. ◀

Using Lemma 4.1, the above discussion yields a partition of P into two sets Q1, Q2 with
TSP(Q1), TSP(Q2) ≤ 1

2 |C|+ 1
π |C|. Since TSP(P ) = |C| by assumption, we have γ(2) ≤ 1

2 + 1
π .

This concludes the proof of Theorem 1.1.
Our second upper bound is a simple reduction for non-prime k.

▶ Theorem 1.3. For all a, b ∈ N, we have γ(a · b) ≤ γ(a) · γ(b).

Proof. Let P be a point set. By definition, there is a partition of P into sets Q1, Q2, . . . , Qa

such that TSP(Qi) ≤ γ(a) · TSP(P ) for each i ∈ [a]. We can now further split each Qi

into b sets Qi,1, Qi,2, . . . , Qi,b, for a total of a · b sets with TSP(Qi,j) ≤ γ(b) · TSP(Qi) ≤
γ(b) · γ(a) · TSP(P ). ◀

Our third upper bound combines the short-diagonal technique with the recursive approach
of Theorem 1.3. The key is a generalization of Lemma 4.1. Essentially, we can always find a
short diagonal to split the curve into not only two halves, but into two parts of any chosen
length. As a first step, we show that for every prescribed curve length and direction, we can
find an appropriate diagonal.

▶ Lemma 4.2. Let c : [0, 1] → R2 be the parametrization of a closed curve, let x ∈ R,
0 < x < 1, and let u be a vector. Then there exists some t ∈ [0, 1] such that the vector
c(t + x) − c(t) is orthogonal to u.

Proof. Define v(t) = c(t + x) − c(t) and f(t) = v(t) · u. We need to show that there is some
t ∈ [0, 1] such that f(t) = 0.

Let p0 = c(t0) be a point on c minimizing p0 · u. See fig. 4. Observe that p0 exists, since
the image of c is compact. We claim that f(t0) ≥ 0. Indeed, if f(t0) < 0, then, by definition:

(c(t0 + x) − c(t0)) · u < 0 ⇐⇒ c(t0 + x) · u < c(t0) · u,

EuroCG’25
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u

p0

p1

Figure 4 Illustration of Lemma 4.2.

which contradicts minimality of c(t0) · u.
Similarly, let p1 = c(t1) minimize p1 · u. By symmetry, we have f(t1) ≤ 0. Finally, since

f is continuous, there must be some t with f(t) = 0 by the intermediate value theorem. This
concludes the proof. ◀

We now show how to split curves into parts of a prescribed length.

▶ Lemma 4.3. Let C be a closed polygonal curve. Then, for each given x ∈ R, 0 < x < |C|,
there exists a diagonal pq of C such that |C(p, q)| = x and the length of pq is at most 1

π |C|.

Proof. Let c be a canonical parametrization of c and let H be the convex hull of C. Let θ

be the angle that minimizes the directional width of H, i.e., we have w(θ, H) = w(H). By
Lemma 2.1, we have w(H) ≤ 1

π |H| ≤ 1
π |C|.

Now let u be a vector orthogonal to uθ. By Lemma 4.2, there exists a t ∈ [0, |C|] such
that c(t + x) − c(t) is orthogonal to u, and thus parallel to uθ. Let p = c(t) and q = c(t + x).
Then |C(p, q)| = x by definition, and the length of pq is bounded by wθ(C) ≤ wθ(H) ≤ 1

π |C|.
This concludes the proof. ◀

Using Lemma 4.3, we obtain the following generic upper bound:

▶ Lemma 4.4. Let k, a, b ∈ N with k = a + b, and let x ∈ R, 0 < x < 1. Then we have
γ(k) ≤ max

(
(x + 1

π )γ(a), (1 − x + 1
π )γ(b)

)
.

Proof. Let P be a point, and T be a tour of P ; without loss of generality, we have |T | = 1.
We first use Lemma 4.3 to obtain a diagonal pq of length at most 1

π such that |C(p, q)| = x.
As in the proof of the upper bound of Theorem 1.1, we take the two tours C1 = C(p, q) ∪ pq

and C2 = C(q, p) ∪ pq, with |C1| ≤ x + 1
π and |C2| ≤ 1 − x + 1

π .
Now partition P into P1, P2 such that P1 ⊆ C1 and P2 ⊆ C2. By definition, we have

TSP(P1) ≤ x + 1
π and TSP(P2) ≤ 1 − x + 1

π . Optimally partitioning P1 into a parts will yield
tours of length at most γ(a) TSP(P1), by definition, and similarly, optimally partitioning
P2 into b parts will yield tours of length γ(b) TSP(P2). Overall, we have a + b = k tours of
length at most max (γ(a) TSP(P1), γ(b) TSP(P2)), as desired. ◀

Optimizing for x in Lemma 4.4 yields

x = γ(b)
γ(a) + γ(b) + γ(b) − γ(a)

π · (γ(a) + γ(b)) .

Finally, with a simple calculation, we have:
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▶ Theorem 1.4. For all a, b ∈ N, we have

γ(a + b) ≤
(
1 + 2

π

)
· γ(a) · γ(b)

γ(a) + γ(b) .

Note that the upper bound of Theorem 1.1 follows from the case a = b = 1 and γ(1) = 1.

EuroCG’25



20:8 Balanced TSP partitioning

References
1 Afrouz Jabal Ameli, Faezeh Motiei, and Morteza Saghafian. The complexity of maximizing

the MST-ratio. arXiv preprint, 2024. arXiv:2409.11079.
2 Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Su Jia, Matthew J. Katz, Tyler

Mayer, and Joseph S. B. Mitchell. Network Optimization on Partitioned Pairs of Points. In
Proceedings of the 28th International Symposium on Algorithms and Computation (ISAAC),
pages 6:1–6:12, 2017. doi:10.4230/LIPIcs.ISAAC.2017.6.

3 Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

4 Tolga Bektas. The multiple traveling salesman problem: an overview of formulations and
solution procedures. omega, 34(3):209–219, 2006. doi:10.1016/J.OMEGA.2004.10.004.

5 Sergey Bereg, Yuya Higashikawa, Naoki Katoh, László Kozma, Manuel Lafond, Günter
Rote, Yuki Tokuni, Max Willert, and Binhai Zhu. The two-squirrel problem and its relatives.
To appear, 2025.

6 Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing
problem: State of the art classification and review. Computers & industrial engineering,
99:300–313, 2016.

7 A. Cauchy. Note sur divers théorèms relatifs à la rectification des courbes et à la quadrature
des surfaces. Comptes rendus de l’Académie des Sciences, 13:1060–1065, 1941.

8 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Technical Report 388, Carnegie Mellon University, 1976.

9 José Alejandro Cornejo-Acosta, Jesús García-Díaz, Julio César Pérez-Sansalvador, and
Carlos Segura. Compact integer programs for depot-free multiple traveling salesperson
problems. Mathematics, 11(13):3014, 2023.

10 Adrian Dumitrescu, János Pach, and Géza Tóth. Two trees are better than one. arXiv
preprint, 2023. arXiv:2312.09916.

11 Michael R. Garey and David S. Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

12 Matthew Johnson. Red-Blue-Partitioned MST, TSP, and Matching. In Proceedings of the
30th Canadian Conference on Computational Geometry (CCCG), 2018.

13 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approxima-
tion algorithm for metric tsp. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 32–45, 2021. doi:10.1145/3406325.3451009.

14 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

15 Jairo R. Montoya-Torres, Julián López Franco, Santiago Nieto Isaza, Heriberto Felizzola
Jiménez, and Nilson Herazo-Padilla. A literature review on the vehicle routing problem
with multiple depots. Computers & Industrial Engineering, 79:115–129, 2015.

16 Zhou Xu and Brian Rodrigues. A 3/2-approximation algorithm for multiple depot multiple
traveling salesman problem. In Algorithm Theory-SWAT 2010: 12th Scandinavian Sympo-
sium and Workshops on Algorithm Theory, Bergen, Norway, June 21-23, 2010. Proceedings
12, pages 127–138. Springer, 2010. doi:10.1007/978-3-642-13731-0_13.

17 Wei Yu and Zhaohui Liu. Improved approximation algorithms for some min-max and
minimum cycle cover problems. Theoretical Computer Science, 654:45–58, 2016. doi:
10.1016/j.tcs.2016.01.041.



Helly-type theorems for separated d-intervals
Wei Rao1

1 Moscow Institute of Physics and Technology
raowei1998@gmail.com

Abstract1

A separated d-interval is defined as a disjoint union of d convex sets from the real line R. In this paper,2

we establish a series of Helly-type theorems for convexity spaces derived from separated d-intervals.3

Our results encompass the Radon number, Helly number, colorful Helly number, fractional Helly4

number, colorful fractional Helly theorem, (p, q) theorem, and two kinds of colorful (p, q) theorems5

for these convexity spaces.6

Related Version arXiv:2501.03207

Lines 404

1 Introduction7

In 1923, Helly [15] published a foundational theorem on the intersection patterns of8

convex sets in Rd, where d is a positive integer throughout this paper. Specifically, for a9

finite family F of convex sets in Rd, Helly’s theorem states that if every d + 1 members of F10

have a non-empty intersection, then all members of F intersect.11

Over the years, this result has been generalized and extended in various directions.12

Notable examples include the colorful Helly theorem, first proven by Lovász and later fully13

detailed by Bárány [3]; the fractional Helly theorem introduced by Katchalski and Liu [18];14

and the colorful fractional Helly theorem, also developed by Bárány et al. [5]. Other significant15

advancements include the (p, q) theorem by Alon and Kleitman [2], as well as two variations16

of the colorful (p, q) theorems by Bárány and Matoušek [7] and Bárány et al. [5], respectively.17

For more details, refer to [6, 4]. Rather than immediately delving into these theorems, we18

first introduce the concept of convexity spaces.19

▶ Definition 1.1. A convexity space is a set system C on a ground set X that satisfies the20

following three properties:21

1. ∅, X ∈ C;22

2. If ∅ ≠ D ⊆ C, then
⋂D ∈ C;23

3. If ∅ ≠ D ⊆ C is totally ordered by inclusion, then
⋃D ∈ C.24

Let (X, C) be a convexity space. For any subset Y ⊆ X, the convex hull of Y is defined25

as conv Y =
⋂{K : K ∈ C, Y ⊆ K}. We call the members of C convex sets. For example,26

when X = Rd and C(Rd) is the set of all usual convex sets in Rd, space (Rd, C(Rd)) is the27

standard convexity space. For a comprehensive introduction to the convexity space, see [16].28

Once the concept of convexity spaces is established, many Helly related notions can29

be generalized to these spaces. One fundamental concept is the Radon partition and its30

associated Radon number, introduced in Radon’s theorem [22].31

▶ Definition 1.2 (Radon partition and Radon number). Let (X, C) be a convexity space and32

Y ⊆ X. A Radon partition of Y is a partition Y = A ∪ B such that conv A ∩ conv B ≠ ∅.33

The Radon number r(X, C) is the minimal integer n (if it exists) such that every subset34

Y ⊆ X of size at least n has a Radon partition.35

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
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For space (Rd, C(Rd)), Radon’s theorem [22] asserts that r(Rd, C(Rd)) = d + 2. Onn [21]36

and Sierksma [23] proved that 5 · 2d−2 + 1 ≤ r(Zd, C(Zd)) ≤ d(2d − 1) + 3, where C(Zd) is37

the set of all subsets of Zd of the form C ∩ Zd, where C ⊆ Rd is a convex set, that is,38

C(Zd) = {C ∩ Zd : C ⊆ Rd is a convex set}.39

Edwards and Soberón [11] proved r(P, C□(P )) ≤ 2d + 1, where P ⊆ Rd and C□(P ) is the set40

of all subsets of P of the form B ∩ P , where B ⊆ Rd is an axis-parallel box, that is,41

C□(P ) = {B ∩ P : B ⊆ Rd is an axis-parallel box}.42

By axis-parallel box (or simply a box), we mean a set B in Rd that is the Cartesian product43

of d non-empty convex sets of R.44

▶ Definition 1.3 (Helly number). Let (X, C) be a convexity space. The Helly number h(X, C)45

is the minimal integer n (if it exists) such that for any finite family F ⊆ C of convex sets, if46

every h(X, C) members of F intersect, then all members intersect.47

Helly’s theorem asserts h(Rd, C(Rd)) = d + 1. Doigon [10] proved that h(Zd, C(Zd)) = 2d.48

It is known that h(Rd, C□(Rd)) = 2. Halman [14] demonstrated that h(P, C□(P )) ≤ 2d.49

▶ Definition 1.4 (Colorful Helly number). Let (X, C) be a convexity space. Finite subfamilies50

F1, · · · , Fn of C have colorful Helly property if every n colorful tuples of them intersect, that51

is,
⋂n

i=1 Ci ̸= ∅ for all C1 ∈ F1, · · · , Cn ∈ Fn. The colorful Helly number hc(X, C) is the52

minimal integer n (if it exists) such that for any n finite families F1, · · · , Fn ⊆ C of convex53

sets, if they have colorful Helly property, then there exists a family whose intersection is54

non-empty.55

The colorful Helly’s theorem asserts that hc(Rd, C(Rd)) = d + 1. It is known that56

hc(Rd, C□(Rd)) = d + 1. Edwards and Soberón [11] proved that hc(P, C□(P )) ≤ 2d.57

▶ Definition 1.5 (Fractional Helly number). Let (X, C) be a convexity space. We say (X, C)58

admits fractional Helly theorem for k-tuples, if there exists an integer k and a function59

β : (0, 1) → (0, 1) such that every finite family F ⊆ C with at least α
(|F|

k

)
intersecting60

k-tuples, contains an intersecting subfamily of size at least β(α)|F|. The fractional Helly61

number hf (X, C) is the minimal integer n (if it exists) such that X, C admits the fractional62

Helly theorem for n-tuples.63

The fractional Helly theorem assets hf (Rd, C(Rd)) = d + 1. Bárány and Matoušek [7]64

proved that hf (Zd, C(Zd)) = d + 1. Edwards and Soberón [11] proved hf (P, C□(P )) = d + 1.65

Combining the colorful Helly theorem and the fractional Helly theorem leads to the colorful66

fractional Helly theorem, which takes the following form.67

▶ Definition 1.6 (Colorful fractional Helly theorem). Let (X, C) be a convexity space. We68

say (X, C) admits colorful fractional Helly theorem for colorful k-tuples, if there exists an69

integer k and a function β : (0, 1) → (0, 1) such that for every finite families F1, · · · , Fk ⊆ C70

of sizes n1, · · · , nk with at least αn1 · · · nk intersecting colorful k-tuples, there is a family Fi71

contains an intersecting subfamily of size at least β(α)|Fi|.72

Bulavka, Goodarzi, Tancer [9] setablished an optimal colorful fractional Helly theorem73

for (Rd, C(Rd)). Moreover, any convexity space (X, C), satisfying the fractional Helly property74

for k-tuples, admits the following (p, q) theorem for all p ≥ q ≥ k [16].75
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▶ Definition 1.7 ((p, q) theorem). Let (X, C) be a convexity space and p ≥ q be integers.76

A finite family F ⊆ C has (p, q) property if among any p members of F some q of them77

intersect. We say (X, C) admits a (p, q)-theorem if there exists an integer N = N(p, q) such78

that for every finite family F ⊆ C with (p, q) property, there is a set S ⊆ X of size at most79

N such that any member C ∈ F intersects S.80

▶ Theorem 1.8 (Holmsen [16]). Let (X, C) be a convexity space and p ≥ q be integers. If81

(X, C) admits fractional Helly theorem for k-tuples, it also admits (p, q) theorem for all82

p ≥ q ≥ k.83

Alon and Kleitman [2] demonstrated that (Rd, C(Rd)) admits a (p, q) theorem for84

p ≥ q ≥ d + 1. Bárány and Matoušek [7] proved that (Zd, C(Zd)) admits a (p, q) theorem for85

p ≥ q ≥ d + 1. Edwards and Soberón [11] extended this result to (P, C□(P ), proving that it86

also admits a (p, q) theorem for p ≥ q ≥ d + 1.87

Then we present two different kinds of colorful (p, q) theorems by combining colorful88

Helly theorem and (p, q) theorem. For a positive integer n, we define [n] := {1, · · · , n}.89

▶ Definition 1.9 (The first kind of colorful (p, q) theorem). Let (X, C) be a convexity space and90

p, q be positive integers such that p ≥ q. Finite families F1, · · · , Fq ⊆ C has the first kind of91

colorful (p, q) property if whenever we choose, for each i ∈ [q], distinct sets Ci1, · · · , Cip ∈ Fi,92

there are subscripts j1, · · · , jq ∈ [p] such that
⋂q

i=1 Ciji
̸= ∅. We say (X, C) admits the first93

kind of colorful (p, q)-theorem if there exists an integer Nc = Nc(p, q) such that for every94

finite families F1, · · · , Fq ⊆ C with the first kind of colorful (p, q) property, there is a set95

S ⊆ X of size at most Nc and an index i ∈ [q] such that any member Ci ∈ Fi intersects S.96

Bárány and Matoušek [7] proved that (Rd, C(Rd)) admits the first kind of colorful (p, q)97

theorem with p ≥ q ≥ d + 1. Moreover, there is a second kind of colorful (p, q) theorem.98

▶ Definition 1.10 (The second kind of colorful (p, q) theorem). Let (X, C) be a convexity99

space and p, q be positive integers such that p ≥ q. Finite families F1, · · · , Fp ⊆ C has the100

second kind of colorful (p, q) property if whenever we choose, for each i ∈ [p], Ci ∈ Fi, there101

are q of them contain a common point. We say (X, C) admits the second kind of colorful102

(p, q)-theorem if there exists an integer Mc = Mc(p, q) such that for every finite families103

F1, · · · , Fp ⊆ C with the second kind of colorful (p, q) property, there is a set S ⊆ X of size104

at most Mc and an index i ∈ [q] such that any member Ci ∈ Fi intersects S.105

Bárány et al. [5] proved that (Rd, C(Rd)) admits the second kind of colorful (p, q)106

theorem with p ≥ q ≥ d + 1.107

In this paper, we prove all aforementioned theorems for convexity spaces constructed on108

separated d-intervals. Before stating them, we introduce d-intervals and some related results.109

A d-interval is a union of at most d convex sets from the real line R. A separated d-interval110

is a d-interval consisting of d convex set components I(1), · · · , I(d) such that I(i+1) ⊆ (i, i + 1)111

for 0 ≤ i ≤ d − 1. For convenience, we employ the following equivalent definition.112

▶ Definition 1.11. A separated d-interval I is a disjoint union of d convex sets from the real113

line R, that is, I =
⊔

i∈[d] I(i) =
⋃

i∈[d]{(x, i) : x ∈ I(i) ⊆ R}, where all I(i) are convex sets in114

R. We say I(i) is the i-th level of I and any point (x, i), where x ∈ R, is in the i-th level.115

Let F be a finite family of subsets on the ground set X. The transversal number of F ,116

denoted by τ(F), is the minimum integer k such that there is a set S ⊆ X of size at most k117

such that S ∩ C ≠ ∅ for any C ∈ F . The matching number of F , denoted by ν(F), is the118

maximum integer k such that there is a subfamily F ′ ⊆ F of size k, consisting of pairwise119

disjoint sets. Tardos [25] and Kaiser [17] proved the following results.120
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▶ Theorem 1.12 (Tardos [25], Kaiser [17]). If F is a finite family of d-intervals, then τ(F) ≤121

(d2 − d + 1)ν(F). If F is a finite family of separated d-intervals, then τ(F) ≤ (d2 − d)ν(F).122

Then Frick and Zerbib [13] established the following colorful version.123

▶ Theorem 1.13 (Frick and Zerbib [13]). Let Fi, where i ∈ [k + 1], be k + 1 finite families of124

d-intervals and F =
⋃k+1

i=1 Fi.125

1. If τ(Fi) ≥ k for all i ∈ [k + 1], then there exists a subfamily F ′ ⊆ F of pairwise disjoint126

sets of size |F ′| ≥ k+1
d2−d+1 , with |F ′ ∩ Fi| ≤ 1.127

2. If all Fi are families of separated d-intervals and τ(Fi) > kd for all i ∈ [k + 1], then there128

exists a subfamily F ′ ⊆ F of pairwise disjoint sets of size |F ′| ≥ k+1
d−1 , with |F ′ ∩ Fi| ≤ 1.129

Recently, a sparse colorful version and a matroid colorings version were proven in [20]130

and [19], respectively.131

2 Our results132

Before presenting our results, we construct convexity spaces based on separated d-133

intervals. Throughout the paper, we will use the term d-intervals to refer to separated134

d-intervals. Let Rd =
⋃

i∈[d]{(x, i) : x ∈ R} and P ⊆ Rd. Let C≡(P ) be the set of all subsets135

of P of the form I ∩ P where I is a d-interval, that is,136

C≡(P ) = {I ∩ P : I ⊆ Rd is a d-interval}.137

One can easily verify that (P, C≡(P )) is a convexity space. Note that when P = Rd, set138

C≡(P ) is the set of usual separated d-intervals defined above, which has been extensively139

studied; see [8]. Throughout the paper, we denote the convexity spaces constructed in this140

manner with respect to some P ⊆ Rd by (P, C≡(P )) and call them ≡-convexity space.141

▶ Theorem 2.1. Let P ⊆ Rd and (P, C≡(P )) be a ≡-convexity space.142

1. The Radon number of (P, C≡(P )) satisfies r(P, C≡(P )) ≤ 2d + 1. Moreover, if P contains143

at least 2 points in every level, then r(P, C≡(P )) = 2d + 1.144

2. The Helly number of (P, C≡(P )) satisfies h(P, C≡(P )) ≤ 2d. Moreover, if P contains at145

least 2 points in every level, then h(P, C≡(P )) = 2d.146

3. The colorful Helly number of (P, C≡(P )) satisfies hc(P, C≡(P )) ≤ 2d. Moreover, if P147

contains at least 2 points in every level, then hc(P, C≡(P )) = 2d.148

4. The fractional Helly number of (P, C≡(P )) satisfies hf (P, C≡(P )) ≤ 2d.149

5. Convexity space (P, C≡(P )) admits a (p, q) theorem with p ≥ q ≥ 2d.150

6. Convexity space (P, C≡(P )) admits the first kind of colorful (p, q) theorem with p ≥ q ≥ 2d.151

7. Convexity space (P, C≡(P )) admits the second kind of colorful (p, q) theorem with p ≥ q ≥152

2d.153

▶ Theorem 2.2 (Colorful fractional Helly theorem for ≡-convexity space). Let P ⊆ Rd and154

(P, C≡(P )) be a ≡-convexity space. Let α ∈ (0, 1] and β = 1 − (1 −α)1/(2d−1). Let C1, · · · , C2d155

be finite subfamilies of C≡(P ). If there are at least α fraction colorful 2d-tuples that intersect,156

then some Ci contains a subfamily of size β|Ci|, whose elements intersect.157

For an arbitrary number of sets in C≡(P ), we say they k-intersect, where k ∈ [d], if their158

intersection contains at least k points of P that are from k distinct levels. We then generalize159

the colorful Helly theorem and the fractional Helly theorem of (P, C≡(P )) with respect to160

k-intersecting. We replace the usual intersection with the k-intersection in Definition 1.4161

and Definition 1.5, then we have the following results.162
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▶ Theorem 2.3. Let P ⊆ Rd, (P, C≡(P )) be a ≡-convexity space and k ∈ [d] be a positive163

integer. The colorful Helly number of (P, C≡(P )) with respect to k-intersecting, denoted by164

hck(P, C≡(P )), satisfies hck(P, C≡(P )) ≤ 2d − k + 1.165

▶ Theorem 2.4. Let P ⊆ Rd, (P, C≡(P )) be a ≡-convexity space and k ∈ [d] be a positive166

integer. The fractional Helly number of (P, C≡(P )) with respect to k-intersecting, denoted by167

hfk(P, C≡(P )), satisfies hfk(P, C≡(P )) ≤ 2d − k + 1.168

Acknowledgments. I thank Alexander Polyanskii for inspiring this research problem and169

Rahul Gangopadhyay for his comments on the manuscript.170

A Preliminaries171

Instead of proving those results individually, we establish a powerful topological result172

that implies a series of Helly-type theorems. First, we briefly introduce some definitions. For173

more details, see [24, 26].174

▶ Definition A.1. Let P ⊆ Rd and (P, C≡(P )) be a ≡-convexity space. Let C be a finite175

subfamily of C≡(P ). The nerve of C is the simplicial complex K(C) whose vertices are the176

sets in C and faces are subfamilies C′ ⊆ C such that
⋂ C′ ̸= ∅.177

▶ Definition A.2. A simplicial complex is (P, C≡(P ))-representable if it is the nerve of some178

finite subfamily of C≡(P ).179

▶ Definition A.3. Let K be a simplicial complex. A face σ ∈ K is free if it is contained in a180

unique inclusion-maximal face.181

▶ Definition A.4. Let K be a simplicial complex. An elementary d-collapse of K is a step182

in which a free face σ with dim σ ≤ d − 1 and all faces containing σ are removed. Moreover,183

we denote the result by coll(K, σ) = K \ {τ ∈ K : σ ⊆ τ}.184

▶ Definition A.5. A simplicial complex K is d-collapsible if K can be reduced to the empty185

complex by a sequence of elementary d-collapses.186

With these basic definitions in place, we proceed to prove the following essential lemma.187

▶ Lemma A.6. Let P ⊆ Rd and (P, C≡(P )) be a ≡-convexity space. Every (P, C≡(P ))-188

representable complex is (2d − 1)-collapsible.189

Furthermore, there is a significant result due to Bulavka, Goodarzi, Tancer [9].190

▶ Theorem A.7 (The optimal colorful fractional Helly theorem for d-collapsible complexes [9]).191

Let K be a d-collapsible simplicial complex with the set of vertices N = N1 ⊔ · · · ⊔ Nd+1192

divided into d + 1 disjoint subsets of sizes ni, respectively. If K contains at least αn1 · · · nd+1193

colorful d-faces, where α ∈ (0, 1], that is, faces σ with |σ ∩ Ni| = 1 for every i ∈ [d + 1]. Then194

there is an index i ∈ [d + 1] such that the dimension of induced subcomplex on Ni is at least195

(1 − (1 − α)1/(d+1))ni − 1, that is, dim K[Ni] ≥ (1 − (1 − α)1/(d+1))ni − 1.196

By Theorem A.7, Lemma A.6 implies Theorem 2.2. Subsequently, Theorem 2.2 provides197

the upper bounds of the Helly number, colorful Helly number and fractional Helly number.198

By Theorem 1.8, the upper bound of fractional Helly number implies the fifth item of199

Theorem 2.1. Moreover, we shall prove the following two lemmas, which implies that the200

sixth and seventh items of Theorem 2.1 hold.201
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▶ Lemma A.8. Let (X, C) be a convexity space and p, q be positive integers such that p ≥ q.202

If hf (X, C) ≤ hc(X, C) = k, then (X, C) admits the first kind of colorful (p, q) theorem with203

p ≥ q ≥ k.204

▶ Lemma A.9. Let (X, C) be a convexity space and k, p, q be positive integers such that p ≥ q.205

If (X, C) admits a colorful fractional Helly theorem for colorful k-tuples, then (X, C) admits206

the second kind of colorful (p, q) theorem with p ≥ q ≥ k.207

Moreover, we introduce the fractional transversal number, fractional matching number208

and some related theorems, which will be used to prove the two lemmas mentioned above.209

▶ Definition A.10. Let F be a finite family subsets on the ground set X. The fractional210

transversal number τ∗(F) is the minimum of
∑

x∈X f(x) over all functions f : X → [0, 1]211

such that
∑

x∈C f(x) ≥ 1 for any C ∈ F .212

▶ Definition A.11. Let F be a finite family subsets on the ground set X. The fractional213

matching number ν∗(F) is the maximum of
∑

C∈F f(C) over all functions f : F → [0, 1]214

such that
∑

C∈F :x∈C f(C) ≤ 1 for any x ∈ X.215

It is known that ν∗(F) = τ∗(F). Moreover, Alon et al. [1] proved the following theorem.216

▶ Theorem A.12 (Alon, Kalai, Matoušek, Meshulam [1]). Let (X, C) be a convexity space.217

If (X, C) admits the fractional Helly theorem, then for every finite family F ⊆ C, we have218

τ(F) ≤ f(τ∗(F)) for some function f .219

Then the following result can be used to bound τ∗(F).220

▶ Theorem A.13 (Alon, Kleitman [2]). Let F be a finite family of sets and γ > 0. Then221

ν∗(F) ≤ γ if and only if every blown-up copy of F , say F∗, which contains m(C) ∈ N copy222

of each C ∈ F , contains an intersecting subfamily of size at least γ−1|F∗|.223

In summary, to establish all our results, it suffices to prove Lemma A.6, Lemma A.8,224

Lemma A.9, the Radon number in Theorem 2.1, the lower bounds of the Helly number and225

colorful Helly number in special cases, Theorem 2.3, and Theorem 2.4. We will begin by226

proving Theorem 2.3 and Theorem 2.4, as their key ideas are instrumental in the proof of227

Lemma A.6.228

B Proof of Theorem 2.3229

The general approach follows the well-known strategy used to prove the colorful Helly230

theorem for the standard convexity space (Rd, C(Rd)); refer to the second proof of Theorem231

12.1 in [4].232

Let Ĉ≡(P ) be the family of sets consisting of all intersections of finite subfamilies of233

C≡(P ) that are k-intersecting, that is,234

Ĉ≡(P ) := {
⋂

C : C ⊆ C≡(P ), C is k-intersecting}.235

Define a function f : Ĉ≡(P ) → Rd, where R = R∪{−∞, +∞}, such that f(Ĉ) = (x1, · · · , xd),236

where237

xi =
{

sup Ĉ(i) if Ĉ(i) ̸= ∅,

−∞ if Ĉ(i) = ∅,
238

and Ĉ(i) is the i-th level of d-interval Ĉ as defined in Definition 1.11.239
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▶ Lemma B.1. Let n be a positive integer. If n sets of C≡(P ), say D = {C1, · · · , Cn}, k-240

intersect, then there is a subfamily of size at most 2d−k, say D′, such that f(
⋂D) = f(

⋂D′).241

Proof of Lemma B.1. Since D is finite, we may assume that the sets are compact. Hence,242

we have xi ̸= +∞ for all i ∈ [d] and sup Ĉ(i) = max Ĉ(i) ∈ Ĉ(i). We construct D′ based on243

f(
⋂D) = (a1, · · · , ad) in the following way.244

For i ∈ [d], if ai = −∞, then we have
⋂n

j=1 C
(i)
j = ∅. Note that it implies

⋂n
j=1 I(C(i)

j ) ∩245

P = ∅, where I(C) := {⋂ I : C ⊆ I, I ⊆ Rd is a d-interval} throughout the paper. Since all246

sets are compact, by definition of I(C), two endpoints of I(C(i)
j ) are in C

(i)
j ⊆ P . Then we247

have
⋂n

j=1 I(C(i)
j ) = ∅, otherwise two endpoints of

⋂n
j=1 I(C(i)

j ) are in P , which contradicts248
⋂n

j=1 I(C(i)
j ) ∩ P = ∅. By Helly’s theorem in R, there are two of them, say I(C(i)

j1
), I(C(i)

j2
),249

such that I(C(i)
j1

) ∩ I(C(i)
j2

) = ∅. Then we include Cj1 and Cj2 in D′.250

If ai ̸= −∞, then there exists C
(i)
j such that sup C

(i)
j = ai. We include Cj in D′. Note251

that f(D) = f(D′). Moreover, since D k-intersects, there are at most 2(d − k) + k = 2d − k252

sets that are included in D′. ◀253

Let C1, · · · , C2d−k+1 be finite subfamilies of C≡(P ), which satisfy the colorful Helly254

property with respect to k-intersecting. We shall show that there exists an index i ∈ [2d−k+1]255

such that Ci is k-intersecting.256

Among all colorful 2d − k tuples, denoted by Ĉ, consider f(Ĉ) = {f(Ĉ) : Ĉ ∈ Ĉ} and257

choose the the lexicographical minimal one, say f(Ĉ0). Without loss of generality, we may258

assume that Ĉ0 =
⋂2d−k

i=1 Ci, where Ci ∈ Ci. Consider the first k coordinates of f(Ĉ0) that259

are not −∞, say aij
in ij-th level, where j ∈ [k] and i1 < · · · < ik. We claim that all sets of260

C2d−k+1 contain k points (aij , ij), which leads to hck(P, C≡(P )) ≤ 2d − k + 1.261

Indeed, assume for the sake of contradiction that there is C2d−k+1 ∈ C2d−k+1 that262

avoids one of these k points. Then note that f(
⋂2d−k+1

i=1 Ci) <lex f(Ĉ0), where <lex (≤lex,263

respectively) means less than (less than or equal to, respectively) with respect to the264

lexicographical order throughout the paper. By Lemma B.1, there exist at most 2d − k265

sets among C1, · · · , C2d−k+1, without loss of generality, say C2, · · · , C2d−k+1, such that266

f(
⋂2d−k+1

i=2 Ci) = f(
⋂2d−k+1

i=1 Ci) <lex f(Ĉ0), contradicting the minimality of f(Ĉ0).267

C Proof of Theorem 2.4268

The general idea follows the known proof strategy for the fractional Helly theorem in269

the standard convexity space (Rd, C(Rd)); refer to the proof of Theorem 9.1 in [4].270

Let α ∈ (0, 1] and C be a finite subfamily of C≡(P ) of size n. We claim that if there271

are at least α
(

n
2d−k+1

)
k-intersecting 2d − k + 1 tuples, then there exists a k-intersecting272

subfamily C′ ⊆ C of size at least α
2d−k+1 n, which implies that hfk(P, C≡(P )) ≤ 2d − k + 1.273

Since C is finite, we may assume that sets are compact. By Lemma B.1, there are at
least α( n

2d−k+1)
( n

2d−k) distinct 2d − k + 1 tuples, denoted by C̃, such that for any C′ ∈ C̃ we have
f(
⋂ C′) = f(

⋂ C0), where C0 is some k-intersecting 2d − k tuple. It implies that there are at
least

α
(

n
2d−k+1

)
(

n
2d−k

) + 2d − k = α
n − 2d + k

2d − k + 1 + 2d − k

≥ α

2d − k + 1n

sets that contain all (aij , ij), where aij are the non-infinite coordinates of f(
⋂ C0). Since C0274

is k-intersecting and sets are compact, there are at least k non-infinite coordinates, which275
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implies that those sets are k-intersecting.276

D Proof of Lemma A.6277

The general approach follows the proof in [26]. Let f = (f0, f1, f2, · · · ) be the f -vector of278

K(C), that is, fk is the number of k-dimensional simplices of K(C). We prove the theorem by279

induction on m :=
∑2d−1

i=0 fi. When m = 0, we have K(C) = ∅, which is (2d − 1)-collapsible.280

Then the inductive argument is given by the following lemma.281

▶ Lemma D.1. If K ̸= ∅ is (P, C≡(P ))-representable, then K contains a free face σ with282

dim σ ≤ 2d − 2 such that coll(K, σ) is again (P, C≡(P ))-representable.283

Proof of Lemma D.1. Let C be a finite subfamily of C≡(P ) such that K is the nerve of C.284

Since C is finite, we may assume that sets are compact. Let Ĉ be the family of sets consisting of285

all non-empty intersections of members of C, that is, Ĉ := {⋂ C′ : C′ ⊆ C,
⋂ C′ ̸= ∅}. Then the286

members of Ĉ correspond to the simplices of K. With a slight abuse of notation, sometimes287

we may consider Ĉ ∈ Ĉ as the set of members of C used to construct the intersection instead288

of the intersection itself.289

Define function f : Ĉ → Rd, where R = R ∪ {−∞, +∞}, such that f(Ĉ) = (x1, · · · , xd),290

where291

xi =
{

max Ĉ(i) if Ĉ(i) ̸= ∅,

−∞ if Ĉ(i) = ∅.
292

Consider Ĉ0 = C1 ∩ · · · ∩ Cn ∈ Ĉ, where Ci ∈ C for i ∈ [n], such that f(Ĉ0) is293

lexicographical minimal among the image of f and n is minimal. Suppose the corresponding294

simplex of Ĉ0 is σ. We claim that σ is the desired free face.295

First, note that by Lemma B.1, we have n ≤ 2d − 1, which implies that dim σ ≤ 2d − 2.296

Then we shall show that any C ∈ C with C ∩ Ĉ0 ̸= ∅ contains (ai, i), where ai is the first297

coordinate of f(Ĉ0) such that ai ̸= −∞. It implies that C1, · · · , Cn are contained in a unique298

inclusion-maximal C′ ⊆ C such that
⋂ C′ ̸= ∅. Hence, the corresponding face σ is free.299

Assume for the sake of contradiction that there exists C ∈ C with C ∩ Ĉ0 ̸= ∅ such that300

C does not contain (ai, i). Let f(C ∩ Ĉ0) = (b1, · · · , bd). Note that b1 = · · · = bi−1 = −∞301

and bi < ai. It implies that f(C ∩ Ĉ0) is lexicographical less than f(Ĉ0), which contradicts302

the minimality of f(Ĉ0).303

It remains to show that coll(K, σ) is (P, C≡(P ))-representable. When n = 1, note that304

the nerve of C \C1 is coll(K, σ). When n ≥ 2, let Cη be the family that is obtained by keeping305

C1, · · · , Cn unchanged and replacing other member C by306

C + ηB1 :=
(

d⋃

i=1

(
{(x, i) : x ∈ C(i)} + {(x, i) : x ∈ [−η, η]}

))
∩ P,307

that is, for every level C(i) of C take the Minkowski addition of Ci and [−η, η], and then308

intersect with P .309

For any Ĉ ∈ Ĉ, note that f(Ĉ) ≤lex f(Ĉη), where Ĉη is the corresponding changed set310

in Ĉη := {⋂ C′
η : C′

η ⊆ Cη,
⋂ C′

η ̸= ∅}. Since C is compact and finite, there exists η > 0 such311

that Cη has the same nerve with C. Consider all members of Ĉη except Ĉ0 and intersections312

with Ĉ0 and denote the set of them by Ĉ′
η. Note that any Ĉη ∈ Ĉ′

η intersects313

R′ = Rd \
(

{(x, i) : x ≤ ai} ∪
d⋃

j=i+1
{(x, j) : x ∈ R}

)
,314
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where Rd =
⋃

i∈[d]{(x, i) : x ∈ R} and ai is the first coordinate of f(Ĉ0) such that ai ̸= −∞.315

Indeed, if there exists a member Ĉη ∈ Ĉ′
η does not intersect R′, then f(Ĉη) <lex f(Ĉ0). We316

also know that f(Ĉ) ≤lex f(Ĉη), where Ĉ contains the corresponding original sets from C.317

Then we have f(Ĉ) <lex f(Ĉ0), which contradicts the minimality of f(Ĉ0). By finiteness, we318

may assume that all sets in Ĉ′
η intersect R′′ = R′ \ {(x, i) : x ≤ ai + γ} for some γ > 0. Then319

the family obtained from Cη by replacing C1, · · · , Cn by320

Ck \
(

{(x, i) : x ≤ ai + γ} ∪
d⋃

j=i+1
{(x, j) : x ∈ R}

)
321

for k ∈ [n] has coll(K, σ) as its nerve. ◀322

E Proof of Lemma A.8323

The proof follows the same approach as the proof of Theorem 4.1 in [7], and we adopt324

the format from proof of Theorem 29.1 in [4]. In order to prove Lemma A.8, we need the325

following Erdős-Simonovits theorem [12].326

▶ Theorem E.1. For any positive integers k, t and any c > 0 there exists c′ > 0 such that a327

k-uniform hypergraph on n vertices with at least cnk edges contains at least c′nkt copies of328

Kk(t), that is, complete k-uniform k-partite hypergraph with each class of size t.329

Observe that when c is fixed and n is large enough, there is at least one copy of Kk(t).330

Note that it is enough to show that it holds for q = k. Since hf (X, C) ≤ k, by331

Theorem A.12, it is enough to show that some family has bounded fractional transversal332

number. By linear programming duality, we have τ∗(Fi) = ν∗(Fi). Hence it is enough to333

show that ν∗(Fi) is bounded for some i ∈ [k]. The fractional matching number ν∗(Fi) is the334

value of the following linear programming335

ν∗(Fi) = max
∑

Cij∈Fi

wi(Cij),336

subject to
∑

Cij∈Fi,p∈Cij

wi(Cij) ≤ 1(∀x ∈ X) and wi : Fi → [0, 1].337

Let wi : Fi → [0, 1] for which ν∗(Fi) is attained. Since Fi are finite, we may assume that338

the values of wi are all rational. Let wi(Cij) = nCij

mi
, where mi is a large enough common339

denominator of the rationals wi(Cij). For each family Fi, let F∗
i be family consisting of nCij340

copies of Cij for each Cij ∈ Fi. Set ni =
∑

Cij∈Fi
nCij

. Now we shall show that there is341

i ∈ [k] and x ∈ X such that x is common to at least βni elements of F∗
i for some β > 0,342

since then we have343

1 ≥
∑

Cij∈Fi,x∈Cij

wi(Cij) ≥ β
ni

mi
= βν∗(Fi),344

which implies ν∗(Fi) ≤ 1
β .345

Since hf (X, F) ≤ k, it is enough to show that the conditions of the fractional Helly346

theorem are satisfied for some F∗
i . We form a k-uniform k-partite hypergraph H. Its vertices347

in the i-th class are the sets in F∗
i , and its edges are k tuples of sets from distinct classes348

that contain a common point.349

Let s be an large enough integer that is divisible by k. Consider a set of size s from350

each class, that is, Di ⊆ F∗
i of size s for all i ∈ [k].351

EuroCG’25
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▶ Claim E.2. For any such D1, · · · , Dk some Di contains an k tuple of sets that contain a352

common point.353

Proof. If some Di contains k copies of the same set, we are done. Hence we may assume that354

every family contains at most k − 1 copies of the same set. Then there is D′
i ⊆ Di of distinct355

sets of size s∗ = s
k . Since for any choice of subfamilies D′′

i ⊆ D′
i of size p, there is an edge356

of H. It leads to that there are at least
(

s∗

p

)k
such edges and each edge is counted

(
s∗−1
p−1

)k
357

times. Then there are at least (s∗/p)k edges at the subhypergraph H′ induced by D′
i.358

By Theorem E.1, H′ contains a complete k-partite hypergraph with each class of size359

k. Since hc(X, C) = k, there is at least one class that contains k tuple whose intersection360

contains a common point. ◀361

Then the total number of such k tuples is at least362

(
n1
t

)(
n2
t

)
· · ·
(

nk

t

)
363

and each tuple in the i-th class is counted364

(
n1
t

)
· · ·
(

ni − k

t − k

)
· · ·
(

nk

t

)
365

times. Assume F∗
i contains Mi such tuples. Then we have366

k∏

i=1

(
ni

t

)
=

k∑

i=1
Mi

(
n1
t

)
· · ·
(

ni − k

t − k

)
· · ·
(

nk

t

)
,367

showing that368

1 =
k∑

i=1
Mi

(
ni−k
t−k

)
(

ni

t

) =
k∑

i=1
Mi

(
t
k

)
(

ni

k

) .369

It implies that some Mi ≥ α
(

ni

k

)
with α = 1

k

(
t
k

)−1
> 0, completing the proof.370

F Proof of Lemma A.9371

The proof is the same as the proof of Theorem 3 in [5]. Note that it is enough to show372

it for q = k. Moreover, by Theorem A.12 and Theorem A.13, it suffices to show that for373

every blown-up copy F∗
1 , · · · , F∗

p , there is some F∗
i containing a subfamily of size γ−1|F∗

i |374

for some γ > 0, whose elements contain a common point. Suppose β(α) is the function in375

colorful fraction Helly theorem for (X, C). Set δ =
(

p
k

)−1 and γ = (β(δ))−1.376

Let H be a complete p-uniform p-partite hypergraph, whose vertices in the i-th class are377

the sets in F∗
i for i ∈ [p]. For any edge e = (C1, · · · , Cp) ∈ H and J ⊆ [p], denote the partial378

edge (Cj : j ∈ J) by e(J). For I ∈
([p]

k

)
, let H(I) be a k-uniform k-partite hypergraph whose379

classes are F∗
i , where i ∈ [I], and f = (Ci : i ∈ I) is an edge of H(I) if

⋂
i∈I Ci ̸= ∅. Let380

Ni = |Fi|.381

▶ Claim F.1. Some H(I) contains at least δ
∏

i∈I |Ni| edges.382

Proof. Let N = N1 · · · Np. Let (e, f) be the pair such that e ∈ H and f = e(I) ∈ H(I).
Since for every p colorful tuples there are k of them containing a common point, for every
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e ∈ H there is an I ∈
([p]

k

)
such that e(I) ∈ H(I). It implies that

N ≤ number of such pairs (e, f)

=
∑

I∈([p]
k )

∑

f∈H(I)

|{e ∈ H : f = e(I)}|

=
∑

I∈([p]
k )

∑

f∈H(I)

∏

j /∈I

Nj

= N
∑

I∈([p]
k )

|H(I)|∏
i∈I Ni

.

Hence we have |H(I)|∏
i∈I

Ni
≥ δ for some I, completing the proof. ◀383

Then by colorful fractional Helly theorem for (X, C), some F∗
i contains an intersecting384

subfamily of size γ−1|F∗
i |, completing the proof.385

G Proof of the Radon number, Helly number, colorful Helly number386

Radon number: We first prove that r(P, C≡(P )) ≤ 2d + 1, that is, for any subset387

A ⊆ P with |A| ≥ 2d + 1, there is a partition A = X ∪ Y such that conv X ∩ conv Y ̸= ∅.388

Since |A| ≥ 2d + 1, by pigeonhole principle there are at least 3 points in the same level,389

say (x1, i), (x2, i), (x3, i). Without loss of generality, we may assume that x1 ≤ x2 ≤ x3. Then390

for arbitrary partition of A′ = A \ {(x1, i), (x2, i), (x3, i)} = X ′ ∪ Y ′, let X = X ′ ∪ {(x2, i)}391

and Y = Y ′ ∪ {(x1, i), (x3, i)}. Note that X, Y is the desired partition.392

Then we prove that r(P, C≡(P )) > 2d, if P contains at least 2 points in every level.393

Consider A =
⋃

i∈[d]{ai1, ai2}, where ai1, ai2 are two points in the i-th level. Note that A394

does not have a Radon partition.395

For Helly number and colorful Helly number, it is enough to prove the lower bound for396

the special cases as stated in the Preliminaries.397

Helly number: Consider family F = {C1, · · · , C2d}, where398

Ck =





(⋃
j∈[d],j ̸=⌈k/2⌉ conv {aj1, aj2}

)
∪ {a⌈k/2⌉1}, if k is odd,(⋃

j∈[d],j ̸=⌈k/2⌉ conv {aj1, aj2}
)

∪ {a⌈k/2⌉2}, if k is even,
399

and ai1, ai2 are points in the i-th level, that is, Ck contain some one point in the ⌈k/2⌉-th400

level and convex hulls of two points in the other levels. Note that every 2d − 1 of them401

intersect, but all of them do not intersect.402

Colorful Helly number: It is known that hc(X, C) ≥ h(X, C). Hence, we have403

hc(X, C) ≥ 2d, if P contains at least 2 points in every level.404
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Abstract
This paper introduces the induced matching distance, a novel topological metric designed to compare
discrete structures represented by a symmetric non-negative function. We apply this notion to
analyze agent trajectories over time. We use dynamic time warping to measure trajectory similarity
and compute the 0-dimensional persistent homology to identify relevant connected components,
which, in our context, correspond to groups of similar trajectories. To track the evolution of these
components across time, we compute induced matching distances, which preserve the coherence of
their dynamic behavior. We then obtain a 1-dimensional signal that quantifies the consistency of
trajectory groups over time. Our experiments demonstrate that our approach effectively differentiates
between various agent behaviors, highlighting its potential as a robust tool for topological analysis
in robotics and related fields.

1 Persistence Matching Distance Induced by Bijections

From this point forward, we consider sets of n points Z = {z1, z2, . . . , zn} together with a
symmetric non-negative function dZ : Z × Z → R+, where R+ is the set of non-negative real
numbers. Here, we remark that dZ might admit zero values between different points and
does not need to satisfy the triangle inequality; as this is the case with the dynamic time
warping measure considered in Section 2. Since we are only interested in the 0-dimensional
persistent homology, we work with the 1-skeleton of the Vietoris-Rips filtration of Z and we
fix Z2 as the ground field.

The 1-skeleton of the Vietoris-Rips filtration of Z, denoted by VR(Z), is a family of
graphs {VRr(Z)}r∈R+ whose vertex set is Z. We set VR0(Z) to have no edges, and, for all
r > 0, each graph VRr(Z) contains the edges [z, z′] such that dZ(z, z′) ≤ r.

Now, given r ∈ R+, we denote by π0(VRr(Z)) the quotient space Z/ ∼r, where two
points z, z′ ∈ Z are such that z ∼r z′ if and only if both z and z′ lie in the same connected
component from VRr(Z). We write [z] to refer to the class of z in π0(VRr(Z)) = Z/ ∼r,
where r ∈ R+ is implied by the context. The 0-homology group H0(VRr(Z)) is the free
Z2-vector space generated by the set π0(VRr(Z)). The 0-persistent homology of VR(Z),
denoted as PH0(Z), is given by the set of 0-homology groups

{
H0(VRr(Z))

}
r∈R+ and the set

of linear maps,
{

ρZ
rs : H0(VRr(Z)) → H0(VRs(Z))

}
r≤s

that are induced by the inclusions
VRr(Z) ⊆ VRs(Z) for all r ≤ s.

The 0-persistent homology is an example of a persistence module. Formally, a persistence
module V is a set of free finite Z2-vector spaces {Vr}r∈R+ together with a set of linear
maps {ρV

rs : Vr → Vs}r≤s called structure maps. Another example of persistence module
is the interval module, κa, for a > 0, where κa

r = Z2 for all r < a and κa
r = 0 otherwise,

with structure maps {ρκa

rs : κa
r → κa

s}r≤s being the identity map whenever s ≤ a and the
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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zero map otherwise. In addition, we define κ0 to be such that κ0
0 = Z2 and κ0

r = 0 for
all r > 0. Also, we denote by κ∞ the persistence module that consists of κ∞

r = Z2 for
all r ∈ R+; with structure maps {ρκ∞

rs : κ∞
r → κ∞

s }r≤s being the identity maps. Finally, a
persistence morphism f : V → U between persistence modules V and U is a set of linear
maps

{
fr : Vr → Ur

}
r∈R+ that commute with the structure maps ρV of V and ρU of U . If

fr is an isomorphism for all r ∈ R+, then f is called a persistence isomorphism. An example
of a persistence morphism is κa → κb, for a ≥ b, where κa

r → κb
r consists of the identity map

whenever b ≤ r ≤ a and the zero map otherwise. An example of persistence isomorphism is
κ∞ → κ∞ where κ∞

r → κ∞
r consists of the identity map for all r ∈ R+.

1.1 Connected Components, Barcodes and Triplet Merge Trees
Intuitively, PH0(Z) encapsulates the evolution of connected components in VR(Z). This
way, all classes in PH0(Z) are born at 0 since π0(VR0(Z)) =

{
[z1], [z2], . . . , [zn]

}
. As the

filtration parameter increases, PH0(Z) records the death values of such classes. Specifically,
a class [zj ] ∈ π0(VR0(Z)) is said to die at value b > 0 if:
1) ρZ

0ℓ([zj ]) = [zj ] for all ℓ ∈ R+ with ℓ < b.
2) ρZ

0b([zj ]) = [zi], for some i < j. That is, [zj ] + [zi] ∈ ker ρZ

0b.
In addition, we say that [zj ] ∈ π0(VR0(Z)) dies at 0 whenever there exists i < j such that
dZ(zi, zj) = 0. Finally, observe that, the component [z1] never dies.

A way to track the evolution of connected components is via triplet merge trees [12]:

TMT(Z) =
{

triplet(j) : j ∈ {2, 3, . . . , n}
}

⊂ Z × R+ × Z
}

,

where triplet(j) = (zj , bj , zi) is such that [zj ] ∈ π0(VR0(Z)) dies at value bj ≥ 0 and
ρZ

0bj
([zj ]) = [zi], where i ∈ {1, 2, . . . , j − 1} is as small as possible. Using TMT(Z), we relate

the elements of π0(VR0(Z)) to death values of connected components. It is worth mentioning
that the death values do not depend on the order chosen for the points of Z.

To store such death values, we use barcodes. The barcode B(Z) = (SZ , mZ) is a multiset
where SZ is the set of death values b > 0, and mZ(b) is the number of generators of
H0(VR0(Z)) that die at b, for a fixed b > 0. The representation of B(Z) is Rep B(Z) ={

(b, ℓ) | b ∈ SZ and ℓ ∈ {1, 2, . . . , mZ(b)}
}

. The following is a well-known fact (see
Theorem 1.2 of [2]) that we have adapted to our case.

▶ Lemma 1.1. There is a persistence isomorphism

PH0(Z)
(⊕

b∈R+
⊕

ℓ∈{1,2,...,mZ (b)} κb
)

⊕ κ∞.≃

1.2 Induced Block Functions and 1-Lipschitz Maps
To introduce the notion of block functions that will be used later to define induced matching
distances, we need the operators ker±

b defined as follows. For all b > 0,

ker−
b (Z) =

⋃

0≤r<b

ker(ρZ

0r) =
〈{

[zj ] + [zi] : (zj , bj , zi) ∈ TMT(Z) and bj < b
}〉

and ker+
b (Z) = ker(ρZ

0b) =
〈{

[zj ] + [zi] : (zj , bj , zi) ∈ TMT(Z) and bj ≤ b
}〉

.
We also define ker−

0 (Z) = 0 and ker+
0 (Z) =

〈{
[zj ] + [zi] | (zj , 0, zi) ∈ TMT(Z)

}〉
. Finally,

ker−
∞(Z) =

⋃

0≤r

ker(ρZ

0r) and ker+
∞(Z) = H0(VR0(Z)) .
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We consider now another set of n points X = {x1, x2, . . . , xn} together with a symmetric
non-negative function dX : X × X → R+, and a bijection f• : X → Z mapping xi to zi for all
i ∈ {1, 2, . . . , n}. Such a bijection induces an isomorphism f0 : H0(VR0(X)) → H0(VR0(Z)).
In particular, we have that f0(ker−

0 (X)) = 0, and also

f0
(

ker−
a (X)

)
=
{

[f0(xj)] + [f0(xi)] : (xj , aj , xi) ∈ TMT(X) and aj < a
}

for all a > 0, and
f0
(

ker+
a (X)

)
=
{

[f0(xj)] + [f0(xi)] : (xj , aj , xi) ∈ TMT(X) and aj ≤ a
}

for all a ∈ R+.

The induced block function M0
f : R+ × R+ → N is defined, for all a, b ∈ R+, by

M0
f (a, b) = dim

(
f0(ker+

a (X)) ∩ ker+
b (Z)

f0(ker−
a (X)) ∩ ker+

b (Z) + f0(ker+
a (X)) ∩ ker−

b (Z)

)

Intuitively, M0
f (a, b) is the amount of connected components of H0(VR0(X)) that die at a

and are sent by f0 to connected components of H0(VR0(Z)) that die at b. It is well-defined
because f0(ker±

a (X)) ⊆ H0(VR0(Z)) and ker−
b (Z) ⊆ ker+

b (Z) ⊆ H0(VR0(Z)). This definition
is an adaptation, to our setting, of the one given in [6], whose worst-case time complexity is
O(n3) as stated in [14]. Unlike in [6], it is possible that M0

f (a, b) ̸= 0 for a pair (a, b) with
a < b, and we cannot guarantee the very good properties presented in [6] such as, for example,
linearity as, in general, f• does not induce a persistence morphism f : PH0(X) → PH0(Z).

However, there is a simple workaround. Given δ ∈ R+, we define Xδ to be the set X

together with the symmetric non-negative function dXδ : X × X → R+ given by dδ
X(x, x′) =

dX(x, x′) + δ. Now, for δ ∈ R+ big enough, fδ
• : Xδ → Z is a 1-Lipschitz map, meaning

that dXδ (x, x′) ≥ dZ(fδ
• (x), fδ

• (x′)) for all x, x′ ∈ Xδ. Taking advantage of such property,
adapting Theorem 5.3 from [10] and Theorem 5.1 from [6], we derive the following result.

▶ Lemma 1.2. If δ ∈ R+ is big enough, then fδ : PH0(Xδ) → PH0(Z) is a persistence
morphism and we have that

fδ ≃
(⊕

b∈R+
⊕

a≥b

⊕
i∈{1,2,...,M0

fδ
(a,b)}(κa → κb)

)
⊕
(
κ∞ → κ∞).

1.3 Induced Matching Distance

Given barcodes (S, m) and (S′, m′), a matching is a bijection σ : Rep (S, m) → Rep (S′, m′).
To define the induced matching σ0

f : Rep B(X) → Rep B(Z), we first consider δ ∈ R+ big
enough so that fδ

• : Xδ → Z is 1-Lipschitz. Now, a consequence of Lemma 1.1 and Lemma 1.2
is that we can always define a matching σ1 : Rep B(Xδ) → Rep B(Z). Second, from the
equality ker±

a (X) = ker±
a+δ(Xδ) for all a ∈ R+, we have

ϕ : SX SXδ≃ is such that ϕ(a) = a + δ, and mX(a) = mXδ (a + δ), for all a ∈ SX .

In particular, we have another matching σ2 : Rep B(X) → Rep B(Xδ). Altogether, since
M0

f (a, b) = M0
fδ (a + δ, b), we define a matching σ0

f : Rep B(X) → Rep B(Z) as σ1 ◦ σ2.
We now introduce the novel concept of matching distance induced by bijections between

point sets endowed with symmetric non-negative functions. It is worth mentioning papers [14,
13], where the related concept of matching diagrams induced by set mappings between finite
metric spaces was defined. Fixed q ∈ N, the induced matching distance is the symmetric
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non-negative function dq
f0

defined as:

dq
f0

(B(X), B(Z)) =




∑

(a,ℓ)∈Rep B(X)
σ0

f ((a,ℓ))=(b,ℓ′)

|a − b|q




1/q

=
( ∑

a,b∈R+

M0
f (a, b) · |a − b|q

)1/q

(1)

Observe that the q-Wasserstein distance [4] is always bounded by the induced matching
distance. The paper’s main result states that the induced matching distance is continuous.

▶ Theorem 1.3. Fixed ε > 0, consider a bijection f• : X → Z such that |dX(x, y) −
dZ(f•(x), f•(y))| < ε for all x, y ∈ X. Then, dq

f0
(B(X), B(Z)) ≤ (n − 1)1/q · ε.

Proof. To start, if |a − b| > ε, then M0
f (a, b) = 0, since either f0(ker+

a (X)) ⊆ ker−
b (Z) or

ker+
b (Z) ⊆ f0(ker−

a (X)) holds. On the other hand, recall that,
∑

b∈R+ M0
f (a, b) = mX(a)

and also n − 1 =
∑

a∈R+ mX(a). Altogether, since M0
f (a, b) ̸= 0 if and only if |a − b| < ε,

then (n − 1)1/qε is an upper bound for (1). ◀

We conclude this section by illustrating why, in certain cases, it is preferable to compare
barcodes using the induced matching distance rather than the q-Wasserstein distance.

Figure 1 Point clouds X0 (left) and X1 (right) with the same points but different labels.

Consider the point clouds X0 and X1 pictured in Fig. 1. Observe that they have the
same shape, and therefore, their barcodes are equal, not reflecting that the points in the
clouds have changed their labels. We aim to preserve the information conveyed by labels
since points may represent the states of distinct agents, and the labels identify the agents.

In Fig. 2 (left), we can see the matching that produces a q-Wasserstein distance of 0. In
Fig. 2 (right), we can see the matching induced by the bijection X0 → X1 resulting from the
label changes, produces a nonzero induced matching distance, which is more coherent.

Finally, recall that, by definition, to compute the Wassertein distance, we have to find the
matching that achieves the minimal sum of the differences of the machined deaths, whereas
the given bijection between points immediately provides the matching that produces the
induced matching distance. Therefore, we can think of the induced matching distance as an
alternative way to compare diagrams effectively.
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Figure 2 The matching that produces the q-Wasserstein distance (left) and the matching that
produces the induced matching distance (right) between B(X0) and B(X1). The arrows indicate the
barcodes of B(X0) matched with the ones of B(X1). As one can observe, the matching induced by
the bijection takes into account the change of labels in Fig.1.

2 Robot Fleet Navigation Analysis via the Induced Matching Distance

As an application, we aim to compare, via the induced matching distance, three local
navigation algorithms or behaviors for robots: human like (HL) [8], optimal reciprocal collision
avoidance (ORCA) [15], and social force (SF) [9]. Simulated robots use these algorithms to
reach their targets, taking control actions operating on the local environment around them,
and also record their trajectories, composed of poses and orientations (x, y, α) ∈ R2 × [0, 2π).

For our experiments, we use the Navground social navigation simulator [7]. Specifically,
we consider simulations in a scenario that represents a corridor with a length of 15 m and
a width of 3.5 m, having both ends connected. In each simulation, 10 autonomous robots
apply the same behavior to navigate the corridor, with 5 robots moving to the left and 5
moving to the right. These robots mimic smart wheelchairs with differential drive kinematics,
radius 0.4 m, target speed 1.2 m s−1, and maximal speed 1.66 m s−1. At the beginning of the
simulations, the robots are randomly distributed in the corridor and attempt to follow their
assigned direction while avoiding collisions. We collect the pose and orientation of each robot
every 0.1 s for 90 s, resulting in a set of 10 3-dimensional time series, each containing 900
values. Fig. 3 shows the trajectories followed by the 10 robots for 3 different simulations.

Figure 3 The first 10 seconds of the trajectories followed by the robots in the corridor scenario
are depicted, corresponding to the behaviors SF (left), ORCA (center), and HL (right).

In each simulation, the i-th robot is associated with a 3-dimensional time series ai

representing its trajectory, being ai =
{

ai
t

}900
t=1 and ai

t = (xi
t, yi

t, αi
t). Now, for t = 1, 2, . . . , 850,

we obtain the set Zt =
{

zi
t

}10
i=1, where zi

t = {ai
t, ai

t+10, . . . , ai
t+50} ⊂ ai is a time window.

We use dynamic time warping as the symmetric non-negative function to build a sequence
of Vietoris-Rips filtrations

{
VR0(Zt)

}850
t=1. Dynamic time warping is a symmetric non-

EuroCG’25



22:6 The Induced Matching Distance

negative measure that enables non-linear alignment between two time series by finding
an optimal warping path that minimizes the cumulative distance between corresponding
points [11, 1]. For t = 1, 2, . . . , 800, we compute the induced block function M0

ft from
the bijection f t

• : Zt → Zt+50, resulting in a sequence of induced matching distances{
d1

ft
0
(B(Zt), B(Zt+50))

}800
t=1 that is called the induced matching signal.

The induced matching signal provides an intuition on the stability of the trajectories.
Ideally, the robots tend to organize themselves and end up forming lanes in the corridor,
moving forward indefinitely without ever correcting their trajectories or changing their speed.
This is called a stable state. When a simulation has stabilized, the set Zt = {z1

t , z2
t , . . . , z10

t }
may change as t changes, but the distances between its elements given by dynamic time
warping remain similar, so the Vietoris-Rips filtrations are also similar and the induced
matching distances are low. A decreasing induced matching signal indicates that the
corresponding simulation is stabilizing, with the robots becoming better organized.

Figure 4 Wasserstein and induced matching signals for the 600 simulations in the corridor
scenario. Bold lines show the median signal for each behavior, and shaded bands represent the
interquartile ranges.

We have performed 200 simulations for each behavior, getting 600 Wasserstein and
induced matching signals summarized in Fig. 4. At first glance, the signals vary significantly
depending on the behavior. HL and SF tend to stabilize the simulations in less than 90 s,
although at different speeds, while ORCA generally fails to stabilize within that time.

To show, in a quantitative way, that the three behaviors can be well distinguished using
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our topology-based signal, we build a time series classifier based on neural networks. Following
best practices [5], we trained a ResNet model [16] using Python [3, Chapter 8]. We split
the set of 600 signals into 420 for training, 60 for validation, and 120 for testing. After 100
training epochs, we got a ResNet model whose confusion matrices are shown in Fig. 5. The
model demonstrates perfect performance on the training set and achieves an accuracy and
a macro-average F1-score of 97.5% on the test set, indicating that the induced matching
signals effectively distinguish between the different navigation behaviors.

Figure 5 The confusion matrices for the ResNet classifier on the induced matching signals.

3 Conclusions

We introduced a topology-based tool for comparing discrete structures represented by
symmetric non-negative functions and applied it to monitor the dynamic behavior of trajectory
groups. The study of its stability and extension to higher dimensions remains future work.
Code availability: The source code for the experiments presented in this paper can be
found in https://github.com/Cimagroup/induced-matching-distance-navground.
Acknowledgements: Research partially supported by REXASI-PRO H-EU project, Grant
agreement ID: 101070028. Torras-Casas research has been partially funded by Ministerio de
Ciencia e Innovación project TED2021-129438B-I00 and the French Agence Nationale de la
Recherche project ANR-22-CPJ1-0047-01.
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Abstract
We investigate blob-trees, a new way of connecting a set of points, by a mixture of enclosing them
by cycles (as in the convex hull) and connecting them by edges (as in a spanning tree). We show
that a minimum-cost blob-tree for n points can be computed in O(n3) time.

1 Introduction

Any introductory course on computational geometry will treat convex hulls and minimum
spanning trees (MSTs) for a set P of n points in the plane. These are the least-cost structures
that enclose or connect the points. In this paper we investigate a new structure, the blob-
tree, that combines the ideas of enclosing and connecting. A blob is a simple polygon, and
all points of P enclosed in a blob are considered to be connected to each other. A tree-edge
is a segment between two points of P , and it connects its two endpoints. A blob-tree is a
collection of blobs and tree-edges that collectively connects all points of P , see Figure 1.
The convex hull and the MST of P are special cases of a blob-tree.

We are looking for the blob-tree that minimizes the total length of all edges drawn: the
perimeter of the blobs plus the tree-edges. As we show in Lemma 1 below, the blobs are
convex and disjoint. Morever, when contracting the blobs to vertices, the tree-edges form a
tree, so the name “blob-tree” is warranted.

While blob-trees appear interesting in their own right, similar structures have been used
in information visualization, in particular in KelpFusion [8]. This visualization style is based

Figure 1 The optimal blob-trees on two point sets (computed by our implementation [4]). Blob
edges are blue, tree-edges are green. The cost of the solution is the total length of blue and green.
MST edges are drawn heavier.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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(ii): no crossings
blob perimeter: ≈ 58.12
edge length: 16
total cost: ≈ 74.12

(i): crossing allowed
blob perimeter: 58
edge length: 16
total cost: 74

(iii): no crossings & convex
blob perimeter: 58
edge length: 17
total cost: 75

Figure 2 Three variants of blob-trees for the same point set, and their costs.

on shortest-path graphs [5], a one-parameter family of connected structures whose extremes
are the convex hull and the MST, without regard to a specific optimization criterion. Other
related work considers placing shortest fences for subsets of points [1, 2, 3].

As seen in Figures 1 and 2, an optimal solution might involve a tree-edge that crosses a
boundary of a blob. If we disallow such crossings (version (ii)), the optimal solution could
get longer and might include non-convex blobs. If we further required the blobs to be convex
(version (iii)), the optimal solution might become even longer, see Figure 2.

In this paper, we concentrate on the original problem. It turns out that the optimal solu-
tion can be obtained from the MST by replacing several of its subtrees by blobs (Lemma 2);
the other two variants (ii) and (iii) do not have this property. As our main result we show that
the optimal blob-tree can be computed in O(n3) time, and we implement the algorithm in
Python [4]. Efficient computation of optimal blob-trees in variants (ii) or (iii) remains open.

Our algorithm is based on dynamic programming and builds upon ideas from [6]. That
paper shows how to compute a single optimal convex polygon (or blob) in a point set that has
certain properties, using dynamic programming. For example, it can compute the smallest
area or perimeter convex polygon with k points on the boundary, or the smallest area convex
polygon containing at least k points inside or on the boundary in O(kn3) time. We show how
to deal with multiple blobs and with the minimum spanning connecting structure to compute
an overall minimum solution. All proofs that are not given here are in the full version [7].

2 Preliminaries

We assume that the point set P is in general position. In particular, we assume that the
pairwise distances between points are unique and no three points are on a line. This implies
that the MST of the point set is unique. We also assume that no two points have the same
x- or y-coordinate.

▶ Lemma 1. In any optimal solution: all blobs are convex polygons with vertices at P ; any
two blobs are disjoint; and when contracting the blobs to vertices, the tree-edges form a tree.

Proof. The claims follow from the triangle inequality. First, we can replace any blob that
does not have the claimed property with the convex hull of the points of P contained in it,
creating a blob-tree with a strictly smaller total cost. Similarly, two intersecting blobs B1
and B2 can be replaced by the convex hull of the union B1 ∪B2.

Contraction of blobs creates an abstract graph G in which every blob and every singleton
point that is not in a blob is represented by a vertex. For every tree-edge, G contains an edge
between the corresponding vertices. Since the blob-tree is connected and spans all points,
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Figure 3 An MST, a potential subset of non-tree edges (fat blue), and the resulting blob-tree.

G is connected. If G contained a cycle, then any tree-edge corresponding to an edge from
such a cycle could be removed from the blob-tree. So the graph G is a tree. ◀

Throughout the paper, T will denote the minimum spanning tree (MST) of P . We select
the lowest point r as the root and direct all edges of T towards r. For a node u, we denote
its parent in T by u′ and the directed edge from u to its parent by uu′.

3 Structural insights

The following key lemma with its immediate corollary shows that the optimal solution can
be obtained from the MST by replacing some of its subtrees by the respective blobs.

▶ Lemma 2. Let T be the MST. Then, in any optimal blob-tree S, every blob is a convex
hull of some subtree of T and every tree-edge is an edge of T .

Lemmas 1 and 2 immediately yield the following corollary.

▶ Corollary 3. Let B be a blob in any optimal blob-tree S. Let T be the MST. Then:

(a) A path in T that leaves B never comes back to B.
(b) The subgraph of T induced by the points in B is connected.
(c) No MST edge with both endpoints outside B intersects B. ◀

The structure of optimal blob-trees can be used to develop a polynomial-time algorithm
by dynamic programming. We extend the structure in two simple ways.

Firstly, we use the direction of all edges of T towards the root r. If we were to contract
each blob to a single point, then we would have a normal rooted tree. Consequently, every
blob that does not contain the root has one unique exit edge and every blob has zero or
more entry edges. The exit from a blob towards the root can be via an edge from one of its
hull vertices or via an edge from an interior blob point that crosses a hull edge. Similarly,
blob entrances come in two types, see Figure 4.

Secondly, we consider a bottom-vertex triangulation of each blob, where the lowest point
is connected to all other vertices on the boundary of the blob. We call the diagonals of
the triangulation chords and the exterior edges walls. The chords and triangles serve to
have simple (constant size) elements to be used to define substructures in the dynamic
program. Optimal solutions to smaller subproblems are “transported” through a blob from
any entrance to the unique exit, using the chords in between, to build solutions to larger
subproblems.
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r

r

r

r

Figure 4 A rooted, directed blob tree, two types of exits, and a bottom-vertex triangulation of
a blob with a dynamic programming order through it towards the root.

Figure 5 A blob is divided into triangles and digons.

There will be three types of subproblems: (i) edge subproblems, for each MST edge that
is used as a blob-tree edge, (ii) chord subproblems, and (iii) wall subproblems. There are
n− 1 of the first type and O(n2) of the latter two types. Walls and chords do not have an
implied orientation (unlike the edges of T ). Each segment must be considered as a potential
wall or chord separately in both orientations.

For uniformity, we draw chords from the bottom vertex of a blob also to its neighbors on
the blob boundary, cutting off two degenerate digons from the blob, see Figure 5. Thus, a
blob with k boundary points has k− 1 chords and k walls, and it is cut into k− 2 triangles,
each bounded by two chords and one wall, and two digons, bounded by one chord and one
wall.

Every chord has a forward side, towards the tree root, and a backward side; both are
defined later in detail. Our algorithm proceeds from the leaves towards the root, as indicated
by the red arrows in Figure 4. Thus, the subproblem associated to a chord consists of all
points that are on the backward side, including the points that are in other blobs hanging
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a

b
L

L

L

L

L
L

L

L

R

R

R
R
R

R

R

Figure 6 Labeling endpoints of MST-edges X+
ab crossing ab or incident to a or b as left (L) and

right (R). The neighbors of a and b are labeled right with respect to ab if the edges emanate in the
pink region, otherwise they are left. (The shown edges cannot all be MST edges simultaneously.)

off the current blob in the blob tree. It turns out that the points that are involved in
this subproblem can be uniquely identified with the help of the MST, without knowing the
optimum blob tree.

Let a, b be a pair of points. Let Xab be the set of edges of T that cross the line segment
ab, and let X+

ab denote the edges in Xab plus the edges of T that are incident to a or b.

Sidedness. Assume that a is below b and consider the boundary curve that is obtained
from the union of the vertical ray below a and the ray from a through b, see Figure 6. This
curve subdivides the plane into a left and a right side. We call a point v that is a vertex of
an edge in Xab a left or right endpoint, depending on if it lies left or right of the boundary
curve. The endpoints of edges in X+

ab \Xab that are not a or b are classified analogous.

▶ Lemma 4. Every edge in Xab has exactly one left and one right endpoint.

Valid chords. Removing X+
ab from T gives a forest. We call the segment ab a valid chord

if no component in T \ X+
ab contains both a left and a right endpoint. For a valid chord,

the components of T \X+
ab can be partitioned into left and right components, depending on

the characterization of the vertices from X+
ab contained in the component. Note that this

partitions P \ {a, b}.
The side assigned to the root r is the forward side of the chord and the other side the

backward side. (If the lower point a of the chord is r, we arbitrarily declare the right side
as the forward side. This convention simplifies the treatment of the “root blob”.) If the
forward side is the right side, then ab is a right-facing chord, otherwise it is a left-facing
chord.

▶ Lemma 5. All chords in an optimal solution are valid.

Walls. Walls are the edges on the boundary of a blob in a counterclockwise traversal. Let
b, c be a pair of points. Then uu′ ∈ Xbc is an entry edge for −→bc if it crosses −→bc from right
to left (from outside the blob to inside) and an exit edge otherwise.
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a

c

b

Figure 7 Six entry edges and one exit edge for the triangle abc. The four edges that cross bc are
associated to the wall bc. sd

Triangles and Digons. Among the non-root triangles in to which a blob is decomposed
from the lowest vertex, there is a unique wall, where the edge towards the root exits. If
this wall is part of a triangle, it is an exit triangle the other triangles are LR-triangles (left-
to-right), RL-triangles (right-to-left), depending on the direction in which the root lies, see
Figure 8. Points adjacent to vertices of the blob are assigned to the triangles or digons
according to the extension of the triangles by the rays through a and the other two vertices.

For every triangle abc with lowest point a, we can, by analyzing the tree edges that
cross the sides or are incident to the vertices a, b, c, classify it as a potential LR-triangle,
RL-triangle or exit triangle. A similar classification is obtained for digons. The details are
given in [7, Appendix D].

The following lemma shows that this concept of valid triangles and digons agrees with
the intended meaning:

▶ Lemma 6. Let B be a blob in an optimal solution. Then,

(a) There is exactly one exit triangle or digon.
(b) Every other triangle and digon in the decomposition of the blob from the lowest point is

a valid LR-triangle, RL-triangle or a valid entry digon.

4 The algorithm

The algorithm does not actually check that the blobs that we form are convex. The only
property that we implicitly enforce is that each blob is star-shaped around the lowest vertex
a. Thus, the algorithm considers also nonconvex blobs for potential solutions. However,
we know from Lemma 1 that such solutions cannot be optimal. As mentioned, we consider
three type of subproblems.

Edge problems. For each MST edge uu′, we define a problem edge[u], for the optimum
solution in which uu′ is used as a tree-edge. In addition, for the root r, we have edge[r] for
the overall problem. We define Vu as the set of points in the subtree of T rooted at u. We
define the size of the problem as the cardinality of Vu.
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exit

LR

RL

RL

left entry digon right entry digon

Figure 8 An example with one exit triangle, several LR- and RL-triangles, and two entry digons.

Chord problems. For each valid chord ab, we define a problem chord[a, b] for the optimum
solution on the backward side of ab, supposing that ab occurs as a chord of a blob in the
solution. We define Vab as the set of all points that are in a backward component of T \X+

ab.
We define the size of the problem chord[a, b] as the cardinality of Vab. For clarity, we will
sometimes write Vab as ←−Vab for a right-facing chord and as −→Vab for a left-facing chord.

Wall problems. We denote by Wabc the set of endpoint of entry edges for abc that lie
outside of the blob. For each pair of points b, c, we denote by Wbc the set of points w where
ww′ ∈ Xbc is an entry edge for bc. We will frequently need the values

∑
u∈Wabc

edge[u]. We
split this into

∑

u∈Wabc

edge[u] =
∑

u∈Wbc

edge[u] +
∑

u∈Wabc, uu′ entry edge into b or c

edge[u]

To speed up the evaluation of this term, the first sum is stored as the solution of an auxiliary
subproblem, wall[bc]; the second sum can be computed in constant time, because there are
only a constant number of entry edges incident to b and c, because the degree of a Euclidean
MST is bounded by 6.

The size of this problem is defined as the sum of the sizes of the problems edge[u]. If
bc is a wall in an optimal solution, the subtrees rooted at the nodes w ∈ Wbc are disjoint.
However, we don’t check this condition. Hence the size can be bigger than n.

Relation between subproblems. In [7, Appendix G, Lemmas 9 and 10], we describe the
relations between the sets of points that define the subproblems. These lemmas ensure that
the solution of every subproblem depends only on problems of smaller size.

Preprocessing. In a preprocessing phase, we determine the size of each subproblem, in
order to know the order in which we have to solve the subproblems. In [7, Appendix H,
Lemma 11], we give details about the extra information gathered in the preprocessing step.
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Chord problems. For each valid chord ab, we determine its sidedness. If it is right-facing,
we consider all possibilities for an LR-triangle abc, as well as the possibility that ab is a left
entering digon. Left-facing chords are analogous. More details are in [7, Appendix I].

Edge problems. For each MST edge uu′, we have two possibilities. If u is not in a blob,
all incoming MST edges of u must be tree-edges, and we can accumulate the values of the
corresponding subproblems. If u is in a blob, we consider all potential exit triangles abc for
which the uu′ is the exiting edge crossing the wall bc, as well as the analogous possibility of
an exit digon. Details are given in [7, Appendix I].

▶ Theorem 7. The dynamic program above correctly solves the minimum blob-tree problem
in O(n3) time.

Proof. For each size, we first solve the edge problems, then the wall problems, and then
the chord problems. Lemmas 9 and 10 in [7, Appendix G] show that every subproblem
solution that is needed is already computed, and correctness follows from these lemmas.

The straightforward running time analysis is given in [7, Appendix J]. ◀
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Abstract
A linear layout of a graph defines a total order of the vertices and partitions the edges into either
stacks or queues, i.e., crossing-free and non-nested sets of edges along the order, respectively. In this
work, we study defective linear layouts that allow forbidden patterns among edges of the same set.
Our focus is on k-defective stack layouts and k-defective queue layouts, in which the conflict graph
representing the forbidden patterns among the edges of each stack or queue has maximum degree k.

1 Introduction

Stack [5] and queue [8] layouts have been a central topic in topological graph theory. These
layouts order the vertices and partition the edges into stacks (crossing-free sets of edges) or
queues (non-nested sets of edges). Given a graph, the focus is on the stack or queue number,
that is, the minimum number of stacks or queues, respectively, needed for a corresponding
layout to exist. This work introduces k-defective linear layouts, a generalization that allows
forbidden patterns (crossing edges in stacks, nested edges in queues) by means of a conflict
graph that is required to have maximum vertex-degree k. Classical stack/queue layouts form
special cases for k = 0. Our results include: (i) characterizations for k-defective queue/stack
layouts; (ii) bounds on the edge density of k-defective queue/stack layouts; (iii) bounds or
exact values for the k-defective queue/stack number of specific graph families, e.g., complete,
outerplanar, and outer 1-planar graphs. Due to space constraints, some proofs are either
outlined briefly or omitted.

2 Preliminaries

A vertex order ≺ of a graph G is a total order of its vertices. Two independent edges
(u1, v1), (u2, v2) nest if u1 ≺ u2 ≺ v2 ≺ v1, while they cross if u1 ≺ u2 ≺ v1 ≺ v2. A stack
(queue) is a set of pairwise non-crossing (non-nested) edges. An edge forms a k-defect if it
crosses (nests or is being nested by) k others in the same stack (queue) in ≺. Accordingly, a
set of edges, each of which forms a κ-defect with κ ≤ k is called k-defective stack (queue,
respectively). For h ≥ 1 and k ≥ 0, a k-defective h-stack (queue) layout of a graph G consists
of a vertex order and a partition of the edges into h defective stacks (queues), each avoiding

∗ Research started at the Bertinoro Workshop on Graph Drawing 2024.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
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Figure 1 (Left) A 2-defective 1-queue layout of a 10-vertex graph. (Right) Its conflict graph.

1

2

3

4

Figure 2 An arched level 1-planar layout of a graph.

(k + 1)-defects. The k-defective stack (queue) number of G is the minimum h for such a
layout to exist. Defective stack/queue layouts are related to defective colorings [2], in which
adjacent vertices can share a color, as long as each monochromatic component has a specific
structure as outlined in Property 1.

▶ Property 1. A graph has a k-defective h-stack/queue layout if and only if it admits a
linear order ≺ whose conflict graph C≺ (having a node for each edge and an edge (u, v)
exists in C≺ if and only if the edges corresponding to u and v form a 1-defect in ≺) has a
defective h-coloring in which every monochromatic induced component has maximum degree
at most k.

As a graph of maximum degree k is (k + 1)-colorable, by Property 1, every graph with
k-defective stack (queue) number h has stack (queue) number at most (k + 1)h. Thus, if a
graph has k-defective stack (queue) number 1, its stack (queue) number is at most k + 1, but
the converse does not hold. For example, Kn has stack (queue) number

⌈
n
2

⌉
[5] (

⌊
n
2

⌋
[8]), while

any defective 1-stack/-queue layout of Kn has defectiveness greater than
⌈

n
2

⌉
− 1 (

⌊
n
2

⌋
− 1).

Property 1 also has implications to layouts with a fixed linear order.

3 Queue layouts

Characterization. An arched level k-planar layout of a graph G is a drawing where vertices
lie on ℓ ≥ 1 horizontal levels (i.e., lines), edges connect vertices on the same level (drawn
as arcs) or consecutive levels (drawn as straight-line segments) and each edge has at most
k crossings; see Fig. 2. By extending a known result [8], one can show that a graph has
k-defective queue number 1 if and only if it admits an arched level k-planar layout.

Edge density. We next study the density of graphs admitting k-defective 1-queue lay-
outs. Consider a linear order of the vertices of a graph G, denoted by v0 ≺ · · · ≺ vn−1. A
right (left) alternating path in ≺ is defined as a path P = ⟨vj1 , vj2 , . . . , vjl

⟩ where the indices
alternate in direction: if i is odd (even), ji+2 < ji < ji+1; if i is even (odd), ji+2 > ji > ji+1,
0 ≤ ji, ji+1, ji+2 ≤ n − 1. The edges of a k-defective h-queue layout L of Kn can be parti-
tioned into n − 1 right (or left) alternating paths P1, P2, . . . , Pn−1 such that each Pi has i
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v0 v1 v2 v3 v4 v5 v6 v7 v8 v9
P1 P3 P5 P7 P9 P8 P6 P4 P2

Figure 3 (Left) Two alternating paths; left one (red) and a right one (black). (Right) An
alternating path partition of K10.

edges (1 ≤ i ≤ n − 1); see the right part of Figure 3. Such a partition is called alternating
path partition.

▶ Lemma 3.1. Let ≺ be the linear order of a k-defective h-queue layout L of a graph G, and
let P be an alternating path of ≺. Every defective queue of L contains at most k+2 edges of P .

Proof. If a defective queue contained a set E∗ of more than k + 2 edges of P , then the
longest edge would nest all but one edge, making the defectiveness of L at least k + 1. ◀

We next prove the upper bound on the density of graphs admitting k-defective 1-queue layouts.

▶ Theorem 3.2. Every n-vertex graph that admits a k-defective 1-queue layout has at most
(k + 2)n − (k+2)(k+3)

2 edges, which is a tight bound for k = 1.

Proof. Let L be a k-defective 1-queue layout of an n-vertex graph G, and let ≺ be its linear
order. Graph G can have as many edges as Kn, which in turn admits an alternating path
partition P1, P2, . . . , Pn−1 as illustrated in the right part of Fig. 3. Since L has a single
defective queue, by Theorem 3.1, graph G can have at most k + 2 edges in each Pi, giving
an upper bound of (k + 2)(n − 1) edges. However, each Pi with 1 ≤ i ≤ k + 1 is missing
k + 2 − i edges to reach the upper bound of k + 2. Thus, the maximum edge density is
(k + 2)(n − 1) − ∑k+1

j=1 j = (k + 2)n − (k+2)(k+3)
2 . To prove that the bound is tight for k = 1,

for every n ≥ 3 we construct a 1-defective 1-queue layout of a graph G with 3n − 6 edges.
Let v0 ≺ v1 ≺ · · · ≺ vn−1 be a linear order of the vertices of G. Add to G all the 1- 2- and
3-hop edges (black, blue, and orange, respectively, in Fig. 4). The constructed layout is a
1-defective 1-queue layout. Since the number of i-hop edges is n − i, with i ∈ {1, 2, 3}, graph
G has in total 3n − 6 edges. ◀

v0 v1 v2 v3 v4 v5

Figure 4 A 1-defective 1-queue layout with 6 vertices and 12 edges.

▶ Theorem 3.3. For every integer j ≥ 1, there exists an n-vertex graph with n = 3j + 1
vertices and 10

3 n − 22
3 = 10j − 4 edges that admits a 2-defective 1-queue layout.

EuroCG’25
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0

1 2 3 4 5 6 7 8 9 10 11 12

2 1 3 4 85 67 9 10 12 110

Figure 5 Illustration for the proof of Theorem 3.4

Sketch. Let j ∈ Z+ and n = 3j + 1. A 2-defective 1-queue layout of a graph with n vertices
and 10

3 n− 22
3 edges consists of (see Fig. 1 for n = 10): (i) 2

3 n+ 1
3 1-hop edges (black in Fig. 1);

(ii) n−2 2-hop edges (blue); (iii) n−3 3-hop edges (orange); (iv) 2
3 n− 8

3 4-hop edges (green).
Namely, in the complete left-to-right sequence of (n − 1) 1-hop edges and (n − 4) 4-hops, we
delete the last edge from each triple of consecutive 1-hop edges, except for the last triple and
the last edge from each triple of 4-hop edges. ◀

Defectiveness and Queue Number. Since outerplanar graphs have queue number 2 [9],
it is natural to ask whether constant defectiveness allows every outerplanar graph to have
k-defective queue number 1 for some constant k. We negatively answer this question below.

▶ Lemma 3.4. For every integer j ≥ 3, there is an outerplanar graph G with n = 3j + 1
vertices such that every defective 1-queue layout of G has defectiveness at least n−1

3 − 2.

Sketch. Given j ≥ 3, let G be an outerplanar graph with n = 3j + 1 vertices consisting of a
path of n − 1 vertices (backbone) and a vertex (apex) connected to all backbone vertices (fan
edges); see Fig. 5(left) for j = 4. Graph G has m = 2n − 3 edges; n − 1 fan edges and n − 2
backbone edges. In any 1-defective queue layout L of G, let a be the position of the apex in
≺, with Em, El, and Er being subsets of the backbone edges nesting a, left of a, and right of
a, respectively. L contains a k-defect such that k ≥ M = max{|El| − 2, |Em| − 2, |Er| − 2}.
M is minimized when two of El, Em, and Er have size n−1

3 , and the other n−1
3 − 1,

yielding M = n−1
3 − 2. A matching layout for k = n−1

3 − 2 is given in Fig. 5(right), with
|El| = |Er| = n−1

3 , |Em| = n−1
3 − 1, and degree-2 backbone vertices at both ends. ◀

Outer 1-planar graphs (that is, graphs admitting 1-planar drawings with all vertices being
incident to the outer face) have (0-defective) queue number at most 42, as they are planar [4].
In the following, we show that their 1-defective queue number is 2, which implies that their
(0-defective) queue number at most 3.

▶ Theorem 3.5. Outer 1-planar graphs have 1-defective queue number 2.

vu

w u w

v

v1u

w
v2

u w

v1 v2

Figure 6 Illustration for the proof of Theorem 3.5.
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Sketch. For the upper bound, we adapt a construction [3, 7] that yields weakly leveled planar
drawings of outerplanar graphs, in which the edges have either span 0 (forming a forest of
paths) or span 1 (connecting consecutive levels). More precisely, for an outer 1-planar graph
G, we incrementally construct a planar straight-line drawing Γ(Gp) of its planar skeleton Gp

by introducing one or two vertices each time maintaining the following invariants (see Fig. 6):
(i) the outer face is bounded by two strictly x-monotone paths (upper and lower envelopes),
(ii) the end-vertices of the edges differ in y-coordinate by 0 (span-0 edges) or 1 (span-1 edges).
Then, inserting the crossed edges of G \ Gp into Γ(Gp) yields a 1-planar drawing Γ(G) that
can be converted to a 1-defective 2-queue layout for G as follows: (i) u ≺ v if y(u) > y(v) or
y(u) = y(v) and x(u) < x(v) in Γ(G), (ii) span-0 edges form the first (0-defective) queue,
while span-1 its second (1-defective). ◀

▶ Corollary 3.6. Outer 1-planar graphs have queue number at most 3.

By using the fact that the queue number of planar 3-trees is at most 5 [1], Lemma 3.7, which
forms an adaption of Lemma 8 in [6], and Lemma 3.8, we can prove that planar graphs have
1-defective queue number at most 33 (by setting ℓ = 3 in Lemma 3.8). For the definitions of
H-partitions and of BFS-layerings, we point the reader to [6].

▶ Lemma 3.7. Let G be a graph admitting an H-partition of layered-width ℓ with respect to
a BFS-layering B. Then, the 1-defective queue number of G is upper-bounded by:

(3 · qn(H) + 1) ·
⌈

2ℓ

3

⌉
+

⌈
ℓ − 1

3

⌉
.

Sketch. The proof follows the same lines as the one in [6], where the bounds on the queue
numbers of Kℓ and Kℓ,ℓ are substituted by the 1-defective ones provided in the following. ◀

▶ Lemma 3.8. The 1-defective queue number of Kn,n in the separated setting (i.e., when all
vertices of one part precedes those of the other) is at least

⌈
n
2

⌉
and at most

⌈ 2n
3

⌉
.

Proof. Let u0, . . . , un−1 and v0, . . . , vn−1 be the vertices of the two parts of Kn,n, ordered as
u0 ≺ · · · ≺ un−1 ≺ v0 ≺ · · · ≺ vn−1. The edges (u0, vn−1), (u1, vn−2), . . . , (un−1, v0) pairwise
nest, and since at most two can share a single 1-defective queue page, the lower bound follows.
For the upper bound, assuming n mod 3 = 0, we prove that Kn,n admits a 1-defective queue
layout Ln with 2n

3 1-defective queues denoted by q0 to q 2n
3 −1.

v4

v3

v2

v1

v0

v5

u0 u1 u2 u3 u4 u5

Figure 7 An assignment of the edges of K6,6 to the four pages of a 1-defective queue layout.

Page q0 contains only the two edges (u0, vn−1) and (un−1, v0), while q1 contains 3n − 2 edges:

(ui, vi−1) 1 ≤ i ≤ n − 1 (ui, vi) 0 ≤ i ≤ n − 1 (ui, vi+1) 0 ≤ i ≤ n − 2.

The remaining pages of Ln are defined as follows: for each p ∈ [1, n
3 − 1], Ln includes two

symmetric pages, q2p and q2p+1, each with 3n − 9p edges. Then, q2p contains the edges:

EuroCG’25
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(ui+3p+1, vi) 0 ≤ i ≤ n − 3p − 2 (ui+3p, vi) 0 ≤ i ≤ n − 3p − 1

(ui+3p−1, vi) 0 ≤ i ≤ n − 3p.

On the other hand, page q2p+1 contains the following edges:

(ui, vi+3p+1) 0 ≤ i ≤ n − 3p − 2 (ui, vi+3p) 0 ≤ i ≤ n − 3p − 1

(ui, vi+3p−1) 0 ≤ i ≤ n − 3p.

Thus, Ln contains 3n + 2 · ∑ n
3 −1
p=1 (3n − 9p) = n2 edges. The proof relies on two points: no

edge of Kn,n is assigned to multiple pages, and no page of Ln has a k-defect for k > 1. ◀

In the separated setting, a k-defective queue layout can be converted into a k-defective stack
one by reversing the vertex order of one bipartition. Hence, Theorem 3.8 directly implies:

▶ Corollary 3.9. The 1-defective stack number of Kn,n in the separated setting is at least⌈
n
2

⌉
and at most

⌈ 2n
3

⌉
.

In the following, we establish a lower (Theorem 3.10) and an upper bound (Theorem 3.11)
on the k-defective queue number of Kn, which is tight for k = 1 (Corollary 3.12).

▶ Theorem 3.10. The k-defective queue number of Kn is at least
⌈

n−1
k+2

⌉
.

Proof. The edges of a k-defective queue layout L of Kn can be partitioned into alternating
paths P1, . . . , Pn−1. By Lemma 3.1, at most k + 2 edges out of the n − 1 edges of Pn−1 can
be in the same queue. Thus, at least

⌈
n−1
k+2

⌉
queues are required in L. ◀

The corresponding upper bound on the k-defective queue number of Kn that is given in the
following theorem is more tedious to be obtained; its detailed proof is postponed for the
conference or journal version of this note.

▶ Theorem 3.11. The k-defective queue number of Kn is at most
⌈

n−1
l

⌉
with l=

⌊
3+

√
8k+1
2

⌋
.

▶ Corollary 3.12. The 1-defective queue number of Kn is
⌈

n−1
3

⌉
.

4 Stack Layouts

In this section, we turn our attention to k-defective h-stack layouts.

Characterization. It is not difficult to see that a graph admits a k-defective h-stack layout
if and only if its edges can be partitioned into h defective stacks, each inducing an outer
k-planar subgraph. We outline this observation in the following theorem.

▶ Theorem 4.1. A graph has k-defective stack number 1 if and only if it is outer k-planar.

Edge density. The following theorem provides an upper bound on the edge density of
graphs admitting 1-defective h-stack layouts.

▶ Theorem 4.2. An n-vertex graph that admits a 1-defective h-stack layout has at most
( 3

2 h + 1)n − 4h edges.

Proof. Let G be an n-vertex graph admitting a 1-defective h-stack layout L. Let v0, . . . , vn−1
be the vertices of G in the order they appear in L. An edge e connects consecutive vertices
in L if e = (vi, vi+1) for some i ∈ {0, . . . , n − 1}, with indices taken mod n. By Theorem 4.1,
each defective stack of L is an outer 1-planar graph with at most 3

2 n − 4 edges, excluding
the at most n edges connecting consecutive vertices. Since L has h stacks, G has at most
3
2 hn − 4h edges. With the consecutive edges, G has at most

( 3
2 h + 1

)
n − 4h edges. ◀
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Defectiveness and stack number. We conclude this section by presenting upper and
lower bounds on the k-defective stack number of Kn. In particular, the following theorems
can be proved using similar arguments as the corresponding ones for defective queue layouts.

▶ Theorem 4.3. The 1-defective stack-number of Kn is either
⌊

n
3

⌋
− 1 or

⌈
n
3

⌉
.

▶ Theorem 4.4. The k-defective stack number of Kn is at most ⌈ n
l+2 ⌉, where l=⌊ −1+

√
8k+1

2 ⌋.

5 Open Problems

Our work raises several new open problems, which we list below.

Even though we focused on stack and queue layouts, the study can naturally extend to
other types of linear layouts (e.g., deques or riques) or even to mixed settings.
In relation to the type of defects, we considered those obtained by imposing restrictions
on the degree of the conflict graph. It would be interesting to study other types of defects,
e.g., bounded diameter for the conflict graph.
More specific research questions raised directly from our results include (i) proving
hardness for recognizing the graphs that admit k-defective 1-queue layouts when k ≤ 3,
(ii) improving our bounds on the k-defective stack and queue number of Kn when k > 1,
and (iii) extending the study to other classes of graphs.
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Abstract
For a positive integer g, we study a family of plane graphs G without cycles of length less than g

that are maximal in a sense that adding any new edge to G either makes it non-plane or creates a
cycle of length less than g. We show that the largest face length fmax(g) of a 2-connected graph
from this family satisfies 3g − 12 ≤ fmax(g) ≤ 2(g − 2)2 + 1.

Related Version arXiv:2410.13481

1 Introduction

Turán-type problems play a substantial role in combinatorics since their introduction by
Mantel [15] and Turán [20] in the first half of the 20th century. Perhaps the most extensively
studied question of this type is the following. For a given family F of graphs, what is the
largest possible number of edges ex(n,F) in an n-vertex F-free graph, that is, a graph that
does not contain any F ∈ F as a subgraph? Let C<g = {C3, . . . , Cg−1} be a family of cycles
of length less than g. It is known, for a fixed g, that ex(n, C<g) = O(n1+1/b(g−1)/2c) and the
bound is known to be asymptotically tight for some values of g, see [2, 8, 10].

Problems of this kind have a rich history of study and numerous variations, see the
surveys [10,19,21]. Another variation was suggested by Dowden [7], who asked for the largest
possible number of edges exP(n,F) in an n-vertex plane F -free graph. A direct application
of Euler’s formula yields that exP(n, C<g) ≤ g

g−2 (n− 2) for all n ≥ g ≥ 3 which is essentially
tight. For more partial results on Dowden’s problem, we refer the reader to [5,11,12,14,17,18]
and the references therein.

In this note, we consider another natural parameter of a plane graph G, the largest face
length, that we denote by fmax(G). In other words, let fmax(G) be the length of the longest
cycle bounding a face of G. We say that a plane C<g-free graph G is maximal plane C<g-free
graph if adding any new edge to G with both endpoints in G either makes it non-plane or
creates a cycle of length less than g. The case when G is a star shows that fmax(G) can
be arbitrary large in terms of g even if our graph is maximal plane C<g-free. To avoid this
rather degenerate situation, we consider only 2-connected graphs. More formally, let

fmax(g) = max{fmax(G) : G is a 2-connected maximal plane C<g-free graph}.

By taking G = C2g−3, we immediately see that fmax(g) ≥ 2g − 3. It is not hard to
show that this inequality is tight for g = 3, 4, 5, while the first author, Ueckerdt, and
Weiner [3, Lemma 5] proved this for g = 6. Our main result provides general upper and
lower bounds on fmax(g). In particular, it implies that fmax(g) is finite and strictly larger
than 2g − 3 for all g ≥ 7.

∗ Research was supported in part by the DFG grant FKZ AX 93/2-1.
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I Theorem 1.1. If 3 ≤ g ≤ 6, then fmax(g) = 2g − 3. If 7 ≤ g ≤ 9, then fmax(g) ≥ 3g − 9.
Moreover, for any integer g ≥ 7, we have

3g − 12 ≤ fmax(g) ≤ 2(g − 2)2 + 1.

We prove the general lower and upper bounds in Section 3. Some additional definitions
are given in Section 2. Finally, we give concluding remarks in Section 4.

Let us note that the relations between face lengths in plane graphs and their other param-
eters including radius or diameter were also considered, see Ali, Dankelmann, Mukwembi [1]
and Du Preez [16], respectively. See also a paper by Fernández, Sieger, and Tait [9] on planar
subgraphs of given girth in planar graphs.

2 Definitions and basic observations

When clear from the context, we shall identify a plane graph with the corresponding planar
one. For all standard graph theoretic notions, we refer the reader to a book by Diestel [6].
We call a path S in a graph G an ear of a cycle C in G if the endpoints of S are vertices
of C and no other vertex or edge of S belongs to C. We say that an ear S splits C into
paths C ′ and C ′′ if C = C ′ ∪ C ′′ and the endpoints of C ′ and C ′′ are those of S. Moreover,
for every two vertices x and y of G, let us denote the length of a shortest x, y-path, i.e., a
path between x and y, by distG(x, y). When the graph under consideration is clear from the
context, we simply write dist(x, y). We denote the set of integers {1, . . . , n} by [n].

We say that a graph is a subdivided wheel if it is a union of a cycle C, called the outer
cycle of the wheel, and a tree T with exactly one vertex c, called the center of the wheel, of
degree more than 2 such that a vertex of T belongs to C if and only if it is a leaf of T . We
say that a path in T connecting c to a leaf of T is a spoke of the wheel and a path in C

connecting two consecutive leaves of T is a segment of the wheel. Note that a maximal plane
C<g-free graph W (g) in Figure 1 (a) is a subdivided wheel.

We shall repeatedly use the following observation.

I Lemma 2.1. Let g ≥ 4, G be a 2-connected maximal plane C<g-free graph, and C be its
facial cycle. If x and y are two non-consecutive vertices of C, then 2 ≤ dist(x, y) ≤ g − 2.

Proof. Let x and y be two non-consecutive vertices on C.
If x and y are not adjacent, adding the edge xy to G doesn’t break planarity, since x and

y belong to the same face of G. Now the maximality of G implies that this new edge xy

belongs to a cycle of length at most g − 1, and thus distG(x, y) ≤ g − 2, as desired.
Assume now that x and y are adjacent. This edge xy splits C into two paths C ′ and C ′′,

each of length at least g − 1, since otherwise G contains a cycle of length less than g. Pick
two vertices, x′ on C ′ and y′ on C ′′, such that distC(x, x′) = bg/2c = distC(y, y′). Note that
dist(x, x′) = bg/2c otherwise the union of a shortest x, x′-path in G and the x, x′-path in
C contains a cycle of length at most g − 1. Let P be a shortest x, x′-path. Assume that
dist(x′, y) < dg/2e − 1, i.e., that there is an x′, y-path P ′ of length at most dg/2e − 2. Then
P ′ is shorter than P , and thus P ∪ P ′ ∪ xy contains a cycle of length less than g. This
is a contradiction implying that dist(x′, y) ≥ dg/2e − 1. Similarly, dist(y, y′) = bg/2c and
dist(x, y′) ≥ dg/2e− 1. Since each x′, y′-path contains either x or y by planarity, we conclude
that dist(x′, y′) ≥ bg/2c+ dg/2e − 1 = g − 1, which contradicts the first part of the lemma
and thus completes the proof. J
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3 Proof of Theorem 1.1 for g ≥ 7

Let g ≥ 7. For the general lower bound, consider the graph W (g), see Figure 1 (a), that is
a subdivided wheel with three spokes of length two each and each segment of length g − 4.
Observe that any two non-adjacent vertices of W (g) belong to at least one of the three
cycles of length 2g − 4, and thus adding an edge between them creates a cycle of length less
than g. Hence, W (g) is a 2-connected maximal plane C<g-free graph. Therefore, we have
fmax(g) ≥ fmax(W (g)) = 3g − 12, as claimed.

If g = 7, 8, or 9, consider a different construction W ′(g), that is an edge disjoint union of
C9 and C3g−9 that share three vertices equidistant on each of the cycles, see Figure 1 (b). As
earlier, note that any two non-adjacent vertices of W ′(g) belong either to at least one of the
three cycles of length 2g − 3 or to at least one of the three cycles of length g. Hence, W ′(g)
is a 2-connected maximal plane C<g-free graph, and so fmax(g) ≥ fmax(W ′(g)) = 3g − 9 for
g = 7, 8, 9, as claimed.

g − 3 g − 3

g − 3g − 4

g − 4g − 4

(a) (b)

Figure 1 2-connected maximal plane C<g-free graphs W (g) and W ′(g).

Now we shall give a general upper bound. Let G be a 2-connected maximal plane C<g-free
graph, and C be its largest facial cycle. The main idea of the proof is as follows. We argue
that if C is sufficiently long, then there is an ear S that splits it into two sufficiently long
paths. Then we show that there are two vertices, one on each path, each at a distance more
than g/2− 1 to S. As a result, these two vertices are at a distance more than g − 2 in G,
which contradicts Lemma 2.1.

Let S = v1 . . . vk+1 be an ear of C that splits it into C ′ = v1u1 . . . um−1vk+1 and
C ′′ = v1u′1 . . . u′m′−1vk+1. Our goal is to bound distC(v1, vk+1) = min(m, m′) in terms of g

and k, that we shall state in Corollary 3.5. To do so, we order the vertices of S according to
their indices, i.e., we say that vi < vi′ if i < i′. Let

d(j) = dist(uj , S) = min
i∈[k+1]

dist(uj , vi) and

v(j) = vi, where i = min{i′ : d(j) = dist(uj , vi′)},

i.e., v(j) is the smallest vertex from S such that dist(uj , S) = dist(uj , v(j)). Let P (j) be
some shortest uj , v(j)-path. Note that each P (j) is in the region bounded by C ′ and S, see
Figure 2. For a vertex v of S, let

J(v) = {j ∈ [m− 1] : v(j) = v}.

I Lemma 3.1. If d(j) ≤ g/2− 1 for each j ∈ [m− 1], then m ≤ k(g − 3) + 2.

Proof. Our argument consists of several steps.
I Claim 3.2. For any j ∈ [m− 2], v(j) ≤ v(j + 1). In particular, for any vertex v of S, J(v)
is an interval of consecutive integers, that also could be empty.

EuroCG’25
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v1

vk+1

u1

um−1

S
uj

P (j)

v(j)

C ′

Figure 2 Setting for the proof of the general upper bound on fmax(g).

Indeed, assume that v(j + 1) < v(j) for some j. Since the edges of P (j) and P (j + 1) are
in the same region bounded by C ′ and S, by planarity, P (j) and P (j + 1) share a vertex,
say x. Let P ′(j) be the subpath of P (j) from x to v(j), define P ′(j + 1) similarly.

Note that if P ′(j) is shorter than P ′(j + 1), then P (j + 1) is not a shortest path from
uj+1 to S since ‘exchanging’ P ′(j + 1) to P ′(j) in P (j + 1) yields a shorter walk.

Otherwise, if P ′(j) is not shorter than P ′(j + 1), then ‘exchanging’ P ′(j) to P ′(j + 1) in
P (j) would yield a walk from uj to v(j + 1) that is not longer than P (j) which contradicts
the definition of v(j) since v(j + 1) < v(j). This proves the claim.
I Claim 3.3. For each vertex v of S, the function d(·) is strictly unimodal on J(v). Moreover,
d(·) is strictly monotone on J(v1) and on J(vk+1).
Fix a vertex v in S. If j, j + 1 ∈ J(v), then P (j)∪P (j + 1)∪ujuj+1 is a closed walk of length
less than g. Hence, this walk is trivial, i.e., either P (j) = ujuj+1 ∪ P (j + 1) (in which case
d(j) = d(j+1)+1) or P (j+1) = uj+1uj∪P (j) (in which case d(j+1) = d(j)+1). Assume that
there is a local maximum of d(·) at j ∈ J(v), i.e., that d(j− 1) = d(j)− 1 = d(j + 1) for some
j−1, j, j+1 ∈ J(v). Then P (j) = ujuj−1∪P (j−1) = ujuj+1∪P (j+1). This is a contradiction,
since P (j) has an endpoint uj and two edges incident to it. Therefore, the function d(·) has
a unique minimum on J(v), it first strictly decreases and then strictly increases. Moreover,
note that dist(u1, v1) = dist(um−1, vk+1) = 1, and thus the corresponding minimums of d(·)
on J(v1) and on J(vk+1) are their endpoints j = 1 and j = m − 1, respectively. For the
illustration, see Figure 3. This proves the claim.
I Claim 3.4. For each vertex v of S, |J(v)| ≤ g − 3. Moreover |J(v1)|, |J(vk+1)| ≤ g/2− 1.
The second part is immediate from the fact that d(·) can have values only in [g/2 − 1]
and strictly monotone on J(v1) and on J(vk+1). For the first part, note that the strict
unimodality of d(·) on J(v) implies that |J(v)| ≤ 2(g/2− 1)− 1 = g − 3 for each v ∈ V (S).
This proves the claim.

Since each j ∈ [m− 1] belongs to J(v), for some v and the sets J(v) are pairwise disjoint,
we have that m − 1 =

∑k+1
i=1 |J(vi)| ≤ 2(g/2 − 1) + (k − 1)(g − 3) = k(g − 3) + 1, which

completes the proof of Lemma 3.1. J

I Corollary 3.5. Each ear S = v1 . . . vk+1 of C satisfies distC(v1, vk+1) ≤ k(g − 3) + 2.

Proof. Indeed, if not, then some ear S splits C into two paths C ′ and C ′′, each of length
more than k(g − 3) + 2. By Lemma 3.1, there are vertices x on C ′ and y on C ′′ such that
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v1

v2

v3

v4

J(v2)

J(v1)

J(v3)

J(v4)

Figure 3 Special case in which the ear S (yellow) consists of 4 vertices; blue segments correspond
to the sets {uj : j ∈ J(vi)}, i ∈ [4]; middle vertices on two blue segments correspond to the unique
minimums of d(·) on these segments.

dist(x, S) > g/2 − 1 and dist(y, S) > g/2 − 1. Since every x, y-path goes through S by
planarity, we conclude that dist(x, y) > g − 2, which contradicts Lemma 2.1. J

Recall that C is a facial cycle of length fmax(g), and take two “antipodal” vertices w

and w′ on it. Consider a w, w′-path P of length at most g − 2, which exists by Lemma 2.1,
and label the subsequence of its vertices that belong to C by w = w1, . . . , wt+1 = w′. For
s ∈ [t], let ks − 1 be the number of vertices of P strictly between ws and ws+1. Observe that∑t

s=1 ks ≤ g − 2 since this sum equals the length of P . Besides, if ks = 1, then Lemma 2.1
implies that distC(ws, ws+1) = 1. Moreover, note that if ks ≥ 2, then the ws, ws+1-subpath
of P forms an ear of C, and thus distC(ws, ws+1) ≤ ks(g − 3) + 2 by Corollary 3.5, see
Figure 4. Finally, the triangle inequality implies that

distC(w, w′) ≤
t∑

s=1
distC(ws, ws+1) ≤

∑

s: ks≥2

(
ks(g − 3) + 2

)
+
∑

s: ks=1
1

= (g − 3)
∑

s: ks≥2
ks +

( ∑

s: ks≥2
2 +

∑

s: ks=1
1
)

≤ (g − 3)
t∑

s=1
ks +

t∑

s=1
ks = (g − 2)

t∑

s=1
ks ≤ (g − 2)2.

Recall that w and w′ are antipodal vertices of the largest face of G, and thus

fmax(G) ≤ 2 · distC(w, w′) + 1 ≤ 2(g − 2)2 + 1,

which completes the proof of Theorem 1.1 for g ≥ 7.

4 Concluding remarks

In this note we showed that the largest face length fmax(g) of a 2-connected plane graph
of girth at least g that is edge-maximal with respect to these two properties satisfies
Ω(g) = fmax(g) = O(g2). We would like to pose the following question.

I Question 4.1. Is it true that fmax(g) = Θ(g)?

EuroCG’25
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w

w
′

P

Figure 4 A path P between two antipodal vertices w and w′ contains several ears of C;
we apply Corollary 3.5 to bound the cyclic distance between the endpoints of each ear.

While determining fmax(g) remains most interesting question of this note, it was not
originally obvious that fmax(g) is bounded by any function of g. The shortest argument
we know takes about a page and is based on multicolor Ramsey’s theorem applied to the
auxiliary complete graphs, where we color the edge xy according to distG(x, y) for all vertices
x, y of G. It might be interesting to find a shorter argument.

Another possible direction of research would be to relax the condition that G must be
2-connected in the definition of fmax(g). As we mentioned in the introduction, the case when
G is a (subdivided) star shows that fmax(G) can be arbitrary large in terms of g even if our
graph is maximal plane C<g-free. Are there examples of this sort that do not have leaves?

Acknowledgments. We thank the anonymous reviewers for their valuable suggestions.
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Abstract1

Standard sweep algorithms require an order of discrete points in Euclidean space, and rely on2

the property that, at a given point, all points in the halfspace below come earlier in this order.3

We generalize this notion by defining an order on i-simplices, maintaining the property that, at a4

given i-simplex σ, all (i+1)-dimensional cofaces of σ in the halfspace below σ have an i-dimensional5

face that appeared earlier in the order (“below” with respect to a particular direction perpendicular6

to σ). Such a sweeping order is computable even for degenerate simplicial complexes. In the full7

version of our work, we utilize this order in our motivating problem, namely, extending a sweep-8

based graph reconstruction algorithm to simplicial complex reconstruction.9

Related Version https://arxiv.org/pdf/2501.01901

Lines 162

1 Introduction10

Suppose we want to efficiently reconstruct an unknown simplicial complex K in Euclidean11

space by querying local structure. Specifically, for a query simplex σ of K and a query12

direction, the local structure we use is the indegree of σ in that direction: the number of13

cofacets of σ contained in some halfspace “below” σ. We assume that the vertex set of K14

is known. For the special case where K is a graph, [2] addresses this problem via a sweep15

algorithm through the vertex set, using indegree to identify edges adjacent to and above16

each vertex in the sweeping order. The algorithm relies on a natural but crucial property of17

the sweeping order: at a given vertex v, all edges adjacent to v contained in the halfspace18

below v have another endpoint that appeared earlier in the order.19

The methods of [2] do not immediately extend to higher-dimensional simplex reconstruc-20

tion. In particular, it is not possible to sweep through a set of i-simplices in a fixed direction21

and maintain that all (i + 1)-cofacets of a given simplex σ that come below σ are known.22

We circumvent this by defining a sweeping order on a set of i-simplices, that, instead of23

using a fixed direction, additionally pairs each i-simplex σ with a direction perpendicular24

to σ. The full version of our work contains further details, as well as an application of such25

an order, namely, extending the edge reconstruction algorithm of [2] to simplicial complex26

reconstruction.27

2 Preliminaries28

In this section, we define our most extensively used terms, and refer the reader to [1, 3] for29

further information. We start with simplices and simplicial complexes.30

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
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▶ Definition 2.1 (Simplex). An abstract i-simplex σ is a set of i+1 elements, called vertices.31

The dimension of σ is i, denoted dim(σ). If σ and τ are abstract simplices and σ ⊆ τ , we32

call σ a face of τ and τ a coface of σ. If dim(σ) = dim(τ) − 1, we call σ a facet of τ and33

τ a cofacet of σ. An i-simplex in Rd is an abstract i-simplex where each vertex maps to a34

distinct point in Rd. We geometrically interpret a simplex as the convex hull of these points.35

▶ Definition 2.2 (Simplicial Complex). An abstract simplicial complex K is a set of abstract36

simplices, such that if σ ∈ K and ρ ⊆ σ, then ρ ∈ K. A simplicial complex in Rd consists37

of an abstract simplicial complex, where each vertex is mapped injectively to a point in Rd.38

Geometrically, we think of the simplicial complex as the union of convex hulls of its simplices.39

Note that this allows degeneracies. We always view simplicial complexes geometrically, so40

we may be less precise with terminology going forward. Let K be a simplicial complex in Rd.41

We always take d ≥ 2. Let dim(K) denote the maximum dimension over simplices in K.42

Denote the i-skeleton of K by Ki and the number of i-simplices by ni. For an i-simplex σ,43

let cof(σ) ⊆ Ki+1 be the set of cofacets of σ and aff(σ) be the affine hull of σ.44

The set of all unit vectors in Rd is parameterized by the unit (d− 1)-sphere, Sd−1, and45

a unit vector is called a direction. Denote by ⊥σ ⊆ Sd−1 the set of directions perpendicular46

to aff(σ) and note if dim(aff(σ)) = i′ ≤ d−1, then ⊥σ is a (d−i′−1)-sphere. With respect to47

some s ∈ ⊥σ, all points in σ have the same height, which we refer to as the s-coordinate of σ.48

We may abuse dot product notation and write s ·σ to denote this s-coordinate. For s ∈ ⊥σ,49

the set of down-cofacets of σ, denoted cof<s (σ) ⊆ cof(σ), is the set of cofacets σ ∪ {v} for50

which s · v < s · σ, i.e., v lies in the open halfspace below σ with respect to direction s.51

Conceptually, our algorithms involve ordering points by rotating a hyperplane around52

some central space. In the following definition, we ensure that we make a consistent choice53

of normal direction to associate with each point we encounter.54

▶ Definition 2.3 (γ-Normal of p). Consider a unit circle S ⊂ Rd, angularly parameterized55

by γ : [0, 2π)→ S and centered at some point c ∈ Rd. For a point p ∈ Rd, let q ∈ Rd be the56

orthogonal projection of p onto the plane containing γ. If q ̸= c, let α be the unique angle57

such that the ray from c through γ(α − π/2 mod 2π) passes through q. We call γ(α) the58

γ-normal of p relative to c. If q = c, we define the γ-normal of p to be γ(0).59

Now consider a simplex σ ⊂ Rd with dim(aff(σ)) < d − 1, let γ be an angularly pa-62

rameterized circle of directions all perpendicular to σ, and let p be a point in Rd. Then,63

the γ-normal of p relative to any point c in aff(σ) is the same, so we unambiguously de-64

fine the γ-normal of p relative to σ to be the γ-normal of p relative to any such point c.65

See Figure 1 (a) and (b).66

Finally, consider a simplex σ ⊂ Rd with dim(aff(σ)) = d − 1. Let γ : [0, 2π) → Sd−1 be67

an angularly parameterized circle of directions so that γ(0) is one of the two (antipodal)68

γ(π)

S2γ(α)

c

p

α

(a)

γ(α)

p

q
γ

γ

(b)

c

γ(0) p

p′

σ

γ(0)

(c)

Figure 1 (a)-(b) γ(α) is the γ-normal of p. (c) since σ has codimension one with the ambient
space, any point above (or below) σ has a γ-normal of γ(0) (or γ(π), respectively).

60

61
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directions perpendicular to σ. For any point p ∈ Rd, define the γ-normal of p relative to σ to69

be γ(0) if the γ(0)-coordinate of p is at least that of σ, and γ(π) otherwise. See Figure 1 (c).70

If v1 ̸= v2 are vertices such that aff(σ∪{v1}) = aff(σ∪{v2}), but v1 and v2 are on “opposite71

sides” of σ, and if the γ-normal of v1 relative to σ is γ(α), then the normal for v2 is −γ(α).72

3 Sweeping Orders73

A main goal of this paper is to show how to compute an order on simplices (along with a74

corresponding list of directions perpendicular to the simplices) in order to emulate properties75

characteristic of sweepline algorithms with discrete points or vertices as events.76

Figure 2 Here, every edge e has other edges in the halfspaces on either side of e. This general
higher-dimensional phenomenon contrasts the special zero-dimensional case; in every direction, we
can find at least one vertex with no other vertices below it. However, for each dimension of simplex,
there do exist simplices with no cofacets in a halfspace below it, which we will see is true in general.

77

78

79

80

As illustrated in Figure 2, we cannot guarantee that all i-simplices below a particular i-81

simplex in our sweep appeared earlier in the order, so we instead focus on cofacets of simplices82

in the sweep. We introduce a sequence such that, for a given i-simplex σ and a corresponding83

direction s ∈⊥σ, all elements of cof<s (σ) are cofacets of some prior i-simplex in the sequence.84

▶ Definition 3.1 (Sweeping Order). A sweeping order of Ki is any sequence SOi := ((σj , sj))ni
j=185

that satisfies the following three properties.86

1. Each sj is a direction perpendicular to σj .87

2. Each i-simplex of K appears exactly once in SOi.88

3. For any i-simplex σj , any cofacet in cof<sj
(σj) is also a cofacet of some σh, for h < j.89

3.1 Computing a Sweeping Order90

In this section, we show how to compute a sweeping order SOi of Ki. For K0, we simply91

pick an arbitrary direction s, order vertices by their s-coordinate (breaking ties arbitrarily),92

and output (v, s) for each vertex v in that order. See Algorithm 1.93

We consider the (i − 1)-simplices ρ in the order prescribed by a given sweeping order94

of Ki−1, denoted SOi−1. First, suppose dim(aff(ρ)) ≤ d−2. We radially order the cofacets σ95

of ρ that have not yet been output. Specifically, if SOi−1 pairs ρ with direction s, the radial96

order of its cofacets is based on a parameterized circle γρ : [0, 2π) → Sd−1 of directions,97

rotating around ρ, starting at s. Each direction γρ(α) corresponds to the unique halfspace98

whose boundary contains ρ, and whose exterior normal points in direction γρ(α). For each99

cofacet σ = ρ ∪ {v} that has not yet been output, we intuitively consider the angle αv for100

which σ enters this halfspace, i.e., the angle such that γρ(αv) is the γρ-normal of v relative101

to ρ. We then output these cofacets ρ ∪ {v} in increasing order based on αv, breaking ties102

EuroCG’25
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Figure 3 A simulation of Order(K0) with direction s, and Order(Ki, SOi−1) for i ∈ {1, 2}.
Some circles γρ relevant to the order are shown. Each γvi lies in a plane parallel to the page. The
circle γe6 lies in a plane perpendicular to edge e6. A dotted line connecting a simplex σ to a facet ρ

indicates that ρ is the facet that outputs σ. A solid line indicates the γρ-normal with which some σ

is output. Indices correspond to the order in which simplices are output.
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arbitrarily, and pair them with the corresponding direction γρ(αv). Figure 3 illustrates the103

order in which various i-simplices are output.104

Algorithm 1 Computing sweeping orders: SO0, and SOi given SOi−1 and Ki.
1 procedure Order(complex K0)
2 s← arbitrary direction
3 for v ∈ V (K0) sorted increasingly by s-coordinate, breaking ties arbitrarily do
4 output (v, s)

5 procedure Order(complex Ki, sweeping order SOi−1 of Ki−1)
6 for (ρ, s) in SOi−1 do ▷ s is a direction perpendicular to the (i− 1)-simplex ρ

7 γρ ← arbitrary circle γρ : [0, 2π)→ Sd−1 of directions maximally perpendicular to
ρ, where the angle between s and γρ(α) is α, so γρ(0) = s and γρ(π) = −s

8 Uρ ← {vertex v of K0 | ρ ∪ {v} is an i-simplex of Ki that was not yet output}
9 for v ∈ Uρ do

10 αv ← α such that γρ(α) is the γρ-normal to v relative to ρ.
11 for v ∈ Uρ sorted increasingly by αv, breaking ties arbitrarily do
12 output (ρ ∪ {v}, γρ(αv))

If we encounter a simplex ρ whose affine hull has dimension d − 1, there are only two110

(antipodal) directions perpendicular to it; in this case, we simply choose an S1 containing111

these two directions, so that all its cofaces have one of two possible angles. For clearer112

exposition, we encompass these two cases in the following definition.113

▶ Definition 3.2 (Maximally Perpendicular Circle). Let K be a simplicial complex in Rd114

and σ ⊆ K be a simplex with dim(aff(σ)) < d. We say that a circle of directions, γσ, is115

maximally perpendicular (to σ), if 1) when dim(aff(σ)) < d−1, we have γσ ⊆⊥σ, or 2) when116

dim(aff(σ)) = d− 1, we have ⊥σ⊆ γσ.117
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That is, generally, γσ “rotates around” σ, except in the case that σ only has two directions118

perpendicular to it, in which case, these directions are contained in γσ. Since our method119

requires simplices to have directions perpendicular to them, we introduce Assumption 1,120

which we henceforth assume is satisfied by K.121

▶ Assumption 1 (General Position for Enough Perpendiculars). Let K be a simplicial complex122

in Rd. For every simplex σ ⊆ K, we require that dim(aff(σ)) ≤ d− 1.123

Note that this is quite a lenient condition, and does not prevent degeneracies. Proceeding124

with this assumption, Order(Ki, SOi−1), Algorithm 1, takes as input Ki and SOi−1, a125

sweeping order for Ki−1, and outputs a sequence of i-simplices and directions. The main126

result of this section is Theorem 3.5, which says Order(Ki, SOi−1) is a sweeping order127

for Ki. We first show that it satisfies Properties 1 and 3 of Definition 3.1.128

▶ Lemma 3.3 (Directions are Perpendicular to their Paired Simplices). Let 0 ≤ i ≤ dim(K)−1.129

If i = 0, let SOi = Order(Ki). If i > 0, let SOi = Order(Ki, SOi−1) for some sweeping130

order SOi−1. For all elements (σ, sσ) ∈ SOi, the direction s is perpendicular to σ. That is,131

the output of Algorithm 1 satisfies Property 1 of Definition 3.1.132

Proof. Consider an arbitrary (σ, sσ) ∈ SOi. If i = 0, then σ is a vertex, and any direction133

is perpendicular to σ, including s. So consider the case i > 0. Then σ = ρ ∪ {v} for some134

(i− 1)-simplex ρ and vertex v, where (ρ, sρ) is an index for the loop in Line 6, and v is an135

element of Up (Line 9). On Line 7, we find the angle αv such that γρ(αv) is the γρ-normal136

of v relative to ρ. By Assumption 1, we have dim(aff(ρ)) ≤ d− 1.137

If dim(aff(ρ)) < d − 1, then γρ is normal to ρ, so the γρ-normal γρ(αv) is well-defined138

and hence normal to σ. If dim(aff(ρ)) = d− 1, then we must have aff(σ) = aff(ρ), otherwise139

dim(aff(σ)) would be greater than d− 1, violating Assumption 1. Then the γρ-normal of v140

relative to ρ is γρ(0) = sρ, which is perpendicular ρ and hence also to σ. ◀141

▶ Lemma 3.4 (Halfspace Property). Suppose that Order(Ki, SOi−1) = ((σj , sj))ni
j=1. Then,142

for any 1 ≤ j ≤ ni, for each simplex τ of cof<sj
(σj), τ is a cofacet of some σh with h < j.143

That is, Algorithm 1 satisfies Property 3 of Definition 3.1.144

Proof sketch. The case i = 0 is trivial. Suppose that i > 0 and Order(Ki, SOi−1) outputs145

(σj , sj) in iteration (ρ, s). Let vj be the vertex such that σj = ρ ∪ {vj}. We show for any146

simplex τ = σj ∪ {vh} ∈ cof<sj
(σj), that the simplex σh = ρ ∪ {vh} satisfies the claim.147

ρ

vj

vh

αvh

αvj

τ
σj

σh

γρ
γρ

αvh

αvj vh

vj
γρ(0)γρ(αvh)

γρ(αvj )

γρ(αvj ) γρ(αvh)

γρ(0)

Figure 4 For some σj = ρ ∪ {vj}, we consider a cofacet τ = ρ ∪ {vj , vh} (unshaded) for which
the vertex vh lies below σj with respect to the direction γρ(αvj ). The simplex σh = ρ ∪ {vh} is a
cofacet of ρ that also has τ as a cofacet. The simplex ρ has a perpendicular circle of directions γρ.

148

149

150
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Consider the nontrivial case where σh is output in iteration (ρ, s) (and not before). Since151

(ρ, s) is an element of a sweeping order for Ki−1, it satisfies Property 3 of Definition 3.1, so152

both σj and σh must be elements of cof≥s (ρ), otherwise they would have been output in a153

previous iteration. Then s·vj ≥ s·ρ and s·vh ≥ s·ρ, where s = γρ(0). Let γρ(αvj ) and γρ(αvh
)154

denote γρ-normals of vj and vh relative to ρ, respectively. Because σj∪{vh} ∈ cof<sj
(σj), and155

since sj = γρ(αvj ), we have γρ(αvj ) · vh < γρ(αvj ) · σj . Then vh lies in the open halfspace156

containing σj in its boundary with exterior normal γρ(αvj
), but not in the open halfspace157

containing ρ in its boundary with exterior normal γρ(0) (see the shaded sector in Figure 4).158

Then 0 ≤ αh < αj , so σh is output before σj on Line 11, and the claim is satisfied. ◀159

Algorithm 1 satisfies Property 2 of Definition 3.1 trivially, so Theorem 3.5 follows.160

▶ Theorem 3.5. Order(Ki, SOi−1), Algorithm 1, outputs a sweeping order for Ki in161

O(ni−1di min{d, i}+ ni(i + d + log n0)) time.162
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Abstract
In this abstract, a generalized watchman route problem is studied: Given three agents at initial
positions r, j, d in the interior of a simple polygon P . The task is to compute target positions (and
shortest paths in P to) r′, j′, and d′ in P so that the agent at j′ can see the other agents that
traveled to r′ and d′, respectively. The objective is to either minimize the sum of all shortest paths
(MinSum) or the longest shortest path (MinMax). This extends to the two-agent case studied by
Ahn et al. [1]. This initial work presents absolute error approximations for both variants.

1 Introduction

A problem related to the well-known watchman route problem [3, 4, 5, 6] is the so-called
quickest pair-visibility problem with two agents in a polygon. The shortest paths for the
agents within the polygon are to be determined so that the agents can see each other.

Related Work The body of research on watchman route problems and their variants is too
rich and vast to be suitably presented in this extended abstract. We refer to the book by
O’Rourke [13] for an overview of related problems.

In one flavor of this problem, one has to compute the shortest paths for a set of agents
within a given domain to establish visibility. The objective of minimizing the sum of the
path lengths is referred to as the MinSum variant, whereas computing a solution with the
shortest longest path is called the MinMax variant.

Wynters and Mitchell [15] studied a setting for two agents acting in a polygonal domain
with polygonal obstacles and provided solutions for the MinSum objective in O(En), and for
the MinMax objective in O

(
n3 log n

)
time, respectively. Where E is the number of edges

of the visibility graph of all vertices, and n is the total number of vertices of the obstacles.
For both variants Ahn et al. [1] provided linear time solutions considering two agents

within a simple polygon with n corners without holes.
Also, query versions to this problem have been studied [1, 10, 11, 14]. Here, a polygon

P and an initial position s ∈ P are given. The aim is to preprocess the input to provide a
structure that allows reporting the shortest path dP (s, t) ⊆ P so that visibility between t

and a query point q is established. For simple polygons with n corners, a structure of size
O (n) can be constructed in O (n) time, to answer queries in O (log n) time [11]. Improved
algorithms were developed by Arkin et al. [2] for the problem in the polygonal domain and
by Wang [14] for polygons with a relatively small number of holes. For the MinMax variant
in a simple polygon of n vertices where two initial positions are given, Ahn et al. [1] presented
a solution with linear pre-processing time to report the shortest paths to a query point pair
in O

(
log2 n

)
time.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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However, to the best of our knowledge, this problem has not been studied for more than
two agents.

Overview In this extended abstract, we study the problem of three agents inside a simple
polygon of n vertices. The task is to compute the shortest paths from their initial positions to
positions so that at least one agent sees the other two, resulting in a connected visibility graph.
For the MinMax as well as the MinSum variant, we present absolute error approximation
algorithms with a runtime in O

(
n4 + n2m2)

with m depending on the geometry of the
polygon and given tolerance. An optimal solution for three or more agents remains open.

2 Preliminaries

Definitions and Notation Let P be a simple polygon and let a, b ∈ P be two points in
P (in the interior or on the boundary ∂P of P ). We say that “a and b see each other” or
visP (a, b), iff ab ⊆ P .

LoS(ab) is the longest segment in P that contains a and b (with visP (a, b)) and is called
a line-of-sight (LoS). We denote the shortest path from a to b in P by dP (a, b) ⊆ P and its
length by |dP (a, b)|.

Problem Statement and Setup Various constraints can be applied to the visibility graph
G = (S∗, E) for multiple agents, where S∗ represents their target positions. In this graph,
an edge (s∗

i , s∗
j ) is in E iff visP (s∗

i , s∗
j ). For instance, the graph G may represent a clique,

where all nodes are mutually visible. Alternatively, it may contain a star graph with |S∗| − 1
spokes, where a central node is visible to all others. More generally, G may be a connected
graph, ensuring that every node pair is visible through intermediate nodes. The latter case is
the multiagent quickest pair-visibility problem studied here, which can be stated as follows.
Problem Distance-To-Relay Problem (DRP)
given: A simple polygon P with n vertices, a sequence S = (s1, . . . , sk) ∈ P k of points in P .
task: Compute S∗ = (s∗

1, ..., s∗
k) ∈ P k, so that there is a spanning tree T = (S∗, E) with

E ⊆ P (the two endpoints of each edge see each other) minimizing either

µ(S∗) := max
1≤i≤k

|dP (si, s∗
i )|

︸ ︷︷ ︸
MinMax

or µ(S∗) :=
∑

1≤i≤k

|dP (si, s∗
i )|

︸ ︷︷ ︸
MinSum

(1)

Depending on which of the two objectives µ of (1) is optimized, we refer to the MinMax or
the MinSum variant, respectively.

For k = 2 DRP collapses to the “Romeo and Juliet” Problem studied in [1]. In this
abstract, we restrict ourselves to k = 3: To Romeo (r ∈ P ), Juliet (j ∈ P ), and their dog
(d ∈ P ). We therefore assume that the layout of the network is known: The edges of the
spanning tree are fixed to {r∗, j∗} and {j∗, d∗}, see Fig. 1. For k = 3, this also corresponds
to a star with 2 spokes. The agent initially positioned at j (Juliet) will also be called the
“middle” agent and the other two agents will be called “outer” agents. For an optimal solution
(r∗, j∗, d∗) it must hold that visP (r∗, j∗) and visP (j∗, d∗). The two optimal lines-of-sight are
determined by lr := LoS(r∗j∗) and ld := LoS(j∗d∗).

Observations & Classification Suppose the optimal final position of the middle agent j∗ is
known. In that case, an optimal line-of-sight lr is determined by the last two points of the
shortest path dP (r, j∗). An optimal end position r∗ lies on lr and is the last point on the
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shortest path dP (r, lr). The line-of-sight lr is therefore tangential to a point on dP (r, j∗),
which is a reflex corner of P [12], unless visP (r, j∗) (analogous for ld and d).

An instance of the DRP problem, independent of the objective function to be minimized,
can be classified into the following types:
T1 (trivial), as the agents already see each other at their initial positions. The initial

positions (r, j, d) are optimal destinations, consequently the objective function value is 0.
T2 (“two agent reduceable”), if an optimal solution (r∗, j∗, d∗) contains an optimal

solution for two agents (w.l.o.g. r and j), see Fig. 1.
T3 (“full”), which is neither of type T1 nor T2, see Fig. 2.

lr ld

r(∗)

j∗

j

d

d∗

r
r∗

j
j∗

d(∗)lr

ld

Figure 1 Instances of type T 2 in the MinSum (left) and MinMax variant (right) containing an
optimal solution (r∗, j∗) for the quickest pair-visibility problem with two agents.

d(∗) j

j∗

r
r∗

u

v

lr

ld

r

r∗

j∗

j

d
d∗

lr ld

u v

Figure 2 Instances of type T 3 in the MinSum (left) and MinMax variant (right).

T1 instances can be identified in linear time. Instances of type T2 can be solved in the
following way: Fix and remove one (outer) agent sa from the instance. Compute an optimal
solution opt2 = (s∗

b , s∗
c) for the remaining agents sb and sc (using the linear time algorithm

of [1]) and compute the shortest path length da = dP (sa, s∗
a) so that s∗

a sees either s∗
b or s∗

c

using [11]. If da is at most µ(opt2) for the MinMax variant, a T2 instance is identified. For
MinSum problems, a T2 instance might be at hand, even if da > 0: The contribution of sa

EuroCG’25



27:4 Shortest paths to visibility for three agents inside simple polygons

might be too small to force a combinatorial change to opt2. After O(n) preprocessing, shortest
paths can be computed in O(log n) [7, 8], therefore type T 2 instances can be identified/tested
as candidates in O(n) time.

In the following, we give the first results for instances of type T3. Here, all three
agents influence the combinatorics of an optimal solution, preventing reductions to two-agent
scenarios.

3 The Algorithm for T3 Instances

The value of the objective function for an optimal solution is derived from three values: Two
distances of the outer agents (Romeo and the dog) to their respective optimal line-of-sight
(lr and ld) and the distance of the middle agent (Juliet) to their intersection. Recall that in
an optimal T3 solution, lr and ld have to be tangent to some reflex vertex of P .

The central idea of the additive error approximation is as follows: We guess the right
pair (u and v) of reflex vertices of P , with u ∈ lr and v ∈ ld. For u (v), we compute a set
Lu (Lv) of candidate LoS. These segments will be placed in a way that guarantees that the
length difference of the shortest paths from an outer agent to its optimal LoS and to the next
candidate LoS is at most an absolute error term κ (whose value will be determined later).

Some candidate positions for the middle agent are crossings lu ∩ lv with lu ∈ Lu, lv ∈ Lv.
By placing suitably distributed additional candidate positions for the middle agent on the
segments of Lu and Lv, we ensure a candidate within distance κ to j∗.

The Set of Candidate Lines-Of-Sight Let V (P ) be the set of all corners of P , V̂ (P ) be all
reflex vertices, and let v ∈ V̂ (P ). As shown in Fig. 3, the set Lv = Av ∪ Bv consists of
1. lines-of-sight that contain v and a corner of V (P ) that is visible from v:

Av := {LoS(vv′) | v′ ∈ V (P ), v ̸= v′, visP (v, v′)},
2. lines-of-sight that contain v and a point of Sκ (a set of ⌈|∂P |/κ⌉ points equally distributed

along ∂P ) visible from v: Bv := {LoS(vp) | p ∈ Sκ, v ̸= p, visP (v, p)}.
Av ensures that an optimal LoS tangent to v can always be rotated (in either direction)
until it coincides with an element of that set without swiping over a vertex of V (P ). The
candidates of Bv ensure that the largest distance of any point on one candidate LoS (or
between two consecutive LoS) to the next (previous) LoS (CW or CCW) is no more than κ.

u

v

Figure 3 Common rotation area R (light blue) at u, v. Lu = Au(purple) ∪ Bu and similarly,
Lv = Av(green) ∪ Bv are shown. Grid cells in R are delimited by consecutive LoS lu, l′

u and lv, l′
v.
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Candidates Positions for the Middle Agent Let u, v be chosen so that u ∈ lr, v ∈ ld. Some
candidate positions for the middle agent are crossings of the set Muv := {lu ∩ lv | lu ∈ Lu, lv ∈
Lv}. Consider the cells of the subdivision of P induced by the segments of Muv. The optimal
position j∗ of the middle agent must be in one of these cells. However, the distance of j∗

to its closest corner of that cell might be larger than κ. Therefore, we introduce additional
candidate positions Sl along each segment l ∈ Lu (∈ Lv), as well as at the two endpoints of
each segment, ensuring that the distance between consecutive candidates is at most

√
3κ,

see Fig. 4. It is easy to see that the space between two consecutive LoS can be covered by
discs of radius κ whose centers are placed at distance

√
3κ along these lines-of-sight, as the

endpoints of two consecutive LoS are at most κ apart. This, in turn, provides a covering for
each cell of the subdivision by discs of radius κ placed on the boundary of that cell.

κ

κ

κ

κ

κ

κ
κ

κ

κ
κ

κ

κ

κ

κ

κ

κ

κ

v

√ 3κ

Figure 4 Bv after discretization of the rotation area (light blue) at v, Sk (black dots) and Sl

(blue dots). Note that v cannot see the red point in Sk but combined with Av (dashed) a maximal
shortest path (orange) of length κ between consecutive LoS lv, l′

v is ensured.

Computing the Approximation The approximation strategy is as follows: For each reflex
vertex v of P compute the set Lv and for each segment of l ∈ Lv

compute and store the values l.r = dP (r, l) and l.d = dP (d, l) in l,
place candidate points Sl along l at distance

√
3κ and at the endpoints of l.

Each candidate j̃ ∈ ⋃
u,v∈V̂ (P ) Muv (later referred to as type A) is at the intersection of

two LoS lu and lv and has an associated objective value of either max(dP (j, j̃), lu.r, lv.d)
or dP (j, j̃) + lu.r + lv.d, respectively. The distances of all intersections on a fixed LoS to j

can be computed in O (n + |∂P |/κ), as described later. Each candidate j̃ ∈ ⋃
u∈V̂ (P )
l∈Lu

Sl (later

referred to as type B) is placed on only one candidate LoS storing the contribution to the
objective for one outer agent. For the other outer agent, the shortest path length from r

to r̃ to establish visP (r̃, j̃) (d to d̃ to establish visP (d̃, j̃)) can be computed using [11]. The
objective value for these candidates can be derived as described above.
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a b

j

P1 P2

P ′
3 P ′

2 P ′
1

dP
(j,

a)
dP (j, b)

Figure 5 Funnel formed by dP (j, a) and dP (j, b) and cells with the combinatorially same shortest
path to j.

Paths for Juliet to Intersections To compute the shortest paths dP (j, j̃) for j̃ ∈ Muv, we
fix a LoS l = ab ∈ Lu and consider the set X = {l ∩ l′ | l′ ∈ Lv} of intersections. The
shortest paths dP (j, a) and dP (j, b) form a funnel. In the following, we focus on the parts
of these paths that are not in the common prefix, as illustrated in Fig. 5, where paths
may begin identically. For each pair of consecutive nodes p, q on the funnel, we intersect
the ray from p through q with l. This yields points P1 . . . Pk (P ′

1 . . . P ′
m) for all pairs of

consecutive nodes on the shortest path to a (b). Along l the points are ordered in the
sequence F = (P1 . . . Pk, P ′

m . . . P ′
1), see Fig. 5. This step requires linear time and results in

O(n) subdivisions of l. All points c on l that lie between two consecutive points in F have
combinatorially the same shortest path to j: first to the corresponding node on the funnel
border and then directly to c. By storing the length of the shortest path to j in the funnel
nodes, we can easily add the distance from c to this funnel point. As we traverse from a

to b, we consider all samples on l (from X and F ). If we cross a point from F , we update
the distance in the funnel node. For a sample from X, we calculate the shortest path in
constant time per sample (the distance to the funnel node plus the stored value). Since both
the samples and points in F are sorted, we can handle the next event in constant time. In
total, there are O(n + |X|) events. Thus, for a fixed LoS l, we can compute the distances of
all sample points from X in O(n + |∂P |/κ).

Analysis Every tested position j̃ gives rise to approximate solutions (r̃, j̃, d̃) that are valid,
i.e., visP (r̃, j̃) ∧ visP (j̃, d̃). Let (r∗, j∗, d∗) be an optimal solution with an objective function
value of opt and let u, v ∈ V̂ (P ) be the vertices at which lr and ld are tangent, see Fig. 6.
By construction, we have that
1. j̃ is contained in or is on the boundary of a cell C∗ induced by Muv and P ,
2. there is a candidate j̃ ∈ ∂C∗ with |j̃ − j∗| ≤ κ.
Let l̃r (l̃d) be the LoS containing j̃ and u (j̃ and v). Again by construction we have that
|dP (r, l̃r) − dP (r, lr)| ≤ κ and |dP (d, l̃d) − dP (d, ld)| ≤ κ. Therefore choosing κ = ε for the
MinMax or κ = ε/3 for the MinSum variant establishes an absolut error approximation with
app ≤ opt + ε, where app is the smallest objective function value for any candidate j̃.
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κ

≤
κ

≤ κ

≤ κ

j̃

j̃

j̃

j̃

j∗

Figure 6 Optimal solution (r∗, j∗, d∗) compared to approximated solutions (r̃, j̃, d̃).

Runtime With linear preprocessing time, the shortest path lengths between two arbitrary
points in P can be computed in O(log n) [7, 8] as well as the shortest path length from a
source point to see a query point [11, 2].

The size of Lv for a vertex v ∈ V̂ (P ) is bounded by O (n + |∂P |/κ). By introducing the
vertices of Sκ as additional vertices on P , all LoS of Lv can be constructed as a byproduct
of the linear time algorithm [9] to compute the visibility polygon of v in P . Along each
line-of-sight l ∈ Lv additional O (|∂P |/κ) candidate positions (Sl) are introduced.

For j̃, there are O
((|V̂ (P )|

2
)

(n + |∂P |/κ)2
)

candidates of type A that can be evaluated

in constant time and O
(

|V̂ (P )| (n + |∂P |/κ) (|∂P |/2
√

3κ)
)

candidates of type B that can be

evaluated in O (log n) time. This results in a combined runtime of O
(

n2 · (n + |∂P |/ε)2
)

.

4 Conclusion

In this extended abstract we presented an absolute error approximation algorithm (opt + ε)
with a runtime of O

(
n2 · (n + |∂P |/ε)2

)
for a polygon P with n vertices, for any ε > 0.

Several questions remain open and qualify as starting points for further research projects,
such as finding an optimal solution to this problem or generalizing the results to an arbitrary
number of agents. Also, instead of computing a “visibility tree”, one might be interested in
computing solutions where all agents can see each other or extending the problem setting to
polygons with holes.
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Abstract
Given a point set P and a plane perfect matching M on P, a flip is an operation that replaces two
edges of M such that another plane perfect matching on P is obtained. Given two plane perfect
matchings on P, we show that it is NP-hard to minimize the number of flips that are needed to
transform one matching into the other.

1 Introduction

A straight-line drawing Γ of a graph G on a point set P maps each vertex v of G to a distinct
point pv of P and each edge (u, v) of G to the straight-line segment pupv. Such a drawing
is planar if no two edges share a point, except at common endpoints. In what follows, we
always refer to planar straight-line drawings of graphs.

Given a point set P of n points in the plane and a family G of drawings, an edge flip is
the operation of replacing an edge of a drawing Γ in G with a different edge such that the
resulting drawing is still in G. The flip graph of G is a graph that has a vertex for every
element of G and an edge between two vertices if their corresponding drawings differ by an
edge flip. The main questions about flip graphs are their connectedness, their diameter,
and the complexity of finding the shortest path between two vertices (i.e., the shortest
sequence of edge flips that transforms one drawing into another). The connectedness and
the diameter have been studied for different families of planar straight-line graph drawings
like triangulations [19, 22, 28], spanning trees [1, 8, 11, 12, 13, 17, 25], spanning paths [4,
7, 14, 21], and odd matchings [3]. Regarding the complexity question, it has been shown
that finding the shortest flip sequence between triangulations is not only NP-hard [5, 23],
but also APX-hard [26]. On the positive side, there exists an FPT algorithm which uses the
length of the flip sequence as a parameter [20].

For simplicity, in what follows we use plane perfect matching as a shorthand for planar
straight-line drawing of a perfect matching. Note that, for plane perfect matchings, it is
necessary to replace at least two edges at the same time to transform one matching into
another. In this paper, we refer to this operation as a flip, and use the according definition
of flip graph. It has been shown, if the point set is convex, then the flip graph of plane
perfect matchings is connected and the shortest flip sequence between two given matchings
is computable in polynomial time [18]. On the other hand, for point sets in general position,
whether the flip graph is connected or not is still an open question. Further research focuses
on non-plane perfect matchings [9, 15] or other variants of flip operations [2, 6, 24].

∗ Work of CB and AT supported in part by MUR PRIN Proj. 2022TS4Y3N - “EXPAND: scalable
algorithms for EXPloratory Analyses of heterogeneous and dynamic Networked Data”. Work of FM and
DP supported in part by MUR PRIN Proj. 2022ME9Z78 - “NextGRAAL: Next-generation algorithms
for constrained GRAph visuALization”.
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In this paper, we study the problem of deciding whether a plane perfect matching can
be transformed into another with at most k flips, called FlippingBetweenMatchings:

FlippingBetweenMatchings
Input: ⟨P, M1, M2, k⟩. A point set P, two plane perfect matchings M1 and M2 on P,
and a positive integer k.
Question: Does there exist a sequence of at most k flips which transforms M1 into M2?

In [18], it is shown that FlippingBetweenMatchings can be solved in linear time if
P is convex, and the authors leave it as an open problem to study the case in which P is
not convex.

We solve this problem by proving that FlippingBetweenMatchings is NP-hard, even
under the additional restriction that the points of P have integer coordinates and the area
of the minimum-size axis-aligned bounding box containing P is polynomial in the size of the
matching. Our contribution is summarized by the following theorem.

▶ Theorem 1.1. FlippingBetweenMatchings is NP-complete, even for integer point
sets whose area is polynomial in the size of the matching.

Due to space limitations, we only describe the main ideas of the reduction; the complete
proof is in the full version, see [10].

2 Proof of Theorem 1.1

Let M be a plane perfect matching on a point set P. Let e1 and e2 be two edges of M
whose endpoints are mapped on a subset Q of P. A flip of e1 and e2 is an operation that
eliminates e1 and e2 and introduces e3 and e4 such that their endpoints are still mapped on
Q, no edge crossing is introduced, and no two vertices are mapped to the same point. In
other words, a flip operation produces a different plane perfect matching on P; see Figure 1
in which Q = {p1, p2, q1, q2}. In what follows, we may use the term flip without specifying
the involved edges if they are clear from the context, or if we refer to a sequence of flips.

p1

p2 q2

q1p1

p2 q2

q1e1

e2

e3 e4

Figure 1 Flipping edges e1 and e2 to e3 and e4; points are drawn as yellow circles.

The membership of FlippingBetweenMatchings to NP is trivial, as one can guess all
possible sequences of k flips, and, for each of them, verify whether it transforms M1 into M2.
To prove hardness, we reduce from the NP-complete problem PlanarVertexCover [16]:

PlanarVertexCover
Input: ⟨G = (V, E), c⟩. A planar graph G = (V, E), and a positive integer c.
Question: Does there exist a set of vertices VC ⊆ V , called vertex cover of G, such that
|VC | ≤ c and every edge of G has at least one vertex in VC?
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v1

v2

v3

v5

v4

v1

v2
v3

v4

v5

v1

v2

v3

v4

v5

(a) (b)

(c)

v1

v2

v3

v5

v4
(d)

Figure 2 (a) A graph G where a vertex cover of size 3 is depicted in gray. (b) A weak-visibility
representation R of G. (c) The plane perfect matching M1 obtained by replacing each vertex-
segment of R by a vertex gadget and each edge-segment of R by an edge gadget. (d) The plane
perfect matching M2. Each bold line represents 2k + 2 line segments. The vertex v3 is red and the
edge v1v3 is blue in each representation.
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(a) Edge gadget in the start-configuration. (b) Edge gadget in the final-configuration.

Figure 3 Construction of an edge gadget. The edges of the flip structure are colored red, the
edges of the blockers are colored black, and the edges of the separators are represented as a blue
line segment.

Construction.

We begin by describing the construction behind our proof. Given an instance I = ⟨G =
(V, E), c⟩ of PlanarVertexCover, we construct an instance I ′ = ⟨P, M1, M2, k⟩ of Flip-
pingBetweenMatchings, with k = 2c + 5|E|, as follows; refer to Figure 2. At high level,
in order to obtain M1, the vertices and edges of G are replaced by vertex gadgets and edge
gadgets. Also, M1 and M2 only differ in the edge gadgets. Further, the fastest way to
reconfigure an edge gadget should be through a constant-length flip sequence involving an
edge of a vertex gadget. Our construction goes through a preliminary representation R in
which all vertices (edges) of G are drawn as horizontal (vertical) segments.

From G to R. Since G is planar, it admits a weak-visibility representation [27], namely,
a representation of G such that: each vertex is represented as a horizontal segment, each
edge is represented as a vertical segment whose endpoints, called attachments, lie on the
horizontal segments of the corresponding endpoints, no two segments intersect each other
except possibly at attachment points, all endpoints of horizontal and vertical segments are
on an integer grid of quadratic size in the number of vertices. (The representation is called
weak because two horizontal segments may see each other even when the corresponding
vertices are not adjacent in the graph.) Figure 2a shows a graph G with a vertex cover of
size three depicted in gray, and Figure 2b shows a weak-visibility representation R of G.

From R to M1. Given a weak-visibility representation R of G, to obtain a plane perfect
matching M1 and to define the corresponding point set P, we replace each vertex-segment
of R by a vertex gadget and each edge-segment of R by an edge gadget; Figure 2c shows the
drawing M1 obtained from the weak-visibility representation R of Figure 2b.

An edge gadget consists of: (i) The flip structure, which contains four edges each having
one endpoint in the central part of the gadget; (ii) four blockers, each consisting of eleven
parallel edges; (iii) two separators, each consisting of 2k+2 parallel edges. Refer to Figure 3
where the edges of a separator are represented as bold blue line segments. Intuitively,
blockers prevent any two edges of the flip structure to be flipped within the same operation,
while separators prevent any interplay between different edge gadgets.

A vertex gadget associated with a vertex-segment of R representing a vertex of G consists
of three parts: One frame, depicted in red in Figure 4a, and two vertex separators, depicted



Binucci, Montecchiani, Perz, Tappini 28:5

in blue in Figure 4a, one for each of the two sides of the frame. The frame consists of several
horizontal line segments: (i) The top-edge and the bottom-edge, which are the topmost edge
and the bottommost edge, respectively, and they are the longest ones; (ii) the 2k+2 middle-
edges, which are shorter than both the top-edge and the bottom-edge; (iii) the connectors,
which are edges that lie in the region between the top-edge and the middle-edges or in the
region between the bottom-edge and the middle-edges. Each vertex separator consists of
2k+2 vertical edges next to the frame and 2k+2 horizontal edges above and 2k+2 horizontal
edges below these vertical edges. Figure 4 shows an example of a vertex gadget incident to
three edge gadgets. Intuitively, for every incident edge gadget, a connector is placed such
that, after flipping the top-edge and the bottom-edge, the connector can be flipped with an
edge of the flip structure of the edge gadget. Vertex separators and middle-edges prevent
any interplay between different vertex gadgets.

In what follows, we consider a particular flip operation, shown in Figure 4, which trans-
forms a vertex gadget from a deactivated configuration (see Figure 4a) to an activated con-
figuration (see Figure 4b). When performing this flip, we also say that we activate a vertex
gadget and, conversely, we deactivate a vertex gadget if we perform the reverse operation.

Observe that to obtain M1 we need to “stretch” the visibility representation R, which
corresponds to the introduction of additional rows and columns in the underlying grid (which
is always possible if the inserted row or column only crosses vertical or horizontal segments,
respectively); refer to Figure 2c for an example. More precisely, given two edges (u, v) and
(u, w) of G such that the edge-segment representing (u, v) is longer than the edge-segment
representing (u, w) in R, the corresponding edge gadgets have different sizes in M1 and,
consequently, the vertex gadgets may need to have different lengths.
From M1 to M2. The plane perfect matching M2 differs from M1 only in the edge gadgets.
More precisely, an edge gadget can assume two configurations, which we call the start-
configuration and the final-configuration, based on the mapping of the four edges of the flip
structure. Figure 3a and Figure 3b show the start-configuration and the final-configuration
of an edge gadget, respectively. In M1 all the edge gadgets are in the start-configuration,
whereas in M2 all the edge gadgets are in the final-configuration. A start-configuration
can be transformed into a final-configuration by a sequence of five flips. Such a sequence of
flips transforms an edge gadget associated with an edge e of G by using a connector of a
vertex gadget that is associated with one of the endpoints of e. Observe that it is possible
to use a connector of a vertex gadget only if the vertex gadget is activated. Figure 5 shows
the sequence of five flips to transform an edge gadget from its start-configuration to its
final-configuration.
The point set P. The described point set is of polynomial size, namely |P| ∈ O(|V |2+|E|2).
Also, it is an integer point set, because it is constructed starting from a weak-visibility
representation on an integer grid by introducing additional rows and columns when needed.
However, the exact placement of the points depend on the length of the segments representing
the edges of the matching, which are discussed in the full version and yield polynomial area.

Correctness.

We now show the correctness of our reduction in the following two lemmas.
▶ Lemma 2.1. If I = ⟨G = (V, E), c⟩ is a yes instance of PlanarVertexCover then
I ′ = ⟨P, M1, M2, 2c + 5|E|⟩ is a yes instance of FlippingBetweenMatchings.
Proof. Let VC ⊆ V be a vertex cover of G of size c′ ≤ c. We consider the c′ vertex-segments
of R corresponding to the vertices of VC and we activate each of the corresponding vertex

EuroCG’25



28:6 Flipping Matchings is Hard

bottom-edge

top-edge

middle-edges
connectors

(a) Deactivated vertex gadget. The bold edges are a set of 2k + 2 edges.

(b) Activated vertex gadget.

Figure 4 Two notable configurations of a vertex gadget.

gadgets of M1. For each edge-segment of R incident to these vertex-segments, we transform
the corresponding edge gadget of M1 from the start-configuration to the final-configuration,
as shown before. Once this has been done for each edge gadget, we deactivate the vertex
gadgets that we previously activated, which yields to M2. The process requires exactly
2c′ + 5|E| flips in total. Indeed, (i) for each edge gadget of M1, exactly 5 flip operations are
required to transform the start-configuration into the final-configuration; (ii) to do these
transformations, exactly c′ vertex gadgets need to be activated and deactivated. ◀

▶ Lemma 2.2. If I ′ = ⟨S, M1, M2, 2c + 5|E|⟩ is a yes instance of FlippingBetween-
Matchings then I = ⟨G = (V, E), c⟩ is a yes instance of PlanarVertexCover.

Proof sketch. We argue that the only way to transform M1 into M2 with a sequence of
2c + 5|E| flips is through the activation of at most c vertex gadgets such that all edges of
G have at least one vertex among the corresponding vertices. In other words, a feasible
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(a) (b)

(c) (d)

(e) (f)

Figure 5 (a)–(e) A sequence of 5 flips to transform an edge gadget from the start-configuration
to the final-configuration. (f) The final-configuration. In all subfigures, dashed edges are the ones
that are added with the flip operation, and the bottommost edge in (a) and (f) is a connector of the
vertex gadget. For the sake of readability, we only illustrate the flip structure of the edge gadget
and the connector of the vertex gadget that is used to perform the transformation.
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sequence of flips must identify at most c vertices forming a vertex cover of G. Due to the
presence of the blocking structures and the separators for the edge gadgets and the vertex
separators for the vertex gadget, we cannot transform M1 to M2 with a sequence of less than
2c + 5|E| flips. The proof is rather technical and completely deferred to the full version. ◀

3 Conclusion and Further Research

We have shown that deciding whether k flips suffice to transform a given plane perfect
matching into another on the same point set is NP-complete. While the point set exploited
in our reduction has integer coordinates and occupies polynomial area, it is not in general
position. Therefore, a natural question is whether Theorem 1.1 holds for point sets in general
position.

Recall that the connectedness of the flip graph of perfect matchings is still open. Toward
solving this question, we are currently working on the setting in which our point set consists
of at most two convex layers. Moreover, we are working on extending our NP-hardness proof
for plane odd matchings and plane spanning paths.
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Abstract
We introduce ParkView: a schematic, scalable encoding for monotone interleavings on ordered merge
trees. ParkView captures both maps of the interleaving using an optimal decomposition of the trees
into paths. We prove several structural properties of monotone interleavings that enable a sparse
visual encoding using a maximum of 6 colors for merge trees of arbitrary size.

Related Version arXiv:2501.10728

1 Introduction

A merge tree is a topological summary of a scalar field, which shows how the minima,
maxima, and saddle points of the scalar field are connected (see Figure 1). The interleaving
distance [4, 5, 7] is a similarity measure that captures how far two merge trees are from being
isomorphic. Intuitively, it “weaves” the two trees together via two shift maps that take points
from one tree to points a fixed distance higher in the other tree while preserving ancestry.
Computing the interleaving distance is NP-hard [1] and in practice it is often desirable
to introduce additional geometric constraints. The monotone interleaving distance [2]
implements such constraints; it requires a prior ordering on the leaves of the merge trees
that respects the tree structure. Given such an ordering, for example based on the spatial
structure of the data, the monotone interleaving distance can be computed efficiently.

An ordered merge tree is a tree T equipped with a height function f and a total order on
its leaves that respects T ’s structure. We think of T as a topological space; as such, we refer

T T ′
α

β

δ
u2

u1

u3

v1

v2

Figure 1 Left: a scalar field with its merge tree. Right: a δ-interleaving (α, β). We draw the
trees rectilinearly; each horizontal line segment represents a single point, namely a non-leaf vertex.
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δ

1

1

Figure 2 Example ParkView visualization of a monotone interleaving.

to not just the vertices, but also each point on the interior of an edge, as a point of T . The
highest vertex of T is called the root, from which an edge extends upwards to infinity. The
height function f has to be continuous and strictly increasing along each leaf-to-root path
of T . A monotone δ-shift map α takes points in T and maps them continuously to points
in T ′ exactly δ higher such that it preserves the order of any two points of T . A monotone
δ-interleaving consists of two monotone δ-shift maps (α from T to T ′ and β from T ′ to T )
such that for any point x ∈ T , the point β(α(x)) is an ancestor of x and for any point y ∈ T ′,
the point α(β(y)) is an ancestor of y. Figure 1 shows an example. The monotone interleaving
distance is then the smallest δ for which a monotone δ-interleaving exists. In the remainder
of this paper, we use “interleaving” to mean “monotone interleaving”.

Interleavings on merge trees can have a complex structure, and hence to gain insight in their
behavior, it is useful to visualize them. However, existing visualizations (e.g. [1, 3, 4, 5, 6, 7])
are mostly designed to visually explain the concept of interleavings on small examples, and
not suitable for actual data exploration. We introduce ParkView: a schematic and scalable
visual encoding for interleavings. To represent a shift map, ParkView decomposes the two
merge trees into few components such that a component in one tree maps entirely to one
component in the other tree. See Figure 2: the points in the left tree enclosed by shape 1 (a
hedge) map to the points in the right tree on segment 1 (an active path). ParkView draws
a merge tree rectilinearly, with the leaves drawn in separate columns according to the leaf
order (Figure 3). The properties of a monotone interleaving allow us to match components

hedges

draw Π2’s branches
and active paths

active paths

draw paths
vertically

draw Π1’s branches
and active paths

T T ′

path decompositions
Π1 and Π2 of T and T ′

thin column if it has
no active path

T

ParkView

T ′

Figure 3 ParkView draws an interleaving (α, β) by superimposing drawings of heavy path-branch
decomposition of both α and β.
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left to right, based on the position of the lowest leaf for hedges and the x-position for active
paths. Matching components are also assigned the same color. The drawings of the two shift
maps combine and together show the interleaving.

In this paper, we detail two aspects of ParkView. First we define an optimal way of
decomposing merge trees and show how to compute it (Section 2). Then we explain how
we draw hedges and show that the set of hedges is 3-colorable (Section 3). The full version
details the algorithmic pipeline for computing ParkView, and includes a showcase of ParkView
on several real-world datasets.

2 Path-Branch Decomposition

The input for ParkView consists of two ordered merge trees T and T ′ and two shift maps α

and β. We now describe the decomposition based on the shift map α; the decomposition based
on β is symmetric. We decompose T ′ into a path decomposition Π: a set of height-monotone
paths π that each start at a leaf (the bottom of π) and end at an internal vertex of T ′ (the
top of π) or, for one path, at infinity. To make sure the paths of Π are disjoint and exactly
cover T ′, we consider each path π to be open at its top. Alternatively, we can define a
path decomposition bottom-up. For a vertex v of T ′, let the up edge be the one edge with
increasing height incident to v, and let the down edges be the other edges incident to v. We
now define a path decomposition by selecting, for each internal vertex v, one of the down
edges of v as the through edge of v. The path decomposition is then built by starting a path
at each leaf of T ′, and for each internal vertex v letting the incoming path from the through
edge continue, while the incoming paths from the remaining down edges end at v.

Each path π ∈ Π induces a branch Bπ in T : the part of T that α maps to π. The branch
Bπ can either be empty, consist of a single connected component (a simple branch), or
consist of multiple connected components (a compound branch) (see Figure 4). The complete
set of branches Bπ forms a decomposition of T , which we call the branch decomposition
of T . Together, we call the paths in T ′ and the branches in T a path-branch decomposition
for α. To minimize visual complexity, we now show how to construct an optimal path-branch
decomposition: one that minimizes (1) the maximum number of branch components per
path and (2) the total number of branch components.

As noted before, we can define a path decomposition of T ′ by selecting a through edge
for each internal vertex v. For an edge e, let Be be the part of T that α maps to the interior
of e, and let the weight of e be the number of connected components of Be. We define a
heavy path decomposition by selecting the through edge of v to be a down edge of v with
maximum weight. We now prove that a heavy path-branch decomposition is optimal. We
refer to the highest edge π traverses as its top edge. We define the size of a branch B as the
number of connected components it consists of. We first show that for a given path π, the
size of its induced branch is equal to the weight of π’s top edge.

T T ′

Bπ π

T T ′

Bπ π

T T ′

π

Figure 4 Examples of a simple branch, a compound branch, and an empty branch Bπ.
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▶ Lemma 1. Let π be a path with top edge e. Then the size of Bπ is equal to e’s weight.

Proof. Let v be the top of π and let h := f(v) − δ. As e is in π, we have that Be ⊆ Bπ.
It hence suffices to argue that each connected component C of Bπ contains exactly one
connected component of Be. To show that C contains at least one connected component
of Be, we show that C contains a point x in Be. Take any point x′ ∈ C. If α(x′) lies in the
interior of e, then we take x := x′. Otherwise, we continuously follow the path from x′ to
the root of T . As α is continuous, the images of the points on the path (in T ′) also form a
continuous path. Furthermore, as α is a δ-shift map, the images of these points also have a
continuously increasing height value. It follows that there is a point x that maps to e. By
definition x ∈ Be (and thus also in Bπ). Furthermore, all points between x′ and x on our
path map to points on π in T ′. Therefore, they are all part of Bπ; hence, they are all part of
the same connected component of Bπ, namely C.

To show that C contains at most one connected component of Be, assume for a contra-
diction that there are two distinct connected components C1 and C2 of Be in C. As before,
these components respectively contain points x1 and x2, both at height h − ε for some ε > 0
chosen such that no vertices of T have height between h and h − ε. Now there is a path ρ

from x1 to x2 entirely within C, as C is connected. There also is a distinct path ρ′ from x1
to x2 via the lowest common ancestor x3 in T of x1 and x2. Note that f(x3) ≥ h, so ρ′ is not
entirely within C; that is, ρ ̸= ρ′. The union of ρ and ρ′ hence contains a cycle, contradicting
the fact that T is a tree. ◀

▶ Theorem 2. Any heavy path-branch decomposition is optimal.

Proof. Let Π be a path decomposition. Recall that Π selects one through edge for each
vertex v in T ′. Define the cost of v as the sum of the weights of v’s down edges, excluding its
through edge. As these edges are exactly the top edges ending at v, by Theorem 1, the cost
of v is the number of branch components belonging to the paths ending at v. Then, the sum
of costs of all vertices in T ′ is the total number of branch components induced by Π. This
sum is minimized by minimizing the cost for each vertex v. This is achieved by maximizing
the weight of its through edge, that is, picking a heavy edge as the through edge. A similar
argument holds for minimizing the maximum number of branch components per path. ◀

3 Hedge Coloring

We represent each branch Bπ by a hedge Hπ: a rectilinear shape enclosing Bπ (see Figure 5).
Each hedge is a histogram: the union of a set of axis-aligned rectangles called bars whose
tops are aligned. We call the height of the highest (lowest) point in a branch Bπ its top
(bottom) height. A hedge consists of three types of bars: tree bars, fillers, and bridges. For
each path σ in the path decomposition of T that contains points in Bπ, in the column of σ

we add a tree bar whose bottom height is the height of the lowest point on σ that is in Bπ.

bridgefiller

Figure 5 The types of bars that make up a hedge (left) and the resulting hedge (right).
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. . .

Figure 6 Illustrations of Observation 3 (left) and Observation 4 (right).

The union of these bars may not be connected; in this case, we connect consecutive leaves in
the same branch component by adding fillers in the columns between them. The height of
such a sequence of fillers is the smallest height of the two bars they connect (Figure 5). For
a compound branch Bπ, we draw its connected components like before, and then between
them we add a bridge: a horizontal connector at the top of the hedge (Figure 5). The height
of the bridge is less than the height of the shortest bar in the hedge.

A hedge H has a left (right) side which is the left (right) side of its leftmost (rightmost)
bar. Two distinct hedges are adjacent if their boundaries, excluding corners, overlap. A
hedge P is the parent of H if P is adjacent to the top of H; then H is a child of P .

It is desirable to use as few colors as possible for the hedges, while ensuring adjacent
hedges have distinct colors. In fact, we show that the set of hedges in ParkView is 3-colorable.
The proof makes use of three properties: hedges (i) are pairwise interior disjoint, (ii) have at
most one parent, and (iii) have no hedge adjacent to the bottom of their longest bar. Our
proofs of these properties rely on two observations about our drawing of T (see Figure 6).

▶ Observation 3. No point of T is between two points of another branch at the same height.

▶ Observation 4. No leaves are positioned vertically above a horizontal segment.

▶ Lemma 5. Hedges in ParkView satisfy property (i).

Proof sketch. Consider a horizontal line h that intersects a number of hedges. As hedges
have a complicated shape, instead of studying the intersection of each hedge with h, we use
Observation 3 to partition h into a number of interior disjoint intervals, one for each hedge.
We then show that these intervals are supersets of the intersection of the corresponding
hedge with h, from which it follows that the hedges are interior disjoint. ◀

▶ Lemma 6. Hedges in ParkView satisfy property (ii).

Proof sketch. For any hedge Hπ, we can show that (a) it needs to have a point of T on the
top, which is adjacent to some tree bar in a parent hedge, and (b) any other bars adjacent to
the top of Hπ need to be part of the same parent hedge. ◀

▶ Lemma 7. Hedges in ParkView satisfy property (iii).

Proof sketch. Let b be a longest bar in a hedge Hπ. We can show that b is a tree bar: if it
were a filler, this would violate Observation 4. We prove a key property: a tree bar that is a
longest bar of its hedge has a leaf of T on its bottom. Hence, b has such a leaf. Now assume
that there is another hedge Hρ adjacent to the bottom of b. Then on the top of Hρ, there
is a point via which Hρ connects to the rest of T . As each hedge has at most one parent
(Lemma 6) this connection is via a bar b′ of Hπ. However, then b′ is a longest tree bar. This
contradicts our key property that b′, being a longest tree bar, has a leaf on its bottom. ◀

EuroCG’25
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L R

C′′            
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Figure 7 A set of histograms where P is the parent of G.

▶ Theorem 8. Any set C of histograms that satisfies properties (i)–(iii) is 3-colorable.

Proof. We use induction on n = |C|. The base case (n = 1) is trivial. Assume that C

contains n + 1 histograms, and let G be a histogram whose top is lowest; it follows that no
histogram in C is adjacent to the bottom side of any bar of G, and at most one histogram
in C is adjacent to the left (or right) of G. Lastly, G can have at most one parent by (i), so
G has at most three adjacent histograms.

The set C ′ := C \ {G} still satisfies (i)–(iii) and has size n. By the induction hypothesis,
C ′ is 3-colorable; fix a 3-coloring c1 for C ′. We edit c1 into a 3-coloring for C. If the
histograms adjacent to G use fewer than three colors, we use the third color for G to obtain
a 3-coloring for C. Otherwise, let L and R be the histograms adjacent to the left and right
of G, and let P be the parent of G. Since P , L, and R have distinct colors, we can assume
without loss of generality that c1 assigns colors 1, 2, and 3 to P , L, and R, respectively.
By (iii) there is no histogram adjacent to the bottom of a longest bar of P , so P extends
below the top of G. Without loss of generality, assume P extends left of G and call the
rightmost such extending bar b (Figure 7). Consider the descendants C ′′ of P that lie to the
left of G and to the right of b. As L is contained in C ′′, the set C ′′ is nonempty. This means
that C \ C ′′ again satisfies (i)–(iii) and has size at most n, and is hence 3-colorable by the
induction hypothesis. Let c2 be a 3-coloring of C \ C ′′ such that without loss of generality P

has color 1 and G has color 3. We now define a coloring c3 for C where the histograms of
C \ C ′′ take its color from c2, and the histograms in C ′′ take their color from c1.

Note that G and P are the only two histograms of C \ C ′′ that are adjacent to histograms
in C ′′. So, one of four cases applies to any two adjacent histograms of C: (a) both lie in
C \ C ′′, (b) both lie in C ′′, (c) one is P and the other lies in C ′′ or (d) one is G and the
other lies in C ′′ (i.e., the other is L). For c3 to be a 3-coloring, it suffices to show that in
each case, c3 assigns them distinct colors. In case (a), c3 assigns the same colors as c1. In
case (b), c3 assigns the same colors as c2. In case (c), P has color 1 in both c1 and c2, so c3
again assigns the same colors as c1. In case (d), L has color 2 and G has color 3. ◀

Since hedges are histograms and satisfy (i)–(iii), the set of hedges in ParkView is 3-colorable.
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Abstract
We devise a collapse algorithm, which computes the farthest Voronoi diagram of convex sites induced
by a convex distance function in 3D. It is a useful tool in clarifying the structure of this diagram, and
can express its combinatorial complexity in terms of the algorithm’s number of events. Moreover,
we show that the Euclidean distance function along a trisector of lines in 3D has at most 4 local
maxima and 8 local minima. This answers the question on how to find the smallest sphere touching
three lines. We show that this sphere touches the lines along a great circle.

1 Introduction

Voronoi diagrams are among the most fundamental space partitioning structures in Com-
putational Geometry. Given a set S of n objects in some space, called sites, the nearest
(respectively, farthest) Voronoi diagram of S decomposes the underlying space into regions,
that have the same closest (resp., farthest) site. In this note, we describe a very general
algorithm for the construction of farthest Voronoi diagrams in R3.

Voronoi diagrams in the Euclidean plane have been intensively studied [5, 8, 9, 11, 13, 14,
17], in three dimensions, however, Voronoi diagrams are far less understood, especially if sites
are non-point objects. A general framework for studying Voronoi diagrams in Rd is through
the arrangements of the distance functions of the given sites in Rd+1 [11]. The lower (resp.,
upper) envelope of these distance functions, projected back to Rd, yields the nearest (resp.,
farthest) Voronoi diagram of the given sites. If the distance functions are simple-enough
hypersurfaces, then the complexity of either Voronoi diagram is O(nd+ϵ), for any ε > 0 [18].
For d = 3, the diagram can also be computed within the same bound [1]. If sites are (d−2)-
flats, a lower bound of Ω(nd−1) has been given by Aronov [2]. Tighter combinatorial bounds
in R3 are known for restricted cases [4, 10, 15, 16]. These include O(c3n2+ε) for lines with a
constant number of c orientations [16] and O(n2+ε) for parallel halflines [4]. The unbounded
features of the order-k (and farthest) Voronoi diagrams of lines and line segments in Rd have
been studied by Barequet et al. [7]. They are encoded in the Gaussian map, a map on the
sphere of directions, which has complexity O(min{k, n − k}nd−1). The complexity of the
unbounded features of the farthest Voronoi diagram of lines in Rd is Θ(nd−1).

Tighter bounds are known for convex distance functions induced by a polyhedron of
constant complexity. The size of the nearest Voronoi diagram is O(n2α(n) log(n)) and a lower
bound of Ω(n2α(n)) can be realized [10], when the sites are lines. For disjoint line segments or
polyhedra with n vertices, the complexity is O(n2α(n) log n) and O(n2+ε) respectively [15].
For convex polyhedral sites the farthest Voronoi diagram has up to Θ(n⌈ d

2 ⌉) complexity and
can be computed in time proportional to the bound plus an O(n log n) term [6]. The diagram
has constant complexity for point sites or sites with a constant number of orientations.
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Figure 1 Convex distance induced by the convex set C containing the origin O: d(p, q) = 3

In this abstract, we devise a collapse algorithm, which computes the farthest Voronoi
diagram of convex sites induced by a convex distance function in 3D. It is a useful tool in
clarifying the structure of this diagram, and can express its combinatorial complexity in
terms of the algorithm’s number of events. The algorithm discovers features of the diagram
in decreasing distance to their farthest site. This motivates to look at how this distance
evolves along the edges of the diagram. We show that the Euclidean distance function along
a trisector of lines in 3D has at most 4 local maxima and 8 local minima. This answers the
question on how to find the smallest sphere touching three lines, which is of independent
interest. We show that this sphere touches the lines along a great circle.

2 Preliminaries

Let S = {s1, ..., sn} be a set of n disjoint convex sites in R3. Any bounded convex set C ⊂ R3

which contains the origin in its interior can be used to define a so-called convex distance,
between two points p, q ∈ R3: d(p, q) = inf

t≥0
{ t | q ∈ p + t · C }. In other words, d(p, q)

describes the amount t ≥ 0 by which C, when being placed at p, has to be scaled so as to
cover q; see Fig. 1. This is a directed distance, i.e. when C is not point-symmetric to the
origin, then d(p, q) ̸= d(q, p) for some pair of points p, q ∈ R3. The distance d(p, s) from a
point p ∈ R3 to a site s ∈ S is defined as d(p, s) = min{d(p, q) | q ∈ s}.

The farthest Voronoi region of s ∈ S is the set of points in R3 whose distance to s

is larger than to any other site in S. It is denoted as freg(s, S) = {p ∈ R3 | ∀s′ ∈ S :
d(p, s) ≥ d(p, s′)}. The farthest regions of S induce a subdivision in R3; the induced cell
complex is called the farthest Voronoi diagram of S, denoted by FVD(S). It consists
of vertices, edges, faces, and 3-dimensional cells; we refer to the latter simply as cells. The
complexity of a cell complex M is the total number of its features, denoted as |M |. The
i-sector of i sites in R3 is the locus of points at equal distance to the i sites. Two trisectors
(3-sectors) are called related if they are defined by exactly four distinct sites.

We say two cell complexes M and M ′ have the same topology if there is an isomorphism
that maps features in M to features of the same dimension in M ′ and maintains all incidence
relations, i.e., two features are incident in M if and only if their images are incident in M ′.

▶ Definition 2.1. For a finite cell complex M , let B be a topological ball large enough to
intersect any cell of M of any dimension in one connected component. Let Γ denote the
boundary of B. The intersection M ∩ Γ is called the Γ-map of M , denoted by ΓM(M).

The topology of ΓM(M) is invariant, independently of the specific choice of Γ, see Fig. 2.
When considering the FVD(S) of a set of lines as sites with the Euclidean distance, the
Γ-map can be obtained from the Gaussian map [7] by doing some small modifications.
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Γ

Figure 2 The Euclidean farthest Voronoi diagram (in red) of a set of points S in the plane
together with a possible choice of Γ for the definition of ΓM(FVD(S)).

We assume the following general position: (1) any k-sector has dimension 4 − k for all
1 ≤ k; (2) no circle is touching 4 sites; (3) the number of local minima and maxima along a
trisector of any 3 sites is bounded by a constant. The general position assumptions ensure
the following properties: by assumption (1), vertices (resp. edges, faces, cells) of the FVD
are equidistant to exactly 4 (resp. 3,2,1) sites; by (2), related trisectors intersect transversely,
which is shown in the sequel; by (3), the analysis of the algorithm in Section 4 simplifies.

▶ Lemma 2.2. If two related trisectors are intersecting tangentially, then there exists a
circle which is touching 4 sites.

3 On the Euclidean distance function along a trisector

In this section we consider the Euclidean distance. It was shown that the trisector of lines
is a quartic consisting of four unbounded branches [12, 16], assuming that the 3 lines are
not parallel to the same plane, and pairwise skew. In general, edges of a Voronoi diagram in
Rd are part of a (d−1)-sector of the sites. We are interested in the distance function, which
maps any point p along this (d−1)-sector to the distance between p and the involved sites.
In the plane, the distance function along the bisector of line segments has exactly one local
minimum but no local maximum. It is surprising that in 3D the distance function along a
trisector of lines can have local maxima, see Figs. 3 and 4. Phrased differently, branches of
the trisector can have more than one local minimum.

▶ Theorem 3.1. The Euclidean distance function along the trisector of lines in R3 can
admit at most 4 local maxima and 8 local minima. These bounds are tight.

Imagine sliding the center of a sphere along the trisector, such that it touches the defining
sites. A local maximum corresponds to a point at which the radius of the sphere is decreasing
in both directions along the trisector. If one wants to find the smallest sphere, which is
simultaneously touching 3 lines, one has to compute the possibly 8 local minima of the
distance function and pick the smallest. There is a nice geometric interpretation of these
local extrema.

▶ Theorem 3.2. An extremum of the Euclidean distance function along the trisector of
convex sites in R3 corresponds to the center of a sphere S, which touches the 3 sites along a
great circle of S.

Another surprising fact is that the trisector of sites can be bounded if considering line
segments as sites, see Fig. 5.
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Figure 3 The trisector of three lines (red, green, yellow). The colors along the trisector encode
the distance to the lines. In this example, the distance function along the middle branch admits a
local maximum, as the color coding changes from orange to yellow to orange. A rotating animation
of the trisectors shown in Figs. 3 and 5 can be found on https://compgeom.inf.usi.ch/research.html.
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Figure 4 A projected trisector with highlighted local minima in blue and local maxima in red.
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Figure 5 The trisector of 2 lines l1 : x = −1∧z = 0 and l2 : x = 1∧y = 0 and point p = (0, 0, 0).
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4 A collapse algorithm for the farthest Voronoi diagram

A collapse algorithm to compute the Euclidean farthest Voronoi diagram of line segments
in the plane has been described by Aurenhammer et al. [3]. In this abstract, we give a
generalization to convex sites S ⊂ R3 with any convex distance. The algorithm proceeds
in two steps. In the first phase, the unbounded features of the FVD are computed, which
appear in the Γ-map. In the second phase, the algorithm discovers the features of the FVD
in decreasing distance from their farthest site. For such a feature of the FVD, the distance
to its farthest site is called the priority of this feature. The algorithm finds the features of
the diagram in decreasing priority. We maintain a map of all points that have the same
priority:

▶ Definition 4.1 (Shrinking map). For a set of sites S and some λ ∈ R, let the shrinking
map Mλ be the intersection of the hyperplane x4 = λ and the upper envelope of the distance
functions {d(., s) : s ∈ S}.

Due to the convexity of the distance functions {d(., s) : s ∈ S}, the upper envelope
of these functions is also a convex function. This implies that the shrinking map Mλ is
a topological sphere, because it is the intersection of a convex function R3 → R with a
horizontal hyperplane x4 = λ. The algorithm scans the upper envelope as it sweeps a
hyperplane, starting at x4 = ∞ and moving down, until the entire envelope is scanned.
Throughout the algorithm, we maintain a topologically correct representation M of the
shrinking map Mλ. A change in the topology of map M corresponds to an event of the
algorithm. The list of possible events is given in Fig. 6. There are five types of events, in
contrast to only one type in 2D. Two of these events involve a vertex of the FVD, which we
describe next.

Deletion event. 3 faces (blue, green, purple) on M are surrounding a forth one (red) just
before the event. The red face shrinks until it completely disappears at the event. The
event corresponds to a vertex in the FVD. After the event, the red face together with its
bounding vertices and edges is removed from M and replaced by one vertex.

Swap event. Before the event, the map M locally shows 4 faces (blue, red, green, purple
in cyclic order) of which the opposite faces blue and green are sharing a shrinking edge. At
the event, all 4 faces are touching at a common point, which corresponds to a vertex in the
FVD. After the event, the faces red and purple are sharing a growing edge instead.

Local minimum event. A shrinking face (red) is fully bounded by two other faces (blue,
green) of M . At the event, the red face disappears, which corresponds to a local minimum
of the trisector between the red, blue and green sites in the FVD. After the event only an
edge separating the blue and green face remains locally.

Local maximum event. Before the event, two faces (blue, green) are locally separated by
another face (red) on M . At the event, the red face is getting split into 2 faces and all four
faces share a common point. In the FVD, this point corresponds to a local maximum of the
trisector of the 3 involved sites. After the event, the map has 4 faces (blue, red, green, red
in cyclic order) and the faces blue and green share an edge.
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120 Event name before at after

121 Deletion

122 Swap

123 Local minimum

124 Local maximum

125 Stop event end

Figure 5 List of collapse events. The columns 2-4 show how the shrinking map changes locally
at each event, where a piece of the shrinking map is depicted before, at and after the event happens.

126

127

EuroCG’25

Figure 6 List of collapse events. The columns 2-4 show how the shrinking map changes locally at
each event, where a piece of the shrinking map is depicted before, at, and after the event happens.

EuroCG’25



30:8 A Contribution to EuroCG 2025

Stop event. One face (red) is fully enclosed by another face (green) on M . The red face
is shrinking until it disappears at the event. This event corresponds to the minimum of the
priority function on the red-green bisector in the FVD. We will prove that if this event
occurs, then it is the last one.

Apart from the stop event, other events can also be the last ones to be processed. That
is the local minimum (resp. deletion) event, in case that the global minimum of the priority
function is realized at an edge (resp. vertex) of the FVD. Note that the global minimum of
the convex upper envelope might not be unique, but that there can be an entire connected
set of points which are global minima. In this case, the last step of the algorithm finishes
constructing the diagram, by adding a piece of an edge or face.

▶ Theorem 4.2. The list of events in Fig. 6 is complete.

Next, we discuss how to express the combinatorial complexity of the FVD in terms of
the number of events, which happen during the collapse algorithm. The Γ-map is a planar
graph, on which Euler’s formula holds, thus, the number of faces, edges, and vertices on the
Γ-map are linearly related.

Let nd, ns, nm, nM be the number of times the deletion, swap, local minimum, and
local Maximum event happens during the collapse algorithm. The complexity of the entire
farthest Voronoi diagram is asymptotically just the total number of events happening during
the collapse algorithm, i.e. |FVD| = Θ(nd + ns + nm + nM ). Even though an edge may
contain many local minima and maxima, it is only counted at most a constant number of
times due to our general position assumption.

One can observe that only the deletion, local minimum and stop events delete faces
from the shrinking map. Each deletion and local minimum event removes exactly one face
from the shrinking map apart from the last event of the collapse algorithm, which removes
between 2 and 4 faces. On the other hand, the only event, that can create an extra face
on the shrinking map is the local maximum event. Each face starting on the ΓM(FVD) or
getting later created at a local maximum event, needs to be removed before the collapse
algorithm finishes. Thus, based on counting the number of faces on the shrinking map, we
derive the condition |ΓM(FVD)| + nM − nd − nm ∈ {2, 3, 4}.

▶ Theorem 4.3. For a set of convex sites S, we have |FVD| = Θ(|ΓM(FVD)| + ns + nM ).

For n lines as sites with the Euclidean distance, |ΓM(FVD)| = Θ(n2) follows from [7].
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Abstract
Let S be a set of n points in general position in Rd. We show several containment results for points
from S in spheres determined by d + 1 points of S. Among them, we prove a Delaunay-type criterion
for point sets in R3. Also, we show bounds on the expected number of points from S contained in a
sphere determined by four points chosen uniformly at random from S ⊂ R3. A tight upper bound
construction is provided, obtained by inversion of points on the moment curve. We also show a
lower bound and prove that it is best possible for n ≤ 7. In order to do so, we solve the recurrence
relation T (n) =

⌈
n

n−5 T (n − 1)
⌉

with base case T (7) = 29. This is of independent interest, since
most recurrence relations of this type seem not to have a solution in closed form.

1 Introduction

Let S be a set of n ≥ d + 2 points in general position in Rd, d ≥ 2, meaning no m of them
lie on a (m − 2)-dimensional flat for m = 2, 3, ..., d + 1 and no d + 2 of them lie on the same
(d − 1)-sphere. We show several containment results for points from S in the open balls
having as boundary spheres determined by d + 1 points from S. With a slight abuse of
notation, usual in the literature, in the following we will say sphere instead of open ball for
this containment relationship.

First, we prove a Delaunay-type criterion for point sets in R3. The well-known empty
circle property of the Delaunay triangulation in R2, see e.g. Lemma 9.4 in [4], states that
given a set S = {a, b, c, d} of four points in convex position in the plane, then exactly two of
the four circles passing through three points of S contain the fourth point of S; and if the
line passing through two points a and b of S separates c and d, then the circle through a, b, c

contains d if and only if the circle through a, b, d contains c. This criterion is commonly used
to characterize the Delaunay triangulation of a set S of n points in R2 as the set of triangles
with vertices from S, whose circumcircles are empty of other points from S. Delaunay in his
paper [7] from 1934 stated this more generally for Rn, n ≥ 2. We obtain a statement similar
to the Delaunay criterion, for five points in R3, given in Section 2.

Second, we study the expected number E(XS,d) of points from S that are contained in the
sphere passing through d + 1 different points from S, chosen uniformly at random. E(XS,d)
is determined by the vector (s0, s1, . . . , sn−d−1), where sk is the number of spheres passing
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through d + 1 points of S that enclose exactly k other points from S, for k = 0, . . . n − d − 1.

Clearly,
∑n−d−1

k=0 sk =
(

n
d+1

)
. Then,

E(XS,d) =
∑n−d−1

k=0 k · sk(
n

d+1
) . (1)

The expression
∑n−d−1

k=0 k · sk can also be interpreted as the number of (p, Q) pairs, such
that p is a point of S, and Q is a sphere induced by d + 1 points of S\{p} containing p in its
interior. In dimension d = 2, E(XS,2) is equivalent to the rectilinear crossing number [29]
of S, denoted cr(S), via the known relation, first obtained by Urrutia [31], also see [12]:

n−3∑

k=0
k · sk =

(
n

4

)
+ cr(S). (2)

In this paper we mainly focus on dimension d = 3. We define Sn = min
∑n−4

k=0 k · sk, where
the minimum is taken over all sets S of n points in general position in R3.

In Section 3 we show a lower bound of Sn ≥ 2
⌊

(n
5)
5

⌋
+

(
n
5
)

− 2
⌊

n
25

⌋
for each n ≥ 5. We

have found point sets showing that this bound is best possible for n ≤ 7; i.e., S5 = 1, S6 = 8,
and S7 = 29. Other found point sets show that S8 ≤ 80, S9 ≤ 189, and S10 ≤ 376.

To prove the bound on Sn, we present a solution in closed form of the recurrence relation

T (n) =
⌈

n

n − a
T (n − 1)

⌉
for n > b, and T (b) = c,

with a = 5, b = 7, c = 29. Interestingly enough, Conway et al. [6] needed to solve, for a
different problem, the case with a = 3, b = 4, c = 1, and stated that most recurrence relations
of this shape, for given integers a, b, c, seem not to have a solution in closed form, leaving as
an open problem to characterize those which do.

We will consider all five-tuples of points from S. For a set S of five points in R3 we say
that S is of Type A if s0 = 4 (then s1 = 1), of Type B if s0 = 3 (then s1 = 2), and of Type C
if s0 = 2 (then s1 = 3). Calling A, B, C the number of five-tuples of each type we can write

n−4∑

k=0
k · sk = 1 · A + 2 · B + 3 · C. (3)

Note that these are the only possible types, because each sphere counted by s0 corresponds to
a simplex of the Delaunay triangulation of S and the number of simplices in a triangulation
of n points with h of them on the boundary of the convex hull is between n − 3 and(

n−1
2

)
− h + 2 [11]. In particular, a set of five points in non-convex position is of Type A,

whereas there are two types, B and C, of sets of five points in convex position.
In Section 4 we show that for a set S of n points on the moment curve in R3, all its

five-tuples of points are of Type B. Then, among all sets S of n points in convex position,
points on the moment curve minimize

∑n−4
k=0 k ·sk. Let us also remark that the order type [13]

of a point set does not determine the types A, B, C of all of its five-tuples of points. In
particular, there are cyclic polytopes, i.e., point sets that have the same order type as a set
of points on the moment curve, not all whose five-tuples are of Type B. We also prove that
there exist sets of n points all of whose five-tuples are of Type C and thus, by (3), maximize∑n−4

k=0 k · sk among all sets of n points in general position in R3. Interestingly, these point
sets are obtained by applying inversion to the points on an arc of the moment curve.
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Finally, in Section 5 we consider sets S of points in Rd, d ≥ 2. Let Pd(S) be the probability
that the sphere passing through d + 1 points chosen uniformly at random from S, contains
another point chosen uniformly at random from the remaining points of S. We define
Pd(n) as the minimum of Pd(S) among all sets S of n points in general position in Rd,
and P ∗

d = limn→∞ Pd(n). We prove that this limit exists for each fixed dimension d. For
d = 2, we observe that P ∗

2 is equivalent to the rectilinear crossing number constant ν∗, see
e.g. [30], namely P ∗

2 = 1+ν∗

4 by using Equation (2). Then it is not surprising that the proof
for existence of ν∗ from [30] extends smoothly to a proof for existence of P ∗

d for d > 2. For
dimension d = 3, we show the lower bound P ∗

3 ≥ 7
25 . Other research on containment results on

points and spheres was mainly carried out in dimension d = 2, see e.g. [2, 5, 10, 15, 16, 21, 25],
with others, but noticeably fewer, for d ≥ 3, see e.g. [3, 8, 9, 24, 27]. Due to lack of space,
most proofs are omitted.

2 A Delaunay-type criterion in R3

We say that a plane π separates two points d and e, if d and e do not lie in the same (closed)
half-space bounded by π. We say that a triangle ∆(a, b, c) with vertices a, b, and c separates
two points d and e, if the plane π passing through a, b, and c, separates d and e. We denote
the sphere passing through four points a, b, c, and d with ⃝(a, b, c, d).

▶ Lemma 2.1. Let S = {a, b, c, d, e} be a set of five points in general and convex position
in R3, such that the plane π passing through a, b, c separates d and e. Then the sphere
⃝(a, b, c, d) contains e in its interior if, and only if, the sphere ⃝(a, b, c, e) contains d in its
interior.

Proof. We will use determinant tests, see e.g. [1, 7, 14, 26], or [23], Equation (4.7.1), for a
detailed discussion. Denote a point p ∈ R3 as p = (xp, yp, zp). It is well known that a point e

lies on the sphere ⃝(a, b, c, d) passing through four other points a, b, c, d ∈ R3 if, and only if,
the following determinant is zero:

∣∣∣∣∣∣∣∣∣∣

xa xb xc xd xe

ya yb yc yd ye

za zb zc zd ze

x2
a + y2

a + z2
a x2

b + y2
b + z2

b x2
c + y2

c + z2
c x2

d + y2
d + z2

d x2
e + y2

e + z2
e

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣

(4)

If Determinant (4) is non-zero, then the sign of the determinant and the orientation of the
simplex ∆(a, b, c, d) passing through a, b, c, and d tell us if point e lies in the interior of
⃝(a, b, c, d). The orientation of simplex ∆(a, b, c, d) is again given by a determinant:

∣∣∣∣∣∣∣∣

xa xb xc xd

ya yb yc yd

za zb zc zd

1 1 1 1

∣∣∣∣∣∣∣∣
(5)

If the sign of Determinant (4) equals the sign of Determinant (5), then e lies inside ⃝(a, b, c, d).
Plane π passing through a, b, c separates d and e, thus ∆(a, b, c, d) and ∆(a, b, c, e) have

different orientation. We denote Determinant (4) as Det(a, b, c, d, e). Det(a, b, c, d, e) and
Det(a, b, c, e, d) have different sign, because two columns are interchanged. Then, ⃝(a, b, c, d)
contains e in its interior if, and only if, ⃝(a, b, c, e) contains d in its interior. ◀
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▶ Theorem 2.2. Let S = {a, b, c, d, e} be a set of five points in general and convex position
in R3, such that triangle ∆(a, b, c) separates d and e, and triangle ∆(a, d, e) separates b and c.
Then, exactly two of the four spheres ⃝(a, b, c, d), ⃝(a, b, c, e), ⃝(a, d, e, b) and ⃝(a, d, e, c)
contain the remaining point of S in its interior. Furthermore, ⃝(a, b, c, d) contains e if,
and only if, ⃝(a, b, c, e) contains d; and ⃝(a, d, e, b) contains c if, and only if, ⃝(a, d, e, c)
contains b.

Proof. From Lemma 2.1 we get that ⃝(a, b, c, d) contains e if, and only if, ⃝(a, b, c, e)
contains d; and ⃝(a, d, e, b) contains c if, and only if, ⃝(a, d, e, c) contains b. The two
possible vectors for sphere-point containment for S, since it is in convex position, are
(s0, s1) = (3, 2) and (s0, s1) = (2, 3), corresponding to types B and C. In particular s0 cannot
be 0, 1, 4 nor 5. Then, exactly two of the four spheres ⃝(a, b, c, d), ⃝(a, b, c, e), ⃝(a, d, e, b)
and ⃝(a, d, e, c) contain the remaining point of S in its interior. Note that S is of type B
or C; this depends on the remaining sphere ⃝(b, c, d, e) containing a or not. ◀

▶ Remark. Let S = {a, b, c, d, e} be a set of five points in general and convex position in
R3. It follows from Radon’s lemma that we can relabel the points from S such that triangle
∆(a, b, c) separates d and e, and triangle ∆(a, d, e) separates b and c.

3 A lower bound on the expected number of points in a sphere

▶ Theorem 3.1. For n ≥ 5,

Sn ≥ 2
⌊(

n
5
)

5

⌋
+

(
n

5

)
− 2

⌊ n

25

⌋
,

with equality for 5 ≤ n ≤ 7. In particular, S5 = 1, S6 = 8, and S7 = 29.

The equality for n = 5 is attained for a Type A set of five points. The equalities for
n = 6, 7 are obtained by the example point sets and by case analysis on the number of points
on the convex hull of a generic point set, together with some geometric arguments. For n > 7,
the inequality follows from Lemmas 3.2, 3.3 and 3.4, and by using induction on n.

▶ Lemma 3.2.

Sn ≥
⌈

n

n − 5Sn−1

⌉
.

▶ Lemma 3.3. For any n ∈ N, n ≥ 6, the quotient (n−1
5 )

n−5
(a) is in N, if n is not a multiple of 5,
(b) equals 125

(
ℓ+1

4
)

+ 25
(

ℓ
2
)

+ 1
5 , if n = 5ℓ.

▶ Lemma 3.4. The recurrence relation

T (n) =
⌈

n

n − 5T (n − 1)
⌉

for n > 7 and T (7) = 29,

has solution

T (n) = 2
⌊(

n
5
)

5

⌋
+

(
n

5

)
− 2

⌊ n

25

⌋
.
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4 The moment curve and an upper bound

▶ Lemma 4.1. Let S be set of n points on the moment curve γ(t) = (t, t2, t3), with t > 0.
Then, all five-tuples of S are of Type B, and

∑n−4
k=0 k · sk = 2

(
n
5
)
.

The proof is based on point-in-sphere determinant tests.

▶ Corollary 4.2. Among all sets S of n points in convex and general position in R3, points
on the moment curve minimize

∑n−4
k=0 k · sk.

Next, we will use the inversion transformation to construct point sets of arbitrary size
in R3 with all of its five-tuples being Type C. The inversion transformation is determined
by two parameters: The center of inversion O and the radius of inversion R. Two points p

and p′ in R3 are said to be inverses of each other if:
1. The points p and p′ lie in the same half-line with origin in O.
2. The Euclidean distances |Op| and |Op′| in R3 satisfy R2 = |Op||Op′|.
The following is a well-known inversion’s property which is key to construct such sets.

▶ Property 1. The inverse of any sphere ⃝ that does not pass through the center of inversion
is a sphere ⃝′ that also does not pass through the center of inversion. Also, if the center of
inversion is in the interior of ⃝, then the interior of ⃝ transforms to the exterior of ⃝′

and the exterior of ⃝ transforms into the interior of ⃝′.

▶ Theorem 4.3. Let S be a set of n points in general position in R3. Then,
∑n−4

k=0 k·sk ≤ 3
(

n
5
)

and the bound is tight.

Proof. The upper bound follows trivially from Equation (3), whose maximum value is
reached if all five-tuples are of Type C. Let us then see that the bound is tight.

Let r, s, t, u be four points on the moment curve, such that 0 < r < s < t < u < 1
10 .

To test if a point p = (0, y, 0) lies inside the sphere ⃝(r, s, t, u) passing through r, s, t, u, we
examine the sign of the following determinant,

∣∣∣∣∣∣∣∣∣∣

r s t u 0
r2 s2 t2 u2 y

r3 s3 t3 u3 0
r2 + r4 + r6 s2 + s4 + s6 t2 + t4 + t6 u2 + u4 + u6 y2

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣

, (6)

that simplifies to (r − u)(r − t)(r − s)(s − u)(t − u)(s − t) · K with

K = r3stu + r2s2tu + r2st2u + r2stu2 + rs3tu + rs2t2u + rs2tu2 + rst3u + rst2u2 + rstu3

+r3sy+r3ty+r3uy+r2s2y+2r2sty+2r2suy+r2t2y+2r2tuy+r2u2y+rs3y+2rs2ty+2rs2uy

+2rst2y + 3rstuy + 2rsu2y + rt3y + 2rt2uy + 2rtu2y + ru3y + s3ty + s3uy + s2t2y

+2s2tuy +s2u2y +st3y +2st2uy +2stu2y +su3y + t3uy + t2u2y + tu3y +rstu+rsy +rty +ruy

+sty + suy + tuy + y2 − y

being a sum of 50 terms. On one hand, choosing y = 1
2 , we get that each but the last two terms

of K are less than 1
200 and the last two terms are y2 − y = − 1

4 . Then, K < 48 · 1
200 − 1

4 < 0.
On the other hand, the sign of (r−u)(r−t)(r−s)(s−u)(t−u)(s−t) is positive because of the
choice of r, s, t, u. Then Determinant (6) has negative sign. Since the orientation of simplex
∆(r, s, t, u) is negative, p =

(
0, 1

2 , 0
)

is contained in the sphere ⃝(r, s, t, u). Thus, a set S of
arbitrary size can be constructed, using points from the moment curve γ(t) = (t, t2, t3) with
0 < t < 1/10, such that every sphere determined by four points in S contains point p.
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By Lemma 4.1, all five-tuples of S are of Type B. This implies that for each five-tuple:
three of the spheres defined by four of its points do not contain the remaining point, and
two of the spheres defined by four of its points contain the remaining point.

Now, by Property 1, since p is contained in the interior of every sphere passing through
four points of S, any inversion with center p transforms each Type B five-tuple from S to
a Type C five-tuple. Therefore, every five-tuple of the set S′ of inverse points from S is of
Type C. Thus, from Equation (3), for the set S′ we have

∑n−4
k=0 k · sk = 3

(
n
5
)
. ◀

▶ Corollary 4.4. Among all sets of n points in general position in R3,
∑n−4

k=0 k·sk is maximized
for a set S of n points on the curve

δ(t) =
(

4t

4t6 + 4t4 + 1 ,
4t6 + 4t4 + 8t2 − 3

8t6 + 8t4 + 2 ,
4t3

4t6 + 4t4 + 1

)

with 0 < t < 1
10 . All the five-tuples of S are of Type C.

Note that the curve δ(t) is the inversion of the moment curve, as described in Theorem 4.3.

5 A universal constant for points in spheres containment

Let S be a set of n ≥ d + 2 points in general position in Rd. Let Pd(S) be the probability
that the sphere passing through d + 1 points chosen uniformly at random from S, contains
another point chosen uniformly at random from the remaining points of S. We have

Pd(S) =
∑n−d−1

k=0 k · sk

(d + 2)
(

n
d+2

) . (7)

To see this, first observe that there are
(

n
d+2

)
ways to choose d + 2 different points from S,

and among them, any can be the point to test to be inside or outside the sphere determined
by the other d + 1 points. On the other hand, for a sphere enclosing k points of S, we
count k times a sphere containing another point. Altogether, there are

∑n−d−1
k=0 k · sk spheres

determined by d + 1 points that contain another point from S. All these spheres containing
a point are equally likely to be chosen.

We define Pd(n) = min Pd(S), where the minimum is taken among all sets S of n points
in general position in Rd, and P ∗

d = limn→∞ Pd(n). We show that this limit exists.

▶ Lemma 5.1. For each dimension d ≥ 2, there exists a constant 0 ≤ P ∗
d ≤ 1 such that

P ∗
d = lim

n→∞
Pd(n).

From Theorem 3.1 and the proof of Lemma 5.1 we obtain the following corollary:

▶ Corollary 5.2.
P ∗

3 ≥ 7
25 .
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Abstract
We consider the complexity of finding an ordered Hamiltonian path that obeys a partial order on
the vertices in grid graphs and graphs with bounded pathwidth. We show that the problem is
NP-complete in h × w grid graphs for h ≥ 7, implying NP-completeness for graphs of treewidth and
pathwidth at least 7. Contrarily, we give a polynomial-time algorithm for graphs of pathwidth 3.

Related Version https://arxiv.org/abs/2503.03553

1 Introduction

For some applications of the well-known Traveling Salesman Problem (TSP) and
its path variant it is necessary to add additional precedence constraints to the vertices
which ensure that some vertices are visited before others. The cycle variant is known as
the Traveling Salesman Problem with Precedence Constraints (TSP-PC) and
has been studied, e.g., in [1, 6]. The path variant, known as the Sequential Ordering
Problem (SOP) or the Minimum Setup Scheduling Problem, has been studied, e.g.,
in [2, 9, 11,12]. Of course, all these problems are NP-complete.

These problems are defined over complete graphs with an additional cost function.
The unweighted variants Hamiltonian Path and Hamiltonian Cycle with presedence
constraints for non-complete graphs have not received the same level of attention for a
long time. Results have been only given for the very restricted variants where one or both
endpoints of the Hamiltonian path are fixed. For these problems, polynomial-time algorithms
have been presented for several graph classes including (proper) interval graphs [3, 4, 16,17],
distance-hereditary graphs [14,18], and rectangular grid graphs [15].

To overcome this lack of research, Beisegel et al. [5] introduced the Partially Ordered
Hamiltonian Path Problem (POHPP). The input is a graph G = (V, E) together with a
partial order π on V . The question is if there is an ordered Hamiltonian path (v1, . . . , vn) in
G such that for all i, j ∈ {1, . . . , n} it holds that if (vi, vj) ∈ π, then i ≤ j. As POHPP is a
generalization of Hamiltonain Path, the problem is also NP-hard. However, Beisegel et
al. [5] show that POHPP is already NP-hard for complete bipartite graphs and complete
split graphs – graph classes where Hamiltonian Path is trivial.

There are several other classes of graphs, where Hamiltonian Path can be solved in
polynomial time but the complexity of POHPP is open. In this work, we consider the
POHPP for grid graphs. It is easy to see that every grid graph has a Hamiltonian path, so
Hamiltonian Path is trivial for that class. We show, that for grids of heights at least 7 the
problem becomes NP-complete, when allowing partial order constraints. We contrast this
hardness proof with a polynomial-time algorithm for graphs of pathwidth 3 which directly
implies a polynomial-time algorithm for grids of height at most 3.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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2 Preliminaries

A h × w grid graph is a graph with vertex set {1, . . . , h} × {1, . . . , w} and edges between
each pair of vertices with hamming distance one. We call w the width of the graph and h

the height of the graph. Throughout the paper we assume that the size of the partial order
on the vertex set is in Ω(w + h). Let P be an ordered Hamiltonian path and π be a partial
order. Then P is a π-extending Hamiltonian path if the order of the vertices in P is a linear
extension of π.

Let Φ be a 3-SAT formula with variables x1, . . . , xn and clauses c1, . . . , cm. Denote by
ℓ1

j , ℓ2
j , ℓ3

j the literals of clause cj . We say that ℓa
j is a positive literal if it has the form xi and

a negative literal otherwise.
Let G be a graph. Then an ordered set X = (X1, . . . , Xℓ) with Xi ⊆ V is a path

decomposition of G of width w if 1. |Xi| ≤ w + 1 for all Xi; 2. For every edge e ∈ E there is
at least one Xi with e ⊆ Xi; 3. For i ≤ j ≤ k, Xi ∩ Xk ⊆ Xj . A graph has pathwidth at most
k if there is a path decomposition of width k for G. It is known that a h × w-grid graph has
pathwidth min{w, h} [8].

3 NP-completeness for Grids of Height at Least 7

▶ Theorem 3.1. POHPP is NP-complete on grid graphs of height 7.

Proof. We present a reduction from 3-SAT to POHPP. Let Φ be a 3-SAT formula with n

variables and m clauses as defined above. We construct an instance (G, π) for POHPP where
G is a 7 × (5n + 4m + 6) grid graph. G is conceptually subdivided into different gadgets,
described below. We also name some special vertices within these gadgets. See Figure 1 for
an illustration. For a gadget Z, we use Z[a, b] to denote the vertex in the a-th row and b-th
column of the gadget.

Start gadget S (rose): A 7 × 3 grid graph. We denote the vertex S[3, 3] by s.
Variable switch gadgets Yi (blue): A 7 × 1 grid graph for i = 1, . . . n. Yi is assigned to

variable xi.
Variable gadget Xi (yellow): A 7 × 4 grid graph for i = 1, . . . , n. Xi is assigned to variable

xi. We call the vertices Xi[3, 2] and Xi[3, 3] the negative variable vertices of Xi. The
vertices Xi[5, 2] and Xi[5, 3] are the positive variable vertices.

Middle gadget M (red): A 7 × 2 grid graph.
Clause switch gadget Dj (light blue): A 7×2 grid graph Dj assigned to cj for j = 1, . . . , m.
Clause gadget Cj (green): A 7 × 2 grid graph assigned to cj for j = 1, . . . m. The vertices

Cj [a + 2, 1] and Cj [a + 2, 2] are assigned to the literal ℓa
j .

End gadget T (rose): A 7 × 1 grid graph. We denote the vertex T [5, 1] by t.

G is made up of the gadgets in the following order: S, Y1, X1, . . . , Yn, Xn, M, D1, C1, . . . , Dm,

Cm, T . The partial order π gives the following constraints:

1. s ≺ v for all v ∈ G.
2. t ≺ v for all v ∈ S \ {s}.
3. t ≺ v for all vertices v in Rows 1, 2, 6 and 7.
4. t ≺ v if v is in Row 4 of some Xi

5. u ≺ v if u is a negative variable vertex in Xi and v in Cj is assigned to a literal xi

6. u ≺ v if u is a positive variable vertex in Xi and v in Cj is assigned to a literal xi.
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s

t

S Y1 X1 Y2 X2 Y3 X3 M D1 C1 D2 C2 D3 C3 T

ℓ11 ℓ21 ℓ31

Figure 1 The gadgets for Theorem 3.1 combined to represent a formula. The gray vertices come
after t in the partial order π. A black square is a negative variable vertex, a white square is a
positive variable vertex. The white dot vertices are the clause vertices. These are assigned to the
literals als indicated.

s

t

Figure 2 Example for the construction with height 8.

We call the last two constraints literal constraints. Now we show that the instance described
above has a π-extending Hamiltonian path if and only if the given formula Φ is satisfiable.

Let P be a π-extending Hamiltonian path of G. By the first constraint, P starts in s. Let
Ps,t be the prefix of P ending in t. Observe that by the definition of π, all vertices that are in
Rows 1, 2, 6 or 7 or in Row 4 of any variable gadget cannot lie on Ps,t. This implies that for
any Xi, the path Ps,t either contains only the positive or only the negative variable vertices.
We define an assignment of the variables of Φ as follows. If Ps,t traverses Xi through the
negative variable vertices, we set xi = 0, otherwise we set xi = 1. The literal constraints
ensure that this assignment is satisfying as a clause gadget can only be crossed in Ps,t if at
least one literal of the associated clause is satisfied.

For the other direction, assume that there is a satisfying assignment of the variables.
The path starts in s and visits the negative variable vertices for all variables assigned 0 and
the positive variable vertices for the remaining variables, using the variable switch gadgets
to reach the appropriate rows. Then each clause gadget is crossed in the vertices that are
assigned to one true literal in the clause, using the clause switch gadgets to get to the
appropriate row, going up in the second and down in the first column of the gadget. Then
the remaining vertices are visited as indicated in Figure 1 and Figure 3. ◀

▶ Corollary 3.2. POHPP is NP-complete on grid graphs of height h for h ≥ 7.

Proof. The construction in Theorem 3.1 can be extended as indicated in Figure 2. The
added vertices in the lower rows take over the constraints of the vertices in row 7. ◀

▶ Corollary 3.3. POHPP is NP-hard for graphs of pathwidth and treewidth ≥ 7.

EuroCG’25
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s

t t t

S M M T T T

Yi Xi Yi Xi Yi Xi Yi Xi

Cj Cj Cj Dj Dj Dj Dj Dj Dj Dj Dj Dj

Figure 3 The path P for the different kinds of gadgets.

4 Polynomial-Time Algorithm for Pathwidth 3

In this section, we contrast Theorem 3.1 with a polynomial-time algorithm for graphs of
pathwidth at most 3. Let X = (X1, . . . , Xk) be a path decomposition of width 3 of a graph
G. For our algorithm, we assume that all bags have size exactly four and that Xi and Xi+1
differ in exactly one vertex. We call the unique vertex u ∈ Xi \ Xi+1 the vertex that is
forgotten in Xi+1 and the unique vertex w ∈ Xi+1 \ Xi the vertex that is introduced in Xi+1.
Furthermore, let Vi =

⋃i
j=1 Xj . We can compute a general path-decomposition of width 3 in

linear time [7, 13]. It is easy to see that such a path decomposition can be modified in linear
time to fulfill our conditions above.

▶ Observation 4.1. The vertex u forgotten in Xi+1 has no edge to a vertex in V \ Vi. The
vertex w introduced in Xi+1 has no edge to a vertex in Vi \ Xi.

Our algorithm is based on the folklore dynamic programming algorithm that solves
Hamiltonian Path for graphs of bounded pathwidth which we will not describe here due
to space constraints.1 Let P be an ordered Hamiltonian path and let Pi = Vi ∩ P be the set
of subpaths of P that is induced by Vi. Each P = (v1, . . . , vℓ) ∈ Pi is either a suffix of P, a
prefix of P , a midpart of P or, in the case k = i, the complete path P . We call v1 and vℓ the
start or end vertex of P , respectively. Vertices that are not the start or end vertices are called

1 There seems to be no description of this algorithm available; it is asked for in Exercise 7.19 of the
textbook of Cygan et al. [10]. A short description of the algorithm for Hamiltonian Cycle is given by
Ziobro and Pilipczuk [19].
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XiXℓ

Xℓ−1

. . .

x1

x2

x3

x4

σ for Xi

x1 7→ (end, pre)

x2 7→ (start, mid)

x3 7→ (int, mid)

x4 7→ (end, mid)

σ(ℓ) = ℓ

τ(σ) = τ

τ for Xℓ

y1 7→ (start, pre)

y2 7→ (start, mid)

y3 7→ (end, mid)

y4 7→ (int, mid)

y1

y2

y3

y4

Figure 4 Illustration of the definition of a signature for a fixed directed Hamiltonian path P. We
have P(σ) = {pre, mid}

interior vertices. In the dynamic program for the Hamiltonian Path problem without
order restrictions, it suffices to store the “interface” between Xi−1 and Xi. As a solution for
POHPP has to consider π, we also need information about the partition of the vertices in
Xi to the paths. In general, there are exponentially many of these partitions, making this
approach infeasible. For pathwidth 3, however, we can show that this information can be
maintained and computed efficiently. The following lemma is the basis for our algorithm.

▶ Lemma 4.2. For 1 ≤ i < k, Pi has one of the following forms: 1. Pi contains exactly one
non-trivial path; 2. Pi contains a non-trivial prefix and a suffix; 3. Pi contains a non-trivial
midpart and a non-trivial prefix or a suffix.

The following lemma helps us to reduce the number of possible path partitions by fixing
the bag where a second path appears.

▶ Lemma 4.3. For each path P such that Pi contains a midpart and a prefix (or suffix),
there is an index ℓ ≤ i such that all Pj for j = ℓ, . . . , i contain a midpart and a prefix (or
suffix) and either ℓ = 1 or Pℓ−1 contains only one non-trivial path.

We define the signature σ of a bag Xi as a mapping of the vertices in Xi to the possible
types of vertices and paths. If σ induces a midpart and another path, then σ also contains
a value ℓ(σ) for 1 ≤ ℓ(σ) ≤ i. If ℓ(σ) ̸= i, it also contains a signature τ(σ) that induces a
midpart and another parth for Xℓ(σ) with ℓ(τ) = ℓ(σ). Let P(σ) be the set types of paths
induced by σ. See Figure 1 for an illustration of this concept. We call a signature valid if
P(σ) follows the form of Lemma 4.2 and the mapping of the vertex types is consistent with
the paths. Intuitively, a signature σ encodes how a path that is a candidate for a π-extending
Hamiltonian path interacts with Xi and in the case of a midpart and another path, how the
second path appeared.

We say that signatures γ, σ for Xi−1 and Xi are compatible if they are both valid and
there is a way to extend the paths induced by γ with the vertex w introduced in Xi to get
the signature σ. If σ induces a midpart and another path and ℓ(σ) < i, then σ and γ are
only compatible if ℓ(σ) = ℓ(γ) and τ(σ) = τ(γ) for ℓ(σ) ≤ i − 2 and τ(σ) = γ = τ(γ) if
ℓ(σ) = i − 1. Furthermore, if ℓ(σ) = i, then a signature γ is only compatible to σ if γ induces
only one non-trivial path.

Given a signature σ for Xi, a path mapping fσ assigns each vertex v ∈ Vi to one of the
paths induced by σ. If σ induces a midpart and another path, then fσ partitions the vertices
in the way described by Lemma 4.3. This path mapping is uniquely determined for i = 1
and if P(σ) contains only one non-trivial path, or ℓ(σ) = i. If P(σ) contains a midpart and
another path, we additionally require that fσ is consistent with the unique path mapping
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fτ(σ). A path mapping contradicts π if there is no possible order in which the vertices in
V \ Vi can be appended and prepended to the paths without violating the constraints given
by π, e.g., if a vertex in the prefix has some predecessor in π that is contained in V \ Vi.

▶ Lemma 4.4. Let σ be a signature for Xi such that P(σ) contains a non-trivial midpart and
another non-trivial path. Then there is at most one signature γ for Xi+1 that is compatible
to σ such that P(γ) contains a non-trivial midpart and another non-trivial path.

Proof. This statement follows from Lemma 4.3 and the structure of X . ◀

Now we can define the dynamic program that will solve POHPP: For each bag Xi and
each valid signature σ for Xi, define the subproblem D[i, σ]. If there is an an exact path
mapping fσ for Xi that does not contradict π then D[i, σ] = fσ, otherwise D[i, σ] = ⊥.
The algorithm considers increasing values of i. In the base case D[1, σ] there is only one
possible path partition fσ. If it does not contradict π, then set D[1, σ] = fσ and otherwise
set D[1, σ] = ⊥.

For an entry D[i, σ] with i ≥ 2, iterate over all valid signatures γ for Xi−1 that are
compatible to σ and where D[i − 1, γ] ̸= ⊥. Let w be the vertex introduced in Xi and fγ

σ

the path partition that extends D[i − 1, γ] by assigning w to the path defined by σ. As σ

and γ are consistent, the position of w in the paths is uniquely determined. Iterate over the
vertices V \ {w} to explicitly check if adding w in this unique position contradicts π.

If there is a signature γ such that w can be added to the path, then set D[i, σ] = fγ
σ . In

the other case set D[i, σ] = ⊥. If there is a valid signature σ for Xk such that D[k, σ] ̸= ⊥,
then the algorithm returns yes, in the other case, it returns no.

▶ Theorem 4.5. POHPP in graphs of pathwidth at most 3 can be solved in O(n3) time.

Proof. Lemma 4.4 directly implies that if P(σ) contains a midpart and another path, there
is only one compatible signature γ with D[i − 1, γ] ̸= ⊥. The running time follows directly.
For the correctness, one has to argue that storing one path partition is always enough. If σ

induces only one non-trivial path or a midpart and another path, by Lemmas 4.3 and 4.4
there is only one possible path partition to consider. If it induces a prefix and a suffix, then
the vertices in V \ Vi are added between the end vertex of the prefix and the start vertex of
the suffix. Thus, if there are multiple path partitions for σ that do not contradict π they
only differ in vertices that are incomparable to vertices in V \ Vi and it does not matter
which one is stored. ◀

▶ Corollary 4.6. POHPP in grids of height at most 3 can be solved in O(n3) time.

5 Conclusion

We showed that POHPP is NP-complete for grids of height at least 7. On the other hand
there is a polynomial-time algorithm for grids of height at most 3. It would be interesting to
close the gap in future work.
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Abstract
We consider a variant of the 2-watchmen problem that ensures that every point in a polygon P is
seen from more than one direction: we search for routes W1, W2, such that for each p ∈ P there
exist w1 ∈ W1, w2 ∈ W2 that see p and such that p ∈ w1w2 ⊂ P. We show that finding the two
routes that are optimal with respect to the min-max criterion is NP-hard in simple polygons and
present a 2-approximation algorithm for this case; moreover, we provide a polynomial-time algorithm
for computing the two optimal routes with respect to the min-sum criterion in convex polygons.
Finally, we discuss a generalized version of the problem with more than two watchmen.

1 Introduction

In the classical Watchman Route Problem, introduced by Chin and Ntafos [3, 4], we ask
for the shortest route inside a given simple polygon P, such that all points of P are visible
from at least one point on the route (this can be solved in polynomial time [14, 15]). In this
context, a point p ∈ P sees another point q ∈ P if the line segment pq is fully contained in P.

Carlsson et al. [2] raised the m-watchmen problem as a natural generalization: we are
given m watchmen (with or without given starting points) for which we aim to find routes,
such that each point in P is visible from at least one of the m routes. Two common objectives
for this problem are to minimize the total length of all m watchman routes (called min-sum)
and to minimize the length of the longest route assigned to any watchman (called min-max).

When considering m watchmen, we only require each point to be seen at least once,
without any guarantees on any kind of robustness. However, in practice, we may aim to make
our routes robust against potential issues. For example, one or more watchmen may fail,
especially in remote regions. Additionally, observing a point from multiple angles can improve
observation quality. This is crucial to make the theoretically intriguing routes applicable for
real-world scenarios. In this paper, we aim to enhance the coverage quality by guaranteeing
a point to be seen from multiple directions.
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Problem Definition. Let P be a simple polygonal domain. A route W in P is called a
watchman route if every point in P is visible from some point on W , and we denote its length
by |W |. A point p ∈ P is segment-guarded by two points w1, w2 ∈ P if p lies on the line
segment w1w2, and p is visible to both w1 and w2, i.e., w1w2 is fully contained in P (while
the watchmen do not need to be at w1 and w2 at the same time).

Two routes W1, W2 in P are segment watchman routes for P if for every point p ∈ P
there exist two points w1 ∈ W1 and w2 ∈ W2 such that p is segment-guarded by w1 and w2.
We consider the following two problems:

▷ Problem 1 (Min-Max Segment Watchmen). Given a polygonal domain P, find segment
watchman routes W1, W2 such that maxi |Wi| is minimized.

▷ Problem 2 (Min-Sum Segment Watchmen). Given a polygonal domain P, find segment
watchman routes W1, W2 such that

∑
i |Wi| is minimized.

In the same manner, we define a point p ∈ P to be triangle-guarded (or k-gon-guarded)
if there exist points wi on routes Wi, i = 1, 2, 3 (or i = 1, . . . , k), such that the segments
wip, ∀i, are fully contained in P and do not share a point other than p. With this, we define
the related min-max and min-sum optimization problems analogously to Problems 1 and 2.

Note that, due to limited space, we omit the proofs of statements marked by (⋆).

Related Work. Carlsson et al. [2] showed that the m-watchmen problem is NP-hard in
simple polygons and provided a polynomial time algorithm for histograms. Polynomial time
algorithms for different polygon classes, using either the min-sum or the min-max objective,
have also been presented in [1, 9, 11, 12]. Recently, Nilsson and Packer [10] proposed a
5.969-approximation algorithm to compute min-max 2-watchman routes in simple polygons.

The robustness requirement we employ for watchman routes in this paper is closely
related to the problems of two-sensor visibility and triangle guarding for stationary guards
introduced by Efrat et al. [6] and Smith and Evans [13], respectively. Both considered two
polygons Q, P with Q ⊆ P, where the subpolygon Q should be guarded by guards placed
in P (assuming that Q’s boundary is transparent). For Efrat et al. a point p ∈ Q is 2-guarded
at angle α by two guards g1, g2 if ∠g1pg2 ∈ [α, π − α] and both guards see p. Smith and
Evans defined a point p ∈ Q to be triangle-guarded by g1, g2, g3 if p is seen by each of the
three guards and is contained in the triangle spanned by them. Another variant of robust
guarding has recently been established by Das et al. [5]; and a variant of robustness for a
single watchman by Langetepe et al. [8].

2 Preliminaries and Key Lemma

Let P be a simple polygon with n vertices. We assume that P does not contain vertices with
an internal angle of exactly 180◦, i.e., no three consecutive vertices are on the same line. If P
does contain such a vertex, we can simply remove it.

Let W1, W2 be segment watchman routes for P. From the definition, we obtain:

▶ Observation 2.1. Each of W1 and W2 is a watchman route for P.

▷ Claim 2.2. Every convex vertex of P is visited by one of W1 or W2.

Proof. Let v be a convex vertex of P. Then v lies on a line segment w1w2 with w1 ∈ W1 and
w2 ∈ W2, and the segments vw1, vw2 are contained in P. As the interior angle at v is strictly
smaller than 180◦, any line segment in P that contains v has v as one of its endpoints. ◁
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Figure 1 Min-max segment watchman routes may or may not need to overlap.

We now establish sufficient conditions for two routes to be segment watchman routes; an
example is illustrated in Figure 1.

▶ Lemma 2.3 (The Conditions Lemma). Two routes W1 and W2 are segment watchman
routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W1 or W2.
2. Both W1 and W2 visit the visibility polygon of each convex vertex.
3. Both W1 and W2 are simple and relatively convex (i.e., a route does not cross itself, and

for any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region).

Proof. First, we show that Condition 2 implies that W1 and W2 are watchman routes.
Assume that there is a point p ∈ P that is not seen by Wi, i.e., no point of Wi lies in p’s
visibility polygon. Hence, Wi is fully contained in one of the pockets P′ of p’s visibility
polygon (a subpolygon of P in which no point is visible from p). Extend the pocket’s
window w (the line segment that separates P′ and P \ P′) into a maximal line segment ℓ

contained in P. Without loss of generality, let ℓ be a vertical line segment with P′ to its
right. As p ∈ ℓ, ℓ \ w is either a polygonal edge with a convex endpoint not seen by Wi, or it
splits P into at least two subpolygons; see Figure 2. At least one of the subpolygons, say P′′,
also lies to the right of ℓ. Wi cannot see any convex vertex in P′′, yielding a contradiction.

pp

w wP′

P′′

P′

Figure 2 ℓ \ w is either an edge of P with a convex endpoint (left), or it splits P into at least
two subpolygons, one of which also lies to the right of ℓ (right).

We now show that Conditions 1–3 imply that W1 and W2 are segment watchman routes.
Consider a point p ∈ P. Since both W1 and W2 are watchman routes, there exists at least
one point on W1 and at least one point on W2 that p sees. Consider the two wedges defined
by the angles from which p is viewing W1 and W2, as visualized in Figure 3: let F1 be the
maximal wedge bounded by two rays starting at p, such that for every ray ρ in F1 there is
a point w ∈ W1 in this direction that p sees. Note that because P is simple, F1 is a single
wedge. The wedge F2 is defined analogously for W2.
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ℓ

a

p

b

F2

F1

F4
F3

Figure 3 The wedges F1 and F2 define the angles from which p is viewing W1 and W2, respectively.
If F3 or F4 is larger than 180◦, then there is a convex vertex on the left side of ℓ which is not visited.

Each of the two wedges F1, F2 covers either 360◦ (if p lies on or within the relatively
convex route) or less than 180◦ (because both routes are relatively convex). If at least one
of F1, F2 covers 360◦ around p, then p is segment-guarded: assume that F2 covers 360◦

around p, and let w1 be a point on W1 that sees p. Then the ray from w1 in the direction
of p intersects W2 at point w2 that sees p, and thus p is segment-guarded by w1w2.

Hence, assume that neither F1 nor F2 covers 360◦ around p. Let F3 (and possibly F4) be
the maximal wedge(s) bounded by two rays starting at p, such that for every ray ρ in F3
(and F4) there is no point w ∈ W1 or w ∈ W2 in this direction that p sees. Then the plane
around p can be split into up to four wedges, depending on whether F1 and F2 intersect:
F1, F2, F3 and F4; or F1, F2, F3, and one wedge with the overlap of F1 and F2.

We argue that neither F3 nor F4 can cover more than 180◦. Without loss of generality,
assume that F3 covers more than 180◦. Consider a line ℓ through p in F3 that does not
contain an edge of the boundary of P, and assume that ℓ is a vertical line and that both F1
and F2 are on the right side of ℓ. Let ab be the maximal line segment on ℓ that is contained
in P. Then ab splits P into at least two subpolygons, and at least one of them, P′, is on the
left side of ab. Because P is simple and both W1 and W2 do not cross ab, there are no points
of W1 and W2 in P′. However, P′ must contain a convex vertex v. This yields a contradiction,
as by Condition 1, v needs to be visited by at least one of the watchman routes. ◀

We define the relative convex hull of a route in a simple polygon P as the simple polygon Q
such that, for any two points inside the region enclosed by the route, the geodesic connecting
them is also contained within Q. Specifically, we refer to the boundary of Q as the relative
convex hull. Hence, if a route is relatively convex, it coincides with its relative convex hull.

In Lemma 2.3, the conditions imply that W1 and W2 are segment watchman routes.
However, there exist segment watchman routes that do not fulfill these conditions, see Figure 4.

On the other hand, we obtain an if-and-only-if statement for optimal watchman routes:

▶ Observation 2.4. Let P be a simple polygon. Two routes W1 and W2 are optimal segment
watchman routes for P, if and only if the conditions from Lemma 2.3 hold.
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p

w1

w2

W2

W1

Figure 4 W1 and W2 are segment watchman routes (e.g., p lies on w1w2), but do not fulfill the
conditions of Lemma 2.3. They are not optimal, e.g., W1’s relative convex hull (in this case the
boundary of the polygon) is shorter than W1, and this relative convex hull together with W2 are
segment watchman routes.

3 Min-Max Segment Watchman Routes in Simple Polygons

We sketch a reduction showing that the problem is NP-hard even in simple polygons.
Complementarily, we provide a polynomial-time 2-approximation.

3.1 Computational Complexity
We reduce from Multiway Number Partitioning [7]. In particular, for our purposes, we
ask to partition a set of numbers into two sets of equal sum; also referred to as Partition,
which is known to be weakly NP-hard.

▶ Theorem 3.1 (⋆). Problem 1 is NP-hard even in simple polygons.

Proof sketch. Construct a star-shaped polygon as in Figure 5. The length of a spike’s bound-
ary (i.e., the path v2i−1, v2i, v2i+1) represents the value αi from the Partition instance φ,
and let T denote the sum of all values. Both watchmen start in the bottommost convex
vertex v0, and thus need to return to it. It is easy to see that a min-max segment watchman
route of length T/2 + ε exists iff there exist a partition of φ into two sets of equal sum. ◀

v0

v1 v2n+1

v2i

Figure 5 High-level idea of the type of polygon utilized in the NP-hardness reduction.
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3.2 Approximation Algorithm
Let k be the number of convex vertices of a given polygon P. We enumerate the convex
vertices in counterclockwise order v0, . . . , vk−1, with v0 chosen arbitrarily. In the following,
we assume, without loss of generality, that indices are counted modulo k.

Let vi and vj be two different convex vertices and let Cij be the shortest route that visits
the convex vertices vi, . . . , vj−1. Cji is then the shortest route that visits the convex vertices
vj , . . . , vi−1. Clearly, Cij and Cji can be computed in linear time. Let CP be the shortest
route that visits all the convex vertices of P. CP can also be computed in linear time.

Let Dij be the shortest route that starts and ends at vi, and that sees all the convex
vertices vj , . . . , vi−1. The route Dji is then the shortest route that starts and ends at vj ,
and that sees all the convex vertices vi, . . . , vj−1. Each of Dij and Dji can be computed
in O(n3) time by modifying the algorithm of Jiang and Tan [15]. Let DP be the shortest
floating watchman route in P (that is, the shortest watchman route without a given starting
point). We can compute DP in O(n4) time [14, 15].

Let RCH(T ) denote the relative convex hull of a route T in P. We define Wij
def=

RCH(Cij ∪ Dij), connecting the two routes at vi and taking the relative convex hull of them.
We construct our approximate solution by choosing the pair

(W1, W2) = arg min
i ̸=j

{
max{|Wij |, |Wji|}, max{|CP|, |DP|}

}
.

By Lemma 2.3, (W1, W2) is a feasible solution for the segment watchman routes problem.
Denote by OPT(P) the size of an optimal solution for P. We claim the following result.

▶ Theorem 3.2. max
{

|W1|, |W2|
}

≤ 2 · OPT(P).

Proof. Let W ∗
1 and W ∗

2 be two segment watchman routes with max
{

|W ∗
1 |, |W ∗

2 |
}

= OPT(P).
Without loss of generality, we may assume that W ∗

1 and W ∗
2 are as short as possible.

If W ∗
1 or W ∗

2 visits all convex vertices of P, then (CP, DP) is an optimal solution to the
problem and the theorem therefore holds. Hence, for the remainder of this proof, we assume
that W ∗

1 visits some fixed convex vertex vi and W ∗
2 visits a different fixed convex vertex vj .

Since W ∗
1 visits vi and it either sees or visits the convex vertices vj , . . . , vi−1 by construc-

tion, we have that |Dij | ≤ |W ∗
1 |. Similarly, W ∗

2 visits vj and it either sees or visits the convex
vertices vi, . . . , vj−1, yielding |Dji| ≤ |W ∗

2 |. We distinguish the following cases.

W ∗
1 and W ∗

2 do not intersect. Because W ∗
1 and W ∗

2 do not intersect, the two convex ver-
tices vi and vj can be chosen so that W ∗

1 visits vi, . . . , vj−1 by increasing index (modulo k)
and sees the remaining ones, whereas W ∗

2 visits vj , . . . , vi−1 and sees the remaining ones.
From this, it follows that |Cij | ≤ |W ∗

1 | and |Cji| ≤ |W ∗
2 |. We obtain that

max
{

|W1|, |W2|
}

≤ max
{

|RCH(Cij ∪ Dij)|, |RCH(Cji ∪ Dji)|
}

≤ max
{

2|W ∗
1 |, 2|W ∗

2 |
}

= 2 · max
{

|W ∗
1 |, |W ∗

2 |
}

= 2 · OPT(P).

W ∗
1 and W ∗

2 intersect. Because W ∗
1 and W ∗

2 intersect and together visit all the vertices,
we have |CP| ≤ |W1 ∪ W2| = |W ∗

1 | + |W ∗
2 | and |DP| ≤ min{|W ∗

1 |, |W ∗
2 |}, as both W ∗

1
and W ∗

2 are watchman routes. We obtain that

max
{

|W1|, |W2|
}

≤ max
{

|CP|, |DP|
}

≤ max
{

|W ∗
1 | + |W ∗

2 |, min{|W ∗
1 |, |W ∗

2 |}
}

≤ 2 · max
{

|W ∗
1 |, |W ∗

2 |
}

= 2 · OPT(P). ◀

In fact, we may also let W2 = CP to avoid computing a floating shortest watchman route.
The proof also gives a 2-approximation if we use the min-sum measure for the two routes.
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4 Min-Sum Segment Watchman Routes in Convex Polygons

We examine the min-sum variant of the segment watchman routes problem in convex polygons.

▶ Lemma 4.1 (⋆). For convex polygons, each of the two optimal min-sum segment watchman
routes visits a consecutive set of convex vertices.

▶ Corollary 4.2. Problem 2 can be solved in polynomial time in convex polygons.

5 Conclusion and Future Work

In this abstract, we investigated segment watchman routes in simple polygons. We identified
sufficient conditions for two watchman routes to be segment watchman routes, and developed
a 2-approximation algorithm for the min-max and the min-sum measure. Furthermore,
we argued that the problem of computing min-max segment watchman routes for simple
polygons is NP-hard, and concluded that computing min-sum segment watchman routes for
convex polygons is possible in polynomial time. We plan to extend the study of Problem 2
to general simple polygons.

The NP-hardness of Problem 1 for three and k watchmen follows easily from an adaption
of the proof of Theorem 3.1. We aim to investigate these two problems for k > 2 in the future.
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Abstract
We consider the watchman route problem for multiple watchmen in staircase polygons, which are
rectilinear x- and y-monotone polygons. For two watchmen, we propose an optimal algorithm that
takes quadratic time, improving on the cubic time of the trivial solution. For m ≥ 3 watchmen, we
explain where our approach fails.

1 Introduction

The watchman route problem asks for a shortest route inside a polygon, such that every
point in the polygon is visible to some point on the route. It was first introduced by Chin
and Ntafos [2], who showed that the problem is NP-hard for polygons with holes, but may
be solved efficiently for simple polygons. Given a starting point, an optimal route can be
computed in O(n3) time [8], and finding a solution without a fixed starting point takes a
linear factor longer [7].

The Watchman Route Problem has also been considered for multiple watchmen (a problem
introduced by Carlsson, Nilsson, and Ntafos [1]). For histograms, efficient algorithms have
been proposed for minimizing the total route length (min-sum) [1] and the length of the
longest route (min-max) [6]. Here, we are interested in only two watchmen. For this problem,
Mitchell and Wynters [4] proved NP-hardness for the min-max objective in simple polygons.
Recently, Nilsson and Packer presented a polynomial-time 5.969-approximation algorithm
for the same objective in simple polygons [5].

In this paper, we consider a quite restricted class of polygons, staircase polygons, that for
two watchmen allows us to assign the responsibility for guarding any edge solely to one of
the two watchmen (and seeing all of a polygon’s boundary is for two watchmen sufficient to
see the polygon). Additionally, we show that the two routes can be separated by a diagonal
between two reflex vertices. This enables a polynomial-time algorithm to compute the
optimal two watchman routes (for both the min-max and the min-sum objective). Despite
staircase polygons being so restricted, some of the observations we make do not hold for
three or more watchmen. This indicates a discrepancy in the computational complexity
between the watchman route problem for one or two watchmen and for multiple watchmen.

2 Notation and Preliminaries

A polygon is called rectilinear (or orthogonal) if all its edges are parallel to the x- or the
y-axis of a given coordinate system, and x-monotone (y-monotone) if every line that is
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orthogonal to the x-axis (y-axis) intersects the polygon in exactly one connected interval.
A staircase polygon is a rectilinear polygon that is both x- and y-monotone. We call the
polygonal chains of boundary edges that lie above and below the interior the ceiling and the
floor of the polygon, respectively. We consider the watchman route problem for multiple
watchmen in staircase polygons.

▶ Multiple Watchman Route Problem (m-WRP). Given a polygon P , and a number of
watchmen m, find a shortest set of m routes, with respect to the min-sum or min-max
criterion, such that every point in P is seen from at least one of the routes.

We denote the length of a route w by ∥w∥, and refer to a solution of the m-WRP as a
set of m watchman routes in P . For simplicity, we will refer to a watchman routes also as
a watchman. In the following, we consider the m-WRP for the min-sum and the min-max
criterion. Any statement on optimal watchman routes holds for either objective, unless stated
otherwise.

Let P be a staircase polygon that is not 2-guardable with point guards (as then none
of the watchmen would need to walk). As P is x- and y-monotone, we make the following
observation:

▶ Observation 2.1. A watchman w with leftmost x-coordinate xmin and rightmost x-
coordinate xmax sees at least all points p ∈ P with x(p) ∈ [xmin, xmax].

The analogous statement holds for the bottommost y-coordinate ymin and the topmost
y-coordinate ymax of watchman w. Watchman w thus sees the contiguous part of the ceiling
between ymin and xmax, and the contiguous part of the floor between xmin and ymax.

We denote the extensions of edges that are incident to reflex vertices as cuts, and identify
so-called essential cuts. For a single watchman, a simple polygon is seen if all its essential cuts
are visited. Clearly, visiting all essential cuts is a necessary condition for a set of watchman
routes. A staircase polygon has at most four essential cuts (see Figure 1(a)): the leftmost
vertical extension of the floor vleft, the lowest horizontal extension of the ceiling hbot, the
rightmost vertical extension of the ceiling vright, and the topmost horizontal extension of the
floor htop. By “visiting” such an extension, we mean that a watchman route has a point to
the left of vleft, below hbot, to the right of vright, or above htop. Note that not necessarily all
of these four extensions are essential cuts. For the sake of simplicity, we will nevertheless
refer to them as such.

For one watchman, an optimal solution is given by the shortest route that visits all four
essential cuts. An example is shown in Figure 1(a). By the following theorem proven by
Chin and Ntafos [2], such a solution may be computed in linear time.

▶ Theorem 2.2. (Theorem 2 [2], Chin & Ntafos) A shortest watchman route in simple
rectilinear polygons can be found in linear time.

For multiple watchman routes, the watchmen share the responsibility of seeing P . Thus,
we aim to find a “good” distribution of responsibilities among the watchmen. For two
watchmen, we prove that the polygon may be split into two subpolygons such that an optimal
solution to the 2-WRP corresponds to an optimal solution to the WRP in each subpolygon.

3 Computing an Optimal Solution for Two Watchmen

In this section, we investigate the 2-WRP. Let us first state some properties of two optimal
watchman routes in staircase polygons. Due to limited space, we omit the proof of Lemma 3.1.
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(a)

r

r′

(b) (c)

Figure 1 Optimal solutions for (a) one watchman, (b) two watchmen, (c) three watchmen.

▶ Lemma 3.1. Let (w∗
1 , w∗

2) be an optimal solution to the 2-WRP in a staircase polygon P .
Then, the following properties hold:
1. w∗

1 and w∗
2 do not have any common x- and y-coordinate.

2. w∗
1 visits the essential cuts hbot, vleft, and w∗

2 visits the essential cuts htop, vright.
3. There exists a pair of reflex vertices (r, r′) with r on the floor and r′ on the ceiling, such

that rr′ separates w∗
1 and w∗

2, see Figure 1(b).

In the following, we always assume that an optimal solution (w∗
1 , w∗

2) obeys Properties 1–3
of Lemma 3.1. In particular, w∗

1 lies below and to the left of w∗
2 .

▶ Lemma 3.2. In an optimal solution to the 2-WRP in a staircase polygon, for every polygon
edge there exists a watchman that sees the edge completely.

Proof. Let (w∗
1 , w∗

2) be an optimal solution, and consider w∗
1 . As soon as it crosses the

extension of a horizontal floor edge e, it sees e completely since nothing blocks the visibility
between w∗

1 and e along e’s extension. Similarly, w∗
1 sees a vertical edge on the ceiling

completely as soon as it crosses the edge’s extension. Before crossing the extension, w∗
1 does

not see the respective edge at all. Hence, for any horizontal floor edge (vertical ceiling edge) e,
if w∗

1 sees any point on e, then it sees all points of e. Similarly, for any horizontal ceiling edge
(vertical floor edge) e, if w∗

2 sees any point on e, then it sees all points of e. Assume w.l.o.g.
that there is a horizontal floor edge e such that no point on e is seen by w∗

1 . Then, w∗
2 sees e

completely as otherwise there are points on e that are not seen by any of w∗
1 and w∗

2 . ◀

With this, we may split two optimal watchman routes in a particular way.

▶ Lemma 3.3. Let (w∗
1 , w∗

2) be an optimal solution in a staircase polygon P . There exists a
unique diagonal between a vertex on the floor and a vertex on the ceiling that cuts P into
two subpolygons P1 and P2 such that w∗

1 sees P1, and w∗
2 sees P2.

Proof. By Lemma 3.2, every edge is completely seen by a watchman. For a chain of
consecutive edges on the floor or ceiling, there cannot be an alteration in the responsibility
of the watchmen: Let ei, ei+1, ei+2 be three consecutive edges (on the floor or ceiling). If
one watchman sees ei, ei+2 completely, then it also sees ei+1. Hence, there exist vertices on
the floor and the ceiling such that w∗

1 sees all edges that lie below and to the left of them
completely, and w∗

2 sees all edges that lie above and to the right of them completely. We call
such vertices breaking points and show that there exist two breaking points, one on the floor
and one on the ceiling, that see each other—these define the unique diagonal. Assume that
this is not the case. Let bf be the lowest-leftmost breaking point on the floor, and bc be the
upper-rightmost breaking point on the ceiling. W.l.o.g., assume that all breaking points on
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the floor lie to the upper-right of the breaking points on the ceiling (in particular, bf lies to
the upper-right of bc).

Since bf and bc do not see each other, there exist some edges incident to a reflex vertex r

that block the visibility. Assume that these edges lie on the ceiling. Then, the horizontal edge
incident to r lies above bc and below bf , and is seen by w∗

2 (by definition of bc). Hence, w∗
2

sees the vertical floor edge v that is hit by the horizontal extension through r (as described
in the proof of Lemma 3.2), and thereby also sees the convex vertex on the lower end of v,
contradicting the choice of bf (being the lowest-leftmost breaking point on the floor). ◀

We present an algorithm that finds an optimal split, and thus computes an optimal
solution for two watchmen in O(n2) time. Observe that Lemma 3.2 only holds for two
watchmen. For three or more watchmen, some edges may only be seen partially by each
watchman in an optimal solution. An example is shown in Figure 1(c), see the magnified
part. The blue watchman is in charge of monitoring a part of a vertical floor edge above
the red watchman’s visibility region. The yellow watchman does not see this edge at all
and would have to walk very far to reach the vertical extension of this edge. Therefore, an
optimal solution for m ≥ 3 watchmen may induce a split of the polygon’s floor and ceiling
into more than m parts each, such that every part is seen by a single watchman. This means
that a watchman may be “in charge of” more than one contiguous part of the boundary on
the floor and ceiling, respectively.

3.1 A Quadratic-Time Algorithm for Two Watchmen
To compute an optimal solution, because of Lemma 3.3, we consider all diagonals between
vertices on the floor and on the ceiling. Any such diagonal splits P into two subpolygons.
For each subpolygon, we compute an optimal watchman route using a modified version of
the linear-time algorithm proposed by Chin and Ntafos [2], and then combine the two routes
to a solution for the 2-WRP in P .

As there are at most quadratically many diagonals to consider, this procedure trivially
yields a cubic-time algorithm. However, maintaining a similar structure of the subpolygons
by dealing with the diagonals in a certain order allows us to compute many of the watchman
routes in amortized constant time.

To this end, we iterate over the vertices on the floor. For each floor vertex pf , we compute
all its diagonals to points on the ceiling, in clockwise order around pf . If pf is a convex vertex,
then all diagonals have a negative slope. If pf is a reflex vertex, some diagonals have positive
slope. However, we do not need to consider all diagonals with positive slope, but only those
two that are followed or preceded by a positive-slope diagonal in the clockwise order. We
call those, and the diagonals with negative slopes, candidate diagonals; see Figure 3. Every
candidate diagonal splits P into two subpolygons, P1 below and P2 above the diagonal.

▶ Lemma 3.4. Any diagonal that is not a candidate diagonal induces a solution that is at
least as long as the solution induced by some candidate diagonal.

Proof. First, note that a diagonal of positive slope is spanned between two reflex vertices.
Consider w.l.o.g. a non-candidate diagonal pf pc, as seen in Figure 2. Then there is a convex
vertex p′

c above pc that does not yield a diagonal of pf because y(pc) < y(pf ). The subpolygon
P2 above pf pc has the horizontal line through p′

c as an essential cut. Hence, the watchman
route in P2 has points below this cut. There exists a subpolygon induced by a candidate
diagonal (incident to pc and with the other endpoint p′

f below pf ) that also has the horizontal
line through p′

c as an essential cut. For this cut, the watchman route in the subpolygon
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P2

pf

pc

p′f

p′c

Figure 2 A diagonal with positive slope (red) that is not a candidate: An optimal watchman
route in the subpolygon P2 (marked in gray) needs to visit the same essential cut (dashed line) as
an optimal watchman route in the subpolygon induced by pcp′

f (purple).

above the diagonal pcp′
f remains the same, and the watchman route in the subpolygon below

is not longer than the one induced by pf pc. ◀

Now we compute a solution for each candidate diagonal in the following manner:

Step 1: Consider a diagonal with negative slope. Cutting along this diagonal creates
only convex vertices in each subpolygon, hence all four essential cuts per subpolygon
are rectilinear. The watchman routes touch these extensions, but do not cross them [2].
We compute the optimal solutions for the subpolygons induced by the first diagonal in
clockwise order in linear time by Theorem 2.2. In addition, we compute two shortest-
path-tree data structures [3]. One is rooted at the first reflex vertex on the floor and
stores the shortest paths to all other floor vertices, the other one is rooted at the first
reflex vertex on the ceiling and stores the shortest paths to all other ceiling vertices.
Then, for each diagonal in order, we update the solution in the following way. Moving
from one diagonal to the next (i.e., moving from one vertex on the ceiling to the next)
alters either the essential cut vright(P1) of P1, or the essential cut hbot(P2) of P2. During
this movement, any reflex vertex on the ceiling that was an anchor point can only be
released once per vertex pf , and they are released from right to left. Similarly, any reflex
vertex on the floor can be added as an anchor point only once per vertex pf , and they get
added from left to right. Hence, the number of updates per vertex pf is at most linear.
When updating the route w1 in P1, we move from one vertical extension vright(P1) to the
next one v′

right(P1). We use the shortest-path-tree of the floor to check whether vertices
on the floor get added to, and the shortest-path-tree of the ceiling to check whether
vertices on the ceiling get released from the route. This can be done in amortized constant
time [3].
Step 2: If pf is a reflex vertex, we need to consider also the two candidate diagonals
with positive slope. Here, the subpolygons’ essential cuts differ from those of a staircase
polygon: There is exactly one non-rectilinear essential cut, namely the extension of the
diagonal. We may nevertheless compute an optimal solution, using the algorithm by Chin
and Ntafos [2]. This algorithm defines a set of essential cuts, along which the polygon
is reflected. Computing the shortest path from one of these essential cuts to its copy
yields the shortest watchman route in the original polygon. Since there are at most five
essential cuts, we can try all combinations of subsegments of these essential cuts and
apply the Chin-and-Ntafos reduction which takes linear time in each of these constant
number of cases.
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pf

Figure 3 The candidate diagonals of a reflex vertex pf : there are two candidate diagonals with
positive slope (red), and several candidate diagonals with negative slope (purple).

Thus, the computations for each vertex pf take amortized linear time. As we do this for
every vertex on the floor, there are linearly many vertices to consider. With this, we get an
optimal solution to the 2-watchman route problem in staircase polygons.

▶ Theorem 3.5. An optimal solution to the 2-WRP in staircase polygons can be computed
in O(n2) time.
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Abstract
Coordinated multi-agent robotic construction provides a means to build infrastructure in extreme
environments. Planning methods are important to understanding and achieving the scope of such
applications. Here, we focus on the NASA Automated Reconfigurable Mission Adaptive Digital
Assembly Systems (ARMADAS) model, which includes passive lightweight structural modules and
small robots that traverse the structure. We present an algorithm for calculating a build plan
for robots under the constraints of this type of system. We evaluate the quality of this plan
experimentally. Many of the techniques we use can be applied to any robotic assembly system
whose robots perform locomotion over the structure that they are building.

Related Version A video explaining the algorithm is available at https://www.youtube.com/watch?
v=-rzTm3RqIF0.

1 Introduction

Hybrid programmable matter describes systems for autonomous construction that employ
multiple robotic agents and passive construction materials. In these systems, a primary
structure is composed of matter that does not perform movement on its own, but must
be acted upon by distinct robotic agents. Robots in these systems are smaller than the
structures they can build, and the construction matter can have features that allow structure
parts to fixture to each other and to help them align during placement [1]. A natural robot
type for walking over fixtured systems are inchworm type robots [2, 3]. These robots allow
for a wide range of operations using only low numbers of degrees of freedom.

Across robot types, it has been investigated what structures can be built and in what
order. Reinforcement learning has been considered [4]. Mixed integer linear programming
was used to generate an optimal build plan [5]. This was later sped up by first deconstructing
the target structure into independent substructures that can be planned individually and
separate from each other [6], and subsequently improved to use a hierarchical subdivision
of the structure [7]. It is also of interest to determine what conditions are required for
a structure to be buildable. Using a model where cubic modules slide around and are not
allowed to disconnect the structure during construction, it has been shown that all structures
lacking certain forbidden patterns can be built [8].

Here, we address the Automated Reconfigurable Mission Adaptive Digital Assembly
Systems (ARMADAS) infrastructure. The building blocks are cuboctahedron voxels that
connect to each other into a cubic grid. The system uses two types of robots [12]. The
first type is called MMIC-I [10]: it crawls through the structure of voxels and bolts them
together. The second is called SOLL-E [9]: an inchworm type robot with two feet and a
so-called backpack with which it can carry voxels. It can move over a construction of voxels
by performing inchworm type movements, see Figure 1.



Figure 1 A SOLL-E [9] picking up a voxel from the backpack of another SOLL-E. A MMIC-I [10]
is present inside the voxels [11].

These robots can work together to create a structure C out of the voxels. We assume
that there is a prebuilt plane base of voxels that the robots can utilize to move. The initial
voxels of C can be bolted to this base. Furthermore, we assume that there exists a depot: a
single spot on which SOLL-E’s get a voxel loaded on their backpack.

Prior descriptions of ARMADAS system implementations demonstrated teams of three
robots. A cargo SOLL-E, a crane SOLL-E, and a bolter MMIC-I. The crane and the bolter
robot go to where a new voxel needs to be attached, while the cargo robot goes to the depot
first to pick up a voxel. The cargo robot then goes to the construction site, where the crane
picks up the voxel from the backpack and holds it in the correct place. Then, the MMIC-I
bolts it in place.

To enable precise alignment, voxels have mechanical alignment features, see Figure 2.
These bumps and corresponding dents allow for more precision and more stability in the
final structure. However, they protrude slightly outside the bounding box of a single voxel,
and hence new voxels need to move away before being able to slide into place. This, along
with normal deformities under the weight of the structure as well as the robots, might make
it impossible for a voxel to get into the correct position. In particular, it is impossible
for a voxel to pass through a unit-wide gap between two other voxels. We call this the
no-tight-building constraint.

This constraint imposes a direct ordering on all connected voxels in a row as soon as
one of them has been placed. This significantly limits the possible options to build different
parts of the structure at the same time if the algorithm starts with a suboptimal voxel.

2 Build order

Every voxel that is being placed can subsequently be walked on by the robots. However, it
also limits their movement and might make the path to some areas longer, or even block off
certain areas entirely. Therefore, the order in which voxels are placed can heavily impact



Figure 2 [8] Photograph of armadas robot attempting to place a voxel between two other voxels
and failing due to collisions of mechanical alignment features (red arrows).

the total construction time, or even make it impossible to finish the construction. Moreover,
the no-tight-building constraint imposes a complete order on all connected voxels in a row or
column. Lastly, when robots operate close to each other, they can block each other. Hence,
if two teams of robots need to place voxels right next to each other, it might be slower than
letting a single robot place both voxels. To minimize the total assembly time, we want to
increase parallelism by letting robots operate on independent parts of the same structure.

Algorithm. We assume that the configuration C to be built is connected. We create a
directed acyclic dependency graph GC of configuration C that adheres to the no-tight-
building constraint. To construct GC , we first create a slice graph of C [13] as follows. For
each z-coordinate, we split the voxels into the connected components per layer. For each
of these connected components, we create a single node v representing the voxels in that
component. With slight abuse of notation, we say a voxel c is in v (c ∈ v) if c is contained in
the connected component represented by v. We insert a directed edge (u, v) for two nodes
u and v, if and only if there exist two voxels c1 ∈ u and c2 ∈ v such that c2 is directly above
c1, see Figure 3. We use this slice graph as a base for GC .

Let U be the set of vertices not reachable from a root containing voxels on the ground.
We take the vertex v ∈ U with highest z-coordinate such that there exists a reachable
vertex u for which v is a predecessor. We make u a predecessor of v instead, and hence
remove v from U . We repeat this until U is empty. The resulting graph is GC , see Figure 3.

▶ Lemma 2.1. If the assembly order within each node of GC adheres to the no-tight-building
constraint, then the order imposed by GC adheres to the same constraint.

Lastly we simplify GC by contracting edges. We repeatedly take an edge (u, v) such that
v is the only successor of u, and u is the only predecessor of v, and contract it; we replace
both u and v with a new node v′ representing the voxels of both u and v. In essence, these
two nodes represent a “pillar” in the configuration without any branching, see Figure 4.

The resulting dependency graph GC ensures that robots can work on nodes that are
mutually independent. To order the voxels inside a node v, we run a breadth-first search



Figure 3 A configuration C, its corresponding slice graph, and its corresponding slice graph with
all nodes reachable from a ground root by having some dependencies reversed.

Figure 4 The compressed dependency graph GC of the configuration shown in Figure 3, and
that same configuration with each of the vertices of the nodes of GC highlighted in a different color.

on all voxels in v, starting from any voxel in v that neighbors a voxel in a predecessor of
v. We call the resulting graph Gv. To fix the potential violations of the no-tight-building
constraint within Gv, we repeatedly pick a voxel x that violates the constraint and flip it’s
edges such that it has no more incoming edges from a voxel with x-, y-, or z-coordinate
higher than it. If multiple voxels x exist that violate the constraint, we pick x to be the
voxel with minimum z-, then y-, then x-coordinate. If the flipping of these edges makes
another voxel violate the no-tight-building constraint, then this voxel will be considered
next. By construction, this makes it so that within each node of GC , the build order does
not violate the no-tight-building constraint. Together with Lemma 2.1, this makes it such
that the whole order adheres to the constraint.

For a configuration consisting of n voxels, calculating the build order can be done in
O(n) time. During the first step, each edge and each voxel will only be considered once for
the breath-first search. Since each voxel has a constant amount of neighbors, there are at
most O(n) edges in the graph and the whole breadth-first search runs in O(n) time. Then,
inside each component, we again run a breadth-first search, which takes O(v), for a vertex
of GC consisting of v voxels. Because every voxels occurs in exactly one of these vertices,
the total running time of the construction is O(n).

Whenever a robot starts working on a node of GC , they build all of the voxels in that
node before moving on to another node. Nodes are built in order of the dependency graph.
Whenever a robot is finished with building all voxels in a specific node, it moves on to
another node for which all predecessors have been completely built. Whenever a robot r

needs to be assigned to a new node, but there are no free nodes with all predecessors built,
r will be asigned to the node with the highest remaining workload.



Figure 5 The three configurations. The robots start on top of the orange voxels. When a robot
stands on top of the purple voxels representing the depot, it can obtain a voxel in its backpack.
The base layer is present at the start of construction.

3 Evaluation

To evaluate our technique, we compare this build order with a lexicographical sorted order,
which sorts the voxels in ascending order on z-, then y-, then x-coordinate. We compare
these two approaches on several configurations, using different numbers of teams. Because
we expect that our approach increases the amount of parallelism, we test the approaches on
configurations that allow for a significant amount of parallelism.

We pick three configurations, with 216 voxels each, see Figure 5. We chose configurations
that have different properties and different amounts of inherent parallelism. Configuration 1
is a 6 × 6 × 6 block, configuration 2 consists of four pillars of 3 × 3 voxels and 6 voxels high,
and lastly, configuration 3 has nine pillars of 2 × 2 voxels and 6 voxels high. The pillars are
at least six spaces apart, such that robots walking on one pillar do not interfere with those
on another pillar. We use Multi-label A* (MLA*) to calculate paths for the robots [14]. For
a detailed description of the path planning approach see [15].

For each experiment, we calculate a baseline as follows. We take the number of steps
it takes a single team to construct the lexicographical sorted order, and divide this by the
number of teams. This gives an estimated lower bound on the total number of steps needed
to build a structure if none of the teams would interfere with each other. Note that this is
not a true lower bound on the time necessary for construction. After all, sometimes robot
interference is unavoidable, and even for a single team, the running time is dependent on the
build order, since placed voxels might interfere with future paths. However, when comparing
the different construction order approaches to this baseline, it should give an impression of
how much interference happens.

The results for Configuration 1 are visible in Figure 6. Our order performs better than
the sorted build order. The advantage increases with the number of teams, until there are
six teams, at which point is stays the same, with our approach taking approximately 78% of
the time that the sorted order takes. Starting from around seven teams, adding more teams
seems to not decrease the build time. This can be explained by the fact that the block is
6×6×6 voxels. Adding more teams of robots makes them only interfere more. Therefore, the
robots have to wait for each other to finish instead of working at the same time. Moreover,
the effect of adding more teams decreases in general, as can be seen from the baseline. The
difference between the actual results and the baseline represents the overhead caused by the
interference between the robots. The observed build time for both the sorted order as well
as our order does not decrease anymore, but the baseline does. This indicates that the more
robots there are, the more they interfere.

A similar result can be seen for Configuration 2, visible in Figure 7. Here, the difference
between our order and the sorted order increases until ten teams, then stays stable with our
order taking approximately 76% of the time the sorted order takes.



Figure 6 The timesteps it takes for different numbers of teams to finish building configuration 1.

Figure 7 The timesteps it takes for different numbers of teams to finish building configuration 2.

Figure 8 The timesteps it takes for different numbers of teams to finish building configuration 3.



Lastly, for Configuration 3, the build times for our order and the sorted order are
approximately equal, with our order being slightly slower. This can be explained by the
size of the pillars. Since the pillars are smaller, the amount of robots that get sent to each
pillar in the lexicographical sorted order is smaller too and stays constant throughout the
construction. This leads to less interference using this order. On the other hand, our build
order divides the robots evenly over the pillars. This inevitably leads to some pillars being
finished earlier than others. Eventually, once some pillars are done, our algorithm assigns
available robots to the remaining pillars, leading to interference. This is a natural example of
a Configuration with an inherent bottleneck. In this case, the bottleneck consists of narrow
substructures with a rather low optimal number of robot teams. Such substructures must
be constructed with care and we must try to not assign too many robots to it.

4 Conclusion

We presented an algorithm for dividing a structure over teams of robots to be built. We
tested our algorithm on three different Configurations, each with different inherent amounts
of parallelism. Our build order is better when the Configuration contain no inherent
bottlenecks. This is due to the fact that having more robots work together on a narrow
walkway does not necessarily lead to faster build times, and instead might even slow it
down.

A simple solution to this problem might be to try to detect these bottlenecks and only
assign a limited number of robots to them. Another approach is to change up the team
configuration. The armadas architecture uses teams of three robots each. However, it could
be beneficial to have SOLL-E’s swap between placing voxels and carrying voxels to the
construction site, instead of having dedicated crane and cargo robots.
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Abstract
We investigate saturated geometric drawings of graphs with geometric thickness k, where no edge
can be added without increasing k. We establish lower and upper bounds on the number of edges
in such drawings if the vertices lie in convex position. We also study the more restricted version
where edges are precolored, and for k = 2 the case for vertices in non-convex position.

Related Version : Full version available on arXiv. [3]

1 Introduction

The geometric thickness θ̄(G) of a graph G is the minimum number k such that there exists
a straight-line drawing Γ of G and a k-edge-coloring φ : E(G) → {1, . . . , k} that has no
monochromatic crossings, see Fig. 1 for an example. We also write Ei ⊆ E(G) to denote
all edges of color i. We call Γ a Θk-drawing (with thickness k). When the coloring φ of
Γ is given, we say that Γ is precolored (we always assume that in a given coloring, there
are no monochromatic crossings). If the vertices in Γ are in convex position, Γ is convex.
Connecting all vertices of the outer face of a Θk-drawing with edges along the convex hull
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Figure 1 Taken from [8, Fig. 2]. A drawing of the non-planar graph K6,6 witnessing θ̄(K6,6) = 2.
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yields a cycle. We call this cycle the outer cycle of Γ, and an edge e on this cycle an outer
edge of Γ. All other edges are inner edges. Note that not all edges of the outer cycle are
necessarily contained in Γ.

We call a Θk-drawing Γ of a graph G saturated if there are no two vertices u, v ∈ V (G)
with uv /∈ E(G) such that the drawing Γ′ = Γ + uv with the edge uv drawn as a straight
line is also a Θk-drawing. If Γ is precolored, we require that Γ′ uses the same coloring, i.e.,
only the color of uv may vary. If Γ has the minimum (maximum) number of edges among all
saturated Θk-drawing on the same number of vertices, it is min-saturated (max-saturated).
We assume that vertices lie in general position, i.e., there are no three vertices on a line.

Max- and min-saturation have similarly been defined for graph classes instead of draw-
ings. There is a rich history of results analyzing max-saturated graphs (Turán type results,
following seminal work by Turán [14]). It is widely known that max-saturated planar graphs
contain 3n − 6 edges, and bounds have been proven for several beyond planar graph classes.
For example, 1-planar and 2-planar max-saturated graphs have 4n−8 and 5n−10 edges, re-
spectively [13], while general k-planar max-saturated graphs are only known to have at most
3.81

√
kn edges [1]. Similar results have recently been shown for min-k-planar graphs [5].

The study of min-saturated graphs builds on the work of Erdős, Hajnal, and Moon [10],
who characterize min-saturated Kk-free graphs. A survey [7] with a recent second edition
provides an overview of results in this direction. While min-saturated planar graphs also
contain 3n − 6 edges, min-saturated 1-planar graphs only have at most 45

17 n + O(1) edges.
Chaplick et al. [6] recently investigated the number of edges in min-saturated (not necessarily
straight-line) k-planar drawings under a variety of drawing restrictions.

Graphs of geometric thickness k form a relevant beyond-planar graph class. The concept
was first introduced by Kainen [12] (who used the term linear thickness) and later investi-
gated by Dillencourt, Eppstein, and Hirschberg [8], who considered the geometric thickness
of complete and complete bipartite graphs. Checking whether a graph has geometric thick-
ness at most k has been shown to be NP-hard [9] even for k ≤ 2 and for multigraphs it
is ∃R-complete [11] for k ≤ 30. In fact, a graph G has stack number at most k if and
only if it admits a convex Θk-drawing. That is, in the convex setting, we investigate the
min-saturation of graphs with stack number at most k.

We provide upper and lower bounds on the number of edges in min-saturated Θk-
drawings in the precolored and non-precolored, as well as in the convex and non-convex set-
ting. After presenting upper bounds for convex precolored and non-precolored Θk-drawings
in Section 2.1, we give lower bounds for Θ3-drawings (applying to the precolored and non-
precolored setting) in Section 2.2. In Section 3, we present a lower bound for non-convex
non-precolored Θ2-drawings and conclude in Section 4. Results marked with (⋆) are proven
in the full version [3].

2 Convex Drawings

Each color class of a convex Θk-drawing induces an outerplane graph H. For ℓ ≥ 3, we call
an outerplane graph H an inner ℓ-angulation if every inner face has size ℓ and the outer face
is a simple cycle. Inner 3-angulations and inner 4-angulations are called inner triangulations
and inner quadrangulations, respectively. Double-counting the edge-face-incidences shows
that every inner ℓ-angulation with n vertices and f faces contains 1

2 (n + ℓ(f − 1)) edges.
Now Euler’s formula implies:

▶ Observation 2.1. For ℓ ≥ 3, every inner ℓ-angulation of a graph on n ≥ ℓ vertices contains
n−ℓ
ℓ−2 inner edges.
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(a) (b) (c) (d)

Figure 2 (a) A nice matching M (green) and diagonals that could be added to a color class
containing M (dashed). (b) The two nice matchings L(M) (left) and R(M) (right). (c) A precolored
Θ3-zigzag Γ. (d) Recoloring yields a Θ3-drawing which contains Γ and two more edges (dashed).

2.1 Bounds for Saturated Convex Θk-Drawings
Note that each color class of a convex Θk-drawing of an n-vertex graph is a subgraph of
some inner triangulation. That is, we can cover the edges of the Θk-drawing with k inner
triangulations, any two of which only share the outer cycle. Now, Observation 2.1 yields the
following upper bound on the number of edges.

▶ Proposition 2.2 ([4, Theorem 3.3]). Every convex Θk-drawing of a graph G on n ≥
3 vertices contains at most n + k(n − 3) edges.

We now construct a precolored saturated drawing with a smaller number of edges than
implied by Proposition 2.2, thereby obtaining a smaller upper bound for precolored min-
saturated drawings. We say that some diagonals M of a convex Θk-drawing of a graph
on n vertices form a nice matching if these diagonals together with the outer cycle form
an outerplane graph H whose dual is a path (ignoring the outer face) and where the faces
corresponding to the beginning and end of the path are faces of size 3 or 4, and all other
faces have size 4, see Fig. 2a. If all these diagonals belong to the same color class Ei, then
Ei can only be extended by adding missing diagonals within the faces of H. The missing
diagonals may again be decomposed into two nice matchings, which we call the left and
right tilt of M , denoted by L(M) and R(M), respectively, see Fig. 2b. In particular, we
have R(L(M)) = M and L(R(M)) = M . We can now construct a saturated Θk-drawing Γ of
a graph G on n vertices with an edge-coloring φ : E(G) → {1, . . . , k} such that the following
holds (see Fig. 2c for an example):

The outer cycle is part of Γ
The inner edges of E1 correspond to two nice matchings M1 and L(M1)
The inner edges of Ei form a nice matching Mi = R(Mi−1), for i = 2, . . . , k − 1
The inner edges of Ek correspond to two nice matchings Mk = R(Mk−1) and R(Mk)

We call the obtained precolored drawing a precolored Θk-zigzag Γ on n vertices. Here, no Ei

can be extended as all the edges that could be added to Ei are part of some Ej with j ̸= i.
That is, the Θk-zigzag Γ is a precolored saturated drawing. For k ≤ n

2 we have Ei ∩ Ej = ∅,
i.e., disjoint edge sets and Γ is well-defined.

▶ Proposition 2.3. Every min-saturated convex precolored Θk-drawing of a graph G on
n ≥ 5 vertices (with k ≤ n

2 ) contains at most 1
2 (k + 4)(n − 2) edges.

Proof. Consider the precolored Θk-zigzag on n vertices. By Observation 2.1, E1 and Ek

contain at most n − 3 inner edges respectively. Every nice matching together with the
outer cycle is an inner quadrangulation except for at most two faces of complexity 3. A
similar argument as in Observation 2.1 shows that every nice matching contains at most
1
2 (n − 2) edges. Summing up the number of edges of the outer cycle (n edges), the inner
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edges of E1 and Ek (2(n − 3)), and the edges of the k − 2 nice matchings Ei ( 1
2 (n − 2) each)

yields the desired bound. ◀

Yet, this upper bound does not yield an upper bound for non-precolored drawings. Indeed,
a Θ-zigzag (without the edge-coloring) is not necessarily saturated, cf. Fig. 2c and Fig. 2d.

Recall that every color class of a Θk-drawing together with the outer cycle forms an
outerplane graph. For max-saturated precolored drawings, the inner faces of these outerplane
graphs cannot have arbitrarily large size:

▶ Lemma 2.4 (⋆). If Γ is a saturated precolored convex Θk-drawing, then each color class
of Γ together with the outer cycle forms an outerplane drawing where each inner face has
size at most 2k − 1.

Thus, by Lemma 2.4, we can cover the edges of a saturated precolored Θk-drawing with
k outerplane graphs, each of which contains an inner (2k − 1)-angulation that contains the
edges of the outer cycle. An application of Observation 2.1 yields the following.

▶ Theorem 2.5. Every min-saturated convex precolored Θk-drawing of a graph on n ≥ 2k−1
vertices contains at least k(n−2k+1)

2k−3 + n edges.

Note that, since the upper bounds implied by Proposition 2.2 and Proposition 2.3 and
the lower bound of Theorem 2.5 coincide for Θ2-drawings, we obtain the following.

▶ Corollary 2.6. Every saturated (precolored) convex Θ2-drawing Γ of a graph G on n ≥ 3
vertices contains exactly 3n − 6 edges.

Note that the number of edges of saturated convex Θ2-drawings only depends on the
number of vertices, that is, min- and max-saturated Θ2-drawings coincide. This is different
from other results related to saturation problems. For example, there are saturated 2-planar
drawings of graphs on n vertices that contain only 1.33n edges [2], while the maximum
number of edges in saturated 2-planar drawings is 5n [13]. In particular, Corollary 2.6 shows
that even if we fix the edge-coloring that certifies geometric thickness k (when considering
precolored drawings), the number of edges in every saturated convex Θ2-drawing is 3n − 6.

2.2 Edge-Density of Saturated Convex Θ3-Drawings
With k = 2 being covered by the general bounds of the previous section, we now turn
to k = 3. In the case of Θ3-drawings, we can strengthen the result of Lemma 2.4 as follows.

▶ Lemma 2.7. If Γ is a saturated precolored convex Θ3-drawing, then each color class of Γ
and the outer cycle forms an outerplane drawing Γ′ where all inner faces have size at most 4.

Proof. Let Γ be a saturated precolored convex Θ3-drawing with colors blue, green and red
and let Γ′ be the outerplane drawing induced by the red edges and the outer cycle. Suppose
some inner face f of Γ′ contains at least five vertices v1, . . . , v5. Each diagonal vivj with
i ̸= j is colored in blue or green. Note that the conflict graph H whose vertices are the
diagonals vivj and whose edges are pairs of crossing diagonals is a 5-cycle, see Fig. 3 for an
example. Yet, the 2-edge-coloring of the diagonals induces a proper 2-vertex coloring of the
5-cycle H, a contradiction. Thus, every inner face has size at most 4. ◀

Thus, every color class of a saturated convex precolored Θ3-drawing together with the
outer cycle forms an outerplane drawing that contains an inner quadrangulation. Now
Observation 2.1 yields the following.
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Figure 3 (a) Five vertices on a face of size at least 5 in Γr and their diagonals in Γ. The black
edge is not present ins Γ. (b) The corresponding vertex-coloring of the conflict graph H.

▶ Theorem 2.8. Every saturated precolored convex Θ3-drawing Γ of a graph G on n ≥ 3
vertices contains at least 5

2 n − 6 edges.

If a Θ3-drawing is saturated for every 3-edge-coloring (with no monochromatic crossings),
the lower bound on the number of edges can be improved.

▶ Theorem 2.9. Every saturated convex Θ3-drawing of a graph G on n ≥ 3 vertices contains
at least 7

2 n − 8 edges.

Proof. Let Γ be a saturated convex Θ3-drawing of G. That is, no edge can be added to Γ,
independent of the 3-edge-coloring we consider. We call the three colors of a corresponding
edge-coloring of Γ blue, green, and red. Greedily adding missing diagonals in blue or
green, we may assume that the union of the blue edges, the green edges, and the outer
cycle is a saturated Θ2-drawing Γ′. In fact, as Γ is saturated, we only recolor some red
edges in the process. By Corollary 2.6, the subdrawing Γ′ contains 3n − 6 edges.

It remains to show that there are at least n
2 − 2 red inner edges. As Γ is saturated (for

every coloring), the red edges together with the outer cycle form a drawing that contains an
inner quadrangulation (cf. Lemma 2.7). Thus, by Observation 2.1, there are at least n

2 − 2
red inner edges. ◀

3 Moving towards non-convexity in the free setting for k = 2

In this section, we consider the more general case where the vertices of G are not neces-
sarily in convex position. We show that, for k = 2, the lower bound from Section 2 (cf.
Corollary 2.6) extends to the general case, i.e., we prove the following theorem.

▶ Theorem 3.1 (⋆). Every saturated Θ2-drawing of a graph G on n ≥ 3 vertices contains
at least 3n − 6 edges.

Proof Sketch. Let Γ be a Θ2-drawing of G. We show that we can always add additional
edges to Γ without increasing its thickness to more than 2 if Γ contains fewer than 3n − 6
edges. We assume that the edges of Γ are colored blue and red according to an arbitrary
certificate of its thickness. Let n′ be the number of vertices that lie on the outer cycle.
Adding missing edges and recoloring some of the red edges in blue, we greedily turn the
blue edges into a plane graph where each inner face is a triangle and the outer face is
bounded by the outer cycle. That is, we may assume that there are 3n − 6 − (n′ − 3) blue
edges by Observation 2.1. In order to obtain the desired lower bound of 3n − 6 edges, we
thus need to obtain at least n′ − 3 red edges overall.

Consider an ordering e1, . . . , et of the red edges. We iteratively extend each edge ei to
a line segment as follows. We say that two line segments cross if there exists a point p that

EuroCG’25



36:6 Saturated Drawings of Geometric Thickness k

e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2
e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1

e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3

(a)

ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)
ext(e1)

ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )
ex
t(e

2 )

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

ext(e3
)

(b) (c)

Figure 4 (a) A Θ2-drawing Γ where the blue edges form an inner triangulation. (b) The corre-
sponding drawing Λ. (c) Triangulating each inner cell of Λ yields seven additional red edges. Note
that, while the red edges do not form an inner triangulation of the whole graph, we now have at
least 3n − 6 edges overall as desired.

lies in the interior of both segments (i.e., p is not an endpoint of either segment). Let ℓi

be the supporting line of ei. We define the edge extension of ei, denoted ext(ei), as the
segment of ℓi of maximum length that contains ei and does not cross any ej with j ̸= i,
the outer cycle, or any extension ext(ej) with j < i; see Figure 4. Note that, if two edge
extensions ext(ei) and ext(ej) share a point p, then p is an endpoint of at least one of them.
We say that ext(ei) and ext(ej) touch in the point p. If an extension ext(ej) touches an
extension ext(ei) in an inner point of ext(ei), we say ext(ej) splits ext(ei) into segments.
Observe that every vertex that does not lie on the outer cycle lies in the interior of exactly
one edge extension, but may be the endpoint of other edge extensions.

We denote by Λ the drawing induced by the outer cycle together with all edge extensions.
The drawing Λ splits the plane into regions that we call cells. We denote by C(Λ) the set
of inner cells of the drawing Λ. The boundary of a cell c corresponds to all segments and
vertices incident to c. We let ∥c∥ denote the number of vertices on the boundary of c.

Each cell c ∈ C(Λ) is convex. Using a double counting argument for the vertex-cell
incidences, we can show that the sum of these values over all cells of Λ plus the initial number
of red inner edges in Γ adds up to at least n′ − 3, the desired number of red edges. ◀

4 Conclusion

We investigated saturated geometric drawings of graphs on n vertices with geometric thick-
ness k. We provided upper and lower bounds on the number of edges in such drawings,
and took a closer look at drawings of thickness k = 2 and k = 3. Several questions remain
open, e.g., tight bounds for the convex case, and lower and upper bounds for min-saturated
drawings with n′ vertices on the convex hull.
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Abstract
Unit Edge-length Rectilinear drawings with Rectangular Faces (UER-RF drawings) are drawings of
graphs where all edges have unit length and are represented as either horizontal or vertical segments,
and where all faces are rectangles. We study UER-RF drawings that can have edge crossings. We
consider crossings as dummy vertices and apply the unit edge-length convention to the edge segments
connecting any two (real or dummy) vertices. We present several efficient algorithms to recognize
graphs that admit UER-RF drawings and to construct such drawings if they exist. We first consider
drawings such that removing the external face yields a collection of paths and cycles; we then study
the general case. We consider both the general unconstrained setting and the setting where either
the external boundary of the drawing or the rotation system of the graph are given in input.

1 Introduction

Unit Edge-length Rectilinear drawings with Rectangular Faces (UER-RF drawings) are
drawings of graphs where all edges have unit length and are represented as either horizontal
or vertical segments (rectilinear drawings), and where all faces are convex (i.e., rectangles).
We study non-planar UER-RF drawings, considering each crossing as a “dummy” vertex and
applying the unit edge-length constraint to the edge segments connecting any two vertices,
either real or dummy. Examples of UER-RF drawings are presented in Figure 1.

Recognizing graphs that admit planar straight-line drawings with all edges of the same
length is NP-hard [5, 6, 7] and, even stronger, ∃R-complete [1, 12]. Testing whether a graph
admits a rectilinear planar drawing is NP-hard [8, 9], whereas it is polynomial-time solvable
if the planar embedding is given as part of the input, even if the faces are required to be
rectangles [10, 11, 13].

Alegría et al. [2, 3] show that recognizing planar graphs admitting planar UER-RF drawings
is feasible in polynomial time. We study the recognition and the construction of non-planar
UER-RF drawings when the rotation system and/or the external face are or are not part of
the input. In our problem, the assignment of angles around the vertices plays an important
role. Requiring rectangular faces enforces 180◦ angles at degree-2 vertices, and the challenge

∗ This research was supported, in part, by MUR of Italy (PRIN Project no. 2022ME9Z78 – NextGRAAL
and PRIN Project no. 2022TS4Y3N – EXPAND). The sixth author was supported by Ce.Di.Pa. -
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sub-misura B4 - "Centri di ricerca per l’innovazione" CUP J37G22000140001.
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to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 (Left) A UER-RF drawing whose internal vertices induce a collection of paths and
cycles; (Right) A UER-RF drawing in the general setting.

arises with degree-3 vertices. In view of this, we first present an efficient solution for a
restricted scenario and then provide an FPT algorithm for the general case, parameterized by
the number of degree-3 vertices. Let G be an n-vertex graph; we present the following results:

− Polynomial-time testing and construction algorithms for UER-RF drawings in the restricted
scenario where removing the external face yields a collection of paths and cycles (Section 3).
The complexity of these algorithms ranges from O(n2) to O(n4), depending on the specific
constraints on the external face and on the rotation system.

− An O(3kn4.5)-time testing and construction algorithm for general UER-RF drawings,
where k is the number of degree-3 vertices (Section 4).

An extended abstract of this paper can be found in [4]

2 Basic Definitions

Let V (G) and E(G) be the vertex and edge sets of a graph G, respectively. For a vertex
v ∈ V (G), let N(v) be the set of neighbors of v and let degG(v) = |N(v)| be the degree of v.
A graph G is a k-graph (k > 0) if degG(v) ≤ k for all v ∈ V (G).

A vertex of a UER-RF drawing Γ of G is called either a real-vertex, if it corresponds to a
vertex of G, or a crossing-vertex, if it corresponds to a point where two edges of G cross. An
edge of Γ is a portion of an edge of G delimited by two vertices of Γ, with no other vertices
of Γ in its interior. It coincides with an edge e of G if e has no crossings in Γ. Drawing Γ
divides the plane into connected regions, called faces. The boundary of each face f is the
circular sequence of vertices (either real- or crossing-vertices) and edges of Γ that delimit f .
The unique infinite region is the external face of Γ; the other faces are the internal faces of Γ.

A rotation system R(G) of G specifies the clockwise order of the edges in E(v), for each
vertex v ∈ V (G). A (UER-RF) drawing Γ of G determines a rotation system for G; in
addition, Γ determines the clockwise order of the edges incident to each crossing-vertex.
For a given rotation system R(G), we say that Γ preserves R(G) if the rotation system
determined by Γ coincides with R(G).
▶ Property 1. Let Γ be a UER-RF drawing of a graph G, let C be the external cycle of Γ, and
let c1, c2, c3, c4 be the vertices of C at the corners of Γ. Then: (i) c1, c2, c3, c4 have degree 2
in G; (ii) each other vertex of C has degree at most 3 in G; (iii) the path in C between two
consecutive corners has the same length as the path in C between the other two corners.

We will assume that the input graph G is biconnected and it is not a cycle, as biconnectivity
is necessary for the existence of UER-RF drawings, and if G is a cycle the test is trivial.
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3 Internal Paths and Cycles

In this section we consider the restricted scenario in which the input 4-graph G contains a
cycle C such that G \ C has vertex-degree at most two, i.e., it is a collection of paths and
cycles (see, e.g., Figure 1(Left)). We call G an inner-2-graph with respect to C. We assume
that C is given as part of the input.

▶ Theorem 3.1. Let G be an inner-2-graph with respect to a given cycle C. There exists a
polynomial-time algorithm that tests whether G admits a UER-RF drawing whose external
cycle coincides with C. If such a drawing exists, the algorithm constructs one. If the
four corners are prescribed, the algorithm takes O(n2) time, otherwise it takes O(n4) time.
Furthermore, the algorithm can be adapted to preserve a given rotation system.

Proof sketch. We assume that the four corners are given. This uniquely defines the rectangle
that represents C in the drawing. If the four corners are not given, we guess O(n2) pairs of
degree-2 vertices to be consecutive corners and infer the other two based on Condition (iii)
of Property 1, thus obtaining O(n2) candidate rectangles.

Let ΓC be one of the candidate rectangles computed in the previous step. We show how
to place the vertices of G \ C in the interior of ΓC . Assume, w.l.o.g., that the bottom-left
corner of ΓC has coordinates (0, 0). Let W and H be the maximum x and y coordinates of
ΓC , respectively. We traverse the points (i, j) (1 ≤ i ≤ W − 1 and 1 ≤ j ≤ H − 1) of the grid
that lie internally to ΓC from left to right and secondarily from top to bottom starting from
the top-leftmost one, which has coordinates (1, H − 1). We call placed vertices those vertices
whose coordinates have already been decided (i.e., the vertices of C and those already placed
at some internal point). When processing the point (i, j) we call fixed vertices the placed
vertices with coordinates (i′, j′) such that either i′ < i or i′ = i and j′ > j (see Figure 2).

During the traversal we maintain two arrays of vertices Up and Left of size W and H,
respectively; see Figure 2. Intuitively, the meaning of these arrays is as follows. When we
process the point (i, j), let q be the rightmost fixed vertex such that y(q) = j; analogously,
let r be the bottommost fixed vertex such that x(r) = i. If Left[j] stores a vertex q′, then
q′ is adjacent to q and y(q′) will be equal to j whereas x(q′) has not been decided yet; in
other words, it is already decided that q′ will be horizontally aligned with q (and thus it is
candidate to occupy point (i, j)). If Left[j] is null, then no neighbor of q will be assigned
y-coordinate j; this implies that (i, j) cannot be occupied by a crossing. Analogously, if Up[i]
stores a vertex r′, then it is already decided that r′ will be vertically aligned with r; if Up[i]
is null, then no neighbor of r will be assigned x-coordinate i.

We initialize the array Left as follows. For 1 ≤ j ≤ H − 1, let vj be the vertex of the left
side of ΓC such that y(vj) = j. If degG(vj) = 2, we set Left[j] = null. If degG(vj) = 3, we set
Left[j] = uj , where uj is the neighbor of vj that is not on the left-side of ΓC . The vertex uj

is either on the right side of ΓC or it is an internal vertex of G. If uj ∈ C and y(uj) ̸= y(vj),
we reject ΓC . The Up array is initialized similarly, considering the vertices on the top side of
ΓC , and their neighbors that do not lie on the top side of ΓC (if any).

We now explain how to process the generic point (i, j). We distinguish five cases depending
on the values in the Left and Up arrays (see also Figure 2) 1. Left[j] = Up[i] and they are
both not null; 2. Left[j] ̸= Up[i] and they are both not null; 3. Left[j] ̸= null and Up[i] = null;
4. Left[j] = null and Up[i] ̸= null; and 5. Left[j] = Up[i] and they are both null. In Case 1, let
v be the vertex stored in Left[j] = Up[i]. We map v to the point (i, j) and update the two
arrays as explained below. In Case 2, we put a crossing in the point (i, j) and leave Left and
Up unchanged. In Case 3, let v = Left[j]; we map v to (i, j) and update the two arrays as
described below. Similarly, in Case 4, let v = Up[i]; we map v to (i, j) and update the two

EuroCG’25
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Figure 2 Theorem 3.1: Algorithm notation (top left) and Cases 1–5 when processing point (i, j).
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Figure 3 If z coincides with a red (blue) point of ΓC , then x(u) = x(v) (y(u) = y(v)).1

arrays as described below. Finally, in Case 5 the point (i, j) will be left unused (it will be
internal to a face), and we leave Left and Up unchanged.

The updates of the values Left[j] and Up[i] in Cases 1, 3, and 4, are done as follows. Let
U be the set of neighbors of v that are not fixed. If |U | = 0, we reject the instance, as either
degG(v) = 2 and its incident edges form a 270◦ angle (Case 1), or degG(v) = 1 (Cases 3 and
4). Also, if |U | ≥ 3, we reject the instance as in this case there is no possibility of placing all
vertices in U . Thus it must be |U | ∈ {1, 2}; let u and u′ be the two vertices of U , possibly
with u′ = null if |U | = 1. In this case, for each vertex u and u′, either its coordinates are
unassigned or it belongs to C. Suppose first that at least one of them, say u, belongs to C; if
x(v) ̸= x(u) and y(v) ̸= y(u), we reject the instance because v and u cannot be horizontally
or vertically aligned. If x(v) = x(u) we set Up[i] = u and Left[j] = u′; if y(v) = y(u) we set
Up[i] = u′ and Left[j] = u. If u′ exists and it is already placed, then we further check that
its coordinates are consistent with its assignment to Up[i] or Left[j].

Suppose now that neither u nor u′ is in C. If degG(u) ≥ 3 we set w=u; Otherwise
we follow the edge incident to u distinct from (u, v) and continue traversing all degree-2
vertices until we reach a degree-3 vertex w. If w is fixed, we reject the instance, as either
the traversed path can only be drawn with an angle of 270◦, or u has to be on the left of v,
contradicting the fact that it is not fixed. Hence w is non-fixed and either it belongs to C

or its coordinates are unassigned. Assume first that w ∈ C. If x(w) ̸=x(v) and y(w) ̸=y(v)
we reject the instance, as the path visited by the traversal must be either horizontal or
vertical. Otherwise, if x(w)=x(v) we set Up[i]=u, and Left[j]=u′. Similarly, if y(w)=y(v) we
set Left[j]=u and Up[i]=u′. If the coordinates of w have not been assigned, then w ∈ G \ C.
Since G \ C is a 2-graph and degG(w) > 2, at least one neighbor of w, call it z, belongs to C.
If z lies on the left or right side of ΓC , and 0 < y(z) < y(v) or x(z) = x(v) and y(z) = 0, we
set Up[i] = u and Left[j] = u′ (see Figure 3 (left)). If z lies on the top or bottom side of ΓC ,
and x(v) < x(z) < W or x(z) = W and y(z) = y(v), we set Left[j] = u and Up[i] = u′ (see
Figure 3(right)). If z does not lie in any of the described positions, we reject the instance,
as z cannot share a coordinate with w, and thus the path from v to w cannot be drawn
horizontally or vertically.

Once all the grid points have been considered, if a vertex of G has unassigned coordinates,
we reject the instance, otherwise we have a drawing with external boundary ΓC .

◀
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Figure 4 Candidate cycle construction: the green edge is the next edge of C.2

4 General Case

For the general case we describe an FPT algorithm in the number of degree-3 vertices. A
large-angle assignment of a 4-graph G defines, for each degree-3 vertex v of G, a large angle,
i.e., the two edges incident to v that will form a 180◦ angle in any UER-RF drawing of G.

▶ Theorem 4.1. Let G be a 4-graph and let k be the number of degree-3 vertices G. There
exists an FPT algorithm, with parameter k, that tests whether G admits a UER-RF drawing.
If such a drawing exists, the algorithm constructs one. Moreover, the algorithm can be adapted
to preserve a given rotation system and/or to have a prescribed external cycle. The time
complexity of the algorithm is: 1. O(3kn2) if the four corners are given; 2. O(3kn4) if the
external cycle is prescribed; 3. O(3kn4.5) in the general case.

Proof sketch. We describe a primary algorithm (PA) that receives in the input graph G and
a large-angle assignment. PA can be used to obtain an FPT algorithm for the general case
by guessing for each degree-3 vertex a pair of incident edges to form the large angle. PA
has two steps: the first selects and draws the external cycle, and the second draws the
internal vertices.

Step 1. Given a 4-graph with a large-angle assignment, PA selects a set of cycles of G

candidates to be the external boundary of a UER-RF drawing of G and, for each of them, a
set of rectangles representing it: one for each possible choice of corners.

If the four corners are given (Case 1) the candidate cycle C is unique and is computed one
edge at a time, starting from one corner. Let u be the last vertex added to C (thus, one of its
edges, call it (v, u), has already been selected to be in C). See Figure 4. If degG(u) = 4, we
reject the instance and if degG(u) = 2 we select the second edge incident to u. If degG(u) = 3,
we select the edge that forms the large angle with (u, v) or we reject the instance if no such
edge exists. In Cases 2 and 3 we suitably guess the candidate cycles and we prove that they
are O(n2) in Case 2 and O(n2.5) in Case 3.

Step 2. From Step 1 we obtain either one or O(n2) or O(n2.5) rectangles, respectively,
in the three cases of the statement. It is possible to place the vertices of G \ C in the interior
of one of these rectangles in O(n2) time. Similarly to Theorem 3.1, we process the internal
grid points from left to right and from top to bottom. In this case, we choose whether each
grid point is a vertex or a crossing, or is left empty, by exploiting the large-angle assignment
of the vertices lying above and to the left of the considered point. ◀

5 Open Problems

The complexity of the problem in the general case remains open, as well as whether one can
improve the complexity of our polynomial-time algorithms. Another interesting research
direction is to extend our drawing convention to vertices of degree larger than four.
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Abstract
The Fréchet distance is a computational mainstay for comparing polygonal curves. The Fréchet
distance under translation, which is a translation invariant version, considers the similarity of
two curves independent of their location in space. It is defined as the minimum Fréchet distance
that arises from allowing arbitrary translations of the input curves. This problem and numerous
variants of the Fréchet distance under some transformations have been studied, with more work
concentrating on the discrete Fréchet distance, leaving a significant gap between the discrete and
continuous versions of the Fréchet distance under transformations. We present an algorithm for
the Fréchet distance under translation on 1-dimensional curves of complexity n with a running
time of O(n8/3 log3 n). We match the running times of the discrete case and improve the previously
best known bounds of Õ(n4). Our algorithm relies on technical insights but is conceptually simple,
essentially reducing the continuous problem to the discrete case across different length scales.

1 Introduction

The Fréchet distance is one of the most well-studied distance measures for polygonal curves.
An important aspect of detecting movement patterns in different application areas is to
consider the movement independent of its absolute location and scale, i.e., we want to know
for which location and scale do the patterns look most similar. Concretely, the Fréchet
distance under translation is the minimum Fréchet distance that we obtain by allowing an
arbitrary translation of one curve. The continuous Fréchet distance under translations was
first studied in 2001 [1, 2, 6]. Shortly after, Wenk [7] developed the currently best published
algorithm in d-dimensional Euclidean space. For 1-dimensional curves (i.e., time series), the
algorithm achieves a running time of O(n5 log n). We note that for time series there is an
unpublished Õ(n4) algorithm that can be considered folklore.

In this paper, we show that the continuous Fréchet distance between two time series of
complexity n can be computed in O(n8/3 log3 n) time. The result is made possible by the
introduction of a novel framework for studying (continuous) time series [3]. Our approach
essentially reduces (in an algorithmic sense) the continuous problem to its discrete counterpart
and hence surprisingly matches the currently best result from [4] in the discrete setting.1

Missing proofs can be found in the full version.

1 This is a result of the arrangement size in R being n2, while in R2 it is n4.
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to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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P (i1)
P (i2) P (i3)

P (i4)

0 δ

P (i5)
P (i6)

Figure 1 Throughout this paper, vertices of time series are drawn as vertical segments for clarity.
The red vertices of the time series P are its δ-signature vertices.

2 Preliminaries

We denote with [n] the set {1, . . . , n}. For any two points p1, p2 ∈ R, p1p2 is the directed
line segment from p1 to p2. A time series of complexity n is a 1-dimensional curve formed
by n vertices P (1), . . . , P (n) ∈ R and the ordered line segments, called edges, P (i)P (i + 1)
for i = 1, . . . , n − 1. Such a time series can be viewed as a function P : [1, n] → R, where
P (i + α) = (1 − α)P (i) + αP (i + 1) for i = 1, . . . , n − 1 and α ∈ [0, 1]. We denote P also as
⟨P (1), P (2), . . . , P (n)⟩. For 1 ≤ s ≤ t ≤ n, we denote by P [s, t] the subcurve of P obtained
by restricting the domain to the interval [s, t]. Further, we define B(P, δ) := {x | ∃a ∈
[1, n] s.t. |x − P (a)| ≤ δ} and im(P ) := {P (a) | a ∈ [1, n]}.

To define the Fréchet distance, let P and Q be two time series of complexity n and m.
Further, let Hn be the set of all continuous non-decreasing functions h : [0, 1] → [1, n] with
h(0) = 1 and h(1) = n. The continuous Fréchet distance between P and Q is defined as

dF (P, Q) = min
hP ∈Hn,hQ∈Hm

max
α∈[0,1]

|P (hP (α)) − Q(hQ(α))|.

For a time series P = ⟨P (1), . . . , P (n)⟩ and a value t ∈ R, the translated time series Pt is
⟨P (1) + t, . . . , P (n) + t⟩ and the Fréchet distance under translation is defined as

dT
F (P, Q) = min

t∈R
dF (P, Qt).

To solve the decision problem for the Fréchet distance under translation, we use (slightly
adapted) δ-signatures [3, 5], which are simplifications at the given length-scale δ and encode
the large scale behavior of the time series in terms of a subset of selected vertices that
essentially form a discrete time series. See Figure 1 for an example. Time series naturally
decompose into three parts, the beginning, middle, and end, with the middle part given by
the δ-signature. The task is to design and choose data structures for all parts in such a way
that they can be efficiently updated and combined when the transformation changes.

▶ Definition 2.1 (extended δ-signature). Let P = ⟨P (1), . . . , P (n)⟩ be a time series and δ ≥ 0.
Then, an extended δ-signature P ′ = ⟨P (i1), . . . , P (it)⟩ with 1 = i1 ≤ i2 < . . . < it−1 ≤ it = n

of P is a time series with the following properties:

(a) (non-degenerate) For k = 2, . . . , t − 1, it holds that P (ik) /∈ P (ik−1)P (ik+1).
(b) (2δ-monotone) For k = 1, . . . , t − 1, it holds that P (s) ≤ P (s′) + 2δ for all ik ≤ s < s′ ≤

ik+1 or P (s) ≥ P (s′) − 2δ for all ik ≤ s < s′ ≤ ik+1.
(c) (minimum edge length) If t > 4, then for k = 2, . . . , t − 2, |P (ik) − P (ik+1)| > 2δ.
(d) (range) For k = 2, . . . , t − 2, it holds that im(P [ik, ik+1]) = P (ik)P (ik+1), and

im(P [1, i2]) ⊂ [P (i2), P (i2) + 2δ] or im(P [1, i2]) ⊂ [P (i2) − 2δ, P (i2)], and
im(P [it−1, n]) ⊂ [P (it−1), P (it−1) + 2δ] or im(P [it−1, n]) ⊂ [P (it−1) − 2δ, P (it−1)].
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Q(wpre)

Q(j2)

P (i2) P (isP−1)

Q(wsuf)

Q(jsQ−1)

δ

Figure 2 Minimal pre(P )-matcher on pre(Q), wpre, and minimal suf(P )-matcher on suf(Q), wsuf .

The vertices of P ′ are called δ-signature vertices of P .

An extended δ-signature always exists and can be computed in O(n) time by [5].2

Grid Reachability. Let G be the directed n × n-grid graph in which every node is either
activated or deactivated. We are given updates u1, . . . , uU , which are of the form “activate
node (i, j)” or “deactivate node (i, j)” in an offline manner. The task of offline dynamic grid
reachibility is to compute for all 1 ≤ ℓ ≤ U if (n, n) can be reached by (1, 1) after updates
u1, . . . , uℓ are performed. Our main result follows by adapting everything so that we can use
the theorem.

▶ Theorem 2.2 (Theorem 3.1 of [4]). Offline Dynamic Grid Reachability can be solved in
time O(n2 + Un2/3 log2 n).

3 The Static Algorithm

In this section, we define the modified free-space matrix (see Figure 3 for an example) and
discuss how it can be used to solve the decision problem of the Fréchet distance. Lemma 9
of [3] implies that, except for the beginning and the end, it is enough to look at pairs
(P (i), Q(j)) of vertices, where one of the two vertices is a δ-signature vertex.

▶ Definition 3.1. Let P be a time series of complexity n and let ⟨P (i1), P (i2), . . . , P (isP
)⟩

be its extended δ-signature. Then, the prefix of P is pre(P ) := ⟨P (1), P (2), . . . , P (i2)⟩ and
the suffix of P is suf(P ) := ⟨P (n), P (n − 1), . . . , P (isP −1)⟩.

By the definition of extended δ-signatures, pre(P ) and suf(P ) are each contained in some
δ-ball, i.e., there exist x and y such that pre(P ) ⊂ B(x, δ) and suf(P ) ⊂ B(y, δ).

▶ Definition 3.2. Let P and Q be time series of complexity n and m. The minimal
P -matcher on Q is the smallest w ∈ [m] such that |P (n) − Q(w)| ≤ δ and there is a
w∗ ∈ [w, min(w + 1, m)] with dF (P, Q[1, w∗]) ≤ δ. If no such value exists, we set it to ∞.

We denote by wpre the minimal pre(P )-matcher on pre(Q) and by vpre the minimal
pre(Q)-matcher on pre(P ). For the suffix, we denote by wsuf the index of the vertex in Q

corresponding to the minimal suf(P )-matcher on suf(Q) (and similarly vsuf when the roles
of P and Q are swapped). See Figure 2 for an example. Due to the next observation, we
will only discuss how to process the prefix in Section 3.1 and in the proofs of the lemmas of
Section 4.

2 This statement was proven for δ-signatures, but it can easily be shown for extended δ-signatures as well.
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Figure 3 Example of a Modified Free-Space Matrix Mδ. The colored columns (resp. rows)
correspond to the δ-signature vertices of P (resp. Q). The white entries are all 1 by Definition 3.4 a),
the red entries are defined by b), the purple entries by c) and d) and e), and the yellow entries by f).
The traversal drawn in blue uses only 1-entries of Mδ. Hence, Mδ(n, m) is reachable.

▶ Observation 3.3. Let the minimal pre(⟨P (n), . . . , P (1)⟩)-matcher on pre(⟨Q(m), . . . , Q(1)⟩)
be ŵpre. If m is the complexity of Q, then wsuf = m − (ŵpre − 1).

▶ Definition 3.4 (Modified Free-Space Matrix). Let P and Q be two time series of complex-
ity n and m. Further, let ⟨P (i1), . . . , P (isP

)⟩ and ⟨Q(j1), . . . , Q(jsQ
)⟩ be their extended

δ-signatures. We construct a matrix Mδ ∈ {0, 1}n×m, where the entry Mδ(i, j) = 1 if

a) P (i) and Q(j) are both not δ-signature vertices, or
b) |P (i) − Q(j)| ≤ δ and (i, j) /∈ [1, i2] × [1, j2] ∪ [isP −1, n] × [jsQ−1, m], or
c) |P (i) − Q(j)| ≤ δ and (i, j) ∈ {(1, 1), (n, m)}, or
d) |P (i) − Q(j)| ≤ δ and (i, j) = (i2, j2) and dF (pre(P ), pre(Q)) ≤ δ, or
e) |P (i) − Q(j)| ≤ δ and (i, j) = (isP −1, jsQ−1) and dF (suf(P ), suf(Q)) ≤ δ, or
f) (i, j) ∈ {(i2, wpre), (vpre, j2), (isP −1, wsuf), (vsuf , jsQ−1)}.
Otherwise, the entry Mδ(i, j) = 0. Further, we say that an entry Mδ(i, j) is reachable if
there exists a traversal (1, 1) = (a1, b1), (a2, b2), . . . , (ak, bk) = (i, j) such that Mδ(al, bl) = 1
and (al, bl) ∈ {(al−1 + 1, bl−1), (al−1, bl−1 + 1), (al−1 + 1, bl−1 + 1)} for all l = 2, . . . , k.

The next lemma shows the importance of this matrix and follows mainly by a result in [3].

▶ Lemma 3.5. It holds that dF (P, Q) ≤ δ if and only if Mδ(n, m) is reachable. This can be
checked in O(nm) time.

3.1 Prefix and Suffix
To identify the minimal pre(P )-matcher on pre(Q), we introduce another simplification. The
crux is that we need to be able to do this efficiently for different transformations. We achieve
this by introducing the structural notion of deadlocks. We often use the fact that pre(P )
and pre(Q) are each contained in some δ-ball.

▶ Definition 3.6. Let P be a time series of complexity n, where P (n) is a global extremum.
The extreme point sequence of P is a sequence of indices 1 = a1 < · · · < ap = n, such that
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0 δ 2δ 3δ

a1 a2

ak

ap

Y (·)

X(·)

bX(k)

bq

Figure 4 An extreme point sequence of the depicted time series P is 1 = a1 < a2 < · · · < ap.
The gray dashed lines mark the preliminary assignments X(·) and Y (·).

(range-preserving) im(P [1, ak+1]) = P (ak)P (ak+1) for all k ∈ [p − 1], and
(extreme point) P (ak) = min(P [1, ak]) or P (ak) = max(P [1, ak]).

The next definition is the central notion to find the minimal pre(P )-matcher on pre(Q).

▶ Definition 3.7. Let P and Q be time series and a1 < . . . < ap and b1 < . . . < bq be
extreme point sequences of P and Q respectively. Define the preliminary assignment X(k)
of P on Q for every k ≤ p to be the smallest index such that |P (ak) − Q(bX(k))| ≤ δ. If no
such index exists, we set X(k) = ∞. Let similarly Y (l) be the preliminary assignment of Q

on P . We say that X(k) and Y (l) form a deadlock, if l < X(k) and k < Y (l).

See Figure 4 for an example of an extreme point sequence and their associated preliminary
assignments. The importance of deadlocks is summarized in the following pivotal lemmas.

▶ Lemma 3.8. Let P and Q be time series each contained in some δ-ball and a1 < . . . < ap

and b1 < . . . < bq be extreme point sequences of P and Q. For any w∗ ≤ bq, it holds that
dF (P [1, ap], Q[1, w∗]) ≤ δ if and only if

(i) |P (1) − Q(1)| ≤ δ and |P (ap) − Q(w∗)| ≤ δ,
(ii) im(P [1, ap]) ⊂ B(Q[1, w∗], δ),

(iii) im(Q[1, w∗]) ⊂ B(P [1, ap], δ), and
(iv) X(k) and Y (l) do not form a deadlock for all k ∈ [p] and l ∈ [q].

▶ Lemma 3.9. Let P and Q be time series and P (i2) be the second δ-signature vertex of P

and Q(j2) of Q. There exists a minimal pre(P )-matcher on pre(Q) if and only if X(k) < ∞,
and X(k) and Y (l) do not form a deadlock for all k ∈ [p] and l ∈ [q]. If it exists, it is

min{w = 1, . . . , j2 | |P (i2) − Q(w)| ≤ δ, im(pre(P )) ⊂ B(Q([1, w + 1], δ)}.

▶ Lemma 3.10. Let P and Q be time series and let im(Q[1, j]) be given for every j ∈ [q]. If
the preliminary assignments X and Y of pre(P ) and pre(Q) do not form a deadlock, we can
compute the minimal pre(P )-matcher on pre(Q) and decide whether dF (pre(P ), pre(Q)) ≤ δ

in O(log n) time.
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4 1D Continuous Fréchet Distance Under Translation

We identify and precompute a set of O(n2) representative transformations at which the
answer to the decision problem is subject to change, and for which the answer can be updated
efficiently as we sweep over them. For that, we use the modified free-space matrix and
Lemma 3.10. As the best algorithm for the discrete Fréchet distance under translation, we
then make use of Theorem 2.2.

▶ Lemma 4.1. There exist a sorted set T ⊂ R containing O(n2) points (called translation
representatives) and computable in O(n2 log n) time with the following properties.

It holds that dT
F (P, Q) ≤ δ if and only if ∃t ∈ T such that dF (P, Qt) ≤ δ.

For two consecutive t, t′ in T, there exist only one pair of indices k, l ∈ [n] such that
|P (k) − Qt(l)| ≤ δ and |P (k) − Qt′(l)| > δ, or the other way round. Further, for the set
of all pairs of consecutive t, t′ ∈ T, those indices can be computed in O(n2 log n) time.

▶ Lemma 4.2. There is an algorithm that correctly computes the set T of translations
t ∈ T for which the preliminary assignment of minimal pre(P )-matcher on pre(Qt) and
the preliminary assignment of minimal pre(Qt)-matcher on P do not form a deadlock in
O(n2 log n). Similarly, we can compute the set of translations in T for which suf(P ) and
suf(Qt) do not form a deadlock in O(n2 log n) time.

We apply Theorem 2.2 to maintain reachability in the modified free-space matrix for
all translations in T from Lemma 4.1. For the prefix and suffix, we use Lemma 3.10 and
Lemma 4.2. Finally, parametric search turns the decision algorithm to an optimization
algorithm.

▶ Theorem 4.3. There exists an algorithm to compute the continuous Fréchet distance under
translation between two time series of complexity n in time O(n8/3 log3 n).
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Abstract
Given an n-vertex 1.5D terrain T and a set of m edges of T , we study the problem of placing one
viewpoint on each edge so that the total length of the visible portions of the terrain is maximized. We
present an O(n+m logm) time 1

2 -approximation algorithm for the general problem, and polynomial-
time algorithms for the cases m = 1 and m = 2. Additionally, we show that the problem of
computing a point on T maximizing the visible portion of T can be solved in O(n3) time.

1 Introduction

Visibility problems on terrains have been thoroughly studied in the literature. In this paper,
we focus on 1.5D terrains, defined as x-monotone polygonal lines in R2. Despite the extensive
literature on this topic, a natural variant has not been considered: What happens if guards
(also called viewpoints) are imprecise, i.e., their exact location is not known, but it is contained
in prescribed regions of the terrain? Formally, let R be a set of m regions, each associated
with one imprecise viewpoint. A point set P is a realization of R if there exists a bijection
between P and R such that each point in P is contained in the corresponding region in R
(the point is called the representative of the region). Since many different realizations are
possible, natural optimization problems arise. The general problem we consider is:

IV-mL (m Imprecise Viewpoints on set L): Given a 1.5D terrain T and a set L of
m edges of T , find a realization P of L such that the total length of the portion of T visible
by P is maximized.

In this paper, we present an O(n+m logm) time 1
2 -approximation algorithm for IV-mL.

Furthermore, we consider the special cases m = 1 and m = 2. Finally, we show that with
our techniques we can solve a very natural and fundamental problem that does not seem to
have been solved before: Computing a point on T maximizing the visible portion of T .
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Figure 1 The viewshed of a viewpoint.

Related work. A common goal in this type of problems is to make the entire terrain
visible. However, computing the minimum number of viewpoints on the terrain to achieve
this is NP-hard [7]. If we have only one available viewpoint but it can be placed above the
terrain (such a viewpoint is called a watchtower), computing a watchtower of minimum height
that covers the entire terrain is an easy problem. The problem becomes more interesting
when we can place two watchtowers. There are several versions of the problem depending on
whether the basis of the watchtowers are required to lie on vertices of the terrain or not; all
of the versions can be solved in polynomial time [1].

Another problem closely related to ours is that of constructing a data structure for
reporting the visible portion of a terrain (or, more generally, a simple polygon) from a moving
point along a given trajectory [4]. Additionally, an optimization problem generalizing ours
(for fixed h, compute the watchtower at height h maximizing the visible portion of T ) has
been considered in [5]. However, the algorithm is not correct (see Section 3.3).

The model of imprecision we adopt in this paper is called region-based and is the most
common in the computational geometry literature. Regarding previous research on terrains
in the region-based model, there are some studies where the elevation of the vertices of T is
imprecise. Then the aim might be to optimize some terrain parameter [8], or to compute a
shortest watchtower guarding the entire terrain [9].

Preliminaries. We assume that T does not have three collinear vertices. Let V =
{v1, . . . , vn} denote its vertex set. The set of edges is E = {e1, . . . , en−1}, with ei = vivi+1.
For each edge ei ∈ E, let eli and eri denote the left and right endpoint of ei, respectively.

For every vertex vi, we say that vi is reflex if the angle external to T between the edges
incident to vi is greater than π. If the angle is smaller than π, then the vertex is convex.

Two points on the terrain are said to be visible from each other if the line segment
connecting them does not contain any point strictly below T . The viewshed of a viewpoint p,
denoted VT (p), is the union of all portions of T that are visible from p. See Fig. 1.

Omitted details and proofs will be given in the full version of the paper.

2 1
2-Approximation algorithm

Let P be a set of viewpoints on T . We denote the union of the viewsheds of all viewpoints
in P by Visv(T ,P), and its length by |Visv(T ,P)|.

I Lemma 2.1. Let pi be a point of ei. Then VT (pi) ⊆ VT (eli) ∪ VT (eri ).

I Lemma 2.2. Let P1 and P2 be two realizations of L such that, for each li, in P1 the
representative of li lies on one of the endpoints of that edge and in P2 the representative of
li lies on the other endpoint. Let P ∗ = {p∗1, p∗2, . . . , p∗m} denote an optimal realization. Then,
max{|Visv(T ,P1)|, |Visv(T ,P2)|} ≥ 1

2 |Visv(T , P ∗)|.

Proof. We can assume that li = ei for i = 1, 2, . . . ,m. Then, Visv(T , P ∗) = ∪mi=1VT (p∗i ). By
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Figure 2 Example with one imprecise viewpoint on edge l. For the coordinates of vertices
v1, v2, . . . , v5, we note that the terrain is symmetric with respect to the y-axis. The point v = (0, 0),
which corresponds to the optimal placement inside l, lies in the interior of the edge.

Lemma 2.1, ∪mi=1VT (p∗i ) ⊆ ∪mi=1(VT (eli)∪VT (eri )) = Visv(T ,P1)∪Visv(T ,P2). Consequently,

|Visv(T , P ∗)| ≤ |Visv(T ,P1) ∪Visv(T ,P2)| ≤ 2 max{|Visv(T ,P1)|, |Visv(T ,P2)|.

J

The algorithm computes |Visv(T,P1)| and |Visv(T ,P2)| in O(n+m logm) time using
the algorithm from [6], and takes the realization achieving the maximum among the two.

I Theorem 2.3. For the IV-mL problem, a 1
2 -approximation can be computed in O(n +

m logm) time.

3 Case m = 1

We observe that the problem is not trivial because the optimal realization is not necessarily
at an endpoint of the edge; see Fig. 2 for an illustrative example.

3.1 Preliminaries
Let e be the edge of T equal to the imprecise viewpoint. We parametrize e by [0, 1]. For
each edge ex ∈ T and each σ ∈ [0, 1], we define Fx(σ) := |VT (σ) ∩ ex|.

Without loss of generality, we assume that e is to the left of ex.

I Lemma 3.1. The function Fx(σ) is non-increasing in [0, 1).

I Definition 3.2. Let e and ex be edges of T such that e is to the left of ex.
Vertex τ obstructs the visibility of ex from point σ in e if τ /∈ {er, elx, erx} and the ray
with origin at σ and passing through τ intersects ex at a point q that is visible from σ.
We denote by nxo the number of vertices τ of T such that there exists some σ in e

satisfying that τ obstructs the visibility of ex from point σ.

An example of a vertex obstructing the visibility of an edge is given in Fig. 3.

I Lemma 3.3. Let σ0, σ1 ∈ [0, 1], with σ0 < σ1, be two points in e such that, for any
σ ∈ [σ0, σ1], the visibility of ex from σ is obstructed by the same vertex τ . Then,

Fx(σ) = Aσ +B

Cσ +D
, for σ ∈ [σ0, σ1],

where A,B,C,D are functions of the coordinates of e, ex and τ .
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e ex

τ
σ

q

Figure 3 Vertex τ obstructs the visibility of ex from point σ in e.

τ
τ ′ey

σ′

e

(i)

τ
τ ′

ey+1
σ′
e

(ii)

τ
τ ′

σ′

e

(iii)

ey

τ
τ ′

σ′

e

(iv)

Figure 4 The four different types of critical points.

We are now ready to characterize the function Fx(σ).

I Lemma 3.4. Fx(σ) is a piecewise-defined function. Each of the sub-functions has one of
the following shapes:
(i) `, with 0 ≤ ` ≤ |ex|;
(ii) Aσ+B

Cσ+D .

The number of pieces (i.e., sub-functions) of Fx(σ) is at most nxo + 2.

I Definition 3.5. A critical point of e is a point on e that is collinear with and is visible
from two different vertices τ and τ ′ of T simultaneously such that τ and τ ′ are on the same
side of the line that contains e.

Chen and Daescu [4] proved that the number of critical points of e is O(n) (note that
their result is for simple polygons). Together with further observations, this implies:

I Theorem 3.6. The number of pieces of Fx(σ) added over all edges ex ∈ T is O(n).

3.2 Computation of the functions Fx(σ)
We sketch how to compute the functions Fx(σ) for all ex to the right of e.

First, we compute VT (el) and VT (er). For every edge ex such that er or el sees a portion
of ex that is not the whole ex, we store the vertex obstructing the visibility of ex (or er/elx).
Afterwards, we compute the set of critical points of e sorted along the edge. For every critical
point we store the two vertices of T associated with it.

We classify the critical points into four types (see Fig. 4). We denote by σ′ the critical
point, by τ the leftmost terrain vertex associated with σ′, and by τ ′ the rightmost such
terrain vertex. The four types are based on the answers to: Is the portion of T immediately
to the right of τ visible from σ′? And what about the portion immediately to the right of
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τ ′? If the answers are yes, no, the type is (i). If the answers are yes, yes, the type is (ii). If
the answers are no, yes, the type is (iii). If the answers are no, no, the type is (iv).

In some cases, we can already determine some functions. For example, for type (i), τ and
τ ′ are endpoints of the same edge ey. Hence, we have that Fy(σ) = |ey| for all σ ∈ [0, σ′]
and Fy(σ) = 0 for all σ ∈ (σ′, 1]. In cases (i) and (iv), we compute via a ray-shooting query
the first intersection after τ, τ ′ between T and the ray with origin at σ′ and passing through
τ, τ ′, and we assign the critical point σ′ to the intersected edge (if any). In cases (ii) and
(iii), we assign the critical point σ′ to the edge with τ ′ as left endpoint.

After this preprocessing, we compute Fx(σ) for the remaining ex. We start by sorting
the critical points assigned to ex. Note that Fx(0) and Fx(1) are obtained from VT (el) and
VT (er), respectively. If Fx(0) = 0, by Lemma 3.1 we are done. If er is reflex and ex is the
edge containing the first intersection of T with the ray with origin at el and passing through
er, then Fx(σ) is constant for all σ ∈ [0, 1).

Next, suppose that Fx(0) ∈ (0, |ex|). Then there is a vertex τ obstructing the visibility
of ex from σ = 0 (τ has been found during the computation of VT (el)). If ex has critical
points assigned to it, we take the first unprocessed one. For σ between 0 and the value of the
critical point, the visibility of ex is obstructed by τ . We compute Fx(σ) using Lemma 3.3.
For values of σ infinitesimally greater than that of the critical point, the visibility of ex is
obstructed by the vertex associated to the critical point different from τ . Thus, we are in
the same situation as in the beginning of this case. Otherwise, ex has no unprocessed critical
points assigned to it, so either the visibility of ex is obstructed by τ until σ = 1, or the
visibility of ex is obstructed by τ until some value σ′ < 1 and afterwards Fx(·) = 0. It is not
difficult to distinguish between both cases and compute Fx(σ) in the rest of the domain.

The last case is when Fx(0) = |ex|. If Fx(1) = |ex|, it is easy to see that Fx(σ) = |ex| for
all σ ∈ [0, 1]. Otherwise, we deduce that there is a critical point σ′ of type (ii) or (iii) whose
two associated vertices are elx and some vertex τ . The critical point corresponds to the first
one assigned to ex. For values of σ infinitesimally greater than σ′, the visibility of ex from σ

is obstructed by τ . Thus, we are in the situation described in the previous paragraph.
We observe that the computation of the functions Fx(σ) for all ex to the left of e is

symmetric. We next analyze the total running time of the computation of all functions.
Computing VT (el) and VT (er) can be done in O(n) time. Additionally, computing the

set of critical points of e sorted along the edge can be done in O(n logn) [4].
During the preprocessing of critical points, for every critical point of types (i) or (iv), we

perform a ray-shooting query in O(logn) time [3]. All other operations performed take O(1)
time. Since the number of critical points is O(n), the total cost of this phase is O(n logn).

Afterwards, the functions Fx(σ) are calculated. Apart from initialization steps and
possibly a ray-shooting query, the cost of computing of Fx(σ) takes constant time per critical
point assigned to ex. We conclude the following:

I Theorem 3.7. The set of functions Fx(σ) can be computed in O(n logn) time.

3.3 Optimization
By Theorem 3.6, [0, 1] can be divided into a set I of O(n) intervals such that, in every
interval, each Fx(σ) is defined by only one piece. Let [σ0, σ1] ∈ I. Since

∑
ex 6=e Fx(σ) is

potentially the sum of Θ(n) functions of type Aσ+B
Cσ+D , some of which are increasing and some

of which are decreasing, it could in principle be possible that
∑
ex 6=e Fx(σ) has Θ(n) local

maxima in I. By computing (Fx)′′(σ), we can show that this is not the case.

I Lemma 3.8.
∑
ex 6=e Fx(σ) is either constant or strictly concave in each [σ0, σ1] ∈ I.
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Figure 5 A terrain with Θ(n) edges e such that
∑

ex 6=e
Fx(σ) have a local maximum.

By Lemma 3.8,
∑
ex 6=e Fx(σ) has at most one local maximum in [σ0, σ1], so the global

maximum is attained at this local maximum, at σ = σ0 or at σ = σ1. Since there does not
seem to be an easy geometrical characterization of the local maximum (recall the example in
Fig. 2), we solve (Fx)′(σ) = 0. We assume that our model of computation is able to compute
roots of polynomials of degree d in O(d) time. Thus, we can solve (Fx)′(σ) = 0 in [σ0, σ1] in
O(n) time. Repeating this procedure for every interval in I, we obtain the following result:

I Theorem 3.9. The problem IV-1L can be solved in O(n2) time.

If we run our algorithm for every edge e of the terrain, we can find a point on T that
sees the largest portion of T .
I Theorem 3.10. We can compute a point on T maximizing the visible portion of T in
O(n3) time.

Computing such a point appears like a fundamental problem on visibility on terrains
for which there only seems to be an incorrect algorithm: In [5], the authors study the
following problem: Given a 1.5D terrain T , find the location of a watchtower of given height
h maximizing the visible portion of T . Their approach is as follows: Let T ′ be the upward
translation of T by height h. For each reflex vertex τ , a grazing ray is a ray originated at τ
and extending upward following the direction of one of the two terrain edges incident to τ .
The authors claim that the candidates points for the base of the optimal watchtower are
the terrain vertices and the vertical projection on T of the intersections between T ′ and the
grazing rays. However, if we consider the terrain in Fig. 2 and set up h = 0.1 (or smaller),
the base of the optimal watchtower is at the origin, but there is no candidate at the origin as
defined in the algorithm.

We finally show an example where there are many local maxima. The terrain, illustrated
in Fig. 5, has Θ(n) edges e such that

∑
ex 6=e Fx(σ) have a local maximum and each of these

edges has Θ(n) pieces in the description of Fx added over all edges ex.

4 IV-2L

We give the main ideas for this variant. Suppose that the imprecise viewpoints are located
on edges ei and ej with i < j. We parameterize them by σ and δ, respectively. Thus, every
realization can be seen as a pair (σ, δ) ∈ [0, 1]× [0, 1].
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For each edge ex ∈ T , we define Fxi (σ) := |VT (σ)∩ ex| and Fxj (δ) := |VT (δ)∩ ex|. Recall
that [0, 1] can be divided into a set I (resp. J ) of O(n) intervals such that, in every interval,
each Fxi (σ) (resp. Fxj (δ)) is defined by only one piece. Let I ∈ I and J ∈ J . By doing a
case analysis, we can see that the domain I × J might get divided by a curve into at most
two portions such that the function giving Fxi,j(σ, δ) := |(VT (σ) ∪ VT (δ)) ∩ ex| within each
portion is the same. We repeat this procedure for all edges ex of T and consider the obtained
arrangement of curves in I × J , which has O(n2) faces. To obtain the value maximizing∑
ex
Fxi,j(σ, δ) in I × J , we traverse the faces of the arrangement one by one. We repeat this

procedure for all pairs I, J with I ∈ I and J ∈ J .

I Theorem 4.1. The problem IV-2L can be solved in polynomial time.

Acknowledgments. We would like to thank an anonymous reviewer for pointing out an
issue in our previous conterexample.
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Abstract
We present combinatorial and topological properties of Euclidean Voronoi diagrams of lines in

3-dimensions. We first express the exact number of edges, faces, and cells, as a function of vertices,
in the Voronoi diagram of n lines. We then focus on the Voronoi diagram of four lines and show
that the number of vertices in this diagram is always even, between 0 and 8, under mild general
position assumptions. Further, if the diagram has no vertex, then it has a unique topology; if it has
two vertices, then it can have five topologies. If the diagram has more than two vertices then there
is a twist in the trisector system.

1 Introduction

Voronoi diagrams are among the most fundamental space partitioning structures in Com-
putational Geometry. Given a set S of n objects in some spaces, called sites, the nearest
(respectively, farthest) Voronoi diagram of S decomposes the underlying space into regions,
that have the same closest (resp., farthest) site. In this paper, we consider Voronoi diagrams
of lines in R3 under the Euclidean metric, including their nearest and farthest variants.

Voronoi diagrams in the Euclidean plane have been intensively studied [2]. In their
standard form they are typically of linear complexity and can be efficiently computed in
O(n log n) time for a large class of sites and metrics. In three dimensions, however, Voronoi
diagrams are far less well-understood. Early attention was given to the Euclidean Voronoi
diagram of points in d-dimensional space. Its complexity is O(n⌈ d

2 ⌉), it can be computed in
O(n log n + n⌈ d

2 ⌉), and these bounds are tight [5, 6, 10]. These results also hold for certain
polyhedral norms, such as the L∞ or L1 norm [4, 9]. For the Euclidean farthest Voronoi
diagram, exact worst-case bounds in the range of Θ(n⌈ d

2 ⌉), have also been reported [13].
For non-point objects in R3, near-tight combinatorial bounds are known for only restricted

cases. These include O(c3n2+ε) for lines with a constant number of c orientations [11] and
O(n2+ε) for parallel halflines [1]. A numerically robust algorithm for computing the Voronoi
diagram of lines in R3, which uses the CGAL envelope package has been illustrated by
Hemmer et al. [8]. The unbounded features of the order-k Voronoi diagrams of lines and line
segments in Rd have been studied by Barequet et al. [3]. They are encoded in the Gaussian
map, a map on the sphere of directions, which has complexity O(min{k, n − k}nd−1).

In summary, the Euclidean Voronoi diagram of generalized sites in 3D is a challenging
problem, and even the seemingly simple case of lines as sites is no exception. For many years,
geometers have tried to close the complexity gap between the Ω(n2) and O(n3+ε) known
combinatorial bounds [12]. The algebraic description of the features of the Voronoi diagram,
especially its edges, becomes quite complicated, which is why an entire paper was devoted
to characterizing the Euclidean Voronoi diagram of only three lines [7]. It is thus natural

∗ This research was supported by the Swiss National Science Foundation (SNF), project 200021E_201356.
Martin Suderland was also supported by SNF project P500PT_206736/1.
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to further investigate the Voronoi diagram of four lines in R3, which may induce a Voronoi
vertex.

In this abstract, we list structural properties of the Voronoi diagram of four lines in R3.
We first express the exact number of edges, faces, and cells, in the nearest and farthest
Voronoi diagram of n lines as a function of number of vertices, see Table 1. In the farthest
Voronoi diagram of lines, each line always has exactly n − 1 cells and this is independent of
the number of vertices in the diagram. Under some mild general position assumptions, we
show that the number of vertices in the Voronoi diagram of 4 lines is always even, between 0
and 8, and all such numbers can be realized. Further, if the diagram has no vertex, then it
has a unique topology; if it has two vertices, then it can have five different topologies. We
identify a substructure in the trisector system, called a twist, which is necessary to exist, if
the diagram has more than 2 vertices. A twist corresponds to a pair of intersections between
two related trisector branches and gives the ability to study the diagram according to its
number of vertices.

2 Preliminaries

Let L = {ℓ1, · · · , ℓn} be a set of n lines in R3. We assume that the lines satisfy the following
general position assumption: (1) no sphere is touching 5 lines; (2) no circle is touching 4
lines; (3) lines are pairwise skew, and no three lines are parallel to the same plane.

We denote by d(x, y) the Euclidean distance between two points x, y ∈ R3. The distance
d(x, ℓ) from a point x ∈ R3 to a line ℓ ∈ L is d(x, ℓ) = min{d(x, y) | y ∈ ℓ}. The i-sector of
i lines in R3 is the locus of points at equal distance from the i lines. For i = 2, a bisector
B(·, ·) is a hyperbolic paraboloid; for i = 3, a trisector T (·, ·, ·) is a quartic consisting of four
unbounded branches [7, 11]. Two trisectors are related if they are defined by four lines.

▶ Definition 2.1. For a subset of sites H ⊂ L of size |H| = k, 1 ≤ k < n, the order-k Voronoi
region of H is the set of points in R3 whose distance to any site in H is smaller than to any
site not in H. It is denoted as reg(H, L) = {p ∈ R3 | ∀h ∈ H, ∀ℓ ∈ L \ H : d(p, h) < d(p, ℓ)}.

The order-k regions of L induce a subdivision in R3; and the induced cell complex is
the order-k Voronoi diagram of L, denoted by VDk(L). If the set of sites L is clear, we
may use notation VDk and reg(H). When k = 1, VDk(L) is the nearest Voronoi diagram of
L, denoted by NVD(L). When k = n−1, it is the farthest Voronoi diagram of L, denoted
by FVD(L). The cell complex partitions the space into features of the diagram: vertices,
edges, faces, and 3D cells; we refer to the latter simply as cells. We say two cell complexes
M and M ′ have the same topology if there is an isomorphism that maps the features of M

to features of the same dimension in M ′ and maintains all incidence relations.
The general position assumptions ensure the following properties: by assumption (1),

vertices of the Voronoi diagram have degree 4 in the NVD and FVD; by (2), related trisectors
intersect transversely (Lemma 2.2); by (3), the topology of trisectors is unique [7].

▶ Lemma 2.2. If two related trisectors are intersecting tangentially, then there exists a circle
which is touching 4 lines.

Bisectors of lines are homeomorphic to the Euclidean plane. Let Π : B(ℓi, ℓj) → R2

be such a homeomorphism and let T be a trisector of the form T (ℓi, ℓj , ℓk). We are often
interested in the projected bisector Π(B(ℓi, ℓj)) and the projected trisector Π(T ). Each
projected trisector consists of 4 unbounded branches [7]. It has 2 vertical and 2 horizontal
asymptotes. There is a unique branch that admits only one asymptote, called the middle
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U branch

middle branch

L branch

L branch

Figure 1 A projected trisector in blue. Its 4 asymptotes are in red; branch names are indicated.

branch. The middle branch partitions the bisector into two regions, one has a single branch,
called the U branch; another has two branches called the L branches. Refer to Fig. 1.

▶ Definition 2.3. For a finite cell complex M , let B be a topological ball large enough to
intersect any cell of M of any dimension in one connected component. Let Γ denote the
boundary of B. The intersection M ∩ Γ is called the Γ-map of M , denoted by ΓM(M).

3 Combinatorial properties of the Voronoi diagram of lines

We give some combinatorial properties of Voronoi diagrams of n lines in R3 as a function of
their number of vertices V , summarized in Table 1.

▶ Lemma 3.1. The number of edges, faces, and cells in NVD(L) and FVD(L) and their
respective Γ-maps are as stated in Table 1. Results are also given for VD2(L) for n = 4.

vertices edges faces cells
ΓM(NVD(L)) 4n − 4 6n − 6 2n –

NVD(L) V 2V + 2n − 2 V + 3n − 3 n

ΓM(VD2(L4)) 32 48 18 –
}

for n = 4
VD2(L4) V 4V + 16 4V + 24 V + 9

ΓM(FVD(L)) 2n2 − 2n − 4 3n2 − 3n − 6 n2 − n –
FVD(L) V 2V + n2 − n − 2 V + 2n2 − 2n − 3 n2 − n

Table 1 Number of features in VDs and their Γ-maps of n lines as a function of their vertices V .

Next we consider the Voronoi diagram of four lines in R3. This diagram has at most 8
vertices [11] and their number is even, assuming lines are in general position.

▶ Lemma 3.2. If related trisectors are intersecting transversely, then the number of vertices
in the Voronoi diagram of four lines is an even number.

In the case of four lines as sites, any intersection of related trisectors appears on all six
bisectors, and also appears as a vertex of any order-k Voronoi diagrams.

EuroCG’25
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Figure 2 An impossible bisector configuration that violates Corollary 4.4.

4 The topology of the Voronoi diagram of four lines

In this section we study the Voronoi diagram of four lines L4 = {ℓ1, · · · , ℓ4}. There are six
bisectors, each bisector contains exactly two trisectors; all trisectors are related. We call a
twist the structure that occurs when two trisector branches intersect more than once.

▶ Definition 4.1. A pair of vertices v1, v2 is called a twist on a bisector B if the two related
trisectors T1, T2 on B each have a branch C1 of T1 and C2 of T2 such that {v1, v2} ⊆ C1 ∩ C2.

When the Voronoi diagrams have no twists, we are able to fully characterize their
topologies and summarize in the following theorem:

▶ Theorem 4.2. Consider the nearest (resp. farthest) Voronoi diagram of four lines in
general position, and assume that there is no twist on any bisector. Then:

(a) the diagram has a unique topology, if it contains no vertex;
(b) there are three different topologies, if the diagram has two vertices;
(c) this is not possible, if there are more than two vertices.

We outline the proof of the theorem in the remainder of this section. To this goal, we need
some definitions. A projected trisector induces a map in the plane. We define a configuration
to be the overlay of two such projected trisector maps, with one map’s edges in red and the
other’s in blue. We say that two configurations are of the same type, if the underlying cell
complexes have the same topology and the isomorphism also maintains colors and branch
identities. We call a configuration C realizable, if there exist four lines whose configuration
on a bisector is of the same type as C.

▶ Lemma 4.3. The four trisectors associated with four lines contribute to the Γ-map of the
NVD either 0, 4, 4, 4 vertices respectively or 2, 2, 2, 6 vertices respectively.

We call a bisector an (i, j)-bisector if the two trisectors on it contribute i and j vertices
each to the Γ-map of the NVD.

▶ Corollary 4.4. With respect to the NVD, four lines induce either three (2, 2)-bisectors and
three (2, 6)-bisectors, or three (0, 4)-bisectors and three (4, 4)-bisectors.

The corollary shows that some bisector configurations are impossible, see e.g., Fig. 2.
To prove Theorem 4.2, we first assume that NVD(L4) contains no vertex. Fig. 3 lists all

bisector configuration types, without vertex, that satisfy Corollary 4.4, called type (a) and
type (b). Then, by [7][Theorem 1], there can be three types of NVD faces (in green), type-A,
B, and C. Each of the six bisectors is of configuration type (a) or (b). The next lemma
shows that there is only one combination of bisector configurations that satisfies Lemma 4.3
and properties of trisectors pointed out in [7].
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A
B C

type (a) type (b)

Figure 3 The two bisector configuration types with no vertex. Left: type (a); right: type (b).
The NVD faces are shown in green; there are 3 types: A, B, C.

(a) (b)

Figure 4 (a): after attaching type-C faces. (b): after further attaching type-B faces.

▶ Lemma 4.5. If the Voronoi diagram of four lines has no vertex, then up to permutation
of the lines, there is exactly one realizable combination of bisector configurations: bisectors
B(ℓ2, ℓ3), B(ℓ2, ℓ4), B(ℓ3, ℓ4) are of configuration type (a) and B(ℓ1, ℓ2), B(ℓ1, ℓ3), B(ℓ1, ℓ4)
are of configuration type (b).

Let the bisector configurations types be as specified in Lemma 4.5. This fixes all edges
and faces of the NVD. Every edge is incident to exactly three faces, each from a different
bisector the edge is lying on.

We can now show that the topology of the Voronoi diagram is unique because there
is a unique way of attaching the adjacent faces along their common edges to obtain the
3D diagram. In this process, we use properties of trisectors stated in [7], the fact that in
NVD(L), each line has a connected, star-shaped cell, and that the NVD of three lines is
unique, by [7][Theorem 1]. Next, we present the attaching steps.

Attaching type-C faces. There are three type-C face on B(ℓ1, ℓ2), B(ℓ1, ℓ3), B(ℓ1, ℓ4) each.
The outcome of attaching them is an infinite triangular prism as shown in Fig. 4(a). Note
that reg(ℓ1, L4) is bounded by these three faces and is the interior of the triangular prism.

Attaching type-B faces. Next, we attach the three type-B faces from B(ℓ2, ℓ3), B(ℓ2, ℓ4),
B(ℓ3, ℓ4). Using properties of the projected trisectors and the fact that the resulting diagram
is a Voronoi diagram, we obtain the structure that is illustrated in Fig. 4(b).

Attaching type-A faces. There are three type-A faces from B(ℓ2, ℓ3), B(ℓ2, ℓ4), B(ℓ3, ℓ4)
that remain to be attached along three L/U branches of T (ℓ2, ℓ3, ℓ4). Line ℓ1 is not involved
here. Hence, locally the topology is the same as NVD({ℓ2, ℓ3, ℓ4}), which is unique by [7].
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reg(ℓ1)

reg(ℓ2)

reg(ℓ3) reg(ℓ4)

reg(ℓ1)

reg(ℓ2)

reg(ℓ3) reg(ℓ4)

Figure 5 A full twist. Left: before; right: after.

In conclusion, there is at most one topology for the NVD of four lines without vertex and
Fig. 6 shows an example that realizes it. The topology of the FVD can be obtained similarly.

We can prove Theorem 4.2(b) and (c) in a similar manner. As a corollary to Theo-
rem 4.2(c), we have the following:

▶ Corollary 4.6. If the Voronoi diagram of four lines has more than two vertices, then there
must be at least one twist on some bisectors.

4.1 Some observations and properties of twists
We show a special structure that can be viewed as the result of a dynamic process, refer
to Fig. 5. Consider a face on B(ℓ1, ℓ2) (in blue) and two edges incident to it (bold) that
belong to two related trisectors T (ℓ1, ℓ2, ℓ3), T (ℓ1, ℓ2, ℓ4) (see Fig. 5 left). Move the edges
closer until they intersect twice (see Fig. 5 right). Locally, the blue face is split into two, and
a new face (in red) is created, bounding reg(ℓ3, L4) and reg(ℓ4, L4) that previously were not
touching. Such a process adds two vertices that form twists on all six bisectors. We call the
resulting substructure a full twist. We call this process “adding a full twist on the blue face”.
Full twists commonly appear in diagrams that contain vertices. In fact, we can show the
following theorem.

▶ Theorem 4.7. If the NVD of four lines has two vertices and there exist twists, then there
are two topologies. Each topology is obtained by adding a full twist to the NVD with no vertex
on a face of type-B or on a face of type-C, which are shown in Fig. 3.

▶ Corollary 4.8. If the NVD of four lines has two vertices, then it can attain five topologies;
three of them have no twists and two of them have full twists.

Whenever a full twist appears in a diagram, one could locally remove it, and focus on the
topology of the remaining diagram with two fewer vertices. However, twists do not always
look like a full twist when there are more than two vertices. There are examples where two
vertices form a twist only on one bisector.

Identifying the topology of the Voronoi diagram of lines with four or more vertices and
twists remains a topic for future research.
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286 Top view Bottom view

287

288

289

Figure 5 The NVD(L4), with the lines defined by the parameters (a, b3, c3, d3, e3, b4, c4, d4, e4) =
(−9, 2, −2, 1, −3, −1, 1, −1, −5) as described in Section 2, has 0 vertices. The figure illustrates the
diagram from different perspectives in space. The perspectives in the left (resp. right) column use a
positive (resp. negative) elevation, and azimuths in each column differ by 120◦. The cell of red line
ℓ1 is the topological prism, which was explained in Section 4.1.

290

291

292

293

294

CVIT 2016

Figure 6 A NVD without vertex. The cell of the red line is the triangular prism.
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295 Top view Bottom view
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Figure 6 The same NVD as in Figure 5 but more zoomed out to include all features.299
Figure 7 The same NVD as in Fig. 6 but more zoomed out to include all features.
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Abstract
A matchstick graph is a plane graph with edges drawn as line segments of length 1. For this
graph class, it was conjectured by Harborth that the maximum number of edges on n vertices is⌊
3n − √

12n − 3
⌋
. This was later proven by Lavollée and Swanepoel. In this paper we consider

1-planar unit distance graphs which are graphs that can be drawn in the plane such that every edge
is drawn as a unit distance line segment and every edge is involved in at most 1 crossing. For these
graphs, the best construction to achieve as many edges as possible was so far the construction for
matchstick graphs. We present a construction of 1-planar unit distance graphs that have more edges
than matchstick graphs on the same number of vertices. This answers an open problem of Gehér
and Tóth.

1 Introduction

A matchstick graph is a graph that can be drawn in the plane with no crossings such that
every edge is drawn as a line segment of length 1. This graph class was introduced by
Harborth [3] [4] who proved that if the unit distance is also the smallest distance among
the vertices, then the maximum number of edges of a matchstick graph on n vertices is⌊
3n −

√
12n − 3

⌋
. He also showed that for each n ∈ N, there are graphs on n vertices on

triangular lattice which have exactly
⌊
3n −

√
12n − 3

⌋
edges [2] [4]. We will denote the

maximum number of edges of a matchstick graph on n vertices by u0(n). Later Lavollée and
Swanepoel [5] proved that

⌊
3n −

√
12n − 3

⌋
= u0(n) holds for every n ∈ N.

It is well known that a planar graph on n ≥ 3 vertices can have at most 3n − 6 edges. If
we allow that every edge can cross at most 1 other edge (we call this condition 1− crossings),
then the maximum number of edges on n vertices equals to 4n − 8 for n ≥ 4 [6] [7]. Those
graphs are called 1-planar graphs. We see that allowing 1-crossings led to bigger maximum
number of edges which differs from the maximum number of edges of planar graphs in linear
term.

A similar class of graphs is 1-planar unit distance graphs which are graphs that can be
drawn in the plane such that every edge is drawn as a unit distance line segment and every
edge is involved in at most 1 crossing. We will denote by u1(n) the maximum number of
edges of such a graph on n vertices. In 2023 Gehér and Tóth [1] proved that u1(n) ≤ 3n− 4√n

10 ,
which is the best known upper bound. What is more interesting is the lower bound. Obviously
it holds that u1(n) ≥ u0(n). Compared to planar graphs and 1-planar graphs we see that
allowing 1-crossings does not help to get significantly more edges on n vertices as both lower
and upper bounds have the same linear term. However, there have not been any better lower
bounds. This leads to a question whether u0(n) = u1(n) for every n ∈ N which was explicitly

∗ The research was supported by Czech Science Foundation research grant GAČR 23-04949X.
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asked as an open problem in [1]. In this paper we show that it is not true for infinitely many
specific n ∈ N, and we present a construction of such graphs, which answers an open problem
of Gehér and Tóth [1].

2 Main Result

▶ Theorem 2.1. There are infinitely many n ∈ N for which u0(n) < u1(n).

Proof. We show a construction of graphs on n = 3k2 + 25k + 46, k ∈ N0 vertices for which
the required inequality holds. Let us start with the base case n = 46 and denote by G0
the graph shown in Figure 1. It has 115 edges, whereas the maximum number of edges of
matchstick graph on 46 vertices is 114.

Figure 1 Graph G0

This graph consists of copies of F - a graph on 6 vertices with 9 edges. The vertices
can be represented by points in the plane with coordinates v1 = [0, 0], v2 = [0, 1], v3 =
[1, 0], v4 = [1, 1], v5 = [ 1

2 ,
√

3
2 ] and v6 = [ 1

2 , 1 +
√

3
2 ]. The edges of F are then the unit distance

line segments v1v2, v2v4, v4v3, v3v1, v1v5, v2v5, v3v6, v4v6 and v5v6. The only edges which are
crossing are v3v4 and v5v6, so F is a 1-planar unit distance graph. From now on we consider
the drawing shown in Figure 2 to be fixed.

Figure 2 Graph F

To construct G0 we at first use 5 copies of F denoted by F (i) for i ∈ {1, . . . , 5} with
corresponding sets of vertices {v

(i)
j } for j ∈ {1, . . . , 6} to construct a graph F ′. For those

copies of F in F ′, it holds that v
(t)
2 = v

(t+1)
1 and v

(t)
4 = v

(t+1)
3 for t ∈ {1, . . . , 4}. We also add

edges v
(t)
5 v

(t+1)
5 and v

(t)
6 v

(t+1)
6 for t ∈ {1, . . . , 4}. All of them are represented by unit distance
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line segments. This procedure is shown in Figure 3. As all edges of F ′ are represented by unit
distance line segments and we added 4 new crossings between edges v

(t)
2 v

(t)
4 and v

(t)
5 v

(t+1)
5 ,

F ′ is also a 1-planar unit distance graph.

Figure 3 Graph F ′

For the last step we define a path of n triangles denoted by Tn which is a graph on
2n + 1 vertices and 4n − 1 edges isometric to the set of points {[0 + l, 0], [ 1

2 + m,
√

3
2 : l ∈

{0, . . . , n}, m ∈ {0, . . . , n − 1}]} where two points are connected if their distance is exactly
1. An example is shown in Figure 4. We denote by F ′′ a graph F ′ with added T4 which is
shown in Figure 4.

Figure 4 Path of n triangles Tn and a graph F ′′

The graph G0 is then obtained by adding a reflected copy of F ′′ by the horizontal axis.
By doing this construction we did not add any new crossings, except for the reflected images
of the current crossings. As all edges are represented by unit distance line segments, G0 is a
1-planar unit distance graph.

Then we proceed by induction. Our aim in each step is to construct a graph with its
perimeter in an octagonal shape with lengths of its sides shown in Figure 5.

Figure 5 Lengths of the sides of the octagonal perimeter of Gk
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To illustrate the construction we show in the following figures just the induction step
from G0 to G1. The newly added vertices and edges are displayed in red.

Suppose we already have Gk−1. Then Gk is created in the following way:

(i) We denote by H a graph consisting of F and its reflected image along the horizontal
axis together with 4 horizontal edges, as shown in Figure 6 below. Add 2 copies of H to
Gk−1. The addition is also shown in Figure 6.

Figure 6 Graph H and two copies of H added to G0

In total we added 14 vertices and 38 edges.

(ii) The lengths of the oblique sides of the octagonal perimeter of Gk−1 are k + 1. Hence
add a Tk to each of the 4 "corners" of modified G0 as shown in Figure 7, such that the side
of Tk of length k coincides with the oblique side of Gk−1. Also add an edge between each Tk

and H.

Figure 7 Adding vertices to the "corners"
of modified Gk−1 in general case

Figure 8 Adding vertices to the "corners"
of modified G0

In total we added 4k vertices and 12k edges.
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(iii) Add Tk+4 to the already created octagon from step (ii) such that the side of Tk+4 of
length k + 4 coincides with horizontal sides of that octagon, which are of length k + 4 too.

Figure 9 Adding two paths of triangles

In total we added 2(k + 4) vertices and 2(3(k + 4) − 1) edges.

We can see that we can go from Gk−1 to Gk by adding one "layer" around Gk−1 consisting
of 6k + 22 vertices and 18k + 60 edges. Equivalently, Gk is created by adding k "layers" to
G0. This means, that the number of vertices of Gk is equal to

46 +
k∑

i=1
(6i + 22) = 46 + 22k + 6k(k + 1)

2 = 3k2 + 25k + 46. (1)

By the same argument, the number of edges of Gk is equal to

115 +
k∑

i=1
(18i + 60) = 115 + 60k + 18k(k + 1)

2 = 9k2 + 69k + 115. (2)

Now by the results in [5] we know, that

u0(n) =
⌊
3n −

√
12n − 3

⌋
. (3)

For n = 3k2 + 25k + 46 we get

u0(3k2 + 25k + 46) =
⌊
9k2 + 75k + 138 −

√
36k2 + 300k + 549

⌋
, (4)

and therefore
u1(3k2 + 25k + 46) − u0(3k2 + 25k + 46) ≥ |E(Gk)| − u0(3k2 + 25k + 46) =

= 9k2 + 69k + 115 −
(⌊

9k2 + 75k + 138 −
√

36k2 + 300k + 549
⌋)

>

> 9k2 + 69k + 115 − ((9k2 + 75k + 138 −
√

36k2 + 300k + 549) + 1) =

=
√

36k2 + 300k + 549 − 6k − 24 =
√

(6k + 24)2 + 12k − 27 − (6k + 24).

(5)
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We see that for k ≥ 3, we get

u1(3k2 + 25k + 46) − u0(3k2 + 25k + 46) > 0. (6)

And a direct computation for k ∈ {0, 1, 2} shows that for n = 3k2 + 25k + 46, the inequality
u1(n) > u0(n) holds true for all k ∈ N0:

u1(46) − u0(46) ≥ |E(Gk)| − u0(46) = 115 − 114 > 0,

u1(74) − u0(74) ≥ |E(Gk)| − u0(74) = 193 − 192 > 0,

u1(108) − u0(108) ≥ |E(Gk)| − u0(108) = 289 − 288 > 0.

(7)

◀

The construction of Gk shows that allowing at most 1 crossing on every edge helps to
build graphs with more edges on n vertices for infinitely many n ∈ N. Let us have a look at
|E(Gk)| for first few k.

k n=|V (Gk)| |E(Gk)| u0(n)
0 46 115 114
1 74 193 192
2 108 289 288
3 148 403 401
4 194 535 533
5 246 685 683
10 596 1705 1703
50 8796 26065 26063

Table 1 Comparison of u0(n) and the number of edges of Gk

We see that the difference between |E(Gk)| and u0(n) gets bigger for increasing k. This
observation leads us to a question how much better our construction is compared to the best
known construction for u0(n). However, a short analysis shows that we never get better
result than |E(Gk)| − u0(n) = 2.

▶ Theorem 2.2. For k ∈ N0, it holds that

lim
k→∞

|E(Gk)| − u0(3k2 + 25k + 46) = 2.

Proof. From (5) we have that

|E(Gk)| − u0(3k2 + 25k + 46) >
√

36k2 + 300k + 549 − (6k + 24), (8)

and therefore

lim
k→∞

|E(Gk)| − u0(3k2 + 25k + 46) > lim
k→∞

√
36k2 + 300k + 549 − (6k + 24) = (9)

= lim
k→∞

12k − 27√
36k2 + 300k + 549 + (6k + 24)

= 1. (10)
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Let us now estimate the upper bound:

|E(Gk)| − u0(3k2 + 25k + 46) =

= 9k2 + 69k + 115 −
(⌊

9k2 + 75k + 138 −
√

36k2 + 300k + 549
⌋)

<

< 9k2 + 69k + 115 − (9k2 + 75k + 138 −
√

36k2 + 300k + 549 − 1) =

=
√

36k2 + 300k + 549 − (6k + 22),

(11)

hence

lim
k→∞

|E(Gk)| − u0(3k2 + 25k + 46) < lim
k→∞

√
36k2 + 300k + 549 − (6k + 22) =

= lim
k→∞

36k + 65√
36k2 + 300k + 549 + (6k + 22)

= 3.
(12)

As {|E(Gk)| − u0(3k2 + 25k + 46)}∞
k=0 is a sequence of natural numbers, its limit, for which

we computed
1 < lim

k→∞
|E(Gk)| − u0(3k2 + 25k + 46) < 3, (13)

is also a natural number. Therefore, limk→∞ |E(Gk)| − u0(3k2 + 25k + 46) = 2. ◀

3 Conclusion

We showed that for infinitely many n ∈ N, it holds that u1(n) > u0(n). However, this
construction allows us only to add at most 2 more edges between n vertices than the
construction for u0(n). The question is whether it is the best construction for u1(n).

Problem 1: Is lim supn→∞ u1(n) − u0(n) = ∞?

Our construction gives a higher number of edges than for matchstick graphs only for very
specific numbers of vertices. Hence we ask if the gaps between them are really needed.

Problem 2: Is it true that u0(n) < u1(n) for every sufficiently large n ∈ N?

4 Note Added in Proof

After submitting the paper to EuroCG’25, we were able to answer Problem 1. The following
is true:

▶ Theorem 4.1. For every integer t, there exists a graph Gt with O(t2) vertices such that

|E(Gt)| − uo(n) ≥ t.
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Abstract
A graph is k-planar if it can be drawn in R2 such that every edge has at most k crossings; such
a drawing is called k-plane. The local crossing number lcr(G) of a graph G is the smallest k ≥ 0
such that G is k-planar. The (global) crossing number cr(G) of a graph G is the minimum number
of crossings over all drawings of G. Counting the number of crossings per edge in any lcr(G)-plane
drawing of G yields 2 · cr(G) ≤ m · lcr(G), where m denotes the number of edges in G. We are
interested in graphs for which this inequality holds with equality. As a main result we show that
such graphs exist. More precisely, for any given k ∈ N, we construct an infinite family of graphs
that admit a minimum-crossing drawing in which every edge is crossed exactly k times.

1 Introduction

Are there drawings of graphs where every edge is crossed? Indeed, such drawings of Kn

were first mentioned by Ringel [17] and later systematically studied by Harborth and
Mengersen [11]. However, their drawings have many “unnecessary” crossings. So, what if
we restrict to minimum-crossing drawings, that is, drawings with a minimum number cr(G)
of edge crossings among all drawings of a graph G? Surprisingly, the answer remains the
same: Ábrego, Aichholzer, Fernández-Merchant, Ramos, and Vogtenhuber [1] describe a
family of drawings of Kn, for odd n ≥ 11, where every edge is crossed and the total number
of crossings is

H(n) = 1
4

⌊n

2

⌋ ⌊
n − 1

2

⌋ ⌊
n − 2

2

⌋ ⌊
n − 3

2

⌋
.

According to the famous (Guy-Harary-)Hill Conjecture [10], we have H(n) = cr(Kn) and
thus the aforementioned drawings are minimum-crossing. Despite supporting evidence
(e.g., [4]), the conjecture is proven for n ≤ 14 only [3]. Still, this leaves us with minimum-
crossing drawings of K11 and K13 in which every edge is crossed. Taking any number
of disjoint copies of these graphs and drawings, we obtain an infinite family of graphs with
minimum-crossing drawings where every edge is crossed. In this work, we study the problem
under the lens of k-planarity and give a general answer for any number k of crossings.

∗ This research was initiated at the 21st Gremo’s Workshop on Open Problems (GWOP 2024), Pura (TI),
Switzerland, June 3–7, 2024.
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▶ Theorem 1. For every k, n0 ∈ N there exists a graph G on n ≥ n0 vertices such that G

has a drawing with cr(G) crossings, in which every edge is crossed exactly k times.

In particular, in every k-plane minimum-crossing drawing of G every edge has exactly k

crossings. Our motivation is to shed some light onto the relationship between the local
and the (global) crossing number of graphs. To explain this relationship we introduce some
standard terminology. A drawing of a graph G = (V, E) is a map γ : G → R2 that
maps each vertex v ∈ V to a point γ(v) ∈ R2 and each each edge uv ∈ E to a simple
(injective) curve γ(uv) with endpoints γ(u) and γ(v), such that: (1) γ is injective on V ;
(2) γ(uv) ∩ γ(V ) = {γ(u), γ(v)}, for all uv ∈ E; and (3) for all e0, e1 ∈ E with e0 ̸= e1, the
curves γ(e0) and γ(e1) have at most finitely many intersections, and each such intersection
is either a common endpoint or a proper, transversal crossing between exactly two edges.
A drawing is simple if every pair of edges has at most one common point (which is either a
crossing or a common endpoint). The zoo of crossing numbers [18] is a very lively part of
combinatorial geometry and graph drawing. The crossing number cr(D) of a drawing D is
the number of edge crossings in D. The crossing number cr(G) of a graph G is the minimum
of cr(D) over all drawings D of G. The local crossing number lcr(D) of a drawing D is
the maximum number of crossings on any edge in D. The local crossing number lcr(G)
of a graph G is the minimum of lcr(D) over all drawings D of G. A graph G is k-planar
if lcr(G) ≤ k. The k-planar crossing number crk-pl(G) is the minimum of cr(D) over all
drawings D of G with lcr(D) ≤ k; or crk-pl(G) = ∞ if no such drawing exists. By definition,
for every graph G we have

cr(G) ≤ crk-pl(G). (I1)

Further, as every graph G admits a drawing D with lcr(D) = lcr(G), we have

cr(G) ≤ cr(D) ≤ mlcr(D)
2 = m

2 lcr(G) , (I2)

where m denotes the number of edges in G. It is natural to wonder if and for what graphs
these two inequalities are tight. Theorem 1 answers the if-part of this question by providing
an infinite family of graphs for which both inequalities are tight. Chimani, Kindermann,
Montecchiani and Valtr [7, 8] explored the opposite end of the spectrum for (I1) and con-
structed a family of 1-planar graphs G with cr1-pl(G) ∈ Ω(n) and cr(G) = 2, where n denotes
the number of vertices in G. Similar results have also been obtained for other beyond-planar
graph classes [6, 20]. The maximum number of edges in a simple k-planar graph on n vertices
is known to be at most ck(n − 2), where c0 = 3, c1 = 4 [5], c2 = 5 [15, 16], c3 = 5.5 [13, 14],
c4 = 6 [2], and ck ≤ 3.81

√
k, for general k ≥ 5 [2]. So we could plug these bounds into (I2)

to obtain an upper bound on cr(G) in terms of n, the number of vertices in G. However, the
graphs that maximize m might be quite different from the graphs for which (I2) is tight. For
instance, for a 1-planar graph G it is known (see, e.g. [19, Proposition 4.4]) that it admits
a drawing D such that

cr(G) ≤ cr1-pl(G) ≤ cr1-pl(D) ≤ n − 2 , (I3)

which beats the bound we get by plugging m ≤ 4n into (I2) by a factor of two. The bounds
in (I2) and (I3) are somewhat conflicting. In fact, we show that if a graph G admits a
drawing D for which both (I2) and (I3) are tight, then G is planar and thus cr(G) ≪ cr(D).

▶ Theorem 2. Let D be a simple drawing of a graph G on n vertices where every edge
is crossed exactly once. Then: (1) If cr(D) = n − 2, then G is planar and disconnected;
(2) If cr(D) = n − 3, then G is planar.
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2 Preliminaries and Outline

Before we delve into the proof of Theorem 1, let us note that the statement for k = 1 can
be obtained using edge subdivisions.

▶ Lemma 3. The following statements are equivalent: (1) There exists a minimum-crossing
drawing of a graph in which every edge is crossed; (2) There exists a minimum-crossing
drawing of a graph in which every edge is crossed exactly once.

Proof. The implication (2)⇒(1) is trivial. So it remains to prove (1)⇒(2). Let D be a
minimum-crossing drawing of a graph G in which every edge is crossed. For every edge e

in D and every pair c, c′ of consecutive crossings along e in D we insert a new vertex between c

and c′ on e and also subdivide the corresponding edge in G. As a result, we obtain a graph G′

and a drawing D′ of G′ such that G′ is a subdivision of G and D′ is a subdivision of D.
By construction every edge in D′ is crossed exactly once and cr(D) = cr(D′). As edge
subdivisions have no effect on the crossing number of a graph, we have cr(G′) = cr(G) =
cr(D) = cr(D′) and thus D′ is a minimum-crossing drawing of G′. ◀

The above subdivision argument also appears in the proof of Theorem 1. Our main
challenge is to certify that a given drawing is minimum-crossing, which is very difficult in
general. To get around this, we employ edge weights and correspondingly weighted crossing
numbers as a framework to guarantee that the minimum-crossing drawing of the graph at
hand is essentially unique. Our construction uses a highly symmetric graph based on the
icosahedron graph. The symmetries of this graph help to simplify the argument. With a
proper choice of weight assignment and subdivision, we can transfer the weighted minimum-
crossing drawing into our target drawing where every edge is crossed exactly k times.

3 Minimum-crossing drawings in which every edge is crossed k times

We use the icosahedron graph Ico = (X, EI) as a base graph, which is a plane triangulation
with 12 vertices and 20 faces. It admits a combinatorially unique plane drawing, depicted
by red edges in Figure 1.

Let T = (V, E) be a plane triangulation. For an edge e of T , the two triangles incident
to e form a 4-gon Q(e). One of the diagonals of Q(e) is e, we call the other diagonal
of Q(e) the p-dual edge of e. The double-icosahedron Dco is obtained from the icosahedron
graph Ico = (X, EI) by adding the p-dual edge of every edge e ∈ EI , that is, we have
Dco = (X, EI ∪ EP ), where EP denotes the set of edges that are p-dual to some edge in EI .
It is interesting to note that the graph (X, EP ) is again an icosahedron graph, and Dco is a
10-regular graph on 12 vertices, isomorphic to a K12 with a perfect matching removed.

If we take a closer look into the drawing shown in Figure 1, we can easily count the
crossing number of it since each of the 30 edges of EI is only crossed by its p-dual edge and
each edge of EP is crossed by five other edges. Consequently, there is a total of 1

2 (30+5·30) =
90 crossings in the drawing. We further remark that this matches the conjecture presented
by Mohar [12] for Kt

n, which denotes the graph obtained from Kn by removing a matching
of size t. Though an attempt to compute the exact crossing number of Dco by a computer[9]
failed due to its inherent complexity, we conjecture cr(Dco) = 90 as well.

Weighted Minimum-Crossing Drawing. To derive our results, we first consider a weighted
variant of the crossing number. Let w : E → R+ be a weight assignment on the edges of
a graph G. The weighted crossing number crw(D) of a drawing D of G is the sum of the
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Figure 1 A drawing of Dco where every edge is crossed.
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product w(e) · w(f) taken over all edge crossings e ∩ f in D. The weighted crossing number
crw(G) of a graph G is the minimum of the weighted crossing numbers of its drawings.

▶ Lemma 4. There is a weight assignment w on the edges of Dco such that the drawing
shown in Figure 1 minimizes the weighted crossing number of this weighted graph.

Proof. Consider any minimum-crossing drawing Γ of Dco. Recall that Dco = (X, EI ∪ EP )
with |EI | = |EP | = 30. If w(e) = a for all e ∈ EI and w(e) = 1 for all e ∈ EP , then for the
drawing Γ0 in Figure 1 we have crw(Γ0) = 30a + 60. We choose a = 32 s.t. a2 = 1024 >

30a+60 = 1020, and no pair of edges from EI can cross in Γ. Hence, the drawing of (X, EI)
in Γ is a plane drawing Ico of the icosahedron. As every edge in EP has to cross at least one
edge of Ico, we have crw(Γ) ≥ 30a. At most one edge of EP crosses two or more—and if so,
exactly two—edges of Ico in Γ (else crw(Γ) ≥ 30a + 2a = a2 > crw(Γ0)). Hence in at least
18 of the triangles of Ico, the three p-duals of the triangle edges cross inside the triangle.
This yields at least 3 · 18 crossings between edges in EP . Since 31a + 3 · 18 > 30a + 60, all
the p-edges in Γ must be drawn in the union of two triangles and cross four other p-edges,
just as in Γ0. It follows that crw(Γ) = crw(Γ0). ◀

Let G be a graph and w : E → N be an integral weight, we define the multigraph Gw by
replacing each edge e of G by w(e) copies of e, i.e., a set of w(e) parallel edges connecting the
vertices of e. Every drawing of G has a corresponding drawing of Gw by replacing the drawn
edge e by a bundle of w(e) edges in a small neighborhood of e. This construction shows that
cr(Gw) ≤ crw(G). Given a drawing of Gw and an edge e of G we can look at all copies of e

in the drawing and choose one, say e′, involved in a minimum number of crossings. Now
redraw the w(e) edges of the bundle of e in a small neighborhood of e′. By the choice of e′

this operation can only decrease the crossing number of the drawing. Repeating this for all
edges of G we arrive at a drawing of Gw where parallel edges behave the same, i.e., which
comes from a drawing of G. Therefore cr(Gw) = crw(G).

▶ Theorem 1. For every k, n0 ∈ N there exists a graph G on n ≥ n0 vertices such that G

has a drawing with cr(G) crossings, in which every edge is crossed exactly k times.

Proof. We first deal with the case k = 1. Let Dco+ be the multigraph obtained with
multiplicity 64 for edges of EI and multiplicity 2 for edges of EP . The drawing Γ0 By a
similar analysis as shown in the proof of Lemma 4, this induces a minimum-crossing drawing
of Dco+ by replacing each red edge by a bundle of 64 parallel edges and each light blue edge
by 2 parallel edges. For every edge e and every pair of consecutive crossings on e we place a
new subdivision vertex on e; see Figure 2 (top). In this way, we obtain a subdivision Dco+

s

of Dco+ that has a minimum-crossing drawing where every edge is crossed exactly once. To
obtain arbitrarily large graphs, we take sufficiently many disjoint copies of Dco.

For k ≥ 2 we adapt the weighting w such that if Dw is a minimum-crossing drawing of
Dco+, then in Dw the number of crossings on each edge is a multiple of k. An appropriate
weighting is obtained by using the weight 64k for edges in EI and 2k for edges in EP . The
subdivision vertices of Dco+

s are placed on the edges of Dw such that every edge of Dco+
s has

exactly k crossings. Figure 2 (bottom) illustrates the construction in the case k = 2. ◀

4 On Graphs for which Both Upper Bounds are Tight

Due to space constraints we present the proof of the first statement in Theorem 2 only; the
proof for the second statement can be found in a later full version.
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Figure 2 Subdividing edges to obtain a k-plane drawing, for k = 1 (top) and k = 2 (bottom).

▶ Theorem 2. Let D be a simple drawing of a graph G on n vertices where every edge
is crossed exactly once. Then: (1) If cr(D) = n − 2, then G is planar and disconnected;
(2) If cr(D) = n − 3, then G is planar.

Proof of (1). Let D be a drawing of G with n − 2 crossings such that every edge is crossed
exactly once. Let D+ be obtained from D by adding a maximal set of uncrossed edges, and
let H be the plane drawing consisting of the new edges only. Each crossing pair of edges
in D corresponds to a 4-face of H. Hence, H is a plane graph with n vertices and n − 2
many 4-faces. From Euler’s formula it follows that H is a quadrangulation. In particular
H is bipartite. Transferring the 2-coloring of H to D, we observe that for every pair e, e′

of crossing edges the endpoints of e have the same color and both endpoints of e′ have the
other color. Hence, each of the two color classes induces a plane graph. Denote these two
graphs by D1 and D2. As every edge in D is crossed, the graph D is the disjoint union of D1
and D2. Thus, we obtain a plane drawing of D by drawing D1 and D2 side by side. ◀

5 Open Problems

Our construction to prove Theorem 1 uses edge subdivisions extensively. Can a similar
statement be obtained for graphs with minimum vertex degree three or higher? In Theorem 2
we show that there are no graphs for which both upper bounds (I1) and (I2) on the crossing
number are (almost) tight. How far can we further relax the “almost” tightness condition?
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Abstract
We consider linked bar charts, in which each bar is partitioned into blocks, and blocks are linked
between bars through orthogonal lines. Given a fixed bar order, we study the problem of minimizing
the vertical length of these links by stacking the blocks appropriately within each bar. We describe
algorithms that handle different assumptions on the links between bars, including for example the
case of having bars sorted in order of height.

1 Introduction

In information visualization, it is often important to show the certainty of information.
Given a collection of k sets S1, . . . , Sk, the size of each set can have a certain part and an
uncertain part, where the uncertain part is independent of the uncertain parts of the other
sets. But it could also have an uncertain component of, say, the set S1, where we know that
if it does not belong to S1, it must belong to, say, S2. In this case, there is a dependent
uncertainty between the size of sets S1 and S2. This can model, for example, groups of voters
that hesitate between two political parties for predicting election outcomes, or pollution of
factories near country borders, where the actual country affected will be one of the two. In
such cases, a pairwise uncertainty in size, with a dependence between S1 and S2 exists.

Van Beusekom et al. [5] introduce a visualization for these pairwise uncertainties using
bar charts, where the pink blocks on top represent the pairwise uncertainty (see Fig. 1). Each
pink block appears twice in the same size, once in each set to which it may belong, with a
link, represented by a polyline, that connects the two blocks.

There are several optimization possibilities when reordering the bars horizontally and
reordering the blocks vertically, such as the maximal horizontal or vertical span of the links,
the total horizontal/vertical link length, the cut-width and the number of link crossings.

Related work. When optimizing for the horizontal span/length, number of link crossings
or cut-width, the bars and their links can be represented as a one-page book embedding,
where each bar represents a node and each link represents an edge. We know that for a
one-page book embedding of a graph G it is NP-complete to minimize edge crossings [3] and
that it can be drawn without edge crossings if and only if G is outerplanar [4]. Frederickson
and Hambrusch [1] provide polynomial-time algorithms to minimize the total edge length,
maximum edge length, the cutwidth, and the bandwidth when G is outerplanar. These
problems are NP-complete for general graphs [2].
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size

Figure 1 A linked bar chart [5] with pairwise uncertainty between the linked pink blocks. The
certain size (gray) and independent uncertainty (not shown) are irrelevant to our problem.

Contributions and organization. We study the minimization of the vertical link length
by reordering the blocks in each bar, for a given bar order. Our main contributions are
polynomial-time algorithms for restricted variants, based on whether there are “dependent
links”, whose vertical length cannot be optimized by optimizing bars individually. In Section 2
we introduce our terminology and notation, along with general observations. Sections 3
through 5 present our algorithmic results.

2 Notation, definitions and observations

Our input is an edge-weighted graph G = (V, E, w), where the V represents a sequence of n

sets S1, . . . , Sn in fixed order and E ⊆ V 2 is a set of m edges, of which each edge (S, S′) ∈ E

represents a pairwise uncertainty between two sets S, S′ ∈ V . The edge weights w : E → R+

represent the size of these uncertainties.
The span of an edge is the subsequence of sets in V between its endpoints, including

these endpoints. The intermediate sets of an edge refer to its span minus its endpoints. We
call an edge e contained in another edge e′, if the span of e is a subset of the span of e′.

Bars, blocks and links. To visualize the pairwise uncertainties in G, we draw the sets in V

as a sequence of bars B = {B1, . . . , Bn}, arranged on a horizontal baseline with a spacing of
two units of width between the horizontal centers of adjacent bars. Note that the horizontal
position of the bars is fixed by the order of B. Each set Si corresponds to bar Bi for all
1 ≤ i ≤ n; we use bar to refer to the set in V as well as its visual representation, as there is
a one-to-one mapping between the two.

An edge e induces a block in each of the two bars it connects: a rectangle of unit width
and height w(e); the width is not relevant to the optimization problems in this abstract, since
we optimize vertical length. We refer to the height of b as h : E → R+, meaning h(b) = w(e).

We construct a bar Bi by stacking the blocks that correspond to the edges incident to Si

on top of each other; see Fig. 1. Therefore the height of a bar equals the sum of its block
heights. We refer to the height of a bar as h : E ∪ V → R+.

We draw an edge e as an orthogonal link ē that connects the two blocks corresponding
to e; see also Fig. 1. A link connects the centers of two blocks; we refer to these centers
as the endpoints of the link. If at least one endpoint is placed higher than all intermediate
bars of e, then the link generally has two bends; a link may be horizontal in some cases and
have zero bends. Otherwise, the link is drawn using four bends. Links always pass over all
intermediate bars. We assume that between two consecutive bars, there is enough horizontal
space for the links to run between those bars, and ignore this issue from now on.



S. van den Broek, M. van Kreveld, W. Meulemans and A. Simons 43:3

Stacking blocks. Note that as the order of bars is fixed, the horizontal length of links is
as well. We aim to minimize the total vertical length of the links by stacking the blocks
that comprise a bar appropriately while avoiding crossings between links that connect to the
same bar. A stacking of blocks corresponds to an order on the incident edges of a bar.

Consider a bar Bj . All incident edges {Bi, Bj} to an earlier bar Bi go towards the left
from Bj . We denote this ordered sequence of edges by Lj = {l1, . . . , }, sorted in decreasing
order of index of the other bar. Similarly, the rightward edges are denoted by Rj = {r1, . . . , }—
the edges {Bj , Bk} with k > j—in increasing order of index of the other bar. To avoid
crossings between links that originate from a common bar, the stacking order must contain
both Lj and Rj as a subsequence. That is, the stacking order must be some merge of these
two ordered sequences. Any merge is valid, but they incur different vertical link lengths. For
ease of notation, we identify an edge e in Lj or Rj with the corresponding block in bar Bj .

Merging leftward and rightward subsequences in this way implies that the number of
crossings in our visualization is equal to the number of crossings in the one-page book
embedding of G that respects the fixed vertex order. Two links intersect if and only if their
sets of intermediate bars have a non-empty intersection and neither is a subset of the other.

Consider some block b in a bar Bj for edge li ∈ Lj . Its vertical center point is determined
by its height and all blocks prior to it in Lj—the order of the blocks in Lj is fixed after
all—but also by all blocks in Rj that are chosen to be below it in the stacking order;
denote by k the last block in Rj that is still before (below) b. Specifically, we find that
y = y(b, k) = 1

2 h(b) +
∑i−1

x=1 h(lx) +
∑k

x=1 h(rx). Hence, the center coordinate of a block
is influenced only by the number of blocks in the other sequence occurring before it. The
situation is symmetrical for a block in Rj .

Link types. Consider an edge e = {Bi, Bj} with i < j. Its blocks b and b′ must be in
Ri and Lj . Let ↑ b = y(b, |Li|) and ↓ b = y(b, 0) denote the highest and lowest possible
y-coordinate for block b and analogously define ↑ b′ = y(b′, |Rj |) and ↓ b′ = y(b′, 0). Let
H = maxi<x<j h(Bx) denote the height of the highest intermediate bar.

If H ≥ ↑ b (and analogously if H ≥ ↑ b′), ē must go up to H from b before continuing
to b′; see Fig. 2. The vertical length is |H − y| + |H − y′|, for given center coordinates y

for b and y′ for b′. Therefore, both b and b′ must be as close as possible to H, to minimize
vertical length. Their quality in the stacking order for Bi and Bj is independent; we thus
call the link independent. In either case, H is the target for this link, as both endpoints
should minimize their distance to H.

H
e

Bi B j

↑b′

H
e

Bi B j

↑b′

Figure 2 The link is independent, because H is larger than the highest possible y for block b′.
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If the previous two cases do not hold, then there is no intermediate bar or both centers may
exceed the highest intermediate bar. However, if ↓b ≥ ↑b′ (and analogously if ↓b′ ≥ ↑b), then
the orientation of the link is always the same. Hence, b should be placed as low as possible
and b′ as high as possible. The vertical length is y(b, k)−y(b′, k′) = (y(b, k)−t)+(t−y(b′, k′))
for any specific placement of the two blocks and we can minimize their length to an arbitrary
intermediate target t ∈ [↑b′, ↓b]. Hence, the link is independent.

If none of the previous cases hold, the link is dependent: its vertical length depends on
the relative position of the two blocks, and we cannot generally assign a static target for
each block separately. Dependent links come in two variants: adjacent dependent links and
non-adjacent dependent links, depending on whether the two linked bars are consecutive in B.

We abbreviate the various link types as IL (independent link), DL (dependent link), ADL
(adjacent dependent link) and NADL (non-adjacent dependent link). We refer to edges also
via these types, e.g., a dependent edge is an edge with a dependent link.

▶ Observation 1. There are at most O(n) dependent edges; the dependent edges form an
outerplanar subgraph of (V, E).

Proof sketch. Two bars linked by a dependent link must both be higher than any of its
intermediate bars: dependent links and therefore its corresponding edges cannot cross. ◀

▶ Observation 2. The containment on the dependent edges defines a hierarchy.

Proof sketch. As dependent edges cannot cross, there is at most one minimal dependent
edge (under containment) whose span contains that of another dependent edge. ◀

▶ Lemma 3. Given (V, E, w) as an adjacency list with only V in order, we can compute the
L- and R-sets for all bars in O(n+m) time, all link types in O(n2) time and the containment
hierarchy of dependent edges in O(n + m) time.

Proof sketch. To compute the L- and R-sets: the bar order matches the order of L (reversed)
and R. Traversing the bars from left to right, allows filling the L and R of the other blocks
of the incident links directly.

To compute the link types: use prefix sums of h for the L- and R-sets per bar and a
priority queue, to traverse the R-set for each bar, while maintaining the maximum height of
intermediate bars by traversing the bars.

To compute the hierarchy: sweep over the bars from left to right, at each bar processing
the L- and R-sets in order, while maintaining a stack of the lowest dependent edge. ◀

3 Only independent links

We can easily solve this case via dynamic programming. Observe that the solution is built
vertically from top to bottom, for reasons that will become clear in the next section.

▶ Lemma 4. Given (V, E, w) with only independent edges, we can minimize the vertical link
length in O(nm) time.

Proof sketch. Each bar can be stacked in isolation, to minimize the total distance of each
block to its target. Let D(p, q) denote the minimum cost of stacking blocks {lp, . . . , l|L|} ⊆ L

and blocks {rq, . . . , r|R|} ⊆ R. Since either lp or rq must be the bottom block in this
subproblem, we compute, in appropriate order, each value in D in O(1) time. ◀
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Bi−1 Bi Bi−1 Bi

k′
k′′

k′
k

Figure 3 Schematic for computing D∗(i, k) with k = 0, positioning two blocks (left) and k > 0,
positioning a single block (right) to determine the ADL to the previous bar.

4 Adjacent dependent links

This more general case can be solved efficiently, using the previous result. It uses a horizontal
dynamic program, which goes through the bars in a shortest-path-like fashion.

In this section, we use the degree di of bar Bi to refer to its total number of incident
edges and the number of stacked blocks.

▶ Theorem 5. Given (V, E, w) with only independent and adjacent dependent links, we can
minimize the vertical link length in O(nm) time.

Proof sketch. This horizontal recursion D∗(i, k) represents the minimum cost for stacking
the blocks in the first i bars, where the ADL in Ri has k blocks from Li below it; see Fig. 3.
As there are only O(di−1) positions to try for an ADL if k > 0, we can achieve the desired
bound by precomputing the cost of independent links with Lemma 4. ◀

▶ Observation 6. If the bars are sorted by height or bar heights have a single local maximum,
then all edges have either independent or adjacent dependent links.

Proof. An NADL requires that all intermediate bars are strictly lower than its endpoints. ◀

5 One-sided non-adjacent dependent links

We call a bar B one-sided if L or R does not contain an NADL. When all bars are one-sided,
no two spans of NADLs share only an endpoint. By Observation 2, the NADLs induce a
hierarchy as well. We call an NADL constrained if it shares a bar with its parent NADL,
and free otherwise; see also Fig. 4. We partition the general hierarchy such that each free
NADL forms a root of a (binary) tree, with only its descendant constrained NADLs.

Consider some NADL ē that connects bars Bi and Bj and fix the position of its blocks
in some position. The associated blocks of such a position are all blocks in Bi and Bj that
are lower than the endpoints of the positioned parent NADL of ē, and all blocks that are in
bars at the endpoints of a descendant constrained NADL.

For a given position of an NADL ē, the cost of its associated blocks is independent of
the cost of any other blocks as there are no ADLs. So, we solve the interior of an NADL,
recursively. Via dynamic programming, we then obtain the following result.

▶ Theorem 7. Given (V, E, w) with one-sided bars and only independent and non-adjacent
dependent links, we can minimize the vertical link length in O(n4) time.

EuroCG’25
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B1 B2 B3 B4 B5 B6 B7 B8

DL1

DL2

DL3

Figure 4 A linked bar chart where all bars are one-sided; only the NADLs are drawn. Links DL1
and DL3 are free; DL2 is constrained by its parent DL1.

Proof sketch. Bars without NADLs can be solved via Lemma 4. Free NADLs can be
positioned in any which way as to optimize the cost of its associated blocks, while a constrained
NADL needs to stay below the position of its parent. We use dynamic programming to
compute the optimal costs of NADLs, using the recursion to keep track of the constraint
that may be given by a parent NADL.

Specifically, we use a dynamic program D∗∗(ē, k) to represent the minimal total cost for
the blocks associated with ē, given that it may use at most k blocks of the other set below it
(the constraint of the parent). See Fig. 5 for a sketch of the recursion. Using techniques based
on the dynamic program for Lemma 4, we can compute each such case in O(n2) time. With
O(n) links (Observation 1) and at most n values for k, the claimed time bound follows. ◀

6 Conclusion

A natural next step is to combine the techniques of Theorems 5 and 7 for the unified case,
which models e.g. situations with a single local minimum in bar height. Relevant future
work further includes the unrestricted case with a fixed bar order, optimizing the bar order
and considering other quality measures than (only) vertical link length.

Bi

k′

B j

k

k′′
l r

ē

Bi

k′

B j

k

k′′

ē

Figure 5 Schematic illustrating how to solve D∗∗(ē, k) for the case of two descendants (left)
and no descendants (right). Gray: constraint k imposed by a parent NADL. Pink: the cost for
positioning ē. Orange and red: costs for associated blocks below the endpoints of ē. Blue and green:
costs for independent blocks above the endpoints of ē.
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Abstract
In order to compare embedded graphs, many different distance measures have already been defined,
one of which is the contour tree distance. This measure was originally defined for the comparison of
contour trees of two surfaces and later extended naturally for the comparison of embedded trees and
graphs. We show that this first definition for graphs does not fulfill the properties of a metric and
propose an alternative definition that does. We also establish the relationship of the contour tree
distance to the Fréchet distance for curves and the graph distance for embedded graphs.

1 Introduction

For embedded graphs, there are many measures to determine their similarity. Buchin et
al. [4] survey several of these measures and which properties of a metric they fulfill. One of
the measures is the contour tree distance. It was originally introduced by Buchin, Ophelders
and Speckmann [3] and was motivated by the computation of the Fréchet distance of surfaces.
It was introduced to compare the contour trees of two surfaces. Its goal is to assign parts
of the contour trees that are similar to each other, but also take into account the structure
of the trees by only matching connected parts. As such it is a natural measure also for
comparing embedded trees in general. Since each point in a tree is assigned to a connected
subtree of the other graph and this assignment must be connected overall, it is implicitly
required that connected parts of one tree are assigned to connected parts of the other tree.

Later, this distance measure was naturally extended by [4] to embedded trees and graphs.
This provides a symmetric distance measure on trees that takes the structure of the trees
into account. However, this extension of the definition does not map the structure of general
graphs in the same way as for trees: Cycles in the graph can lead to connected parts of one
graph being mapped to non-connected components of the other graph.

In this paper, we consider undirected, connected graphs embedded in R2. In the following,
we show that the contour tree distance for general graphs as defined in [4] does not fulfill
the triangle inequality. We propose an alternative definition for the contour tree distance on
embedded graphs, which leads to the same distance values on trees as the original definition,
but also fulfills the properties of a metric for embedded graphs. In addition, we establish a
relationship between the contour tree distance and the Fréchet distance on curves [2] and
the graph distance [1], which is also based on the Fréchet distance.

2 Contour Tree Distance

Let G = (VG, EG) and H = (VH , EH) be two undirected, connected graphs with vertices
embedded as points in R2 that are connected by crossing free straight-line edges. In this
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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G H

Figure 1 A matching on two trees G and H. The black parts of the trees are matched point by
point with the next point in the other tree. There is no similar part in H to the red edge in G,
which is why it is “contracted” to the red node in H. The blue parts of the graphs are in a similar
position in the trees, but their structure is different. Therefore, each point in the blue part of G is
matched with the entire blue part in H and vice versa.

section, we introduce the definition of the contour tree distance on embedded graphs as
proposed by [4] and show that it does not fulfill the triangle inequality on graphs. For this,
we first define a class of matchings τ , which specifies the assignment between the graphs.

▶ Definition 2.1. A matching τ ∈ Mt(G, H) between graphs G and H has the following
properties:
1. τ is a connected subset of G × H.
2. For each x ∈ G, τ ∩ ({x} × H) (projected onto H) is a non-empty, connected subset of H.
3. For each y ∈ H, τ ∩ (G × {y}) (projected onto G) is a non-empty, connected subset of G.

Note that this definition is a natural generalization of the original definition for contour
trees [3]. The contour tree distance is then defined as the largest distance between two
matched points in an optimal matching.

▶ Definition 2.2. The contour tree distance dC between graphs G and H is defined as

δC(G, H) = inf
τ∈Mt(G,H)

sup
(x,y)∈τ

∥x − y∥2,

where ∥x − y∥2 is the Euclidean distance between the embeddings of x and y.

The measure thus assigns similar parts of the trees to each other while also incorporating
the structure of the entire trees, see for example Figure 1.

However, as can be seen in Figure 2 the structure of cycles is not preserved by this
matching definition. The preservation of the tree structure was realized by the connectedness
of the matching, but we can interrupt cycles at one point without destroying the entire
connection. This leads in particular to the fact that this definition does not fulfill the triangle
inequality on graphs, which can be seen in the example from Figure 3. We propose the
following alternative definition, which also takes into account the structure for cycles and is
thus closer to the intuition of the original distance for contour trees:
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Figure 2 The structure of cycles is not preserved with the definition for the contour tree distance
on graphs proposed in [4]. The left-hand image shows a minimal matching: The blue end point
of the path is matched with the blue marked part of the edge of the second graph, including the
point exactly in the middle of the two end points of the path (blue cross). The right end point is
matched with the part of the graph marked in red. The right-hand image shows the maximum
distance between two matched points. The overall distance is small, even though the structure of
the graphs is different.

Figure 3 An example where the triangle inequality is not fulfilled for the original extension of
the definition to graphs. The two paths in the left-hand image have a large contour tree distance,
which here equals the Fréchet distance of the paths. However, the distance of both paths to a cycle
placed in between is small, as in the right-hand image, which violates the triangle inequality.

▶ Definition 2.3. A matching τ ∈ Mg(G, H) between graphs G and H has the following
properties:
1. τ is a connected subset of G × H.
2. For each connected subset X ⊆ G, τ ∩(X×H) projected onto H is a non-empty, connected

subset of H.
3. For each connected subset Y ⊆ H, τ ∩(G×Y ) projected onto G is a non-empty, connected

subset of G.

This new definition of the matching class Mg corresponds to the definition of matchings
Mt on trees.

▶ Lemma 2.4. Let G and H be trees. Then Mg(G, H) = Mt(G, H).

Proof. Let τ ′ ∈ Mg(G, H), where G and H are trees. Since conditions 2 and 3 are fulfilled
in particular for individual points of the two graphs, both conditions also apply to matchings
from Mg and τ ′ ∈ Mt(G, H) follows.
Now let τ ′′ ∈ Mt(G, H). For a contradiction, we assume that a connected subset X exists
that violates Condition 2 of Mg(G, H). Then either an x ∈ X exists, which is not assigned
to any part of H, which leads to a contradiction due to Condition 2 of Mt(G, H), or X

is mapped to a non-connected subset of H. Let y1 and y2 be two points from different
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components of τ ′′ ∩ (X × H) projected onto H. Then x1 and x2 exist with (x1, y1) ∈ τ ′′

and (x2, y2) ∈ τ ′′. Since τ ′′ is connected according to Condition 1 of Mt(G, H), a path P

must exist between (x1, y1) and (x2, y2) in τ ′′. We now want to shorten this path until its
projection onto G corresponds to the unique simple path between x1 and x2. To do this,
we proceed as follows: Let ΠG(P ) be the projection of P onto G. Let x be a point on G

that is visited twice by ΠG(P ). Then there is a partial path P̃ of P that starts at a point
(x, y) and ends at (x, y′). We can now shorten this partial path by staying at the point x on
G and using the unique simple path from y to y′ on H. This path is also in our matching
τ ′′, since according to Condition 2 each point of G is matched with a connected subtree of
H. In this way, we can now replace each detour of our path on G and obtain a path in
our matching τ ′′ that corresponds to the simple path between x1 and x2 projected onto G.
Since X is connected and G is a tree, the unique path from x1 to x2 is in X and therefore
P should be in τ ′′ ∩ (X × H). However, since this is not connected, we get a contradiction.
Thus, condition 2 of Mg(G, H) applies and, analogously, it can be shown that condition 3 is
fulfilled. ◀

With the new class of matchings on graphs as in Definition 2.3, the proof from [4] can now
be used to show that the contour tree distance is a metric on embedded graphs.

3 Relationship to the Fréchet distance and the graph distance

In this section, we relate the contour tree distance to two known measures and show that it
is in a way a generalization of the Fréchet distance to graphs. We start by showing:

▶ Theorem 3.1. The contour tree distance on paths P and Q, when the start and end points
are matched, corresponds to the Fréchet distance of the two paths.

Proof. Assume P and Q have contour tree distance δC , i.e. there is a matching τ ∈ Mt(P, Q)
where matched points have at most distance δC and the start and end points of the paths
are matched. We want to show that traversals of P and Q with at most distance δC exist.
Since the start points s1 of P and s2 of Q as well as the end points t1 of P and t2 of Q are
matched, and τ is connected, there is a path in τ from (s1, s2) to (t1, t2). If we now project
this path onto P and Q respectively, we obtain common traversals of the two curves. We
can eliminate possible backward movements in a similar way as in the previous lemma. If
a point x on a curve is traversed twice, we change the traversals and wait at this point x

while we traverse the part between the two visits at x on the other curve. This part must be
completely matched with the point x, since each point is matched with a connected subset of
the other path. The distance is at most δC at any time, as we only traverse matched points
simultaneously. The Fréchet distance is therefore at most δC .

Assuming P and Q have Fréchet distance δ, then there are traversals of the two curves
with distance at most δ. We are looking for a matching τ ∈ Mt(P, Q) of the two curves with
width δ such that τ , τ ∩ ({x} × Q) projected on Q and τ ∩ (P × {y}) projected on P are
connected and non-empty for all x and y. To do this, we match exactly the points of the two
curves that are traversed at the same time. We now check the conditions of a matching:
1. Since the basis for the matching is a traversal, τ is connected.
2. τ ∩({x}×Q) is not empty, as every point of the curve is traversed during a traverse. As one

is not allowed to move backwards for the Fréchet distance when traversing, τ ∩ ({x} × Q)
projected on Q is connected.

3. Analogue to 2.



M. Buchin and L. Thiel 44:5

The distance between the matched points is at most δ, as only simultaneously traversed
points were matched. τ is therefore a valid matching for the contour tree distance, where
matched points have at most distance δ, so the contour tree distance is at most δ. Overall, it
follows that the contour tree distance on paths corresponds to the Fréchet distance. If one
does not require the start and end points of the respective paths to be matched, the contour
tree distance may be smaller. ◀

Since a matching assigns connected subsets of one graph to connected subsets of the other
graph, the following lemma is easily obtained:

▶ Lemma 3.2. Consider two graphs G and H and a matching τ ∈ Mg(G, H) of width δ.
Let (x1, y1) and (x2, y2) from τ be two matched pairs of points. Then for every simple path
P (x1, x2) ∈ G there exists a path P ′(y1, y2) ∈ H with δF (P, P ′) ≤ δ.

Finally, we compare the contour tree distance with another well-known measure for
graphs, the graph distance, which is based on the Fréchet distance and was introduced by [1].
The idea of this distance is to map one of the graphs onto a subgraph of the other that is as
similar as possible. For this, a mapping s : G → H is called a graph mapping if it maps each
vertex v ∈ VG to a point s(v) on an edge of H, and it maps each edge {u, v} ∈ EG to an
arbitrary simple path from s(u) to s(v) in the embedding of H.

▶ Definition 3.3. The directed graph distance δ⃗G of two graphs G and H is defined as

δ⃗G(G, H) = inf
s:G→H

max
e∈EG

δF (e, s(e)),

where s ranges over graph mappings from G to H, δF denotes the Fréchet distance, and e

and its image s(e) are interpreted as curves in the plane. The undirected graph distance is
defined as δG(G, H) = max(δ⃗G(G, H), δ⃗G(H, G)).

We can now show that the contour tree distance is “stronger” than the graph distance in the
sense that the contour tree distance is always at least as large as the graph distance:

▶ Theorem 3.4. If G and H are two embedded graphs, then δG(G, H) ≤ δC(G, H).

Proof. Let δC(G, H) = δ and τ ∈ Mg(G, H) be a matching that realizes the width δ. We
now construct a mapping s : G → H of width δ. Each node v of G is matched to a connected
part Y of the graph H by τ . We now map v to any point from Y . This means that all nodes
are mapped to a unique point, as required for the graph distance. The edges must now be
mapped to simple paths: We consider an edge e in G with the boundary nodes u and v.
Since the matching τ matches every connected subset of G, in particular our edge e, with a
connected part of H, there is a simple path in τ ∩ (e × H) that starts in τ ∩ ({u} × H) and
ends in τ ∩ ({v} × H). Since τ ∩ ({u} × H) and τ ∩ ({v} × H) projected on H are connected,
we even find a simple path p from s(u) to s(v) in τ ∩ (e × H). We now map our edge e onto
this path p. It remains to show that this path p has a maximum Fréchet distance of δ to e.
This holds because the contour tree distance on paths corresponds to the Fréchet distance if
the end points of the paths are matched, which is the case here. Overall, we therefore obtain
a graph mapping s : G → H of width δ. Similarly, we can construct a mapping s′ : H → G

of width δ. Thus, the claim is true. ◀

Note that there are also graphs for which the graph distance is arbitrarily smaller than
the contour tree distance, see Figure 4.
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�δG(P,Q) �δG(Q,P ) δC(P,Q)

Figure 4 Two paths P (red) and Q (blue), where the graph distance is smaller than the contour
tree distance. The black arrows show the respective maximum distance and, on the left and in
the center, also the points the nodes are mapped to. If P and the first and last edge of Q are
extended equally in the vertical direction, the contour tree distance becomes arbitrarily large, while
the directed graph distances remain the same.

4 Conclusion and open questions

We have shown that the contour tree distance with the new extension of the definition fulfills
the properties of a metric on embedded graphs. Moreover, we have shown connections of the
contour tree distance and the Fréchet distance on curves, as well as that the contour tree
distance is “stronger” than the graph distance in the sense that the contour tree distance for
two graphs is always at least as large as the graph distance. However, it has been shown [3]
that the computation of the original distance for contour trees is already NP-complete,
which can be transferred to embedded trees. The computation of the graph distance is
also NP-complete for embedded graphs, but can still be computed in polynomial time for
trees [1]. It would be interesting to find a distance that lies between the graph distance
and the contour tree distance. In other words, a natural symmetrical distance, just like the
contour-tree distance, with the strongest possible requirements for maintaining the structure,
but which, like the graph distance, can be computed efficiently, at least for trees. Such a
distance could possibly be used to efficiently approximate the contour tree distance.
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Abstract
Consider a dynamic set S of n distinct positive integers and some integer ε > 0. Denote by FS the
two-dimensional point set obtained by mapping each s ∈ S to (rank(s), s). We dynamically maintain
an xy-monotone set of line segments f , such that for all p ∈ FS , the horizontal line segment with
radius ε centred at p intersects a line in f . Our algorithm has O(log2 n) worst-case update time and
maintains a 3

2 -approximation of the minimum-cardinality set of line segments with this property.

Related Version http://arxiv.org/abs/2503.05007

1 Introduction

Consider a dynamic set S of n distinct positive integers. For any value q, we denote by
rank(q) the rank of q if inserted in the sorted order of S. For a fixed integer ε, a learned
index [4, 8, 9, 11, 12] is a function h : U → [0, n] where ∀q ∈ U , h(q) ∈ [rank(q)−ε, rank(q)+ε].
Ferragina and Vinciguerra [8] observe that such a function h is of a geometric nature:

Denote by FS the two-dimensional point set obtained by mapping each s ∈ S to
(rank(s), s). For a fixed integer ε, we define an ε-cover f of S as an xy-monotone set
of line segments such that for each point p ∈ FS , the horizontal line segment of radius ε

intersects a line segment in f . Ferragina and Vinciguerra [8] show that an ε-cover implies
a learned index, whose complexity is linear in the number of line segments in f (Figure 1).
Thus, we are interested in computing an ε-cover of minimum cardinality. Ferragina and
Vinciguerra [8] show an algorithm that, given S in its sorted order, computes in linear time
an ε-cover of f whose cardinality is a 3

2 -approximation of the minimum-cardinality ε-cover.
In applied settings, recomputing static solutions might be prohibitive. We use classical

techniques from computational geometry to dynamically maintain a 3
2 -approximate minimum-

cardinality ε-cover in O(log2 n) time per insertion in S.

a) b) c)

q (h(q), q)

q′

(h(q′), q′)

2ε

Figure 1 (a) a set of n values S. (b) The xy-monotone point set FS . (c) an ε-cover f of FS
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2 Testing whether a set can be ε-covered by a single segment

To solve our problem, we first consider the following subproblem: given ε, a set of integers S

with no duplicates, and the edges of CH(FS) in a balanced binary tree, can we compute in
O(log n) time whether an ε-cover f of complexity 1 exists and, if so, can we output f?

Denote by A (or, B) the point set obtained by shifting each p ∈ FS rightwards by ε and
adding (∞,−∞) (or, leftwards by ε, adding (−∞,∞))

▶ Lemma 2.1. Let ℓ be a line with positive slope. Then ℓ is an ε-cover of S if and only if ℓ

lies below all points in B and above all points in A.

Proof. Any line with positive slope lies above (∞,−∞) and below (−∞,∞). Consider a
point p ∈ FS and the two corresponding points l ∈ A and u ∈ B. Denote by Cp a horizontal
segment centred at p of radius ε > 0. If ℓ lies below l then all points on ℓ left of l lie below
C. If ℓ lies above u then all points on ℓ right of u lie above C. If ℓ lies above l and below u

then because ℓ has positive slope, it must intersect C. The statement follows. ◀

▶ Corollary 2.2. A line is an ε-cover of S if and only if it separates CH(A) and CH(B).

Given CH(FS), we can extract CH(A) and CH(B) in logarithmic time (we implicitly translate
all points horizontally by +ε or −ε). Chazelle and Dobkin [3, Section 4.2] remark that
hull intersection testing, in the negative case, ‘can be modified’ to output a separating
line. However, no explicit algorithm is given. All subsequent 2-dimensional intersection
testing algorithms [6, 2, 7, 13, 5, 1], also contain no algorithmic description for obtaining a
separating line in the negative case. We provide an adaptation of the O(log n)-time convex
hull intersection testing algorithm by Chazelle and Dobkin [2], restricted to convex hulls of
edges with positive slope that contain (∞,−∞) and (−∞,∞). We then develop an algorithm
for computing a separating line in the negative case.

3 Separating lines of convex hulls

Consider two convex hulls CH(A) and CH(B), where CH(A) contains (∞,−∞), CH(B)
contains (−∞,∞) and all convex hull edges have positive slope. We present an algorithm
based on [2] that compares pairs of edges (α, β) ∈ CH(A)×CH(B), and decides in O(log n)
time whether these two hulls intersect. For completeness, we show in the full version the
correctness of this adaption:

▶ Theorem 3.1. Algorithm 1 outputs in O(log n) time whether CH(A) and CH(B) intersect.
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Algorithm 1 intersection_test(edge α ∈ CH(A), edge β ∈ CH(B) )
1: if α = null OR β = null then
2: return No
3: end if
4: s(α, β) = line(α) ∩ line(β)
5: if s ∈ α and s ∈ β then
6: return Yes
7: end if
8: if α.slope > β.slope then ▷ .slope denotes the slope of an edge
9: if α.second.x < s(α, β).x then ▷ .first and .second denote endpoints of edges

10: return intersection_test(α.right, β) ▷ .left and .right denote children in tree
11: else if β.second.x < s(α, β).x then
12: return intersection_test(α, β.right)
13: else if α.first.x > β.second.x AND α.first.y > β.second.y then
14: return intersection_test(α, β.right)
15: else if α.second.x < β.first.x AND α.second.y < β.first.y then
16: return intersection_test(α.right, β)
17: else
18: return yes
19: end if
20: else if α.slope < β.slope then ▷ Symmetric to the above case
21: if α.first.x > s(α, β).x then
22: return intersection_test(α.left, β)
23: else if β.first.x > s(α, β).x then
24: return intersection_test(α, β.left)
25: else if α.first.x > β.second.x AND α.first.y > β.second.y then
26: return intersection_test(α.left, β)
27: else if α.second.x < β.first.x AND α.second.y < β.first.y then
28: return intersection_test(α, β.left)
29: else
30: return yes
31: end if
32: else ▷ The parallel edge case, α.slope = β.slope
33: if line(β) is above line(α) then
34: return No
35: else if α.first.x > β.second.x AND α.first.y > β.second.y then
36: return intersection_test(α.left, β)
37: else if α.second.x < β.first.x AND α.second.y < β.first.y then
38: return intersection_test(α, β.left)
39: else
40: return No
41: end if
42: end if

Our main focus is on what to do whenever Algorithm 1 outputs that CH(A) and CH(B)
do not intersect. In this case, we show how to find a line that separates CH(A) and CH(B)
in O(log n) time. Algorithm 1 outputs no in two cases. The first case is the special case
where there exist two parallel edges α ∈ CH(A) and β ∈ CH(B) where line(β) lies above
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line(α). In this case both line(α) and line(β) are a separating line.
The second case is that either argument of the function was null. Without loss of generality,

we assume that β was null. Then there exist two pairs of edges (α, β), (a, b) ∈ CH(A)×CH(B)
where intersection_test(α, β) recurses on β.right and intersection_test(a, b) recurses
on b.left. Moreover, the edges β and b must share a vertex. We define the following:

▶ Definition 3.2. For any edge α, we denote by ←−α and −→α its two supporting halflines. For
edges (β, b) that share a vertex with β left of b, we denote by w(β, b) =←−β ∪ −→b their wedge.

By keeping track of the traversal of Algorithm 1, we obtain w(β, b) at no overhead.

▶ Lemma 3.3. Let Algorithm 1 terminate without finding an intersection between CH(A)
and CH(B) and denote by w(β, b) the corresponding wedge. Then, the halfline ←−β cannot
intersect CH(A), and the halfline −→b cannot intersect CH(A).

Proof. We first prove that the halfline ←−β cannot intersect CH(A). Then there exists some
α ∈ CH(A) where intersection_test(α, β) recurses on β.right. Thus, slope(α) > slope(β).
Define s(α, β) = line(α) ∩ line(β). Observe that intersection_test(α, β) recurses on
β.right in two cases. The first case is whenever β.second.x < s(α, β).x. Since CH(A) lies in
the plane upper bounded by line(α) this implies that ←−β cannot intersect CH(A).

In the second case, the vertex α.first dominates β.second (Figure 2 (a)). Suppose for the
sake of contradiction that←−β intersects CH(A) in some point q left of β.second. Since line(β)
has positive slope, β.second must dominate q. Consider the convex area G bounded by a
curve γ that traverses CH(A) backwards until q, after which it becomes a vertical downward
halfline. It follows that β.second is contained in G ⊆ CH(A). This implies that CH(A) and
CH(B) intersect which is a contradiction. The argument that shows that −→b cannot intersect
CH(A) is symmetric (see Figure 2 (b)) and can be found in the full version. ◀

a)
s(α, β)

β

α

ba
q

b)
q

Figure 2 (a) If there exists an edge α of CH(A) that dominates β and −→β intersects CH(A) in a
point q then we may argue that β is contained in CH(A). (b) If there exists an edge a of CH(A)
that is dominated by an edge b then we make the symmetrical argument.

Given the edge w(β, b) we run Algorithm 2, starting with the root of α.

▶ Lemma 3.4. Algorithm 2 outputs an edge in CH(A) ∪ CH(B) whose supporting line
separates CH(A) and CH(B).

Proof. There always exists an edge on CH(A) or CH(B) whose supporting line separates
the two convex hulls [3]. Our algorithm always finds either an edge of CH(A), or guarantees
that for all edges in CH(A) their supporting line intersects w(β, b). Indeed, since CH(B) is
contained in w(β, b), a line line(α) separates the two hulls if it does not intersect w(β, b).

Whenever line(α) does intersect w(β, b), either ←−α or −→α must intersect w(β, b). Let ←−α
intersect w(β, b). Any edge a ∈ CH(A) succeeding α must have lower slope and so ←−a must
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Algorithm 2 separation_find(wedge w(β, b), edge a ∈ CH(A)
1: if α = null then
2: return line(β) or line(b)
3: end if
4: if line(α) ∩ w(β, b) = ∅ then
5: return line(α)
6: else if ←−α ∩ w(β, b) ̸= ∅ then
7: return separation_find( w(β, b), α.left)
8: else
9: return separation_find(β, b, α.right)

10: end if

intersect w(β, b). Similarly, if −→α intersects w(β, b) for any edge a ∈ CH(A) preceding α,
−→a intersects w(β, b). Since A starts with a vertical downwards halfline and ends with a
horizontal rightwards halfline, it cannot be that for all edges a ∈ CH(A) the halfline ←−a
intersects w(β, b) (the same is true for −→a ). Thus, if Algorithm 2 does not output an edge
α ∈ CH(A) then there must exist two consecutive edges (γ, g) on CH(A) such that: for all
edges γ′ of CH(A) preceding and including γ,

−→
γ′ intersects w(β, b), and, for all edges g′ of

CH(A) succeeding an including g, ←−g intersects w(β, b). We conclude the argument:

If −→β does not intersect CH(A) then by Lemma 3.3, line(β) separates CH(A) and CH(B).
If←−b does not intersect CH(A) then by Lemma 3.3, line(b) separates CH(A) and CH(B).
If −→β intersects CH(A) in an edge γ′ that equals or precedes γ then the halfline

−→
γ′

intersects w(β, b). The halfline
−→
γ′ cannot intersect ←−β since γ′ is already intersected by−→

β . So, −→b intersects
−→
γ′ (Figure 3). In particular, ←−b does not intersect line(γ′).

We now note that all edges of CH(A) are contained in the halfplane bounded from above
by γ′. And so, ←−b cannot intersect any edge of CH(A). Lemma 3.3 guarantees that −→b
cannot intersect CH(A) and so line(b) separates CH(A) and CH(B).
If the edge ←−b intersects CH(A) in an edge g′ that equals or succeeds g then it follows by
symmetry that line(β) separates CH(A) and CH(B).
It cannot be that −→β intersects CH(A) on an edge strictly succeeding γ and that ←−b
intersects CH(A) in an edge strictly preceding g.

We showed that Algorithm 2 either outputs a edge α where line(α) separates CH(A) and
CH(B), or, that either line(β) or line(b) separates CH(A) or CH(B). ◀

4 Dynamically maintaining an ε-cover

For an ε-cover f of S, we define Λ(f) as the set of pairwise interior-disjoint one-dimensional
intervals that correspond to the y-coordinates of segments in f . We denote for integers
a, b ∈ S with a ≤ b by S[a, b] the subsequence of S from a to b. For each [a, b] ∈ Λ(f), we
maintain a rank-based convex hull T (S[a, b]) of S[a, b] as described in [10].

▶ Theorem 4.1. We can dynamically maintain an ε-cover f of S in O(log2 n) worst-case
time. We guarantee that there exists no ε-cover f ′ of S where |f | > 3

2 |f ′|.

Proof. The proof is illustrated by Figure 4. For any s, t ∈ Z with s ≤ t, we say that S[s, t]
is blocked if there exists no ε-cover of S[s, t] of size 1. We maintain an ε-cover f where for all
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β
b

γ′

a)

β

b

g′

b)

Figure 3 (a) Let γ′ ∈ CH(A) be an edge where
−→
γ′ intersects −→b . Then ←−b does not intersect the

supporting line of γ′. However, then ←−b cannot intersect any edge of CH(A). (b) Let g′ ∈ CH(B)
be an edge where

←−
g′ intersects ←−β . Then −→β does not intersect the supporting line of g′.

consecutive [a, b], [c, d] ∈ Λ(f), S[a, d] is blocked. Thereby, |f | ≤ 3
2 |f ′| for any ε-cover f ′ of S

(for completeness, we give a proof of this fact in the full version).
We consider inserting a value s into S; deletions are handled analogously. We test in

O(log n) time whether s ∈ S. If so, we reject the update. Otherwise, we search in O(log n)
time for the interval [a, b] ∈ Λ(f) that contains s. If no such interval exists, set [a, b] = [s, s].

We remove [a, b] from Λ(f) and insert the intervals ([a, s], [s, s], [s, b]). We obtain T (S[a, s]),
T (S[s, s]) and T (S[s, b]) through the split operation.

Let ([w, x], [y, z], [a, s], [s, s], [s, b], [c, d], [e, f ]) be consecutive intervals in Λ(f) and denote
I = ([y, z], [a, s], [s, s], [s, b], [c, d]) (see Figure 4 (c)). For each (s, t) ∈ I, we have access to
T (S[s, t]). For any consecutive pair ([s, t], [q, r]) in I, we may join the trees T (S[s, t]) and
T (S[q, r]) in O(log2 n) time to obtain T (S[s, r]). We then apply Theorem 3.1 to test in
O(log2 n) total time whether S[s, r] is blocked. If it is not, we replace [s, t] and [q, r] by [s, r].
Otherwise, we have found T (S[s, r]) and a segment that is an ε-cover of S[s, r].

By recursively merging pairs in I, we obtain in O(log2 n) time a sequence I ′ of intervals
([y, β], . . . , [γ, d]) where consecutive intervals are blocked. Since [y, z] ⊆ [y, β], ([w, x], [y, β]) is
blocked. Similarly, ([γ, d], [e, f ]) must be blocked. We remove the line segments corresponding
to I from f and replace them with line segments derived from I ′ in constant time. As a
result, we maintain our ε-cover f and our data structure in O(log2 n) total time. ◀

a) b)

[y, z]

[a, b]

[c, d]

[e, f ]

[w, x]

c) d)

s I I ′

Figure 4 (a) Let S be a set of values and let us insert s. (b) We consider our ε-cover f and five
consecutive intervals in Λ(f). (c) We create seven intervals by splitting [a, b] on s. (d) By recursively
merging intervals in I, we obtain a set of intervals I ′ where consecutive intervals are blocked.
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Abstract
In programmable matter, we consider a large number of tiny, primitive computational entities called
particles that run distributed algorithms to control global properties of the particle structure. In
this paper, we study the shape containment problem, where the particles are given a description of a
shape S and have to find maximally scaled representations of S within their initial configuration. We
use the geometric amoebot model for programmable matter with its reconfigurable circuit extension,
which allows the instantaneous transmission of primitive signals on connected subsets of particles.
We first prove a lower runtime bound of Ω (

√
n) synchronous rounds for the general problem, where

n is the number of particles. Then, we construct the class of snowflake shapes and its subclass of
star convex shapes, and present solutions for both. Let k be the maximum scale of the considered
shape in a given amoebot structure. If the shape is star convex, we solve it within O (log2 k) rounds.
If it is a snowflake but not star convex, we solve it within O (

√
n log n) rounds.

Related Version A full version of the paper can be found on arXiv: https://arxiv.org/abs/2501.
16892.

1 Introduction

Programmable matter envisions a material that can change its physical properties in a
programmable fashion [15] and react to external stimuli. It is typically viewed as a system
of many identical micro-scale computational entities called particles. Potential applications
include minimally invasive surgery, maintenance, exploration, and manufacturing. While
significant progress is being made in the field of micro-scale robotics [16, 3], the fundamental
capabilities and limitations of such systems are studied in theory using various models [14].

In the amoebot model of programmable matter, the particles are called amoebots and
are placed on the nodes of a graph. We assume that the occupied nodes form a connected
subgraph. Since information can only travel through the edges of the graph, there is a natural
lower bound of Ω (D) for many problems, where D is the diameter of this subgraph.

Motivated by this, we consider the reconfigurable circuit extension of the model, which
allows better results with reasonable modifications. In this extension, the amoebots can
construct simple communication networks called circuits on connected subgraphs of the
structure and broadcast primitive signals on the circuits instantaneously. This allows poly-
logarithmic solutions to many problems, e. g., leader election, consensus, shape recognition,
and shortest path forest construction [8, 12, 11].

∗ This work was supported by the DFG Project SCHE 1592/10-1. We want to thank Daniel Warner for
his guidance and helpful discussions.
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The shape formation problem, where the amoebot structure must reconfigure itself into a
given shape, is a standard problem of particular interest [14]. We study the related shape
containment problem: Given a shape S, the amoebots must find the maximum scale at which
S can be placed within their structure and identify all valid placements at this scale. This
can be useful for shape formation by self-disassembly, i. e., disconnecting all amoebots that
are not part of a selected placement of the shape from the structure [10, 9]. The problem
can also be interpreted as a discrete variant of the polygon containment problem in classical
computational geometry, which has been studied extensively [4, 13]. To our knowledge, there
are no distributed solutions that apply to the amoebot model.

2 Geometric Amoebot Model

The geometric amoebot model, as introduced in [6], places n ∈ N amoebots on the infinite
regular triangular grid graph G∆ = (V∆, E∆). Each amoebot occupies one node and each
node is occupied by at most one amoebot. We call the set of occupied nodes A ⊂ V∆ the
amoebot structure and assume that its induced subgraph is connected (see Fig. 1a). The
amoebots are identical and anonymous finite state machines. Although the model allows
amoebots to perform movements, we only consider static amoebot structures in this paper.

3 Reconfigurable Circuit Extension

The reconfigurable circuit extension [8] places c external links on every edge connecting two
adjacent amoebots u, v ∈ A. The end points of an external link are called pins. For each
link, one pin is owned by u and one is owned by v. The constant c is an algorithm design
parameter and is the same for all amoebots. In this paper, we use c = 2, which is the least
number of pins required by the PASC algorithm [8], the central primitive for our results.

Let P (u) be the set of pins owned by u ∈ A. Each amoebot u partitions P (u) into
pairwise disjoint subsets Q ⊆ P (u) called partition sets to define its pin configuration Q(u)
such that P (u) =

⋃
Q∈Q(u) Q. Let Q :=

⋃
u∈A Q(u) be the set of all partition sets in the

structure. Two partition sets Q ∈ Q(u) and Q′ ∈ Q(v) of neighboring amoebots u and v

are connected if there is an external link with one pin in Q and one pin in Q′. Let EQ be
the set of these connections. We call each connected component of the undirected graph
GQ := (Q, EQ) a circuit (see Figs. 1c,d). For example, if each amoebot collects all pins in a
single partition set, there is only one circuit, spanning the whole structure (a global circuit).

During its activation, each amoebot can establish an arbitrary new pin configuration and
send primitive signals called beeps on any selection of its partition sets. A beep is broadcast
to the circuit containing the partition set it was sent on. It is received by all partition sets of
that circuit in the next round. An amoebot can tell which of its partition sets have received
a beep, but it has no information on the identity, location, or number of beep origins.

The activation model is fully synchronous: Time is divided into synchronous rounds so
that in each round, all amoebots are activated simultaneously. During its activation, an
amoebot can update its state, change its pin configuration, and send beeps, all depending on
its current state, received beeps from the last round, and observations about its neighbors.
We measure the time complexity of an algorithm by the number of rounds it requires.

4 Problem Statement

Consider the embedding of G∆ into R2 such that the edges form unit triangles and one
node is placed on the origin (see Fig. 1b). We obtain three coordinate axes and six cardinal



M. Artmann, A. Padalkin, and C. Scheideler 46:3

(a) Amoebot structure.

X

YZ E

NENW

W

SW SE

(0, 0) u
E

(b) Grid axes and cardinal directions.

(c) Amoebot structure with one global circuit. (d) Amoebot structure with six circuits.

Figure 1 (a) An amoebot structure in the triangular grid. Amoebots are black hexagonal nodes
and neighbors are connected by thick edges. (b) The axes and cardinal directions in the triangular
grid and the unit vector in the East direction. (c, d) The reconfigurable circuit extension for c = 2.
Amoebots are drawn as hexagons, pins are black circles on their borders and partition sets are
drawn as black circles inside the hexagons. The partition sets are connected to the pins they contain.
Partition sets in the same circuit have lines of the same color.

directions D = {E, NE, NW, W, SW, SE}. A shape S ⊂ R2 is a finite union of nodes, edges
and faces of the embedded grid graph (see Fig. 2, c. f. [7, 8]). Edges contain their endpoints
and faces contain their enclosing edges. A shape must be connected but it may contain holes,
i. e., R2 \ S might not be connected.

We define translation and scaling operations on shapes as follows: For t ∈ V∆ and k ∈ N0,
let S + t := {p + t | p ∈ S} and k · S := {k · p | p ∈ S}, where t is interpreted as a point in R2

to simplify notation. For r ∈ Z, let S(r) denote S after r counter-clockwise rotations by 60◦

around the origin, defining a rotation operation. Observe that r ∈ {0, . . . , 5} is sufficient.
Let V (S) ⊂ V∆ be the set of nodes contained in S. For simplicity, we assume (0, 0) ∈ V (S)

for any given shape S and call this node the origin of S. A valid placement of S in an amoebot
structure A is an amoebot p ∈ A with V (S + p) ⊆ A . Let V(S, A) be the set of all valid
placements of S in A. The maximum scale kmax(S, A) of a shape S in an amoebot structure

S1 S2 = S
(3)
1

S3 S4 = 2 · S3 S5 = 3 · S3

Figure 2 Examples of shapes and shape operations. Each shape is composed of grid nodes, edges
and faces. The origin of a shape is highlighted in white. S2 is the result of rotating S1 by 180◦ (and
translating it for better visibility). The shapes S3, S4 and S5 illustrate the scaling operation.
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S

p1

p2q

p3 kmax = 3

Figure 3 Valid placements of a shape S in the amoebot structure A from Fig. 1a. p1 and p2 are
valid placements of S and S(1), respectively. q is not a valid placement of S(5) because one node of
V (S(5) + q) is not contained in A. p3 is the only valid placement of 3 · S(5) and there are no valid
placements for any scale k > 3, so we have kmax(S, A) = 3. A shape containment algorithm allows
p3 to determine p3 ∈ V(kmax · S(5), A) and rules out all other amoebots and rotations.

A is the maximum k ∈ N0 for which there exists an r ∈ {0, . . . , 5} with V(k · S(r), A) ̸= ∅.
We only consider shapes with at least one edge, which ensures that kmax exists.

An algorithm solves the shape containment problem instance (S, A) if it determines
whether k = kmax(S, A) = 0 or k > 0 and, if k > 0, for every r ∈ {0, . . . , 5}, every amoebot
knows whether it is in V(k · S(r), A) (see Fig. 3). We say that the algorithm solves the shape
containment problem for S if it solves the problem instances (S, A) for all amoebot structures
A. The algorithm may use a translated version of S as long as it contains the origin.

We will first present a lower bound of Ω (
√

n) rounds for computing V(k · S, A) that holds
for an example shape S. Then, we combine several efficient primitives avoiding this lower
bound to obtain the class of snowflake shapes, for which we solve the shape containment
problem in O (

√
n log n) rounds. Finally, we identify a subset of shapes for which kmax can

be determined with a binary search, leading to an O (log2 kmax(S, A)) solution.

5 Related Work

The authors of [8] introduced the reconfigurable circuit extension with algorithms solving
the leader election, compass alignment, and chirality agreement problems within O (log n)
rounds, w.h.p.1 They also presented efficient solutions for some exact shape recognition
problems. An amoebot structure can determine whether it matches a scaled version of a
given shape composed of edge-connected faces in O (1) rounds. Further, parallelograms with
linear or polynomial side ratios can be detected in Θ (log n) rounds, w.h.p.

The PASC algorithm was introduced in [8, 12] and plays a crucial role for the results of
this paper. It allows the computation of distances and was used to construct spanning trees
and detect symmetry in polylogarithmic time, w.h.p. [12]. The authors in [11] used it to
solve the shortest path forest problem, requiring O (log ℓ) rounds for a single source with ℓ

destinations and O (log n log2 k) rounds for k sources with any number of destinations.
In the context of computational geometry, the basic polygon containment problem was

studied in [4], focusing on the case where only translation and rotation are allowed. The

1 An event holds with high probability (w.h.p.) if it holds with probability at least 1 − n−c, where the
constant c can be made arbitrarily large.
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problem of finding the largest copy of a convex polygon inside some other polygon was
discussed in [13] and [1], for example. Perhaps more closely related to our setting (albeit
centralized) is an algorithm that solves the problem of finding the largest area parallelogram
inside of an object in the triangular grid, where the object is a set of edge-connected faces [2].

6 Results

For the lower bound, we can show that for some shape S (see Fig. 4 (g)) and every amoebot
algorithm A that terminates after o (

√
n) rounds, there exists an amoebot structure A for

which A does not compute V(kmax(S, A) · S, A), even if kmax(S, A) is already known. This
works because for shape 4 (g), we can construct many similar amoebot structures with different
solution sets while forcing the relevant placement information to travel through a bottleneck
shared by the structures. This bottleneck prevents any algorithm from distinguishing between
the solution sets within o (

√
n) rounds.

For the upper bounds, we use the fact that amoebots can establish distributed binary
counters to store and manipulate numbers by storing one bit in each amoebot along a
path [5, 12]. The amoebots can then perform basic arithmetic operations with straightforward
implementations of the standard written algorithms using circuits. Most of our primitives are
applications of the PASC algorithm (see [8, 12]) combined with binary counters. The basic
operation is to run the PASC algorithm on a straight line of amoebots, which allows each
amoebot to compute its distance d to the start of the line bit by bit. Simultaneously, the
bits of a value ℓ stored in a binary counter are transmitted on a global circuit, allowing each
amoebot to compare d to ℓ. This way, we can identify lines of length ℓ in A. By manipulating
ℓ and choosing appropriate lines to run the procedure, we can realize the following operations.

Let L(d, ℓ) denote the line shape consisting of ℓ consecutive edges in some direction d ∈ D
and let T(d, ℓ) denote the triangle with side length ℓ that is spanned by L(d, ℓ) and L(d, ℓ)(1)

and contains all enclosed faces. Given ℓ in a binary counter, the amoebots can find all valid
placements of L(d, ℓ) and T(d, ℓ) within O (log min{ℓ, n}) rounds.

We now introduce primitives for transforming valid placements of one shape into valid
placements of another shape. Observe that p ∈ A is a valid placement of S1 ∪ S2 if and
only if it is a valid placement of both S1 and S2. Thus, given the valid placements of two
shapes, the amoebots immediately know the valid placements of their union. Next, consider
the Minkowski sum of two shapes: S1 ⊕ S2 := {p1 + p2 | p1 ∈ S1, p2 ∈ S2}. Applying this
operation to a shape S and a line results in a "stretched" shape S ⊕ L(d, ℓ). Given the valid
placements of S and the length ℓ in a binary counter, our stretch primitive computes the
valid placements of S ⊕ L(d, ℓ) in O (log min{ℓ, n}) rounds. Finally, the shift primitive allows
us to move the origin of some shapes in a cardinal direction, while adding edges to maintain
connectivity. Note that moving the origin changes the positions of valid placements in the
amoebot structure and the outcome of the union operation with this shape. The additional
edges are a result of the operation itself. Given the valid placements of S and ℓ in a binary
counter, the amoebots find the valid placements of (S + ℓ · ud) ∪ L(d, ℓ) in O (log min{ℓ, n})
rounds, where ud denotes the unit vector in direction d. This always works if S = S′ ⊕L(d, ℓ′)
for some ℓ′ ∈ N.

We define the class of snowflake shapes recursively as all shapes that can be constructed
by applying the union, stretch, and shift primitives a finite number of times to lines, triangles,
and other snowflakes (see Fig. 4). By construction, the valid placements of a snowflake can
be computed by applying the primitives sequentially and storing the valid placements of the
intermediate shapes. For any given snowflake S, there is a sequence of these primitives with
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(c)

(d)

(e)
(f)

(a)

(b)

(g)

(h)

(i)

Snow�akes and equivalentsStar convex shapes Other shapes

Figure 4 Examples of snowflakes, star convex shapes, and non-snowflake shapes. Green nodes are
star convex shape centers, encircled blue nodes are possible snowflake origins, and origins used for
operations have a white center. All center nodes are also snowflake origins. Shape (a) is convex and
shape (b) demonstrates that not all snowflake origins must be center nodes. Shape (c) is a union of
lines, (d) is the Minkowski sum of (c) and L(E, 1), (e) is the result of shifting (d) by 2uE, and shape
(f) is the union of six rotated variants of (e). (g) is the example shape for the lower bound.

constant length, which we encode in the amoebots’ states to represent S. If a scale factor
k is given in a binary counter, the amoebots take O (log min{k, n}) rounds to find all valid
placements of k · S.

A shape S is star convex if it has no holes and contains a center node c ∈ V (S) such
that for every other node v ∈ V (S), every shortest path from c to v in G∆ is contained in S.
We can show that every star convex shape is a snowflake (up to translation) and there is a
surprising equivalent definition: A shape S is star convex if and only if for all scales k, k′ ∈ N
with k < k′, there exists a t ∈ V∆ such that k · S + t ⊆ k′ · S. Therefore, if S is star convex
and there are no valid placements of k · S(r) in A for any rotation r, then kmax(S, A) < k. We
use this fact to find the maximum scale of a star convex shape S by applying an exponential
search to find an upper bound K ≤ 2 · kmax(S, A), followed by a binary search in {1, . . . , K}.
Thereby, we only construct the valid placements for O (log kmax(S, A)) different scale factors,
all of which have size O (kmax(S, A)). For snowflakes that are not star convex, we run a
linear search instead, checking the scale factors K, K − 1, . . . , kmax(S, A) for some upper
bound K computed beforehand. It turns out that for non-star convex snowflakes, we can use
K ≤ kmax(T(d, 1), A) = O (

√
n). This leads to the main result of the paper:

▶ Theorem 6.1. Let A be an amoebot structure and S be a snowflake shape. Programmed
with a representation of S, the amoebots can compute k = kmax(S, A) in a binary counter
and determine V(k · S(r), A) for all r ∈ {0, . . . , 5} within O (log2 k) rounds if S is star convex
and O (K log K) rounds otherwise, where k ≤ K = kmax(T(E, 1), A) = O (

√
n).

References
1 Pankaj K. Agarwal, Nina Amenta, and Micha Sharir. Largest Placement of One Convex

Polygon Inside Another. Discrete & Computational Geometry, 19(1):95–104, 1998. doi:
10.1007/PL00009337.

2 Md Abdul Aziz Al Aman, Raina Paul, Apurba Sarkar, and Arindam Biswas. Largest
Area Parallelogram Inside a Digital Object in a Triangular Grid. In Reneta P. Barneva,



M. Artmann, A. Padalkin, and C. Scheideler 46:7

Valentin E. Brimkov, and Giorgio Nordo, editors, Combinatorial Image Analysis - 21st
International Workshop (IWCIA), volume 13348 of LNCS, pages 122–135, Cham, 2022.
Springer. doi:10.1007/978-3-031-23612-9_8.

3 Ahmed Amine Chafik, Jaafar Gaber, Souad Tayane, Mohamed Ennaji, Julien Bourgeois,
and Tarek El Ghazawi. From Conventional to Programmable Matter Systems: A Review
of Design, Materials, and Technologies. ACM Comput. Surv., 56(8):210:1–210:26, 2024.
doi:10.1145/3653671.

4 Bernard Chazelle. The Polygon Containment Problem. Advances in Computing Research,
1(1):1–33, 1983.

5 Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Schei-
deler, and Andréa W. Richa. Convex Hull Formation for Programmable Matter. In Nandini
Mukherjee and Sriram V. Pemmaraju, editors, 21st International Conference on Distributed
Computing and Networking, ICDCN ’20, pages 1–10, New York, NY, USA, 2020. ACM.
doi:10.1145/3369740.3372916.

6 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief Announcement: Amoebot - A New Model for Programmable
Matter. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 220–222, Prague, Czech Republic, 2014. ACM. doi:10.1145/2612669.
2612712.

7 Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, 33(1):69–
101, 2020. doi:10.1007/s00446-019-00350-6.

8 Michael Feldmann, Andreas Padalkin, Christian Scheideler, and Shlomi Dolev. Coordinating
Amoebots via Reconfigurable Circuits. Journal of Computational Biology, 29(4):317–343,
2022. doi:10.1089/cmb.2021.0363.

9 Melvin Gauci, Radhika Nagpal, and Michael Rubenstein. Programmable Self-disassembly
for Shape Formation in Large-Scale Robot Collectives. In Roderich Groß, Andreas Kolling,
Spring Berman, Emilio Frazzoli, Alcherio Martinoli, Fumitoshi Matsuno, and Melvin Gauci,
editors, Distributed Autonomous Robotic Systems: The 13th International Symposium,
volume 6 of Springer Proceedings in Advanced Robotics, pages 573–586, Cham, 2018.
Springer. doi:10.1007/978-3-319-73008-0_40.

10 Kyle W. Gilpin. Shape Formation by Self-Disassembly in Programmable Matter Systems.
Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012.

11 Andreas Padalkin and Christian Scheideler. Polylogarithmic Time Algorithms for Shortest
Path Forests in Programmable Matter. In Ran Gelles, Dennis Olivetti, and Petr Kuznetsov,
editors, 43rd ACM Symposium on Principles of Distributed Computing, PODC ’24, pages
65–75, New York, NY, USA, 2024. ACM. doi:10.1145/3662158.3662776.

12 Andreas Padalkin, Christian Scheideler, and Daniel Warner. The Structural Power of
Reconfigurable Circuits in the Amoebot Model. In Thomas E. Ouldridge and Shelley
F. J. Wickham, editors, 28th International Conference on DNA Computing and Molecular
Programming (DNA 28), volume 238 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 8:1–8:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.DNA.28.8.

13 Micha Sharir and Sivan Toledo. Extremal polygon containment problems. Computational
Geometry, 4(2):99–118, 1994. doi:10.1016/0925-7721(94)90011-6.

14 Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. A survey of autonomous self-
reconfiguration methods for robot-based programmable matter. Robotics and Autonomous
Systems, 120:103242, 2019. doi:10.1016/j.robot.2019.07.012.

EuroCG’25



46:8 On the Shape Containment Problem within the Amoebot Model

15 Tommaso Toffoli and Norman Margolus. Programmable Matter: Concepts and Realization.
International Journal of High Speed Computing, 05(02):155–170, 1993. doi:10.1142/
S0129053393000086.

16 Lidong Yang, Jiangfan Yu, Shihao Yang, Ben Wang, Bradley J. Nelson, and Li Zhang. A
Survey on Swarm Microrobotics. IEEE Transactions on Robotics, 38(3):1531–1551, 2022.
doi:10.1109/TRO.2021.3111788.



On plane cycles in geometric multipartite graphs
Marco Ricci, Jonathan Rollin, André Schulz, and Alexandra
Weinberger

FernUniversität in Hagen, Germany
firstname.lastname@fernuni-hagen.de

Abstract
A geometric graph is a drawing of a graph in the plane where the vertices are drawn as points in
general position and the edges as straight-line segments connecting their endpoints. It is plane if it
contains no crossing edges. We study plane cycles in geometric complete multipartite graphs. We
prove that if a geometric complete multipartite graph contains a plane cycle of length t, with t ≥ 6,
it also contains a smaller plane cycle of length at least ⌈t/2⌉ + 1. We further give a characterization
of geometric complete multipartite graphs that contain plane cycles in which at least two vertices
are from the same partition class. For geometric drawings of Kn,n, we give a sufficient condition on
the drawing under which they have, for each s ≤ n, a plane cycle of length 2s. Finally, we provide
an algorithm that decides whether a given geometric drawing of Kn,n contains a plane Hamiltonian
cycle in time O(n log n + nk2) + O(k5k), where k is the number of vertices inside the convex hull of
all vertices.

1 Introduction

A geometric graph is a drawing of a graph G in the plane such that its vertices in V (G)
are drawn as disjoint points in general position (i.e., no three points lie on a line) and its
edges in E(G) are drawn as straight-line segments connecting their respective endpoints.
We usually associate the vertices of the graph with their corresponding points in the plane
and treat them interchangeable. A geometric graph is called plane if it contains no crossing
edges. We also refer to a geometric graph whose abstract graph is G as a drawing of G. A
geometric (host) graph H contains a plane graph G if there is a subdrawing of H without
edge crossings, whose (abstract) graph is isomorphic to G.

Past research has mostly focused on questions where the host graph is a geometric
complete graph. Cabello [6] showed that for a given graph G it is NP-hard to decide whether
a geometric complete graph contains a plane G. However, if G is outerplanar, this can be
decided in polynomial time; see for example Bose [5]. It is easy to see that each geometric
complete graph H contains plane paths and cycles with up to |V (H)| vertices. This is no
longer true for other geometric host graphs. Figure 1 shows geometric complete multipartite
graphs that do not contain plane cycles of certain lengths.

In this paper we consider geometric complete multipartite graphs as host graphs, with an
emphasis on the bipartite case. We study whether these host graphs contain a plane cycle of
a given length. We will usually refer to the vertex partition by its associated vertex coloring,
where the color classes correspond to the partition classes. Throughout the paper we depict
vertices from the same partition class by a common symbol/color in our figures. Moreover,
we omit the edges of the host graph from our figures for a better readability, since they can
be recovered from the vertex locations (symbols).

There has been much interest in related questions over the years, and collections of many
of the obtained results are given in the surveys by Kaneko and Kano [10] and by Kano
and Urrutia [13]. Particular attention has been paid to long plane paths and cycles. For
geometric complete bipartite host graphs, Kaneko and Kano [11] showed that if one color
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
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47:2 On plane cycles in geometric multipartite graphs

Figure 1 Plane paths in geometric complete multipartite graphs. Each graph contains a plane
path on 10 vertices, but no plane 10-cycle. In fact, no plane cycle is contained in the graph on the
left, the graph in the middle contains plane cycles of each even length at most 8, and the graph on
the right contains exactly those plane cycles that visit at most one vertex from each color (called
rainbow cycles).

class is sufficiently larger than the other, then any drawing contains a plane path containing
all vertices of the smaller color class. Many known results focus on the special case of
geometric complete bipartite host graphs with n vertices of each color where all vertices are
in convex position. Mulzer and Valtr [17] showed that each such host graph contains a plane
path of length at least n + ϵn, for some ϵ > 0, improving previous results (cf. [14, 16]). For an
upper bound in this case, constructions of such drawings where each plane path has length at
most 4

3 n + O(
√

n) were given by Abellanas et al. [1] and Kynčl, Pach, and Tóth [14]. Other
special (with respect to vertex placement) geometric graphs were investigated with regard to
plane Hamiltonian paths and cycles by Cibulka et al. [7] and Soukup [18]. For geometric
complete multipartite host graphs with an arbitrary number of color classes, Merino, Salazar
and Urrutia [15] gave a lower bound on the length of the longest plane path contained in
any such geometric graph and showed it is tight for odd numbers of colors. Weakening the
noncrossing requirement, 1-plane Hamiltonian paths and cycles (i.e. paths and cycles of
length 2n) have been studied by Claverol et al. [8], and Hamiltonian paths and cycles with
the minimal number of crossings have been studied by Kaneko et al. [12].

The algorithmic complexity of finding plane paths or cycles is open. However, Akitaya
and Urrutia [3] and Abellanas et al. [1] described algorithms that decide whether a geometric
complete bipartite host graph with all vertices in convex position has a plane Hamiltonian
path in O(n2) time. Bandyapadhyay et al. [4] gave linear time algorithms to find plane
Hamiltonian paths in drawings of complete bipartite graphs, where the vertices are mapped
to the real line and the edges are drawn as circular arcs above and below the line.

We point out that a geometric drawing is uniquely determined by the vertex locations
in the plane. Thus, the question whether a given geometric complete multipartite host
graph H contains a plane G is equivalent to the question of whether the vertices of G can
be mapped to colored points in the plane, given by V (H), such that the endpoints of each
edge in G are mapped to points of different colors and the resulting drawing of G is plane.
Both perspectives are used in previous work. From another perspective, plane cycles can
also be interpreted as polygons and there is a significant amount of research on so-called
polygonizations (cf. [2]).

2 Monotonicity results for plane cycles

In this section, we are interested in the following “monotonicity” question: Does the existence
of a plane cycle of length t in a geometric complete multipartite graph H imply the existence
of a plane cycle of length t′ in H for each t′ with 3 ≤ t′ ≤ t? If the given plane cycle
is one where all vertices have different colors (called a rainbow cycle), then this can be
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Figure 2 The configurations C1 – C4 which guarantee the existence of non-rainbow plane cycles.
C1 – C3: Vertices v and v′ lie on different sides of the straight line l through u and u′. C4: Vertices
{u, u′, v, v′} form a convex quadrilateral with w in its interior.

trivially answered with yes. The question becomes interesting if at least two vertices of
the given cycle have the same color; we call a cycle with this property non-rainbow. As
complete bipartite graphs cannot contain any rainbow cycles, this is the only sensible case
for the case of two colors (for which the question should only be asked for all t′ even). But
there are also geometric complete multipartite graphs — including bipartite ones — that do
not contain any plane non-rainbow cycle; see Figure 1 (left and right) for examples. The
next theorem characterizes those drawings. The characterization is based on four forbidden
configurations C1 – C4, which are depicted in Figure 2. They are explained formally in a full
version of this article where also the proofs for all results in this section are given.

▶ Theorem 2.1. A geometric complete multipartite graph H contains a non-rainbow plane
cycle if and only if it contains one of the configurations C1 – C4.

There is an algorithm that checks whether H has a non-rainbow cycle in time O(|V (H)|5).

As C1 is the only forbidden configuration with only two colors, it follows that any geometric
complete bipartite graph H contains a plane cycle if and only if it contains a plane cycle of
length 4. With the help of Theorem 2.1 we can further easily check that the geometric graphs
in Figure 1 (left and right) do not have non-rainbow plane cycles. Another consequence of
Theorem 2.1 is that any geometric complete multipartite graph that has some non-rainbow
plane cycle also has such a cycle of length 4 or 5. The following theorem gives a partial
answer to the monotonicity question.

▶ Theorem 2.2. Let H be a geometric complete multipartite graph which contains a non-
rainbow plane cycle C of length t, where t ≥ 6. Then H contains a shorter non-rainbow
plane cycle of length at least ⌈ t

2 ⌉ + 1.

We note that — maybe counter-intuitively — it is not always possible to shorten an existing
plane cycle by shortcutting a path with three edges; see Figure 3.

We conclude this section with a monotonicity result for a restricted type of drawing with
n red and n blue vertices, which generalizes a result of Soukup [18, Remark after Theorem 1].

▶ Theorem 2.3. Let H be a geometric complete bipartite graph with n vertices of each color.
If there exists a set of blue vertices that contains in the interior of its convex hull all red
vertices but no blue vertex, then for each t ∈ {2, . . . , n}, H contains a plane cycle of length 2t.

3 An FPT algorithm with respect to the number of interior vertices

In this section we consider geometric complete bipartite host graphs H with n red vertices
and n blue vertices. The vertices of H that lie in the interior of the convex hull of V (H)
are called the interior vertices and the remaining vertices are called boundary vertices. We
sketch an algorithm that checks whether H contains a plane Hamiltonian cycle in time
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Figure 3 A plane cycle C of length 22 with no chord shortcutting C to a plane cycle of length 20.

wa2 wa8

wa4

wa1

wa3

wa5

wa6

wa7

I

Figure 4 The vertices wa2 , wa5 , and wa7 are critical vertices of the first kind, wa1 , wa3 , wa4 ,
wa6 , and wa8 are critical vertices of the second kind. Critical arcs are shown by solid black edges.

O(n log n + nk2) + O(k5k), where k is the number of interior vertices. A complete description
is given in the full version of this article.

Let I denote the set of interior vertices and let B = V (H) \ I denote the set of boundary
vertices of H. Let w1, . . . , wm denote the boundary vertices in counterclockwise order where
w1 is chosen arbitrarily and indices are used modulo m (in particular, w0 = wm). The main
idea is to split B into O(k2) parts, called critical arcs, such that it is sufficient to consider
only few vertices within each part. A vertex wi ∈ B is critical if wi and wi−1 are of the same
color (“first kind”) or there is a line through two vertices from I that separates wi from
wi−1 (“second kind”). Figure 4 shows an example. Let S = {wa1 , . . . , was

} denote the set of
critical vertices where a1 < a2 < · · · < as. For each critical vertex wai the critical arc at ai

is the set {wai
, . . . , wai+1−1} of boundary vertices between wai

and the next critical vertex
(including the first and excluding the latter critical vertex). Observe that the critical arcs
are pairwise disjoint and form a partition of B.

We now describe the desired algorithm. The idea is to iterate over all spanning cycles of
the interior vertices I and check if one of them can be extended to the whole graph H.

An initial cycle F of I is a not-necessarily plane, geometric directed spanning cycle with
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vertex set I (that may use oriented edges from H as well as edges not in H), together with a
nonempty subset GF of the edges of F , called gaps, such that the edges of F not in GF (called
fixed edges) are in H and do not cross each other. The gaps represent those edges in F that
should be replaced with longer paths using boundary vertices from B. In particular, every
gap uv will be replaced by a path u, wi, wi+1, . . . , wi+j , v, where wi, wi+1, . . . , wi+j ∈ B.
Our definition includes that in case k = 2, F is the directed cycle with just two edges between
the two vertices in I. We call the endpoints of gaps in GF gap vertices.

To extend F to B, for every gap vertex u we select a critical arc A(u), and try to place a
(new) neighbor for u in A(u). The crucial observation is that we do not need to check all
individual vertices from the selected critical arcs to decide whether F can be extended to B

in this way. Instead, we find necessary and sufficient conditions for the selection of arcs alone
to be “feasible”. This gives a running time per selection that is independent of n as needed.

The final algorithm for the case k ≥ 2 works as follows. We compute the critical arcs in
O(n log n + nk2) time by walking along the boundary vertices and check whether there are
more than k critical vertices of the first kind. If not, we generate all O(k!) directed spanning
cycles of I. We then iterate, for every cycle, over all possible sets of gaps (O(2k) many) and
check if this forms an initial cycle (fixed edges are noncrossing and in H) in O(k2) time for
each. After some technical adjustments in linear time, we iterate over all O(k4k) selections
of critical arcs. For each selection we check “feasibility” in O(k2) time (a formal definition
of feasibility is given in the full version). Altogether, this needs O(n log n + nk2) + O(k5k)
time, as desired. We conclude with the following theorem.

▶ Theorem 3.1. There is an algorithm to check whether a geometric complete bipartite graph
with k interior vertices contains a plane Hamiltonian cycle in O(n log n + nk2) + O(k5k)
time.

4 Conclusion and open problems

We have shown that geometric complete multipartite graphs which contain a plane cycle C

also admit a shorter plane cycle of at least half the size of C. For some restricted geometric
complete bipartite graphs, we have shown that they contain plane cycles of each possible even
length. This prompts the following question (distinguishing between two or more colors).

▶ Open Problem 1. Let H be a geometric complete multipartite graph that contains a plane
cycle of length t. Does H contain a plane cycle of length t′ for any (even) t′ with 3 ≤ t′ ≤ t?

Further, we have given an FPT algorithm to decide whether a geometric complete bipartite
graph contains a plane Hamiltonian cycle. It is still open to show whether this problem is
NP-hard, which is related to an open question stated by Claverol et al. [8].

▶ Open Problem 2. Is it NP-complete to decide if a given geometric complete multipartite
graph contains a plane Hamiltonian cycle?

The related problem of whether a set of edges of a geometric complete graph H can be
completed to a plane Hamiltonian cycle in H is known to be NP-complete due to Akiyama
et al. [2] and Jiang, Jiang, and Jiang [9]. In the full version of this article, we show that this
problem is also NP-complete for geometric complete multipartite graphs.
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Abstract
We propose a sublinear algorithm for probabilistic testing of the discrete Fréchet distance. We
assume the algorithm is given access to the input curves via a query oracle that returns the set of
vertices of the curve that lie within a radius δ of a specified vertex of the other curve. The goal is to
use a small number of queries to determine with constant probability whether the two curves have
discrete Fréchet distance at most δ or they are “ε-far” (for 0 < ε < 2) from being similar, i.e., an
ε-fraction of the curves must be ignored for them to become similar. We present an algorithm that is
sublinear under two assumptions (i) that the curves are κ-straight, meaning they are κ-approximate
shortest paths in the ambient metric space, for some κ≪ n, and (ii) that they have edge lengths
within a constant factor of δ (we later relax this toward a weaker uniform sampling condition). The
algorithm uses O( κ

ε
log κ

ε
) queries and it is given the value of κ in advance. Our algorithm works in

a matrix representation of the input and may be of independent interest to matrix testing.

Related Version arXiv:2502.17277s

1 Introduction

We initiate a study of property testing for measures of curve similarity, motivated by the
need for fast solutions for curve classification and clustering. We believe that property testing
for well-studied measures like the Fréchet distance is especially well motivated due to its
connections to other problems studied on the curves, such as clustering [5, 10], similarity
search [3, 9, 16] and map reconstruction [6, 7].

Typically in property testing, we are given access to a (large) data set and the goal is to
very quickly assess whether the data has a certain property. Instead of the classical notation
of correctness, a property testing algorithm is considered correct if it can satisfy the following
two conditions, with a probability close to 1: First, if the input has the desired property,
the algorithm must return accept and second, if the input is “far” from having the property
(under some suitable definition of “far”), the algorithm should reject the input. For more
information, details and motivation on property testing, see [4, 25].

Property testing algorithms can for example be useful if the input is extremely large.
Then, it makes sense to obtain a quick approximate answer before deciding to run more
expensive algorithms. For the Fréchet distance, there are applications [3, 9, 16] where negative
filters are used to minimize expensive Fréchet distance computations. Another motivation
for property testing is when small errors can be tolerated or objects that are close to having
the desired property are acceptable. In fact, our chosen error model is very close to a partial
Fréchet distance [8]. For more details on motivations to study property testing, see [19, 25].

Computational geometry has a long tradition of using randomization and sampling
to speed up algorithmic approaches [20, 21, 22, 24]. Property testing has received some
attention within computational geometry, but is much less explored compared to other
areas. There are fast and efficient testers for many basic geometric properties, such as
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
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community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



48:2 Property Testing of Curve Similarity

convexity of a point set [15], disjointness of objects [15], the weight of Euclidean minimum
spanning tree [12, 13, 14], clustering [23], the Voronoi property of a triangulation [15], ray
shooting [11, 15], as well as LP-type problems [17].

We mention that there is also work on matrix testing [18]. Compared to our setting, the
input size is defined as n2—the number of entries needed to specify the matrix. In our case,
we assume the input size to be n, the maximum of column and row dimension of the matrix.

We believe that a more general variant of our tester can be easily adapted to test the
continuous Fréchet distance [1] by subsampling vertices along the edges of the curves, as the
dependency of the query complexity is independent of the number of such samples n.

2 Preliminaries

Let (M, d) be a metric space. We say a (discrete) curve P in (M, d) is an ordered point
sequence ⟨p1, . . . , pn⟩ with pi ∈M for all i = 1, . . . , n. We call the points of the curve vertices.
We denote by |P | the number of vertices in P and by ℓ(P ) its length, which is defined as
ℓ(P ) =

∑n−1
i=1 d(pi, pi+1). The subcurve of P between pi and pj is denoted by P [i, j]. A curve

P is called κ-straight if for any two vertices pi and pj in P , we have ℓ(P [i, j]) ≤ κ · d(pi, pj).
Let [n] be the set of integers from 1 to n and by [n]× [n] ⊂ N×N the integer lattice of n times
n integers. Given two curves P = ⟨p1, . . . , pn⟩ and Q = ⟨q1, . . . , qn⟩, we say that an ordered
sequence C of elements in [n]× [n] is a coupling of P and Q, if it starts in (1, 1), ends in (n, n)
and for any consecutive tuples (i, j), (i′, j′) in C it holds that (i′, j′) ∈ {(i + 1, j), (i, j + 1)}.
We define the discrete Fréchet distance1 between P and Q as follows

DF (P, Q) := min
coupling C

max
(i,j)∈C

d(pi, qj).

For brevity, we simply call this the Fréchet distance between P and Q. One can verify that
the Fréchet distance satisfies the triangle inequality. The free space matrix of P and Q with
distance value δ is an n× n matrix Mδ, where the i-th column corresponds to the vertex pi

of P and the j-th row corresponds to the vertex qj of Q.
The entry Mδ[i, j] has the value 0 if d(pi, qj) ≤ δ and 1 otherwise.2 A coupling C is a

path through the free space matrix that always moves only one step up or one step to the
right. We call these paths monotone Manhattan paths. We define the cost of such a path
as c(C) =

∑
(i,j)∈C Mδ[i, j]. Note that the Fréchet distance between P and Q is at most δ if

and only if there exists a monotone Manhattan path with cost 0 from (1, 1) to (n, n).
Our analysis is based on a property of the free space matrix. We first define this property

and then link the property to a certain class of well-behaved input curves.

▶ Definition 2.1 (t-local). Let M be a free space matrix of curves P and Q. We say that
M is t-local if, for any tuples (i1, j1) and (i2, j2) with M [i1, j1] = 0 = M [i2, j2], it holds that
|i1 − i2| ≤ t · (2 + |j1 − j2|) and |j1 − j2| ≤ t · (2 + |i1 − i2|).

▶ Observation 2.2. Suppose M is t-local. If we have M [i, j] = 0 = M [i, j′], then we have
|j − j′| ≤ 2t. If we have M [i, j] = 0 = M [i′, j], we have |i− i′| ≤ 2t.

1 The classical definition of the discrete Fréchet distance allows diagonal steps in the coupling. We follow
the definition used in [2] which does not allow diagonal steps as it simplifies our proofs. An easy
adaptation of our proofs to a definition with the diagonal steps can be found in the full version.

2 Note we use 0 and 1 in switched roles compared to the conventions in the literature on the free space
matrix. Our notation makes the cost-function of the path more intuitive.
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Figure 1 On the left we have Mδ for the curves on the right. The gray path is a minimum cost
monotone Manhattan path of cost 3.

Lemma 2.3 below shows that the free space matrix of κ-straight curves is O(κ)-local.
For simplicity, we assume that the lengths of the edges are bounded by a fixed multiple of
δ, the query radius of the Fréchet distance. In the full version, we show how to relax this
assumption with little overhead. For a proof of this lemma, we refer to the full version.

▶ Lemma 2.3. Let P and Q be κ-straight with edge lengths in [δ/α, αδ] for some constant
α ≥ 1 and let M be their free space matrix with distance value δ. Then, M is O(κ)-local.

3 Property testing

The problem we study in this paper is the following. Assume we want to determine for two
curves P and Q, each consisting of n vertices,3 if their Fréchet distance is at most a given
value of δ. We do not have direct access to the input curves. Instead, we have access to
an oracle that returns the information in a given row or column of the δ-free space matrix
in the form of a sorted list of indices of zero-entries. We call this a query and we want to
determine DF (P, Q) ≤ δ using as few (sublinear in n) queries as possible. Note that from
the point of view of a data structure setting, our query corresponds to a classical ball range
query with a vertex p of one curve and returns the list of vertex indices of the other curve
that are contained in the ball of radius δ centered at p.

Our bounds on the number of queries will be probabilistic and hold under a certain error
model. The error model allows for the coupling path to pass through a bounded number of
one-entries of the free space matrix.

▶ Definition 3.1 ((ε, δ)-far). Given two curves P and Q consisting of n vertices each, we
say that P and Q are (ε, δ)-far from each other if there exists no monotone Manhattan path
from (1, 1) to (n, n) in the δ-free space matrix of cost εn or less.

▶ Definition 3.2 (Fréchet-tester). Assume we are given query-access to two curves P and
Q, and we are given values δ > 0 and 0 < ε < 2. If the two curves have Fréchet distance at
most δ, we must return “yes”, and if they are (ε, δ)-far from each other w.r.t. the Fréchet
distance, the algorithm must return “no”, with probability at least 4

5 .

3 For ease of notation, our analysis assumes the input curves have the same number of vertices.
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4 Testing the Fréchet distance

The idea of Algorithm 1 is to sample a number of columns and rows and check whether there
locally exists a monotone Manhattan path of cost zero. The following definition classifies
when such a (local) path exists.

▶ Definition 4.1 (Permeability). We say a block [i, i′] of consecutive columns (resp., rows)
from index i to index i′ is permeable if there exists a monotone Manhattan path of cost zero
that starts in column (resp., row) i and ends in column (resp., row) i′.

If a column (resp. row) is individually not permeable, i.e. it contains only one-entries, we
call it a barrier-column (resp. barrier-row). Note that any non-permeable block of rows or
columns is a witness to the fact that no global monotone Manhattan path of cost 0 exists
and therefore the curves are not at distance δ to each other. In that case, the algorithm can
answer “no”.

▶ Definition 4.2 (Permeability query). To check if a block of k columns (or rows) is permeable,
the algorithm first performs k queries to obtain the positions of zero-entries in these columns
(or rows), then we build the induced subgraph of the grid for these zero-entries, connect all
neighboring zero-entries according to the possible steps of a coupling and then connect all
zero-entries of the last column to a sink and all zero-entries of the first column from a source.
It remains to check if there is a path from source to sink, which can be done in linear time
in the total number of zero-entries queried since the graph is acyclic.

Algorithm 1 Fréchet-Tester(M, t, ε)

1. If M [1, 1] = 1 or M [n, n] = 1 then return “no”.
2. repeat ⌈ 24t

ε ⌉ times:
3. j ← sample an index uniformly at random from [n].
4. if row j or column j of M is a barrier-row or -column then return “no”.
5. K ← ⌈ εn

32t⌉ − 1, ℓ← ⌈ 128t
ε ⌉, let J be a set of intervals and set J← ∅.

6. for i = 0, . . . , ⌊log2 ℓ⌋ do:
7. I ← sample ⌈ 16n

2i+1K ⌉ different indices uniformly at random from {0, 1, . . . , n
2i+1 − 2}.

8. for each j ∈ I do: add [j2i+1, (j + 2)2i+1] to J.
9. foreach [i, j] ∈ J do:

10. if block [i, j] of consecutive columns is not permeable then return “no”.
11. if block [i, j] of consecutive rows is not permeable then return “no”.
12. return “yes”.

Our analysis is based on two lemmas. For all proofs in this section, we refer to the
full version. The first lemma shows that if an optimal path contains a long sequence of
one-entries, there must be many barrier-columns and -rows.

▶ Lemma 4.3 (Barrier Lemma). Let M be t-local and let C be a monotone Manhattan path
of minimum cost. Suppose that there are two zero-entries (i, j), (i′, j′) ∈ C such that C visits
no zero-entry and at least 4t one-entries in between them. Then there is a total of at least
⌈ i′−i+j′−j

2t ⌉ barrier-rows between j and j′ and barrier-columns between i and i′.

The second lemma shows that if an optimal path has a long stretch with relatively many
one-entries on the path, there cannot be a long monotone Manhattan path of zero-entries in
the same sequence of rows or columns of the matrix M , implying impermeability.



P. Afshani, M. Buchin, A. Driemel, M. Richter, S. Wong 48:5

▶ Lemma 4.4 (Impermeability Lemma). Let M be t-local. Let C be a monotone Manhattan
path through M of minimum cost. Suppose (i, j), (i′, j′) ∈ C with j′−j > 2t (resp. i′− i > 2t)
correspond to zero-entries in M and the subpath of C from (i, j) to (i′, j′) visits at least 4t− 1
one-entries. Then, the block of columns [i, i′] (resp. rows [j, j′]) is not permeable.

▶ Lemma 4.5 (Main Lemma). Let M be t-local and M [1, 1] = 0 = M [n, n]. Suppose the total
number of barrier-rows and -columns is at most εn

8t . Let C be a monotone Manhattan path
with lowest cost through M and suppose that c(C) > εn. Then, with probability at least 9

10 at
least one sampled interval in the set J during Algorithm 1 corresponds to a non-permeable
block of columns or rows.

Proof Sketch. We decompose the path C into a minimum number of groups that each contain
more than 4t one-entries and start and end with a zero-entry. Using the barrier lemma, we
can show that at most εn

2 one-entries of C are in groups that visit more than 8t one-entries.
So at least εn

2 one-entries of C are in groups with at most 8t one-entries per group. We can
argue that at least half of these groups have height and width at most 128t

ε and either the
height or the width is larger than 2t. So for each of these small groups we can apply the
Impermeability Lemma to the rows or to the columns, meaning that a Permeability query
on this group fails. Finally, we can show that one of these intervals will be included in one of
the intervals chosen in Line 8 with sufficiently high probability. ◀

▶ Theorem 4.6. Let P and Q be curves with n vertices such that their free space matrix is
t-local and t is known. Then, Algorithm 1 is a Fréchet-tester that needs O( t

ε log t
ε ) queries.

Proof Sketch. Consider the case that a minimum cost monotone Manhattan path visists
more than εn one-entries. We can show that the algorithm returns “no” in Line 4 with
probability at least 9

10 if there are at least εn
8t barrier-columns and -rows. If there are less

than εn
8t barrier-columns and -rows, the Lemma 4.5 yields that we will return “no” with

probability at least 9
10 . We can show that the algorithm performs O( t

ε + n log ℓ
K ) queries. If

we plug in the values of K and ℓ, this yields the desired number of queries. ◀
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Abstract
Clustering trajectories is a central challenge when confronted with large amounts of movement data
such as GPS data. We study a clustering problem that can be stated as a geometric set cover
problem: Given a polygonal curve of complexity n, find the smallest number k of representative
trajectories, each of complexity at most l, such that any point on the input trajectory lies on a
subtrajectory of the input that has Fréchet distance at most ∆ to one of the representative trajec-
tories. A previous work by Brüning et al. (2022) presented a bicriteria approximation algorithm
that returns a set of curves of size O(kl log(kl)) which covers the input with a radius of 11∆ in
time Õ((kl)2n + kln3), where k is the smallest number of curves of complexity l needed to cover the
input with a distance of ∆. The representative trajectories computed by their algorithm are always
line segments, while other known algorithms do not have any output guarantees. In applications
however, one is usually interested in representative curves which consist of several edges. We present
a new approach that builds upon previous work computing a set of curves of size O(k log(n)) in
time Õ(kn3) with the same distance guarantee of 11∆, where each curve may consist of curves
of complexity up to the given complexity parameter l. We conduct experiments on tracking data
of ocean currents and full body motion data suggesting its validity as a tool for analyzing large
spatio-temporal data sets.

Related Version The full version can be accessed at https://arxiv.org/abs/2308.14865.

1 Introduction

Advancements in motion tracking technology made it possible to track motion data from
many different areas affected by climate change ranging from ocean currents to animal mi-
gration. [19] observed changes in ocean currents driven by climate change and analysed how
these affect the dispersal of marine life providing evidence of the importance of understand-
ing and predicting these current changes. Similar effects can be observed among migratory
land-bound animals, as temperature and resource availability changes [10] and displacement
of human life [16]. Practitioners are often confronted with vast amounts of data from which
one would like to extract a reoccuring pattern, preferably of small complexity, making the
data more accessible to less efficient algorithms or schematic visualization.

Identifying such patterns is a particular challenge, which is the motivation for algorithms
based on heuristics [11] or reinforcement learning [12]. As the type of pattern which is sought
after may vary depending on the data, and thus the quality measurement for a certain
pattern varies, there are multiple approaches to tackle this problem (see the survey papers

∗ Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
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Figure 1 Illustration of ≈ 2000 individual ocean surface drifters and a resulting clustering.

[5, 18, 20]). One quality measure often used in this context is that of the Fréchet distance as
a measure of similarity between the given trajectories. Examples are the work of Agarwal
et al. [1] or that of Buchin et al. [4]. The approach we want to focus on is that of Akitaya et
al. [3] who pose the problem as a geometric set cover problem, in which a given trajectory
needs to be “covered” by the smallest possible number of “center” trajectories such that each
point of the input trajectory is contained in a subtrajectory of the input trajectory which
has a small Fréchet distance to one of the center trajectories. This can similarly be thought
of as a clustering problem in which each point on the input trajectory is assigned to at least
one center trajectory. One drawback for practical applications of the approaches presented
in [3] and the subsequent work of Brüning et al. [2] is that the center trajectories computed
only ever consist of a single edge, whereas in applications one is often interested in finding
center trajectories of higher complexity, as even a simple circular motion (as is present in
gulf streams for example) cannot be modeled well with a single edge. In this paper we focus
on extending the approach of [2] to center trajectories of higher complexity and analyzing
our approach on real data.
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Figure 2 Illustration of the ∆-coverage of Q on the curve P .

2 Previous Work

We consider a given polygonal curve P parametrized over [0, 1] together with a distance
threshold ∆ > 0 and complexity bound l ∈ N≥2. The problem is to find a set of curves
C = {C1, . . . , Ck}, each of complexity at most l, such that every point P (p) for p ∈ [0, 1] is
contained in a subcurve πp of P and there is a curve Ci ∈ C that has continuous Fréchet dis-
tance dF (πp, Ci) ≤ ∆. The continuous Fréchet distance is defined on any two parametrized
curves P, Q : [0, 1] → Rd as inff,g maxt∈[0,1] ∥P (f(t)) − Q(g(t))∥, where f and g—refered to
as traversals—range over all non-decreasing surjective functions from [0, 1] to [0, 1]. We
denote by P [s, t] the subcurve of P starting at P (s) and ending at P (t) for 0 ≤ s ≤ t ≤ 1.
A curve C that has Fréchet distance ∆ to some such P [s, t] covers every point p ∈ [s, t]. For
any curve C in Rd we define

CovP (C, ∆) =


 ⋃

0≤s≤t≤1, dF (P [s,t],C)≤∆

[s, t]


 ⊂ [0, 1]

as the ∆-coverage of C (refer to Figure 2). This subtrajectory clustering problem is nat-
urally interpreted as a set cover problem, where [0, 1] is the ground set and the set family
consists of the ∆-coverage CovP (C, ∆) for any curve C in Rd of complexity l.

Brüning et al. [2] showed that under the special assumption l = 2 any optimum solution C
of size k to this set cover problem for given polygonal curve P and ∆ > 0 can be transformed
to a set of curves which each start and end in so called extremal points of the 8∆-free space of
a simplification S of P with itself. The ∆-free space of two curves P and Q is defined as the
sublevel-set of pointwise distances less than ∆, i.e., D∆(P, Q) = {(x, y) | ∥P (x) − Q(y)∥ ≤
∆}. Monotone paths (in x and y) in the ∆-free space correspond to subcurves of P and
Q with Fréchet distance at most ∆. Extremal points are local maxima/minima in the
cells of the ∆-free space. This then results in a bicriteria approximation algorithm, with
approximation guarantees of 11∆ in the distance threshold and O(kl log(kl)) in the solution
size for any l, as any center in a solution with l > 2 can be broken up into its edges resulting
in a solution at the expense of an additional factor l in its cardinality.

EuroCG’25



100:4 Finding Complex Patterns in Trajectory Data

3 Our contribution

The split of center curves into single edges as suggested by Brüning et al. [2] is not par-
ticularly desirable in practice. The focus of this abstract is the extension to curves of
non-constant complexity l ∈ N≥2. For this we generate a set of candidate center curves
based on a simplification of the input curve that are defined by extremal points. The size
of the candidate set is in O(kn3l). Details are diverted to the full version. Subsequent to
the first publication of our results on arxiv van der Hoog et al. [17] observed that it suffices
to consider candidates defined by pairs (a, b) of extremal coordinates such that 2i other
extremal coordinates lie in [a, b] for some i ∈ N. This reduces the cardinality of the candi-
date set to O(n2 log n) transforming each center curve in any solution into at most two new
center curves of similar complexity. This candidate set defines the set cover instance which
is then solved via known techniques resulting in a bicriteria approximation algorithm, with
approximation guarantees of 11∆ in the distance threshold and O(k log(n)) in the solution
size. The algorithm has a total running time of O(kn3 log3 n).

Implementation Details Our C++-implementation can be found at [6]. The algorithm
is given a set {P1, . . . , Pm} of curves and three parameters ∆simp, ∆free and l. It first
computes simplifications Si of Pi for all i with parameter ∆simp, and then computes the
∆free-free space of Si and Sj as well as their extremal points for all pairs (i, j) ∈ {1, . . . , m}2.
Next it computes all pairs of extremal coordinates that (i) lie on the same curve, (ii) the
resulting subcurve has complexity at most l and (iii) there is a power of 2 of other extremal
coordinates in the interval between them. For every such pair of extremal coordinates (a, b)
on curve Si we compute the ∆free-coverage of Si[a, b] via the computed ∆free-spaces of Si

with any other Sj . This ∆free-coverage is a subset of {1, . . . , m} × [0, 1] and defines the
set cover instance. This set cover instance we solve via a greedy set cover algorithm that
iteratively picks and adds the candidate which maximizes the arc-length (computed on each
Si) of the additional coverage. This step is repeated until {1, . . . , m} × [0, 1] is covered.

We recursively pick the candidate maximizing the arc-length—instead of the number of
intervals of the induced arrangement of coverages—of the added ∆-coverage. This follows
the ∆-coverage maximization discussion in [2] and allows us to stop the greedy algorithm
after a small number of rounds and still have a partial solution that covers a large fraction of
the input. Further, we introduced the two parameters ∆simp and ∆free to test the stability
of the threshold parameter ∆ in both the simplification and free-space computation step.
Given some ∆, setting ∆simp = 3∆ and ∆free = 8∆ reflects the theoretical results.

4 Experiments

All experiments were conducted on a Linux system with 16GB of memory with an Intel
i5-9600 CPU, a decent CPU with 6 cores, but far from the fastest hardware available. All
code was compiled with clang version 11.1 with -O3 optimization flags enabled.

4.1 Ocean Drifters
We apply our algorithm to trajectories from the NOAA Global Drifter Program [13]. This
is a comprehensive data set consisting of almost 20 000 ocean surface drifters that have been
released across the ocean as far back as 1979. For the evaluation, we focus on the subset
of trajectories consisting of all drifters recorded in the last years (2022–2024). This data
set consists of 5500 different trajectories which consist on average of 500 points resulting in
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Figure 3 Influence of different combinations of parameters on the running time evaluated on the
data set from the NOAA Global Drifter Program [13].

a total input complexity of n ≥ 2 · 106. Refer to Figure 1 in which the data set and the
computed clustering with ∆simp = 20km, ∆free = 400km and l = 20 is depicted.

Evaluation We apply our techniques with a range of radii with ∆simp between 5km and
120km, ∆free between 10km and 320km, as well as a range of complexity bounds with l

between 1 and 10 to differently sized subsets of the input data. Figure 3 shows the running
times. We observe that the running time appears to be mostly independent of the exact
values of ∆simp and ∆free, and scales favorably in n compared to the theoretical results.
In the n ≤ 105 regime, it appears to scale near-linear with an observed running time of
roughly O(n1.2). With increasing n it approaches roughly quadratic complexity (O(n2))
compared to the theoretical running time of O(kn3 log3 n). In addition, we empirically
evaluate the approximation ratio of our set cover algorithm using the size of a greedily
computed independent set as a lower bound. We observe that for all tested instances the
approximation ratio is less than 3.

4.2 Full-Body Motion Tracking Data
Motion Segmentation finds applications in many different fields such as robotics, sports
analysis or traffic monitoring [14]. We apply our techniques to this problem on the CMU
data set [15]. This data set consists of motion tracking data of 31 different joint-trackers on
different subjects doing sports (trials) ranging through different activities (refer to Figure 4).
We interpret these as trajectories in 93-dimensional Euclidean space by concatenating the
three-dimensional coordinates of all joints back to back to form a pose. Each trial consists of
up to 104 poses. We then apply our subtrajectory clustering algorithm with ∆simp = 0.8 and
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Figure 4 Trial 01 of subject 86 with its ground truth labels. Colors correspond to the labels
walk (yellow), jump (orange), punch (light red), kick (magenta) and transition (black). Beneath
the resulting labeling using our techniques with different values for l, temporal segmentation (TS),
(hierarchical) aligned cluster algorithm (HACA/ACA) and spectral clustering (SC) [9, 22, 21], with
gray lines corresponding to the start/end of frequent patterns.
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Figure 5 Quantative analysis on trial 1 to 14 of subject 86 from [15] and comparison of our
techniques to temporal segmentation (TS), (hierarchical) aligned cluster algorithm (HACA/ACA)
and spectral clustering (SC) from [9, 22, 21].
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∆free ≈ 1.35 and a complexity bound l between 5 and 15, where the exact parameters have
been identified via an exhaustive search to yield the best accuracy for the given complexity
bound l. The output consists of a set of curves that act as cluster centers. For each of these
centers we identify the ground truth label that best corresponds to this center and label all
points in its ∆free-Coverage with the identified label. Whenever different labels are assigned
to a point along the curve we mark it as a transition between motions.

Evaluation The resulting labeling can be seen in Figure 4. Observe in particular that an
increase in l decreases the number of patterns identified with the total number of labeled
segments approaching that of the state-of-the-art, while the accuracy decreases only slightly.
We compute the accuracy of the resulting segmentations on ground truth data from [9] and
compare this accuracy with the accuracy of the temporal segmentation approach (TS) dis-
cussed in [9] as well as the aligned cluster algorithm (ACA), hierarchical aligned cluster
algorithm (HACA) and spectral clustering (SC) discussed in [22, 21]. The resulting accura-
cies can be seen in Figure 5. The quantitative accuracy of our techniques compares well to
the state-of-the-art techniques, with a (roughly) tenfold improvement in the running time.

5 Discussion

We observe that in practice the algorithm is much faster and yields better solutions than
what could be expected from the theory. We partially attribute this to the fact that unlike
in the worst case analysis the number of non-empty cells in the free-space is less than n2.
This reduces the number of extremal points and the complexity of the computed coverage.
This suggests that analyses with additional input assumptions such as c-packedness [8] or
λ-low-density [7] could result in a theoretically founded explanation of the observed running
time. We further observe that the extension to non-constant complexity center curves indeed
allows the algorithm to capture more interesting behaviour compared to when the center
curves are restricted to constant/lower-complexity center curves.

This provides evidence that the problem formulation by [3] is practically viable and
serves as a versatile tool for analyzing large amounts of spatio-temporal data.
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Abstract
A level planar drawing of a graph G is crossing-free, has y-monotone edges, and uses levels specified
in the input as y-coordinates of vertices. In Partial Level Planarity (PLP), we are given a
level planar drawing of a subgraph H of G and are asked to extend it to a drawing of G. Results
by Brückner and Rutter [SODA 2017] and Klemz and Rote [ACM Trans. Alg. 2019] show that
PLP remains NP-complete even for severely restricted instances, which makes it resistant against
parameterized tractability for most well-known parameters. In this paper, we use the size of the
missing graph, i.e., of G \ H, as a parameter to identify fixed-parameter tractable fragments of PLP.

1 Introduction

For any type of graph representation, in its partial representation extension problem, we are
given a graph G together with a representation ΓH of a subgraph H ⊆ G. We seek a represen-
tation ΓG of G that extends ΓH , i.e., when restricted to H, coincides with ΓH . Depending on
the representation, this problem presents a rich diversity in terms of computational complex-
ity. For planar straight-line drawings, the problem is NP-hard [30] and even ∃R-complete [29],
while being linear-time solvable for planar topological or orthogonal drawings [1–3,17]. For
intersection representations of, e.g., interval graphs [24–26], permutation graphs [23], and
circle graphs [10], the problem is efficiently solvable, while it is NP-hard, e.g., for contact
representations of geometric objects [9]. In the NP-hard case, a more refined analysis in terms
of fixed parameter tractability often yields interesting insights [12,13,16,19,20]; a natural
approach employed in this setting is to parameterize by the size of the missing subgraph.

In this paper, we consider the extension problem for Level Planarity, often called
Partial Level Planarity (PLP). In Level Planarity, we seek a planar topological
drawing of a graph in which each vertex has a prescribed y-coordinate, also called its level,
and all edges are y-monotone; see Figure 1b. While Level Planarity can be tested in
linear time [21,22], its extension variant PLP is NP-complete even for restricted instances:
Brückner and Rutter [8] showed NP-hardness for subdivisions of triconnected planar graphs
with bounded degree and Klemz and Rote [27] for disjoint unions of constant-length paths
(see [28]). The latter rules out an efficient parametrization of PLP with respect to most
classical structural parameters. Blazej, Klemz, Klesen, Sieper, Wolff, and Zink [6] considered
the number of levels as a parameter for generalizations and specializations of PLP. Here, we

∗ TD, SF, RG, and MN acknowledge support from the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT22029]; RG also acknowledges support from the Austrian Science Fund (FWF)
[10.55776/Y1329].
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Figure 1 (a) Level graph G with a subgraph H ⊆ G (black) and (b) a level planar drawing ΓH.
(c) By introducing the lilac subdivision vertices, we make H proper. The drawing ΓH from (b) is
extended in (d) to a drawing ΓG of G by the new vertices and edges marked in blue.

will investigate the complexity of PLP parameterized by the size of the missing (also called
new) subgraph. As our first result, in Section 3, we show that PLP is FPT1 parameterized
by the number of missing vertices when every edge connects adjacent levels. We also lift
the latter restriction at the cost of using the number of missing edges as a more restrictive
parameter. Finally, in Section 4, we relax our parametrization to be close to the number of
missing vertices again, but require the instance to be biconnected. This can be seen as a
first step towards a general fixed-parameter algorithm that only parametrizes by the number
of missing vertices (work in progress), and is in line with previous solutions that approach
problems at decreasing levels of connectivity.
Due to space constraints, technical details are deferred to an upcoming full version.

2 Preliminaries

Let G be a simple, directed, acyclic, and planar graph with vertex set V (G) and edge
set E(G). We use V and E if G is clear from the context. Let γ : V → [ℓ] = {1, 2, . . . , ℓ}
be a level assignment of G, i.e., a function that assigns each vertex v ∈ V to one of
ℓ ≤ |V | levels with γ(u) < γ(v) for all uv ∈ E. The vertices on level i ∈ [ℓ] are denoted
by Vi := {v ∈ V | γ(v) = i}. We call an edge uv ∈ E short if γ(u) + 1 = γ(v), or long
otherwise and we say it spans the levels between γ(u) and γ(v) (excluding γ(u) and γ(v)).
A proper level graph has only short edges; see Figure 1c. For a level graph G = (G, γ), a
level planar drawing is a planar drawing ΓG of G with y(ΓG(v)) = γ(v) for each v ∈ V and
where each edge is a y-monotone curve. A level planar embedding is the equivalence class of
level planar drawings where each horizontal line corresponding to a level is intersected by
vertices on and edges spanning the level in the same order. We use ≺i to denote the total
order of the vertices on level i ∈ [ℓ], also dropping the index if i is clear from the context.
A level graph H = (H, γH) is a subgraph of G = (G, γG), denoted as H ⊆ G, if H ⊆ G and
γH = γG|H . Proper PLP and Bicon PLP denote the restricted variants of PLP where G
is proper or G and H are biconnected, respectively. For an instance I = (G, H ⊆ G, ΓH)
of PLP, we let n := |V (G)| denote the number of vertices in G and remark that |E(G)|
is linear in n but |I| can be quadratic in n for non-proper level graphs. We refer to the
vertices and edges of H as old, and all other vertices and edges of G as new or missing.
Furthermore, we indicate with Vadd and Eadd the set of new vertices and edges, and with nadd

1 We assume familiarity with standard notions from graph theory [14] and parameterized complexity [11].
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(a) (b) (c)

a u

vb

au

v b

a u

v b
≺j

≺i

≺j

≺i

≺j

≺i

Figure 2 The total orders ≺i and ≺j imply planarity in (a) and (b), but the crossing from (c).

and madd their size, respectively. We let EH
add denote the set of new edges incident to two

old vertices, i.e., EH
add := {uv ∈ Eadd | u, v ∈ V (H)}. To measure how “incomplete” the

provided partial solution is, we consider the following natural parameters that have also been
used before in other extension problems [5,12,15,16,19]: the vertex+edge deletion distance
κ := nadd +

∣∣EH
add

∣∣, and the numbers of missing vertices nadd or edges madd.

3 PLP Parameterized by the Number of New Vertices or Edges

We now present an FPT-algorithm for Proper PLP parameterized by nadd. We first handle
the new edges with two old endpoints EH

add. As G is proper, the drawing ΓH defines a
unique embedding for G[V (H)] = H ∪ EH

add in the form of per-level vertex orders for V (H).
Randerath et al. [31] give the following necessary condition for planarity of such embeddings;
see also Figure 2.

▶ Observation 3.1. In any level planar embedding of a level graph G = (G, γ) with uv, ab ∈ E,
u ̸= a, v ̸= b, γ(u) = γ(a) = i, and γ(v) = γ(b) = j, we have u ≺i a ⇔ v ≺j b.

This criterion is also sufficient for proper level graphs [7, 31], enabling us to efficiently test
whether the unique embedding of G[V (H)] = H ∪ EH

add induced by ΓH is planar. This allows
us to consider these edges for the remainder of the algorithm as old.

We continue with guessing an order ≺Vadd
i among the new vertices for each level i ∈ [ℓ]

using
∏ℓ

i=1 |Vi ∩ Vadd|! ≤ nadd! branches. In each branch and on each level i ∈ [ℓ], ≺H
i

and ≺Vadd
i fix an order among the old and new vertices, respectively. It remains to merge

them into a single order that describes a level planar embedding. For this, we use a 2Sat
formula that builds on Observation 3.1. To that end, to formulate level planarity as a Boolean
satisfiability problem, we use a variable xu,a (= ¬xa,u) per ordered pair of vertices u, a on
the same level, which represents whether u ≺ a. To obtain a total vertex order for each level,
we also have to ensure transitivity, that is xa,b ∧ xb,c ⇒ xa,c for all a, b, c ∈ Vi, i ∈ [ℓ]. Note
that while this additional condition cannot be represented in a 2Sat formula, it has been
shown that it can be elided if the 2Sat formula solely consists of the conditions derived from
Observation 3.1 [7,18,31]. As our partially fixed vertex orders do yield further conditions
(they actually fix some variable values), we need a different way of ensuring transitivity while
still obtaining a polynomial-time solvable formula.

For any triple a, b, c ∈ Vi with i ∈ [ℓ], for which we have to ensure a transitive order,
at least two vertices are of the same type (new or old). As the orders among old and new
vertices are determined by the partial drawing and our branching, respectively, at least one
variable of xa,b ∧ xb,c ⇒ xa,c is predetermined by either ≺H

i or ≺Vadd
i . This allows us to

represent the transitivity condition using 2Sat as shown by the following lemma, where the
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(a)

γ(v)
v

u

v

u3

u2

u1

(b)

Figure 3 (a) Intervals of the new vertex v. Only if placed in the green or blue interval, v is
visible from all lilac adjacent old vertices. (b) If we remove the new edge u2v and retain only u1v

and u3v, v could also be placed in the green interval, making re-inserting u2v impossible.

running time follows from the fact that satisfiability for an instance of 2Sat can be checked
in time linear in the number of variables [4].

▶ Lemma 3.2. Let G = (G, γ) be a proper level graph with its vertices partitioned into two
sets A ·∪ B = V and let ≺A

i and ≺B
i be total orders of Vi ∩ A and Vi ∩ B, respectively, for all

i ∈ [ℓ]. In O(n2) time, we can find a level planar embedding of G where ≺i extends ≺A
i as

well as ≺B
i for all i ∈ [ℓ], or report that no such embedding exists.

Combining this with our O(nadd!) branches, we obtain the following.

▶ Theorem 3.3. Proper PLP can be solved in time O(nadd! · n2) and is thereby fixed-
parameter tractable when parameterized by the number of missing vertices nadd.

To generalize this approach to non-proper instances, we first guess a total order ≺Eadd of
all new edges Eadd using O(madd!) branches. Then, we subdivide all long edges to obtain a
proper level graph G′ with O(n2) vertices and edges. Observe that the order ≺Eadd on new
edges (and similarly ≺H on the old graph) now induces per-level orders ≺Vadd

i and ≺H
i for

all new and old vertices, respectively, including the ones created through the subdivision
process. Using these orders, we can now apply the algorithm from Lemma 3.2 on G′, yielding
the following theorem.

▶ Theorem 3.4. PLP can be solved in time O(madd! · n4) and is thereby fixed-parameter
tractable when parameterized by the number of missing edges madd.

4 Bicon PLP Parameterized by the Vertex+Edge Deletion Distance

We now show that PLP is FPT when G and H are biconnected using κ = nadd +
∣∣EH

add
∣∣ as

parameter. Note that the number of new edges connecting the new graph to the old one is
not bounded by a function in κ, which is the main obstacle to applying Theorem 3.4. To
bound this number, we will first show that we can guess, for each connected component of
G[Vadd], an assignment to a ΓH-face into which it shall be drawn. Then, we show that, when
walking around the boundary of a ΓH-face, the adjacent new vertices cannot alternate too
much. We show for the remaining consecutive new edges with the same new endpoint that
we only need to retain the first and last edge, allowing us to bound their number by κ. In
our algorithm, we need to prevent new vertices v from being placed inside certain intervals,
i.e., between two given old vertices u1 ≺H′

u2 on the same level in the proper level graph H′
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(a)

(b)

⇔ · · · ⇔

⇔

⇔

Figure 4 A missing component C (blue) and NH(C) (lilac): (a) |NH(C)| = 2 and (b) |NH(C)| ≥ 3.

obtained by subdividing long edges in H; see also Figure 3a. Note that this is equivalent to
forcing v to be in one of the remaining intervals. In the 2Sat formulation of Theorem 3.4,
this can be achieved by adding the clause (u1 ≺ v) ⇔ (u2 ≺ v) for each such u1 ≺H′

u2.
Figure 3b illustrates why this restriction is crucial to maintain correctness.

Now consider a connected component C of G[Vadd] and let NH(C) ⊆ V (H) be the set
of old vertices that are neighbors of C in G. As G is biconnected, we can assume NH(C)
to contain at least two vertices. If |NH(C)| = 2, the number of edges between C and H is
bounded by κ, while the vertices in NH(C) can be incident to Θ(n) faces of ΓH; see Figure 4a.
For each such face f , we can use the 2Sat formula of Theorem 3.4 to check whether C can
be drawn within f . Assuming G to be level planar, we further have |E(C)| = O(κ). Thus, we
can determine the faces F(C) of ΓH into which C can be drawn level-planarly in O(κ! · n5)
time. If |F(C)| ≥ κ, we can safely remove C from I, as every solution for the resulting graph
has a face into which we can draw C. Otherwise, or if |NH(C)| ≥ 3 (see Figure 4b), the
number of faces containing C is bounded by κ, allowing us to guess the face f into which C

shall be drawn in a solution ΓG . We can thus from now on assume that each new connected
component C ∈ G[Vadd] is equipped with a face χ(C) of ΓH it shall be embedded in, which
we can ensure by adapting the 2Sat formula of Theorem 3.4 as described above. To now
also bound the overall number of new edges by a function in κ, we show that the following
properties hold for any positive instance with predetermined faces.

(i) Two new vertices in the same ΓH-face can share at most two old neighbors on the
boundary of the face; see Figure 5a. As

∣∣EH
add

∣∣ ≤ κ, each ΓH-face thus has a bounded number
of old vertices adjacent to more than one new vertex or incident to a new edge of EH

add.
Removing these vertices from the closed walk that goes around the face boundary thus splits
it into segments, see Figure 5b, whose number is bounded by O(κ2).

(ii) We label the old vertices w ∈ V (H) on each segment with tuples (v, d) that capture
their adjacent new vertices v ∈ Vadd and whether they lie above (d = ↑) or below (d = ↓)
the vertex w. Along a segment, any two labels cannot alternate, that is, they can neither
form a u-v-u-v-sequence as in Figure 6a nor a ↑-↓-↑-↓-sequence as in Figure 6b. Thus, the
number of switches between labels along a segment is bounded by a function in κ, but we

EuroCG’25



50:6 Partial Level Planarity Parameterized by the Size of the Missing Graph

v

u

w2

w3

w1f1

f2 f3

(a)

{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}{(u, ↑), (v, ↑)}

{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}{(v, ↑), (w, ↑)}

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

{(w, ↑)}
{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}{(a, ↑)}

{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}{(b, ↓)}
{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}

(b)

∅

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

Figure 5 (a) The new edges incident to u create three faces fi, making a planar connection for v

impossible. (b) Part of a face f split into segments visualized by color. Vertices are shown with their
labels and those incident to two new edges or to an edge of EH

add are lilac and orange, respectively.

{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}

{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}

{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}{(u, ↑)}

{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}

u

v

v

(a) (b)

{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}

{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}{(v, ↓)}

{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}

{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}{(v, ↑)}

Figure 6 Alternating the (a) vertex or the (b) level information of a label implies a crossing.

may still have arbitrary long streaks of the same label.

(iii) For three consecutive identical labels on the vertices u1, u2, and u3 along the same
segment we now aim to delete the edge u2v ∈ Eadd (or vu2) causing the middle label. For
this operation to be safe, i.e., to guarantee that we can later re-insert the edge u2v, we must
ensure that v is embedded in an interval that is visible from u2 to prevent a situation as in
Figure 3b. A visible interval for some old vertex u in the face f consists of two consecutive
old vertices w1 ≺ w2 on another level where both the edges vw1 and vw2 (or their reversal)
can be added level-planarly to ΓH′ , where H′ denotes the subdivided H. We can find these
intervals in a preprocessing step, and the constraint of v to lie within such intervals can again
be encoded in the 2Sat formula. This constraint is necessary as argued above, both for
the instance before and after the deletion of u2v. In particular, observe that a hypothetical
solution must place v in one of these intervals. Due to the constraint, we can assume that
the interval in which v is placed is visible from u2. To also argue that it is sufficient after
the deletion, we consider Figure 7. On the one hand, Figures 7a and b underline that there
cannot exist a vertex w ̸= u2 ∈ V (H) between u1 and u3 that is incident to a new edge that
blocks visibility for u2, as this violates the selection of u1, u2, and u3. On the other hand,
Figure 7c shows that any other new edge ab ∈ Eadd that blocks visibility for u2 yields a
contradiction.
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u1

u2

u3

v

w

(a)

u1

u2

u3

v

w

(b)

a′

(c)

v

a

b

u3

u1

u2

b′

Figure 7 Deleting the edge u2v is safe: There cannot exist a vertex u2 ̸= w ∈ V (H) between u1
and u3 incident to a new edge as it has (a) no label by the selection of u1, u2, and u3 and (b) cannot
be incident to an edge from EH

add by the definition of a segment. (c) Any other new edge that blocks
visibility for u2 either crosses with u1v or u3v, as shown with the edge a′b′, or is completely inside
the “triangular cycle” induced by v and the path on the segment between u1 and u3, as shown with
the edge ab. The former case implies that the instance is a no-instance, and the latter case that v is
a cut-vertex in G, which contradicts the fact that G is biconnected.

Altogether, this allows us to show that deleting the middle edge is safe. This further
allows us to bound the number of label switches and the remaining vertices with labels
inbetween them by κ. Consequently, we can also bound the overall number of new edges in a
function in κ. Thus, we can apply Theorem 3.4 to solve the instance in FPT(κ)-time, also
respecting the restrictions of certain new vertices to lie outside certain intervals via its 2Sat
formula.

▶ Theorem 4.1. Bicon PLP can be solved in time O(κκ · κ · (κ3)! · n5) and is thereby
fixed-parameter tractable when parameterized by the vertex+edge deletion distance κ.
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Abstract
We consider the k-center problem on the space of fixed-size point sets in the plane under the
L∞-bottleneck distance. While this problem is motivated by persistence diagrams in topological
data analysis, we illustrate it as a Restaurant Supply Problem: given n restaurant chains of m stores
each, we want to place supermarket chains, also of m stores each, such that each restaurant chain
can select one supermarket chain to supply all its stores, ensuring that each store is matched to
a nearby supermarket. How many supermarket chains are required to supply all restaurants? We
address this questions under the constraint that any two restaurant chains are close enough under
the L∞-distance to be satisfied by a single supermarket chain. We provide both upper and lower
bounds for this problem and investigate its computational complexity.

Related Version arXiv:2503.02715

1 Introduction

The k-center problem is a classical problem in computational geometry [2, 6, 8, 9, 16]. Given
a set P of points in some metric space X, the goal is to partition them into k parts P1, . . . , Pk

such that for each part Pi there is some other point xi ∈ X that is close to each point p ∈ Pi.
While this problem has mainly been studied for points in Euclidean space, motivated by
persistence diagrams in topological data analysis we consider X as the space of m unordered
points in R2 under the L∞-bottleneck distance. Intuitively, the bottleneck distance is defined
as the length (in L∞-distance) of the longest edge in a perfect matching minimizing said
length. Computing such a bottleneck distance is another classical problem in computational
geometry [3, 7, 10, 11]. The main difference of our setting to persistence diagrams is that the
latter contain infinitely many points on the so-called diagonal. Nevertheless, we hope that
some of our ideas might be used to construct k-centers for persistence diagrams, at least under
some additional assumptions. Such k-centers could be interesting for example for clustering
persistence diagrams, a topic that has recently gained attention [4, 5, 12, 13, 15, 17].

In order to illustrate the problem, we give another interpretation in terms of supplying
restaurant chains with supermarket chains, which we call the Restaurant Supply Problem: In
a city, for example Manhattan, there are n different restaurant chains that have m stores
each. Their supply is secured by k supermarket chains that also have m stores each. All
restaurants that belong to the same chain get their supply from the same supermarket chain.
However, each restaurant within one chain gets it from a different store. This means that
as soon as a supermarket chain gets chosen by a restaurant chain, each store gets matched
to one specific restaurant that it supplies. We are interested in the number of supermarket
chains needed to satisfy all restaurant chains. Formally, we define the following:
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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▶ Definition 1. Let R1 = (r1
1, r2

1, . . . , rm
1 ), . . . , Rn = (r1

n, . . . rm
n ) be n restaurant chains

with m stores each in some metric space X. We say that a supermarket chain consisting
of m supermarkets s1, . . . , sm δ-satisfies (or equivalently just satisfies) a set of restaurant
chains Ra, . . . , Rb if there exists a relabeling of the stores in each Ri such that the distance
between sj and rj

i is at most δ for each i and j. More generally, we say that k supermarket
chains δ-satisfy the n restaurant chains R1 . . . , Rn if R1, . . . , Rn can be partitioned into k

subfamilies, each of which can be δ-satisfied by a single supermarket chain.

Of course, if the restaurant chains are operating sufficiently far from each other, then any
supermarket chain can only satisfy one restaurant chain, so in general there are instances
where we need n supermarket chains. For this reason, we focus on the case where the
restaurant chains are in actual competition and operate close to each other. More specifically,
we will assume that any h restaurant chains can be satisfied by a single supermarket chain.
This assumption can make a big difference: consider the case where each restaurant chain
only has a single store, and assume that distances are measured in Euclidean distance. Then
a single supermarket satisfies some h restaurants whenever it lies in the intersection of the
disks with radius δ centered at the locations of the restaurants. As these disks are convex, it
follows from Helly’s theorem that if any 3 of them have a common intersection, then all of
them do. In other words, if any 3 restaurants can be satisfied by a single supermarket, then
all restaurants can be satisfied by a single supermarket.

The Restaurant Supply Problem is now the optimization problem of minimizing the
number of supermarket chains under this assumption. In the rest of this manuscript, we will
restrict our attention to cities that, like Manhattan or large parts of Barcelona, are laid out
on a square grid and thus distances are measured differently1. More formally, we define the
distance between two points in the plane as the L∞-distance. Then the disks of radius δ are
axis-aligned squares and from Helly’s theorem for boxes we get an even stronger statement
for chains with only one store: if any two restaurants can be satisfied by a single supermarket,
then all of them can. For this reason, we set h = 2 for the rest of this manuscript, that is,
we assume that any two restaurant chains can be satisfied by a single supermarket chain.
All omitted proofs can be found in the full version [1].

2 An upper bound

▶ Theorem 2. Let {r1
1, . . . , rm

1 }, . . . , {r1
n, . . . , rm

n } be n restaurant chains with m stores each,
such that any two of them can be satisfied by a single supermarket chain. Then all of them
can be satisfied by k = m! supermarket chains.

For each restaurant chain, we consider its m stores and annotate them with the numbers
1, . . . , m from left to right. Now consider the permutation π obtained when enumerating the
points of that restaurant chain from bottom to top. If any two points have the same x- or
y-coordinate, we break ties lexicographically. We claim that all restaurant chains from the
same permutation can be satisfied by just one supermarket chain.

▶ Lemma 3. For two restaurants r1, r2 annotated with the same index from chains R1, R2
in the same permutation, their distance is at most 2δ.

1 Formally speaking, in such cities distances are measured in the L1-metric. However, as we consider only
metric balls in our arguments, and as metric balls are squares in the plane under both metrics, in order
to be consistent with our motivation from persistence diagrams, we choose to work with the L∞-metric.
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a+ b points

`

r1
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s2

a b

c d

a b

c d

Figure 1 Two restaurants annotated with the same index from chains in the same permutation
split the plane into quadrants with the same number of restaurants.

Proof. The restaurants r1, r2 split the plane into four quadrants each, see Figure 1. Since both
stores are annotated with the same index and belong to chains from the same permutation,
their quadrants contain the same number of points. Let a be the number of points in
the top-left, b in the top-right, c in the bottom-left and d in the bottom-right quadrant.
Furthermore, let s1 and s2 be the δ-balls (which are squares in L∞) around r1 and r2. For
sake of contradiction, assume that they do not intersect. By the separation theorem, there
exists either a horizontal or vertical separation line between them. Without loss of generality
consider the case of a horizontal separation line ℓ and let r2 be above r1.
By the Helly-like assumption of our theorem, R1, R2 can be satisfied using only one super-
market chain. Thus, their stores can be matched in a way such that the distance of the
longest matching edge is at most 2δ. There are at least a + b + 1 restaurants in R2 (the upper
two quadrants plus r2 itself) that can in such a matching only be matched to restaurants
strictly above ℓ. However, R1 can contain at most a + b such restaurants. By contradiction,
s1 and s2 intersect. ◀

Proof of Theorem 2. By Lemma 3 any two stores annotated with the same index from
chains in the same permutation are at most distance 2δ apart. In other words, their δ-balls
intersect, and thus, the statement follows from Helly’s theorem for boxes. ◀

3 A lower bound

Unfortunately, the bound proven in the previous section has a superexponential dependence
on the number of stores per chain m. As it turns out, no subexponential bound exists.

▶ Theorem 4. There exists a placement of n restaurant chains {r1
1, . . . , rm

1 }, . . . , {r1
n, . . . , rm

n },
with m stores each, such that any two can be satisfied by a single supermarket chain, but
satisfying all n chains requires k ≥ min(n, ⌊em/(27+ε)⌋)/2 supermarket chains, for any
constant ε > 0.

The proof is based on the following construction, an example where a single supermarket
chain does not suffice. Consider six points arranged on a circle such that any two squares of

EuroCG’25
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Figure 2 A city with 3 restaurant chains, each consisting of 2 stores placed on antipodal points.

radius δ centered at the points intersect if and only if the points are neighbors on the circle.
We refer to this arrangement as a city; an example is illustrated in Figure 2.

Sketch of proof. Consider many cities sufficiently far away from each other. In each city,
each restaurant chain constructs independently and uniformly at random two stores on
antipodal points. Applying the probabilistic method to this procedure shows that, given the
number of cities is sufficiently large, there will, for any restaurant chain triple exist one city
where these three chains occupy distinct placements within this city. Consequently, a single
supermarket chain cannot satisfy these three restaurant chains. ◀

4 Computational complexity

In this section we analyze the computational complexity of deciding whether all restaurant
chains can be satisfied by a single supermarket chain. In both our results it will be helpful
to take a graph theoretic viewpoint on the problem: we define the restaurant graph G whose
vertex set is the set of all restaurant stores, and where two stores rb

a and ry
x of different

chains are connected whenever their δ-balls intersect. The vertex set of this graph partitions
naturally into m-sets of vertices that correspond to the m stores of a restaurant chain. We
interpret the different chains as colors and say that a clique C in G is a colorful clique if it
contains exactly one vertex of each m-set associated to a restaurant chain.

▶ Lemma 5. Let {r1
1, . . . , rm

1 }, . . . , {r1
n, . . . , rm

n } be n restaurant chains with m stores each.
Then all of them can be satisfied by a single supermarket chain if and only if the vertex set
of the restaurant graph G can be partitioned into m colorful cliques.

Proof. Assume there is a placement of the m supermarket stores s1, . . . , sm such that each
restaurant ri

j is satisfied by the store si. In particular, any two vertices ri
a and ri

b are
connected and we can thus partition the vertex set of G into m colorful cliques. On the other
hand if such a partition into colorful cliques exists, then for any two stores in this clique their
δ-balls intersect. Thus, by Helly’s theorem for boxes, all of them intersect, which means that
we can place a supermarket store in this intersection to satisfy all the stores in the clique. ◀

The following can be proven using standard methods.

▶ Theorem 6. Let {r1
1, r2

1}, . . . , {r1
n, r2

n} be n restaurant chains, each having two stores, such
that any two of them can be satisfied by a single supermarket chain. Then we can decide in
time O(n3) whether all of them can be satisfied with a single supermarket chain.
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Let us mention here that we did not try to optimize the runtime and it is thus likely that
it can still be improved. Further, it is an interesting problem whether for a larger constant
number of stores we can still solve the problem in polynomial time.
▶ Question 7. Given n restaurant chains, each having m stores, where m is a constant, such
that any two of them can be satisfied by a single supermarket chain, is there a polynomial
time algorithm to decide whether all of them can be satisfied by a single supermarket chain?

On the other hand, if the number of stores is unbounded, then the problem becomes
NP-complete, even if there are only 3 restaurant chains.

▶ Theorem 8. Let {r1
1, . . . , rm

1 }, {r1
2, . . . , rm

2 }, {r1
3, . . . , rm

3 } be 3 restaurant chains with m

stores each, such that any two of them can be satisfied by a single supermarket chain. Then it
is NP-complete to decide whether all of them can be satisfied with a single supermarket chain.

Sketch of proof. The containment in NP follows from Lemma 5. For NP-hardness, we use
a reduction from planar 3-SAT [14]. We describe our construction in terms of the δ-balls
and give a different color to each chain. Thus, given a planar SAT formula φ we place some
number n of blue squares, n green squares and n orange squares such that we can partition
them into colorful triples with common intersections if and only if φ is satisfiable.

For each variable in the formula φ we arrange green and blue squares in a cycle, see
Figure 3. There are exactly two types of placements of supermarkets to satisfy the involved
restaurants, which we interpret as “true” and “false”, respectively.

For the clauses we use squares of the third color, orange. We place an orange square o1
in such a way that it intersects exactly the regions a1, a2 and a3 corresponding to setting a
literal to “true”, see Figure 4. We place two more orange squares o2, intersecting a1 and
a2 as well as the intersections on the variable gadgets before them, and o3, intersecting a2
and a3 as well as the intersections after them. Note that, locally, this configuration can be
satisfied if any only if at least one literal is set to “true”.

We link the variable and clause gadgets according to a plane embedding of the variable-
clause graph, see Figure 5. It remains to place more orange squares such that any two color
classes can be satisfied: we add one more orange square for each variable-clause incidence
(see Figure 6) and add orange copies of almost all blue squares, except the first two blue
squares of any variable-clause incidence (denoted bi and bi−1 in Figure 6). It now follows
from the construction that any two color classes can be satisfied with a single supermarket
chain, and that all three can be satisfied if and only if φ is satisfiable. ◀

g1

g2

g3

g4
g5

g6

gc

b1

b2

b3
b4

b5

b6

bc

Figure 3 Placing supermarkets in the green (red) regions sets the variable to “true” (“false”).
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a1
a2

a3
o1

o2

o3

Figure 4 A clause gadget.

x1

x2

x3

x4

Figure 5 All gadgets for the (very small) formula φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4). The
black points describe a placement of supermarkets corresponding to setting all variables to “true”.
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bi

bi−1

Figure 6 The placement of the remaining orange squares. The orange squares that are copies of
blue squares are drawn small.
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Abstract
An oriented matroid program (O, g, f) is an oriented matroid (OM) (the set of sign-vectors of

the cells of an oriented pseudosphere arrangement) together with two elements (pseudospheres) g

and f . We call an oriented matroid program Euclidean if to each cocircuit (which is a vertex of the
arrangement) there is an extension parallel to f (with respect to g) going through the cocircuit. We
call an oriented matroid Mandel if it has an extension in general position which makes all programs
with that extension Euclidean. A simplicial region in the arrangement is called a mutation.

Let L be the minimum number of mutations adjacent to an element in an OM or in a class
of OMs. We call an OM Las Vergnas if L > 0. If Oproperty is the class of OMs having a certain
property, it holds O ⊃ OLas Vergnas ⊃ OMandel ⊃ OEuclidean ⊃ Orealizable. All these inclusions are
proper and we give explicit proofs and examples for the parts of this chain that were not known.

For realizable hyperplane arrangements of rank r we have L = r which was proved by Shannon.
Under the assumption that a (modified) intersection property holds we give an analogue to Shannon’s
proof and show that uniform rank-4 Euclidean oriented matroids with that property have L = 4.
Using the fact that the lexicographic extension creates and destroys certain mutations, we show that
for Euclidean oriented matroids, L ≥ 3 holds.

We can reverse a mutation of an oriented matroid and obtain a new OM. This is called a
mutation-flip. We prove that Euclideaness is preserved after a certain type of mutation-flips which
yields that a path in the mutation-graph from a Euclidean oriented matroid to a totally non-Euclidean
oriented matroid (which has no Euclidean oriented matroid programs) must have at least three
mutation-flips. Finally, a minimal non-Euclidean or rank-4 uniform oriented matroid is Mandel if it
is connected to a Euclidean oriented matroid via one mutation-flip. Hence, we get many examples
for Non-Euclidean but Mandel oriented matroids and have L ≤ 3 for those of rank 4.

Related Version https://arxiv.org/abs/2501.12951

1 Introduction

A central arrangement of hyperplanes in Rr is a finite family A = (He)e∈E of hyperplanes in
Rr. The rank of the arrangement is the codimension of the intersection of all its hyperplanes.
We assume

⋂ A = {0}, hence A has rank r. A hyperplane He divides Rr into two disjoint
open halfspaces and itself. We assign an orientation to He by designating one halfspace as
positive (H+

e ) and the other as negative (H−
e ). Each point p ∈ Rr corresponds to a sign-vector

S ∈ {0, +, −}E such that Se = 0, Se = + or Se = − if p lies in He, H+
e or in H−

e . The
set of all points sharing the same sign-vector is called a cell and we obtain a partition of
Rr into disjoint cells. The dimension of a cell is the dimension of its linear hull. A cell of
dimension 1 is a vertex, of dimension 2 an edge, and a full-dimensional cell is a region. A
region corresponds to a sign-vector that has no zero-entries. If the closure of a region is a
simplex, we call it a simplicial region or a mutation. We say a hyperplane is adjacent to a
mutation if it contains a facet of the mutation. There is a famous result by Shannon, see [14],
that each hyperplane of an arrangement A of rank r has r adjacent mutations. We cite here
the proof in [2], Lemma 2.1.5, see Figure 1, which uses induction by rank. The first part (see
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 Proof of Shannon’s result, from [2], Lemma 2.1.5

also [14]) shows that for any two hyperplanes H and H∞ in A, there exists a vertex x /∈ H

in a simplicial region adjacent to H with no vertices in H∞. Let x be the closest vertex to
H not lying in H∞. Since A ∩ H = (He ∩ H)e∈E is a hyperplane arrangement of rank r − 1,
it follows by induction, that it has a simplicial region in H outside H ∩ H∞ with vertices
x1, . . . , xr−1. Because x is closest to H, all [xi, x] are edges, forming a simplicial region
containing x outside H∞. The second part (see also [13]) says, that if we have less than
r mutations adjacent to H, we can add a hyperplane H∞ intersecting all these mutations.
There must be at least one more mutation adjacent to H outside H∞.

If we intersect a central arrangement of hyperplanes in Rr with the sphere Sr−1, we
obtain an arrangement of (r − 2)-subspheres in Sr−1 while preserving the original sign-vector
information. If we now consider subsets S of Sr−1 homeomorphic to Sr−2 (see [6]) and orient
them like before, we obtain arrangements of pseudospheres. These arrangements again divide
the sphere into disjoint cells corresponding to sign-vectors which are the set of covectors of an
oriented matroid (or an OM). Sign-vectors corresponding to vertices, edges and regions of the
arrangement are called cocircuits, edges and topes. The pseudospheres Se of the arrangement
correspond to elements of the groundset E of the OM. We always assume

⋂
e∈E Se = ∅. Then,

the OM has rank r and corank |E| − r. If the deletion of an element of an OM decreases the
rank, we call it a coloop. In the following, we only consider OMs without coloops. Oriented
matroids can also be defined as a set of covectors in a purely axiomatic way. Many of these
OMs cannot be ‘stretched’, they correspond to pseudosphere- but not to sphere-arrangements.
We call them non-realizable. Shannon’s result holds for realizable OMs (so also for OMs with
rank or corank ≤ 2) and for rank-3 OMs (which are also called pseudoline arrangements).
Each pseudoline has at least 3 adjacent mutations (this was shown by Levi in [10]). You can
see this in Figure 2. The mutations are triangles here.

In rank 4, things get more complicated. In the 80’s, Roudneff, Sturmfels and Altshuler
found a rank-4 OM with 8 elements called the RS(8), see [13], that has an element being
only adjacent to 3 mutations, see Figure 3, the red triangles on the button element. The
conjecture (made by Las Vergnas in [9]) that each oriented matroid has at least one mutation
is still open today. We call OMs Las Vergnas, if each element has at least one adjacent
mutation. In the 90’s and early 2000’s, Richter-Gebert, Bokowski, Rohlfs, and Hall, see [12],
[4], [5], found OMs built on the RS(8) with mutation-free elements, hence being not Las
Vergnas. We later use the OM that Richter-Gebert found, which is called the R(20).

The vertices and edges of a central hyperplane arrangement form a graph. Analogously,
the cocircuit graph of an oriented matroid has the cocircuits as its vertices and the OM’s
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Figure 2 An oriented matroid of rank 3 with its covectors, C is a cocircuit, D is an edge, we
look at the 2-sphere from above.

Figure 3 from [4], the RS(8), a rank-4 OM. We look at a 3-sphere. See [4], page 289 for details.

edges as its edges. An OM O together with two elements g (the infinity) and f (the target
function) yields an oriented matroid program (OMP), written as (O, g, f). We call an OMP
Euclidean if, for each cocircuit X with Xg = +, there exist an extension of the OMP by a
single element f ′ through X, parallel to f with respect to g (meaning Xf ′ = 0 and Yf = Yf ′

for all cocircuits Y with Yg = 0). An OM is Euclidean if all its programs are. In (O, g, f)
we can direct the edges in the cocircuit graph between cocircuits with g = +. We go along
an edge (X, Y ) from X to Y and continue until we reach the element g in a cocircuit Z. If
Z lies in the positive (negative) halfspace of f , the direction increases (decreases), and the
edge is directed from X to Y (from Y to X), see Figure 4. A famous result by Edmonds,
Fukuda and Mandel, see [11], states that OMPs are Euclidean iff their cocircuit graph has no
directed cycles. OMs of rank ≤ 3 or corank ≤ 3 are always Euclidean. In rank 4, this is not
always the case. The RS(8) is one such counterexample, as shown by the cycle in Figure 3.

2 Mandel OMs are Las Vergnas, but not vice versa

In his thesis [11], Arnaldo Mandel made a“wishful thinking” by conjecturing that every
OM has an extension g in general position, so that all its programs using g as infinity are
Euclidean. We call OMs with that property Mandel. The next theorem has already been
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g

Z

f

W

Y
X

f ′

Figure 4 A Euclidean oriented matroid program. f ′ goes through X parallel to f wrt. g. From
the edge (X, Y ), we reach g in the cocircuit Z with Zf = +. It has increasing direction (from X to
Y ). All edges from W going away from f are increasing. W lies in a triangle adjacent to f .

shown in [11] and in [8]. We show it again by highlighting the similarity to Shannon’s proof.

▶ Theorem 2.1. Mandel oriented matroids are Las Vergnas.

If we want to show that an element f has an adjacent mutation, we use f as target function
in the OMP (O, g, f), where g is the ‘Mandel’ extension. We go on like in the first part of
Shannon’s proof. Even if we have no notion of distance in OMs anymore, the cocircuit graph
of (O, g, f) is directed because the program is Euclidean and there is a cocircuit W in that
graph whose predecessors are only cocircuits lying on f . Then W has the same function like
the vertex x in Shannon’s proof, see again Figure 4. We know today that non-Las Vergnas
OMs exist, hence Mandel’s conjecture turned out to be wrong. We come to a new result.

▶ Theorem 2.2 ([15], Theorem 10 and [7], Theorem 1.2). There are Las Vergnas oriented
matroids that are not Mandel. Euclidean oriented matroids are Mandel.

To prove it we need the lexicographic extension of an OM, which adds an element f ′ in
general position ‘very close’ to an element f . The two elements f and f ′ are inseparable in
the OM, which means that no cocircuits lie between them. This extension destroys some

f ′
f

M1

M2

M3

Figure 5 The lexicographic extension added the element f ′. The elements f and f ′ are inseparable.
Mutation M1 is cutted in half by f ′, mutation M2 remains unchanged and mutation M3 is new.

mutations adjacent to f , leaves non-adjacent mutations as they are and creates at least
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one new mutation, see Figure 5. With this insight we can construct an OM being Las
Vergnas, but not Mandel. The R(20), which is neither Las Vergnas nor Mandel, has only
one mutation-free element f . We extend it lexicographically with an element f ′ inseparable
to f . Now, f and f ′ are adjacent to a new mutation and all other mutations stay like before.
Hence, the extended OM is Las Vergnas but not Mandel because an OM remains Mandel if
we delete an element of it (except in some trivial cases, see [15], Theorem 6). For the second
statement of the theorem, we use our main result of [7] (joint work with W. Hochstättler):
The lexicographic extension of a Euclidean oriented matroid remains Euclidean. Hence, any
such extension is the desired extension in general position for a Euclidean OM being Mandel.

3 New results on the number of mutations in OMs

If L is the minimal number of mutations adjacent to an element in a class of OMs, we show:

▶ Theorem 3.1 ([15], Theorem 13). For Euclidean oriented matroids (without coloops) of
rank r > 3 and corank ≥ 3, it holds that L ≥ 3.

To show this, for each element f , we choose an element g such that f and g are separable.
(The case that there is no such g can be excluded using non-trivial results about binary OMs
from matroid theory, we refer to [15], Lemma 1 and before for the details.) Because g and f

are separable, we have g = + cocircuits with f = + and f = −. Hence, because (O, g, f)
is Euclidean we get one mutation on each side of f . No matter where these two mutations
are located, we always find a lexicographic extension f ′ that destroys both. The program
(O, f ′, f) remains Euclidean and we obtain a third mutation.

In general, a lexicographic extension cannot destroy more than two mutations. For more,
we need a stronger property than Euclideaness called the intersection property IP1, see [1].

▶ Definition 3.2. An oriented matroid of rank r has the intersection property IP1 if, for each
set of r − 1 cocircuits, there exists a (non-trivial) extension going through these cocircuits.

Such an extension (and assuming it preserves Euclideaness) yields an analogue to the second
part of the proof of Shannon’s result. If there are r − 1 mutations, we use the extension
intersecting r − 1 cocircuits, one from each mutation, then slightly perturb it to destroy all
mutations (preserving Euclideaness), gaining one additional mutation as before. We could
only prove a special case (an OM is uniform iff all elements lie in general position):

▶ Theorem 3.3 ([15], Theorem 14). For uniform oriented matroids of rank 4 and corank ≥ 4
that satisfy the IP1, where the extensions provided by the IP1 can be chosen to be Euclidean,
L = 4 holds.

Since the extension yielded by the IP1 can intersect more than the r − 1 cocircuits, extensive
case-checking was required in the proof, making generalization to higher ranks difficult.

4 OMs with a Euclidean mutant are Mandel

In uniform oriented matroids, each mutation corresponds to a mutation-flip. We move one
pseudosphere f of the mutation across the cocircuit X of the mutation that is not adjacent
to f , as shown in Figure 6, obtaining a new OM called a mutant. The mutation-graph has
uniform oriented matroids as vertices, with mutants connected by edges. Such a mutation-flip
does not affect the Euclideaness of a program (O, g, f) if f is adjacent to the mutation and g

is not, see Figure 6. It is obvious that cocircuits with g = 0 remain unchanged after the flip,
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g

f

M
X

g

f

M
X

Figure 6 Two oriented matroids connected by a mutation-flip. Element f is adjacent to the
mutation, element g not. All edges from f to the cocircuit X have the same direction in both OMs.

hence, all edges outside of the mutation retain their directions. Additionally, the cocircuit X

cannot be part of a cycle, all edges from f to X have the same direction, and such a cycle
can never contain cocircuits with f = 0.

We present two applications of these results. First, we again consider Richter-Gebert’s
R(20). It is a uniform totally non-Euclidean OM, meaning it has no Euclidean oriented
matroid programs. (We verified this with computer help but will prove it by hand in an
upcoming paper.) Each path from a Euclidean OM to the R(20) in the mutation-graph must
include at least three mutation-flips, see Corollary 4 in [15]. After the first flip of mutation
M1 (where M1 = {e1, . . . , er} is the set of elements adjacent to the mutation), programs
(O, g, f) with (g, f) ∈ M1 × E \ M1 remain Euclidean. After the second flip of mutation
M2, programs (O, g, f) with ((g, f) ∈ M1 \ M2 × M2 \ M1) still remain Euclidean. Thus,
only after three flips is it possible for all Euclidean oriented matroid programs to become
non-Euclidean. The second application is the following theorem.

▶ Theorem 4.1 ([15], Theorem 17, Theorem 18). A uniform oriented matroid O of rank 4 (or
a minimal non-Euclidean uniform oriented matroid) is Mandel if it has a Euclidean mutant.

The proof proceeds as follows, see Figure 7. First, the mutant OM is Euclidean. Flipping
OM back to O preserves the Euclideaness of the programs (O, g, f) if f ∈ M and g /∈ M .
We extend O lexicographically and obtain Of ′ , which has a new mutation M ′ = M \ f ∪ f ′.
The programs (Of ′ , g, f ′) and (Of ′ , f, f ′) remain Euclidean. We flip Of ′ on the mutation M ′

and obtain Of ′,M ′ . Again, the programs (Of ′,M ′ , g, f ′) and (Of ′,M ′ , f, f ′) remain Euclidean.
If we have e ∈ M \ f , we start with OM . The program (OM , e, f) is Euclidean. We extend
OM lexicographically with an extension ’reversed’ to the first one and obtain OM,f ′ . The
program (OM,f ′ , e, f) remains Euclidean. We again have the mutation M ′ in OM,f ′ . We flip
OM,f ′ again on the mutation M ′ and obtain OM,f ′,M ′ . Because f /∈ M ′ and e ∈ M ′, the
program (OM,f ′,M ′ , e, f) remains Euclidean. The mapping that maps f to f ′ and vice versa,
and is the identity for the rest, yields an isomorphism between OM,f ′,M ′ and Of ′,M ′ . Hence,
the programs (Of ′,M ′ , e, f ′) are Euclidean for all e ∈ E, and we have O = Of ′,M ′ \ f ′. That
means that O is Mandel. In Lemma 25 of [15], where the main proof of Theorem 4.1 is given,
we assumed that O/f (see [2], Lemma 4.1.8) must be Euclidean. Removing this assumption
seems difficult but not impossible and would generalize Theorem 4.1 to higher ranks.
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Figure 7 Constellation for the proof of Theorem 4.1

5 Conclusion

All 8-element rank-4 OMs, including RS(8), have a Euclidean mutant, see [3], making them
Mandel, even if they are non-Euclidean. Because RS(8) has an element with only 3 adjacent
mutations, we obtain L ≤ 3 for the class of Mandel OMs of rank 4. We get a full chain of
strict inclusions. If Oproperty is the class of OMs having a certain property, it holds

▶ Theorem 5.1. O ⊃ OLas Vergnas ⊃ OMandel ⊃ OEuclidean ⊃ Orealizable.

Regarding the strictness of the last inclusion, note that while some rank-3 OMs (pseudoline
arrangements) are non-realizable, they are always Euclidean. Finally, considering only OMs
without coloops and specifying that they have rank r and corank cr, we have:

▶ Theorem 5.2. 1. L(O) = 0 (Richter-Gebert, Bokowski/Rohlfs, Hall).
2. L(O) = r if r ≤ 3 (Levi) and L(Orealizable) = r (Shannon).
3. 1 ≤ L(OMandel) (Mandel, Knauer/Marc) and L(OMandel) ≤ 3 if r, cr ≥ 4 (new result).
4. 3 ≤ L(OEuclidean) ≤ r if r > 3, cr ≥ 3 (new result).
5. L(OIP1,uniform) = 4 if r = 4 and cr ≥ 4 (new results).
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Abstract
Assume that you have lost your puppy on an embedded graph. You can walk around on the graph
and the puppy will run towards you at infinite speed, always locally minimizing the distance to
your current position. Is it always possible for you to reunite with the puppy? We show that if the
embedded graph is an orthogonal straight-line embedding the answer is yes.

1 Introduction

The puppy chasing problem was proposed by Michael Biro at the 2013 edition of the Canadian
Conference on Computational Geometry. While inspired by problems in beacon-base routing
and originally illustrated by train tracks and locomotives, like many other problems in
discrete and computational geometry it has a dog-related illustration, which was proposed
by the authors who solved Biro’s original problem [2].

Assume you are walking with your puppy on an embedded graph. Suddenly, you realize
that the puppy is not with you anymore. Luckily, you can see each other and the puppy also
wants to reunite with you. While the puppy can run infinitely fast, its behavior is very naive:
it runs as close to you as possible, always locally improving the distance to you. Is there
always a route you can walk, so that the puppy will eventually reunite with you?

To phrase it in mathematical terms, let G be a finite graph and let γ : G → R2 be a
(crossing-free) embedding of the graph. We interpret G as a topological space. Any pair
(x, y) ∈ G×G then defines locations h = γ(x) and p = γ(y) in the plane R2, which we interpret
as the positions of the human and the puppy, respectively. Denoting by d(x, y) the Euclidean
distance between h = γ(x) and p = γ(y), we say that a configuration (x, y) ∈ G × G is stable
if there is some ε > 0 such that for all y′ ∈ G with d(y, y′) ≤ ε we have d(x, y′) ≥ d(x, y).
In other words, a configuration is stable if the puppy cannot locally decrease its distance
to the human. For a non-stable configuration there is thus at least one direction in which
the puppy can decrease its distance to the human, in which case it will do so. If there are
several such directions, the puppy chooses an arbitrary one. See Figure 1.

If G is a cycle, and the embedding is either smooth or piece-wise linear, it was shown
by Abrahamsen, Erickson, Kostitsyna, Löffler, Miltzow, Urhausen, Vermeulen and Viglietta
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h

p

Figure 1 A stable configuration (left), and an unstable one (right).

h
p

Figure 2 If the human h continues walking clockwise, human and puppy p will never be reunited.

(AEKLMUVV) that the human can always catch the puppy [2], solving Biro’s original
question. While there are embeddings where the human does not even need to move to catch
the puppy, e.g., the unit circle, there are also examples where if moving the wrong way the
human will never catch the puppy, see, e.g., Figure 2. If self-intersections are allowed (think
of one edge crossing over the other via a bridge), then there are drawings where the human
can never catch the puppy. An example of this is the double loop depicted in Figure 3.

It is an interesting open problem to characterize the drawings of a cycle on which the
human can always catch the puppy. Towards this, Brunck, Löffler and Silveira have recently
shown that the rotation number does not give such a characterization by constructing a
curve with rotation number 1 (i.e., the same rotation number as a crossing-free embedding),
where the human sometimes cannot catch the puppy [10].

h

p

Figure 3 No matter how the human h moves, human and puppy p will never be reunited.
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Figure 4 A straight-line embedding (left) and an orthogonal straight-line embedding (right) of
the same graph.

1.1 Our results
In this work, we extend Biro’s question from embeddings of circles to embeddings of general
graphs. Concretely, motivated by the many results on beacon routing and related problems
in orthogonal domains, we show the following theorem.

▶ Theorem 1.1. Let G be a finite connected graph and let γ be an orthogonal straight-line
embedding of G in the plane. Then, there is a strategy for the human to catch the puppy on
γ.

Here, an orthogonal straight-line embedding is an embedding of the graph where every
edge is mapped to either a horizontal or a vertical line segment, see Figure 4 for an example.
Note that not every graph admits an orthogonal straight-line embedding, so we are implicitly
restricting our attention to those that do. Also note that orthogonal drawings, where edges
can be drawn as polygonal lines with vertical and horizontal parts can be seen as orthogonal
straight-line embeddings of a subdivision of G, so Theorem 1.1 immediately extends to
orthogonal drawings.

Unlike the proof of AEKLMUVV that uses topological methods to show the existence of
a strategy, we give a recursive strategy that is simple to describe. For orthogonal polygons
(that is, orthogonal straight-line embeddings of a circle), AEKLMUVV also give a simple
strategy (see [2], Theorem 2), which differs from our strategy. On the other hand, while we
conjecture that Theorem 1.1 should hold for any straight-line embedding of a graph, our
strategy heavily relies on orthogonality. We leave the following as an open problem.
▶ Conjecture 1.2. Let G be a finite graph and let γ be a straight-line embedding of G in the
plane. Then, there is a strategy for the human to catch the puppy on γ.

1.2 Related work
A natural variant of Biro’s problem, which AEKLMUVV call the guppy problem, was
introduced by Kouhestani and Rappaport [13]: the guppy is swimming in a simply connected
lake, behaving just like the puppy in our problem at hand. The human, however, can only
walk along the shore. Kouhestani and Rappaport conjectured that there is always a strategy
for the human to catch the guppy. However, this conjectured was settled in the negative
when Abel, Akitaya, Demaine, Demaine, Hesterberg, Korman, Ku and Lynch provided a
counterexample consisting of an orthogonal polygon where no such strategy exists [1].

As mentioned above, the puppy problem is motivated by the problem of beacon routing.
A beacon is a point which can be activated to create a magnetic pull. Given a polygonal
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domain P , the question is now how many beacons need to be placed and activated sequentially
to route a point in P to a given goal location. The difference from the puppy problem is
thus that beacons cannot move but that several of them can be used. Beacon routing has
been studied extensively in the last 10 years, in particular for orthogonal polygonal domains
[3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16].

2 A Strategy for Orthogonal Embeddings

In this section, we prove Theorem 1.1 in two steps. First, in Section 2.1 we show it for the
generic case, where we assume that no two horizontal line segments of the embedding are on
the same height. This restricted setting already highlights the main ideas but is simpler to
describe. In Section 2.2 we then adapt our proof to the non-generic case.

2.1 The generic case
We begin by proving the following lemma.

▶ Lemma 2.1. Given a configuration of the human’s position h and the puppy’s position p

and a horizontal line l through h where p is not above l, the puppy will move above l only if
the human moves above l.

Proof. Since all edges are either parallel or orthogonal to l, the only way for the puppy to
move above l is to take a vertical edge that crosses l. However, since the puppy is currently
below or at the same level as the human, no movement of the human can lead to this: If the
human moves horizontally, then taking a vertical edge that crosses l can only increase the
distance between the two. Similarly, if the human moves vertically without crossing l, the
puppy will only increase its distance by crossing l. ◀

Proof of Theorem 1.1. Let γ be an orthogonal straight-line embedding of a graph G. We
describe an algorithm for the human to catch the puppy. The basic idea is that we decrease
the size of the part of the embedding containing the puppy in every step by considering parts
of the domain as “forbidden.” In the following we assume without loss of generality that at
the beginning the puppy is not above the human. The algorithm is the following, see Figure
5.

1. Move in the non-forbidden part to the (unique) topmost horizontal edge e. All (vertical)
parts of edges that are above this position are now forbidden.

2. If e is a cut edge (i.e., bridge) of the non-forbidden part, move to the connected component
of γ \ {e} that contains the location of the puppy and consider the edge (as well as all
other components of the graph) forbidden.

3. Otherwise, simply leave the edge and consider it and everything above it forbidden from
now on.

4. Repeat this process in the non-forbidden part of the embedding.

We want to prove that whenever we label a new part of the domain as “forbidden,”
neither the human nor the puppy will ever enter that region again. We make an inductive
argument. Our induction hypothesis is that before each iteration, the non-forbidden domain
is connected and contains both the human and the puppy. Additionally, the forbidden domain
has the property that the puppy will not enter any forbidden part if the human stays in the
non-forbidden parts. These invariants are trivially true at the beginning of the process. Now
consider the configuration at the beginning of any iteration of the algorithm. By the induction
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Figure 5 An example of Step 2 of the algorithm.

hypothesis, the non-forbidden domain is connected and thus the human can move to the
topmost edge e without entering any forbidden parts. Again, by the induction hypothesis,
the puppy is still in the non-forbidden domain when the human reaches e. We argue that
the induction hypothesis still holds after cutting off everything above e: by Lemma 2.1, the
puppy cannot be above the human as e is the topmost edge. Since we only cut off (parts of)
vertical edges, the domain stays connected. Again by Lemma 2.1, the puppy will not enter
the newly forbidden domain unless the human does. Now, there are two cases.
1. If e is not a cut edge, then the human simply leaves the edge and considers it forbidden

from now on. Now, the non-forbidden domain still contains the human and the puppy
and is connected since otherwise e must have been a cut edge. Moreover, since e was
the unique topmost horizontal edge and the human will never enter the forbidden parts
again, by Lemma 2.1, the puppy cannot enter e either.

2. If e is a cut edge, then the human moves to the connected component that contains the
puppy and we forbid e as well as all other connected components. After this, both the
human and puppy are still in the non-forbidden domain. By definition, the domain is
also still connected. By the same arguments as in the first case, the puppy will stay in
the non-forbidden part.

In each step the non-forbidden part of the domain decreases by at least one edge. Since
there are only finitely many edges, the human and the puppy will eventually be located on
the same edge at which point the human has caught the puppy. ◀

2.2 Allowing horizontal edges of the same height
Now, we are no longer assuming each horizontal edge to be at a different height, meaning
that we need to adjust the strategy from the previous section as the topmost horizontal
edge is no longer unique. Let m be the height of the topmost horizontal edge in γ, and let
T = {e1, . . . , ek} be all edges in γ at height m, ordered from left to right. Now, we consider
the connected components of γ \ T (note that this could be a single component). Our goal is
to get to a configuration where the human is in the same component as the puppy. Once
we are in such a configuration, we can again forbid all edges of T and by Lemma 2.1, the
puppy will never leave the component again, unless the human does, meaning that we can
recursively continue the strategy on the non-forbidden part.

It thus remains to show that the human can always move into the same component as the
puppy. For each component C of γ \ T denote by T (C) the set of edges in T it is incident to.
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Figure 6 An orthogonal embedding with five components. The components C1 and C2 are
U-components. The component C1 dominates C2, which in turn dominates C3 and C4.

We say that a component C of γ \ T is a U-component if there is another component C ′ that
lies entirely inside the region bounded by C and the horizontal line at height m. In this case
we say that C dominates C ′. This gives a nesting of the components, see Figure 6 for an
illustration.

▶ Lemma 2.2. Let Cu be a U-component and let D be the set of all components dominated
by Cu (including Cu). If both human and puppy are on components in D and the human
stays on components in D, then the puppy also stays on components in D.

Proof. Let el and er be the leftmost and rightmost edges in T (Cu), respectively. In order to
leave D, the puppy must either run leftwards over el or rightwards over er. However, the
puppy would only do this if the human was on an edge in T left of el or right of er, in which
case the human is not in D. ◀

Consider now the graph GD whose vertices are the components that are not dominated
by some other component, where two such components are connected whenever they are
connected via an edge in T . We claim that GD is a path: for each vertex Ci of GD let el

i and
er

i denote the leftmost and rightmost edge in T (Ci), respectively. The intervals enclosed by
el

i and er
i must be pairwise disjoint by the above observations. Thus, there is a linear order

along which the components are connected, implying that GD is indeed a path.
The strategy of the human is now the following: walk to the vertex in GD corresponding

to the component C dominating the component where the puppy currently is. As GD is a
path, this can always be achieved. Then, remove all components not dominated by C from
consideration. By Lemma 2.2, the puppy will always stay on the remaining graph. If the
puppy is also in C, remove everything but C from consideration and recurse. Otherwise,
walk into the connected component of γ \ C in which the puppy is, remove everything else
from consideration and recurse. By Lemma 2.2 and the above observations, the puppy will
again stay on the remaining graph. As the size of the part of the graph embedding γ under
consideration decreases in each recursion step, at some point the human is in the same
component C of γ \ T . The human enters this component via an edge in T . Thus, if the
puppy is also on an edge in T it must be on the same one and it will run to the human.
Otherwise the puppy is below the human at which point we can recurse by considering the
topmost edges of C.
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Abstract
We consider the faces in pseudoline arrangements in which the pseudolines are colored with two colors.
Björner, Las Vergnas, Sturmfels, White, and Ziegler conjecture the existence of a two-colored triangle in such
arrangements. We consider variants of this problem. We show that in any non-trivial two-coloring of a
pseudoline arrangement there exists a two-colored triangle or quadrangle. We also investigate the existence
of a bichromatic triangle assuming certain structures on the coloring.

We turn our attention to the hypergraph whose vertices correspond to the pseudolines of an arrangement
and its hyperedges to the triangular faces. Previously, several authors investigated the chromatic number and
independence number of hypergraphs whose vertices correspond to the pseudolines of an arrangement and
the hyperedges correspond to the faces of any size of the arrangement. We prove that the maximum of the
independence numbers of the line-triangle hypergraphs is n − Θ(log n).

1 Introduction

An Euclidean pseudoline arrangement is a finite collection of bi-infinite, simple curves called pseu-
dolines in the Euclidean plane, such that they pairwise cross in exactly one point, which we will
call crossing. If they exist, we call pseudolines with no crossings on one side extremal. An ar-
rangement is simple, if no three pseudolines intersect in a common point. We only consider simple
arrangements.

A pseudoline arrangement gives rise to a collection of vertices, edges and faces, see Figure 1.
We call a bounded face a triangle resp. quadrangle, if it is supported by exactly three resp. four
pseudolines. Sometimes we consider the area between three pseudolines and call it a non-empty
triangle.

The minimum and maximum number of triangles in pseudoline arrangements are known[8, 6].
Other questions about triangles remain open. We will consider arrangements whose pseudolines
are colored blue and red so that at least one pseudoline of each color exists. We call such ar-
rangements bicolored. In 1993, Björner, Las Vergnas, Sturmfels, White, and Ziegler asked about the
existence of bichromatic triangles in bicolored arrangements.

▶ Conjecture 1.1 ([5, p. 280]). Every bicolored arrangement has a bichromatic triangle.

Another way to look at this problem is to consider the triangle-pseudoline incidence graph. As
its vertices, take the triangles and pseudolines and add an edge between a pseudoline and a triangle
if the pseudoline supports the triangle. It is intuitive to ask about the connectivity of this graph.

∗ Research supported by the National Research, Development and Innovation Office – NKFIH under the grant K
132696 and by the ERC Advanced Grant “ERMiD”. This research has been implemented with the support provided
by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Inno-
vation Fund, financed under the ELTE TKP 2021-NKTA-62 funding scheme.
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▶Conjecture 1.2 ([5, p. 278]). The triangle-pseudoline incidence graph of a pseudoline arrangement
is connected. 1

Note that Conjecture 1.1 and Conjecture 1.2 are equivalent. The existence of bichromatic tri-
angles in a bicolored straight line arrangement has a simple proof: Shift the blue sub-arrangement
up and down. Consider the first moment the combinatorics of the arrangement changes. At this
point, a blue-blue crossing moved over a red line or a red-red crossing moved over a blue line. The
crossing and the line form a bichromatic triangle in the original arrangement.

A generalisation of this result was given in [9]: An arrangement A = {ℓ1, . . . , ℓn} is approach-
ing, if every pseudoline ℓi is the graph of a function fi, such that fi − fj is strictly monotone
increasing, for i < j. These pseudolines can be shifted and the collection of curves remains an
arrangements of pseudolines. This implies that Conjecture 1.1 holds for all approaching arrange-
ments.

The number of approaching arrangements has asymptotics similar to the class of all arrange-
ments, but examples of small arrangements that are not isomorphic to an approaching arrangement
are known.

Although the proof in the case of approaching arrangements is very elegant and intuitive, not
much progress has been made towards the general case so far. We present results about easier
variants of the question.

Also towards the goal of understanding triangles in pseudoline arrangements, we consider the
line-triangle hypergraph, which is the 3-uniformhypergraphwhose vertices correspond to the pseu-
dolines and a triple forms a hyperedge if the corresponding lines form a triangle. Then Conjecture
1.1 claims that every true 2-coloring of this hypergraph has a non-monochromatic hyperedge. We
present a theorem about the independence number of this hypergraph, i.e. we consider how large
the discrepancy of the cardinalities of the two color classes in an arrangement can be while not
including any monochromatic triangles.

We will consider Euclidean arrangements as marked arrangements, which have a fixed un-
bounded face, which we will call the north face. This gives use a canonical numbering of the pseu-
dolines, after choosing the north face, see Figure 1.This induces an orientation on every triples of
lines: we say that a triple of lines has "-" orientation, if the middle line goes above the crossing of
the other two, otherwise it is +, see Figure 1.

▶ Definition 1.3 ([10]). The function σ :
([n]

k

)
→ {−, +} is a rank k signotope on n elements, if

for all
S := {x1 < x2 < · · · < xk+1} ⊆ [n],

the sequence
σ(S \ x1), σ(S \ x2), . . . , σ(S \ xk+1)

has at most one sign change.

The orientation of triples of pseudolines of A give rise to the rank 3 signotope σA. Conversely,
every rank 3 signotope can be seen as triangle orientations of a pseudoline arrangement [10]. It
is possible to locally mutate a pseudoline arrangement A by flipping a triangle T to obtain A′,
i.e. changing the orientation of the pseudolines supporting T . This is equivalent to σA and σA′

differing on a single value, corresponding to T . See Figure 1. The most elementary tool to locate
triangles is the so called sweeping lemma for pseudolines.

1 The original (weaker) conjecture regarded projective arrangements.



Y. Alves Radtke, B. Keszegh, and R. Lauff 54:3

N
1

2

3

4

N
1
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3

4

T

T

σA({1, 2, 3}) = − σA′({1, 2, 3}) = +

Figure 1 The north face is designated by N . The face T is a triangle. The crossings (1,2) and (1,3) are
vertices, which are connected by an edge. The left arrangement corresponds to the all "−" signotope. The
right arrangement is obtained by flipping T .

Figure 2 The arrangement on the left is block-bicolored. The arrangement on the right is not.

▶ Lemma 1.4 ([10]). Let ℓ be a pseudoline in a marked arrangement. If there is a crossing above
ℓ, then there is a crossing above ℓ that forms a triangle supported by ℓ. The same holds for crossings
below ℓ.

There are two a-priori different orders on the set of signotopes with the same parameters: the
inclusion order, where σ1 ≤ σ2, when σ−1

1 {+} ⊆ σ−1
2 {+} and the single-step inclusion order,

where σ1 ≤ σ2, if there is a sequence of − to + flips that transform σ1 into σ2. The following was
proven by Felsner and Weil.

▶Theorem1.5 ([11]). The single-step inclusion order and the inclusion order on rank three signotopes
coincide.

1.1 Our results about bichromatic faces

We consider multiple weaker variants of Conjecture 1.1. We first assume certain structures on the
coloring of the arrangements. The following is already implicit in [3].

▶ Theorem 1.6. A bicolored arrangement with at most 5 red pseudolines has a bichromatic triangle.

This implies that if we color an arrangement with n/5 colors and use all of them, then there is a
non-monochromatic triangle. It also implies the conjecture holds for all arrangements with n ≤ 11.
We call an (unmarked) bicolored pseudoline arrangment block-bicolored, if we can choose a north
cell, such that the first pseudolines in the numbering induced by the north cell are red and the rest
are blue, see Figure 2. The following result was first proven by Felsner [personal communication].
Here we provide a simpler proof.

▶ Theorem 1.7 ([2]). If a pseudoline arrangement is block-bicolored it has a bichromatic triangle.

EuroCG’25
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We then broadened the question and considered the existence of bichromatic faces with low
complexity.

▶ Theorem 1.8. Every bicolored arrangement contains a bichromatic triangle or a bichromatic quad-
rangle.

1.2 The line-triangle hypergraph

Let Hface(L) denote the line-face hypergraph of the arrangement defined by a set of lines L,
i.e., the hypergraph whose vertices correspond to the lines and a subset forms a hyperedge if the
corresponding lines form a face in the arrangement (including the unbounded faces). Properties of
this hypergraph were regarded earlier by Bose et al.[7] and then their initial results were improved
by Ackerman et al. [1] and Balogh and Solymosi [4].

Let α be the independence number of a hypergraph, that is, the largest size of an independent
set. The following theorem summarizes previous knowledge about the relevant parameters of line-
face hypergraphs:

▶ Theorem 1.9 ([7, 1, 4]).
Ω(

√
n log n) = min

|L|=n
α(Hface(L)) ≤ n5/6+o(1),

n/2 ≤ max
|L|=n

α(Hface(L)) < 2
3 n,

n1/6−o(1) ≤ max
|L|=n

χ(Hface(L)) = O(
√

n/ log n).

We note that the proofs of Theorem 1.9 work also if we replace lines by pseudolines. From
now on, we only consider pseudoline arrangements. Also, the first and the third result hold if we
consider the sub-hypergraph containing only the bounded faces as hyperedges.

Instead of the line-face hypergraph, we can consider the line-triangle hypergraph, which we
denote by H∆(L). The next is a direct corollary of Theorem 1.9, using that the line-triangle hy-
pergraph is a subhypergraph of the line-face hypergraph. We also need that in the construction in
[4] it is enough to consider only triangular faces to obtain a small independence number.
▶ Corollary 1.

Ω(
√

n log n) = min
|L|=n

α(H∆(L)) ≤ n5/6+o(1),

n1/6−o(1) ≤ max
|L|=n

χ(H∆(L)) = O(
√

n/ log n).

Our contribution in this area is the following theorem.

▶ Theorem 1.10. The maximum of α(H∆(A)) over every arrangement of pseudolines A of size n

is max
|A|=n

α(H∆(A)) = n − Θ(log n).

This implies the same upper bound for families of lines. We do not provide a proof that our
construction works with straight line arrangement.

2 Proof sketches

We present proof sketches for our main results. See the soon to appear full-version for detailed
proofs.

Proof Sketch of Theorem 1.6. If the red sub-arrangment has an extremal line, either a simple
sweeping argument shows the existence of a bichromatic triangle or we can delete the extremal
line and continue with a smaller red sub-arrangement. The only arrangement without extremal
line with n ≤ 5 is the 5-star, where an explicit argument can be given. ◀
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Figure 3 Both extremal arrangements with prescribed sub-arrangements

Proof of Theorem 1.7. Given a block-bicolored arrangementA, we call the arrangement induced
by the red pseudolines Ar and the arrangement induced by the blue pseudolines Ab. Consider the
arrangements shown in Figure 3. In the arrangement to the left, call itAmin, for every triple of lines,
not all of them of the same color, the pseudoline with the highest index is going below the crossing
of the other two. This implies that every bichromatic triple has − orientation. A similar argument
implies that every bichromatic triple in the right arrangement, call it Amax, has orientation +.
The remaining, monochromatic, triples in A, Amax and Amin have the same orientation. By the
observation above clearly Amin ≤ A ≤ Amax holds in the inclusion order. By Theorem 1.5, there
is a sequence (possibly of length zero!) of "− to +" triangle flips, transforming A into Amax. Since
both arrangements agree on the monochromatic triples, the sequence only consists of bichromatic
triangle flips. A similar statement holds for Amin. Clearly Amin ̸= Amax, so not both A = Amin

and A = Amax can hold, so not both flip sequences can be empty, so there exists at least one
bichromatic triangle in A. Moreover if both A ≠ Amin and A ≠ Amax, A has two bichromatic
triangles, of opposite orientation. ◀

Note that this proof gives us a sequence of arrangements which look like we shift a sub-
arrangement to the left, similar to the proof for line arrangements.

We will use a sweeping lemma for lenses, which was stated in [3].

▶ Lemma 2.1 (Lens Sweeping Lemma). Let Q be a lens bounded by two curves L and R. Assume
there is a collection of curves inside Q which pairwise intersect at most once and where every curve
intersects L and R exactly once. If there is a crossing inside Q, there is a triangle that is supported by
L.

Figure 4 Illustration for the proof of Theorem 1.8. The dashed blue and both red lines form a lens.

Proof sketch of Theorem 1.8. In a bicolored arrangement A, we consider the sub-arrangement
induced by the red pseudolines and a single blue pseudoline ℓa. There is a blue-red-red triangle T

in this subarrangement supported by the blue pseudoline, by Lemma 1.4. Call the red lines ℓb and
ℓc, respectively.

We will only consider the parts of the arrangement A inside the non-empty triangle T . By
infinite descent, we can assume that all curves in T intersect ℓa.

EuroCG’25
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We then join ℓb and ℓc to a single curve ℓd and consider the lens formed by ℓa and ℓd, see
Figure 4. By a short case distinction and by using Lemma 2.1 we find a bichromatic triangle in the
lens. After reintroducing the red-red crossing this triangle possibly becomes an empty bichromatic
quadrangle.

◀

▶ Remark. In the case where we find a quadrangle, this quadrangle is red-red-blue-blue.

Proof Sketch of Theorem 1.10. Wefirst consider the red sub-arrangement. By the Erdős-Szekeres
theorem applied in the dual setting to pseudolines, there we find a cyclic sub-arrangement of size
Θ(log(n)). The cyclic arrangement on k pseudolines has k − 2 triangles. Any non-empty triangle
in an arrangement contains a triangle. Since each pseudoline added to the cyclic arrangement can
intersect at most two of its triangles, we need to add at least Θ(log(n)) blue pseudolines to destroy
all the red triangles. This yields the upper bound.

Figure 5 The bottom block has no blue crossings and the top block either has all blue crossings or no
blue crossings. The extra blue line either crosses all other blue lines below, or it crosses none.

For the lower bound we inductively construct an arrangement with 2n red pseudolines and n

blue pseudolines without monochromatic triangles, see Fig 5. ◀

3 Discussion

The conjecture about the existence of a bichromatic triangle is solved if there are at most 5 red
pseudolines. One particular case of 6 red pseudolines which we could not solve in general (that is,
for any addition of blue pseudolines) and find especially interesting is depicted in Figure 6. Note
that in any extension with blue pseudolines, as every red pseudoline must have an incident triangle
on both sides, either one of them is bichromatic and we are done, or no gray triangles on the figure
can be crossed by a blue pseudoline.

The bounds regarding the face-hypergraph and triangle-hypergraph still have large gaps except
for the one case in Theorem 1.10. We find the gap betweenn/2 and 2n/3 formax|L|=n α(Hface(L))
a particularly interesting problem.

As an approach to proving Theorem 1.8 we attempted to show the following result which we
conjecture to be true.

▶ Conjecture 3.1. Given a blue k-gon P with at least k − 4 red pseudolines passing through, we
find a bichromatic triangle or quadrangle on its inside boundary.

It is easy to see that k − 4 is tight if there are no crossings between the red pseudolines.

Acknowledgement
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Figure 6 Six red pseudolines to which we need to add several blue pseudolines.
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Abstract
A linkage L is given by a graph G and a function ℓ specifying the length of the edges in G. It is
∃R-complete to decide if L has a planar embedding with straight-line edges [Abel et al., SoCG’16].
The reduction uses unit-length edges, but G needs to have 3-connected blocks. Here, we consider
the problem of finding a planar embedding of L inside a polygonal domain P when G is a path with
prescribed start and end point and ℓ ≡ 1. Despite the restricted setup, we show NP-hardness for the
general setting and provide an efficient algorithm if G has three edges and P is convex.

1 Introduction

Every planar graph has a planar embedding with straight-line edges [10,21], which can be
computed in linear time [8, 19]. However, in many applications, e.g., protein folding [13],
motion planning [14], and cartograms [4, 5], we are not interested in just some (planar)
straight-line drawing of G but require that each edge e of G has a predetermined length ℓ(e).

The study of edge-length constrained graphs, also known as linkages, is old and famous
results such as Kempe’s universality theorem [16,17] date back to the 1870s. Planarity is not
always required, depending on the application. By now, linkages and their drawings, called
configurations, have been well-studied [1, 11]. The book by Demaine and O’Rourke [9] lists
many results and applications. Finding a planar configuration for a linkage is ∃R-complete [1],
even if it is unit-length, that is all edge lengths are the same. A linkage whose graph is a
path, also called a linear linkage, can be trivially realized. However, if the linear linkage has
to be realized inside a polygonal domain with given endpoints, the complexity is unknown.
We remark that without specified endpoints, realizing a linear linkage inside a polygonal
domains boils down to finding a placement for (one of) its longest edge(s). If it exists, we
can draw the remaining edges arbitrarily close next to the longest one.

Apart from realizing a linkage, the problem of deciding whether two configurations can
be reconfigured into one another by a continuous, planar, and edge-length preserving motion
is well-studied [2, 3, 6, 15,22]. Answering this reconfiguration question is PSPACE-hard even
if we relax the planarity requirement or if the linkage is linear and the configuration must
avoid obstacles in the plane [11, 14]. The problem remains NP-hard for obstacles made up of

∗ TD and MN acknowledge support from the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT22029]. This work started at the 19th European Research Week on Geometric Graphs
(GGWeek) in Trier.
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(a) (b)

x1 x2 x3 x4

x1 ∨ x2 ∨ x4

¬x1 ∨ ¬x2 ∨ ¬x3

x2 ∨ x3 ∨ x4

s t

Figure 1 A (a) formula φ and the (b) schematization of the constructed instance of ULLLR.

four axis-aligned segments [12]. However, the above reductions require non-unit edge lengths.
The flat-foldability of linear unit-length linkages has been considered inside equilateral
triangles [20]. The complexity of the reconfiguration problem for linear linkages within
a polygonal domain remains open, although any two of its planar configurations can be
transformed into each other in the absence of a polygonal domain [6].

Problem Definition. Let G = (V, E) be a simple undirected graph on n vertices V =
{v1, . . . , vn} and m edges E and let ℓ : E → R+ be a function assigning each edge e ∈ E a
length ℓ(e) > 0. A configuration Γ of a linkage L = (G, ℓ) is a straight-line drawing of G such
that we have ∥Γ(u) − Γ(v)∥2 = ℓ(e) for any e = uv ∈ E. A configuration Γ is planar if no
two edges cross and it lives inside a given polygonal domain P ⊂ R2, i.e., a closed, multiply
connected region of R2 [18], if Γ ⊂ P . In this abstract, we consider the following problem.

▶ Problem (ULL Linkage Realizability (ULLLR)). We are given a unit-length linear
linkage L = (G, ℓ), a polygonal domain P ⊂ R2, and two points s, t ∈ P . Does there exist a
planar configuration Γ of L that lives inside P such that Γ(v1) = s and Γ(vn) = t?

Our main contribution is establishing NP-hardness of the above-introduced problem:

▶ Theorem 1. ULL Linkage Realizability is NP-hard.

Due to space constraints, technical details are deferred to an upcoming full version.

2 Overview of the Hardness Reduction

We give a reduction from the NP-complete problem Planar Monotone 3-Sat [7]. An
instance φ = (X , C) of this problem consists of variables X = {x1, . . . , xN } and clauses
C = {c1, . . . , cM } partitioned into the positive clauses C+ containing only non-negated literals
and negative clauses C− containing only negated literals. The clause-variable incidence graph
has to have an embedding where all vertices for variables are on a horizontal line, which
separates the vertices for C+ and C−. Note that we can compute a planar rectilinear drawing E
of the incidence graph with polynomial coordinates; see Figure 1a for an example [4, 5, 7].

In our reduction, we create a unit-length linear linkage L = (G, ℓ) of size n, where we
specify n in the end. Conceptually, our construction will force a configuration Γ of L to visit
each variable of φ and each clause it is contained in, set truth assignments for the former
and verify their truth status for the latter components. The path that Γ follows will closely
resemble the drawing E of φ, see also Figure 1b, and we will replace each edge and vertex
of E with a gadget, which is a part of the polygonal domain P . We highlight in each gadget
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dedicated regions in the plane, in the following called areas, where Γ must pass through and
we create P by gluing the individual gadgets together at these areas.

3 Gadgets of the Hardness Reduction

We now describe on a high level each of the gadgets. Note that all gadgets are agnostic to
translations and rotations in the plane. As indicated above, every gadget F contains pairs
of entry and exit areas: Once the configuration enters a gadget through an entry area, the
construction ensures that it must leave the gadget at the respective exit area. They are
specified as quadrants of discs of radius ε, where ε < 0.1 is a small constant whose value we
specify in the end, and denoted as →

i,t(F ) and →
i,t(F ) for a gadget F related to a possible

truth assignment t ∈ {0, 1} to the variable xi, i.e., xi = t, respectively. Furthermore, we
consider for each entrance and exit area the triangle that is inscribed in the same quadrant of
a disc of radius ε/2, which we call the start and end area of a gadget, respectively. With our
construction, we ensure that for every point p in the start area, there exists a configuration
that starts at p and places a vertex somewhere in the respective end area.

Edge Gadget. There are three types of edge gadgets: tunnels, bends, and shifters. Tunnels
will inhabit sawtooth-like shaped pairs of unit-segments of height 0.6 and width 1.6. Any
configuration Γ can embed at most two edges inside a tunnel enforced by the obstacles, i.e.,
holes in the polygonal domain, of the tunnel depicted in Figure 2a. The edges zig-zag around
the obstacles by alternating the placement of the vertices between a placement at (or near)
the top and the bottom of the tunnel. This allows us to define two equivalence classes on
the configurations depending on the side of the tunnel where they place the first vertex.
They correspond to the truth assignment to a variable xi ∈ X , and we color areas and
configurations from the classes in red ( ) and green ( ) in the figures, depending whether
they correspond to xi = 0 or xi = 1, respectively. We place the first pair at the lower side of
the tunnel and the second pair at the upper side of the tunnel as indicated in Figure 2a.

Tunnels are accompanied by bends, which force the configuration Γ to perform a 90° turn
and are depicted in Figure 2b. Note that the obstacles force the green configuration to draw
one edge (almost) horizontal and one (almost) vertical. Thus it performs, compared to the
red configuration, a small detour to ensure that both configurations place the same number
of vertices inside the gadget. This is crucial to ensure correctness of the reduction and is the
main difficulty in constructing the gadget. Observe that the bend has at its start and end a
height (or width) of 0.6, allowing us to attach tunnels on either of its ends. The entrance
and exit areas of a bend are analogous to those of a tunnel.

Tunnels and bends can only start and end at specific coordinates due to their construction.
With a shifter, we can shift tunnels up and down by 0.2 to give us more flexibility in the
construction of the clause gadget. Observe in Figure 2a that inside a tunnel the distance
of the endpoints of an edge is approximately 0.8 and 0.6 in x- and y-direction, respectively.
With the gadget from Figure 2c, we can force an inverted behavior to move a configuration
over the course of two edges up (or down) by 0.2. The shifter consists of the main part from
Figure 2c on whose two sides we attach a tunnel to help us show its properties.

Clause Gadget. The main part of the clause gadget for the clause xi ∨ xj ∨ xk is depicted
in Figure 3 and has multiple obstacles that leave only seven narrow (possibly intersecting)
corridors inside the gadget to limit how a configuration Γ can interact with it. In our
reduction, we force the configuration to enter the main part three times, first via the entrance
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Figure 2 A (a) tunnel, (b) bend, (c) and the main part of a shifter with configurations through
them. We hatch the outside of the polygonal domain if there is risk of confusion.

→
i,ti

, then via →
j,tj

, and finally via →
k,tk

, for ti, tj , tk ∈ {0, 1}. Observe that the distance
between →

i,ti
and →

i,ti
can be spanned by a linkage of length two. The corridors leave little

choice for Γ: If Γ enters the main part via →
i,0, it is forced to leave it via →

i,0, otherwise,
i.e., if it enters the main part via →

i,1, it is forced to leave it via →
i,1. Note that placing a

vertex in an area for xj or xk is impossible due to the unit-length requirement of the edges
paired with the corridors. The same holds true for the entrance and exit areas corresponding
to xk. The three corridors in the middle constrain how a configuration can reach →

j,tj
from

→
j,tj

using three edges. In particular, if Γ enters the main part via →
j,0, the gadget

contains two corridors, effectively giving the configuration the flexibility to lean more towards
the left or right side of the main part; compare also Figure 3b and Figure 3c. Conversely, i.e.,
if Γ enters via →

j,1, there is again only one corridor, giving the configuration little freedom
in placing the remaining vertices.

The construction allows for the following crucial observation; compare also Figures 3b to 3e:
If a configuration Γ enters the main part via →

i,0 and →
k,0, a planar configuration that

enters the main part via →
j,0 becomes impossible. On the other hand, if Γ enters the

main part via →
i,1 or →

k,1, it uses a corridor that does not intersect with the ones for
→

j,0, allowing a planar configuration even if Γ enters the main part via →
j,0. The corridor

connecting →
j,1 with →

j,1 can always be used.
Finally, we remark that for a suitable small constant ε it is not possible to enter the

clause gadget at some entrance area assigned for one variable and leave it at an entrance/exit
area assigned to a different variable. To see this recall that we have seven possible “routes”
in which the linkage is intended to pass through the gadget (two for xi/xk and three for xj);
compare this also to the seven corridors. We can find a constant α such that for every route
all possible actual configurations are contained in a polygonal corridor of width at most αε,
which we use to refine the original corridors. The obstacles of P in the clause gadget are
then defined by the points outside of the refined corridors. Let γ be the smallest “turning
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Figure 3 (a) The main part of the clause gadget and (b)–(e) different configurations Γ through
it. Dashed lines indicate different possibilities for the configuration to pass through the corridors.
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1/2

γ

γ/2αε

Figure 4 A segment of length 1 can only have endpoints in two corridors if γ ≤ 2 arcsin 2αε.

angle” for two intersecting corridors. Note that γ is independent from αε. In order to pass
from one corridor to another, there has to be a segment of length one with endpoints in
distinct corridors. A simple calculation shows that this is only possible if γ ≤ 2 arcsin 2αε;
see Figure 4. Thus, picking ε ≤ α

2 sin γ
2 ensures that we cannot deviate from the intended

route through the clause gadget. Observation 1 summarizes this.

▶ Observation 1. Let Γ be a planar configuration of L that enters the main part C ′ of a
clause gadget three times. For any variable xi, truth assignment t ∈ {0, 1} to xi, and vertex
v ∈ V , we have that Γ(v) ∈ →

i,t(C ′) implies that there is some v′ ∈ V with Γ(v′) ∈ →
i,t(C ′).

Furthermore, there is some v′′ ∈ V such that Γ(v′′) ∈ →
z,1(C ′) for some z ∈ {i, j, k}.

We attach on the left and right side of the main part two shifters and at the bottom side two
tunnels each to obtain the clause gadget and unify the entrance and exit areas.

Variable Gadget. The variable gadget for a variable xi ∈ X consists of three main compo-
nents with different roles: making Γ “set” the truth assignment xi = t, propagating this to
all relevant clauses and “resetting” Γ before entering the variable gadget of xi+1, if it exists.
The first component of the variable gadget is depicted in Figure 5a. It consists of a triangular
obstacle, forcing the configuration to place the next vertex either at the top or bottom end
of the gadget, corresponding to setting the variable to true or false, respectively. The base
of the triangular obstacle has a height of 0.6, allowing us to attach a tunnel. However, a
naïve construction of the triangle would require to place its tip at an irrational coordinate.
By reducing the height of the triangle slightly, we avoid this and force the linkage to place
a vertex inside →

i,t for t ∈ {0, 1}, effectively setting xi = t. The third component of the
variable gadget, depicted in Figure 5b, uses an analogous idea to force Γ to approach the
center of the gadget no matter if it passed through →

i,t for t = 0 or t = 1. We combine
different variable gadgets via entrance and exit areas, indicated for the ith variable as →

i

and →
i , and highlight two points si and ti inside them that will act as a certificate necessary

in the full proof. We define the start area for →
1 as s and, similarly, the end area for →

N

as t. Note that in Figure 5 the gadget for x1 is closed around s1; we do so likewise for xN .
Finally, the second component consists of multiple tunnels that connect the first component
via the gadgets for clauses cj with xi ∈ cj to the third component of the gadget. For negative
clauses, we attach to them half of a tunnel to toggle the configuration and thus its carried
truth state before visiting these clauses.

Complete Reduction. The placement of the obstacles in our gadgets ensures that any
configuration follows pre-determined paths through the gadgets. Formally, we have:

▶ Lemma 1. Let L be a unit-length linear linkage with a configuration Γ of L that passes
through a gadget F with an entrance and exit pair for the variable xi ∈ X . If there exists
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Figure 5 The (a) first and (b) third component of the variable gadget for x1 and xi, respectively.

a vertex v ∈ V such that Γ(v) ∈ →
i,t(F ) for t ∈ {0, 1}, we have Γ(v′) ∈ →

i,t(F ) for some
v′ ∈ V . Furthermore, any configuration Γ′ of L can be perturbed such that every vertex inside
some entrance/exit area will lie in the corresponding start/end area.

We now use Lemma 1 to combine the above-introduced gadgets by taking the planar
rectilinear drawing E of the incidence graph of φ and replacing all components with the
respective gadgets. Observe that we can scale (parts of) E by appropriate polynomial factors
to ensure that there is enough space for the placement of the gadgets. Hence, we can ensure
that the entrance and exit areas of the respective gadgets coincide and can, furthermore,
unify all vertices in different gadgets that lie on the same point. To finish the construction of
(L, P, s, t), we close the first and last variable gadget and set s = s1 and t = tN . We note that
the obtained polygonal domain P contains (polynomially many) obstacles, i.e., holes. Let P

be created using T tunnels, excluding those used in other gadgets such as the shifters, and B

bends. The linear linkage L consists of n = 2T + 7B + 4 |X | + 35 |C| + 2 |C−| + 1 vertices.
When carefully analyzing (the construction of) our gadgets, we observe that any planar
configuration Γ of L starting at s must pass through every gadget exactly once. Otherwise
it is too short to reach t. Using Observation 1, we conclude that for Γ to be planar, every
clause must be satisfied, establishing NP-hardness of ULLLR.

4 Concluding Remarks and Future Directions

We see this abstract as a further step towards understanding the complexity of realizing
linkages in polygonal domains. Our hardness result from Theorem 1 raises the question in
which settings we can solve ULLLR in polynomial time. For very restricted instances, an
efficient algorithm is indeed possible, as our last result shows:

▶ Theorem 2. ULL Linkage Realizability for three-edge linkages in a convex polygon P

with m vertices can be solved in time O(m) even for general linear linkages.

Theorem 2 hinges on three-edge linkages having only one degree of freedom and an extension
to four-edge linkages is highly non-trivial. We see a generalization to arbitrary constant-size
instances of ULLLR as a direction for future work. Furthermore, ∃R-hardness for general,
or NP-hardness for simple/convex polygonal domains are interesting directions to pursue.
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Abstract
We study 3-plane drawings, that is, drawings of graphs in which every edge has at most three cross-
ings. We show how the recently developed Density Formula for topological drawings of graphs [9]
can be used to count the crossings in terms of the number n of vertices. As a main result, we show
that every 3-plane drawing has at most 5.5(n − 2) crossings, which is tight. In particular, it follows
that every 3-planar graph on n vertices has crossing number at most 5.5n, which improves upon a
recent bound [3] of 6.6n. To apply the Density Formula, we carefully analyze the interplay between
certain configurations of cells in a 3-plane drawing. As a by-product, we also obtain an alternative
proof for the known statement that every 3-planar graph has at most 5.5(n − 2) edges.

1 Introduction

One of the most basic combinatorial questions one can ask for a class of graphs is: How
many edges can a graph from this class have as a function of the number n of vertices?
Prominent examples include upper bounds of

(
n
2
)

for the class of all graphs and n2

4 for
bipartite graphs. These bounds are immediate consequences of the definition of these graph
classes, and they are tight, that is, there exist graphs in the class with exactly this many
edges. But for several other graph classes good upper bounds on the number of edges are
much more challenging to obtain. Notably this holds for classes that relate to the existence of
certain geometric representations. One the most fundamental questions one can ask about a
class of geometrically represented graphs is: What is the minimum number of edge crossings
required in such a representation, as a function of the number n of vertices? We study both
of these fundamental questions in combination, for the class of 3-planar graphs. A graph
is k-planar if it can be drawn in the plane such that every edge has at most k crossings.
The study of k-planar graphs goes back to Ringel [16] and has been a major focus in graph
drawing over the past two decades [8], as a natural generalization of planar graphs (k = 0).

The maximum number of edges in a simple k-planar graph on n vertices is known to be
at most ck(n − 2), where c0 = 3, c1 = 4 [5], c2 = 5 [14, 15], c3 = 5.5 [10, 11], c4 = 6 [1],
and ck ≤ 3.81

√
k, for general k ≥ 5 [1]. The bounds for k ≤ 2 are tight and those for k ≤ 4

are tight up to an additive constant [1, 4]. The bounds for k ≤ 4 also generalize to non-
homotopic drawings of multigraphs [12, 13], that is, where every continuous transformation
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that transforms one copy of an edge to another passes over a vertex. Interestingly, the upper
bound for 3-planar graphs is tight in this more general setting only [4, 6].

The crossing number of a drawing Γ is the number of edge crossings in Γ. The crossing
number cr(G) of a graph G is the minimum crossing number over all drawings of G. By
definition every k-planar graph G admits a k-plane drawing and thus

cr(G) ≤ km

2 , (S)

where m denotes the number of edges in G. For a k-planar graph, this simple inequality
connects upper bounds on the number of edges with lower bounds on the crossing number.
Both of these come together in the well-known Crossing Lemma [2, Chapter 45], as the best
constants in the Crossing Lemma are obtained by analyzing k-plane drawings [1, 6, 10, 11].
Conversely, combining the lower bound on cr(G) from the Crossing Lemma with an upper
bound on cr(G) we obtain an upper bound on the number of edges in G. While (S) would
work here, it is probably not an ideal choice because the graphs for which (S) is tight might
be very different from those graphs that have a maximum number of edges, for any fixed n.
For instance, for a 1-planar graph G we have cr(G) ≤ n − 2 [17, Proposition 4.4], which
beats the bound we get by plugging m ≤ 4n − 8 into (S) by a factor of two. Can we obtain
similar improvements by bounding cr(G) in terms of n, rather than m, for k ≥ 2?

Indeed, very recently it has been shown that cr(G) ≤ 3.3n if G is 2-planar and cr(G) ≤
6.6n if G is 3-planar [3]. There is some indication that the bound for 2-planar graphs
could be tight up to an additive constant, as it is achieved by the standard drawings of
optimal 2-planar graphs (Figure 1). But the crossing number of these graphs is not known.

Figure 1 Construction by Pach and Tóth [15, Figure 3]. Left: A planar drawing with pentagonal
faces. Right: To each pentagonal face all diagonals are added.

In contrast, there exists a family of simple 3-planar graphs with 5.5n − 15 edges whose
standard drawings have 5.5n − 21 crossings (Figure 2). Thus, there is a gap of 1.1n between
the lower and the upper bound for the crossing number of 3-plane drawings.

Figure 2 Construction from [11, Figure 8]. Left: A cylinder with two layers, each consisting of
three hexagonal faces. Right: To each face of a layer all but one diagonal is added. To the top and
bottom face six diagonals are added. Missing diagonals are represented by dashed lines.
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Results. We close the gap and present an upper bound on the crossing number of 3-plane
drawings that is tight up to an additive constant. Using the same approach we also obtain
an alternative proof to show that a 3-planar n-vertex graph has at most 5.5(n − 2) edges.

▶ Theorem 1. Every non-homotopic 3-plane drawing of a graph on n vertices, n ≥ 3,
contains at most 5.5(n − 2) edges and at most 5.5(n − 2) crossings.

Our proof relies on the recently developed Density Formula (cf. Theorem 2 below) for
topological drawings of graphs [9]. It relates the number of vertices, edges, and cells of
various sizes in a drawing, in a way similar to the Euler Formula in the case of plane graphs.
Previously, the Density Formula has been used to derive upper bounds on the number of
edges in k-plane drawings, for k ≤ 2 [9]. In order to apply it to 3-plane drawings, to bound
the number of crossings, and to obtain tight bounds, we study cells not only in isolation but
also as part of what we call configurations, which consist of several connected cells. We then
develop a number of new constraints that relate the number of cells and/or configurations
of a certain type in any 3-plane drawing. The combination of all these constraints with the
Density Formula yields a linear program that we can solve in two different ways—maximizing
either the number of edges or the number of crossings—to prove Theorem 1.

Using Theorem 1 we can derive better upper bounds on the number of edges in k-planar
graphs without short cycles. Plugging our bound of at most 5.5n crossings into the proofs
from [3] we obtain that

C3-free 3-planar graphs on n vertices have at most 3
√

891/8n < 4.812n edges (down
from ≈ 5.113n [3, Theorem 18]),
C4-free 3-planar graphs on n vertices have at most 3

√
1′254′825/12′544n < 4.643n edges

(down from ≈ 4.933n [3, Theorem 20]), and
3-planar graphs of girth 5 on n vertices have at most 3

√
122, 793/1600n < 4.25n edges

(down from ≈ 4.516n [3, Theorem 21]).

2 Preliminaries

We consider drawings of graphs on the sphere with vertices as points, edges as Jordan arcs,
and the usual assumption that any two edges share only finitely many points, each being
a common endpoint or a proper crossing, and that no three edges cross in the same point.
We also assume that no edge crosses itself and that no two adjacent edges cross. As is
customary, we do not distinguish between the points and curves in Γ and the vertices and
edges of G they represent, respectively. The graphs we consider may contain parallel edges,
but no loops. In order to avoid an arbitrary number of parallel edges within a small corridor,
a drawing Γ is called non-homotopic if every region that is bounded by exactly two parts of
edges, called a lens, contains a crossing or a vertex in its interior; see Figure 3.

Figure 3 Left: A lens (blue) with two crossings in its interior. Right: An empty lens (blue).

Let Γ be a drawing of a graph G = (V, E). If every edge is crossed at most three times,
we say that Γ is 3-plane. We denote the set of crossings by X. For i ∈ {0, 1, 2, 3}, let Ei ⊆ E

be the set of all edges with exactly i crossings, and let E× = E1 ∪ E2 ∪ E3.

EuroCG’25
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44 555

C3

3

4 5 5

C4 C5

Figure 4 Taken from [9, Figure 2]. All types of cells c of size ∥c∥ ≤ 5 in a non-homotopic
connected drawing on at least three vertices. The bottom row shows the degenerate cells.

Edge-Segments and Cells. An edge with i crossings is split into i + 1 parts, called edge-
segments. An edge-segment is inner if both its endpoints are crossings, and outer otherwise.
The planarization of Γ is the graph obtained by replacing every crossing x with a vertex
of degree 4 that is incident to the four edge-segments of x. We say that the drawing Γ
is connected, if its planarization is a connected graph, and shall henceforth only consider
connected drawings. Removing all edges and vertices of Γ splits the sphere into several
components, called cells. We denote the set of all cells by C. Since Γ is connected, the
boundary ∂c of a cell c corresponds to a cyclic sequence alternating between edge-segments
and elements in V ∪X (i.e., vertices and crossings). If a crossing or a vertex appears multiple
times on the boundary of the same cell c, then c is degenerate. The size of a cell c, denoted
by ∥c∥, is the number of vertex incidences plus the number of edge-segment incidences of c.
Note that incidences with crossings are not taken into account, see Figure 4 for examples.
For a ∈ N, we denote by Ca = {c ∈ C : ∥c∥ = a} the set of all cells of size a.

▶ Theorem 2 (Density Formula [9]). If Γ is a connected drawing with at least one edge, and
t is a real number, then

|E| = t(|V | − 2) −
∑

c∈C

(
t − 1

4 ∥c∥ − t

)
− |X|

To apply the Density Formula, we count the cells of different sizes. We distinguish several
types of cells based on their size and boundary and denote these by small pictograms, such
as 4 or 5 . We call a cell large if it has size at least 6 and write for this type of cells.
By abuse of notation, we denote the number of cells of a certain type by their pictogram.

Configurations are connected labeled embedded subgraphs of the planarization of a draw-
ing Γ. We denote configuration types by pictograms such as and (see Figure 5).

Figure 5 Left: A -configuration (light blue) and a -configuration (dark blue). Right:
A 5 - -trail (dark blue) and its bounding edges (thick).

A configuration is an A-B-trail if its dual is a path P whose endpoints are cells of
type A ̸= 4 and B ̸= 4 , respectively, whose edges correspond to inner segments, and
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whose interior vertices are 4 -cells whose two edge-segments on P are opposite along their
boundary, see Figure 5. We denote by (A ↔ B) the number of A-B-trails in Γ.

▶ Observation 3. Every inner edge-segment of a drawing is interior to exactly one trail.

A drawing is filled if any two vertices u ̸= v on the boundary of a cell c are joined by an
uncrossed edge along ∂c. A 3-plane, non-homotopic, connected, filled drawing of a graph on
at least three vertices is 3-saturated.

3 Crossing-Number and Edge-Density via Density Formula

To obtain our upper bounds we prove a number of (in)equalities, each relating the number of
certain cells, configurations, edges and crossings. The Density Formula is one such equality.
In total, we obtain a system of linear inequalities where each quantity (such as |E|, (|V |−2),
|X|, |C2|, |E1|, 3 , , etc.) can be considered as a variable. Setting the “variable” (|V | − 2)
to 1, we can maximize the value of |X| by solving the obtained linear program (LP). The
resulting maximum represents the number of crossings per vertex; more precisely, per (|V |−
2). We want to prove that the number of crossings in any 3-plane drawing on n vertices is at
most 5.5(n−2). It thus suffices to show that the maximum value of |X| in the LP is 5.5 if we
set the variable representing the number of vertices to 1. Our LP comprises 21 constraints,
which are summarized in Figure 6. The validity of two constraints (namely (3.C) and
(5.A)) is proven in Section 4. Constraints that are only proven in the full version are
marked with (⋆). Summing up all constraints with the coefficients in Figure 6, we obtain
|X| ≤ 5.5(|V | − 2).

If we maximize |E| instead, we obtain |E| ≤ 5.5(|V |−2) from the same constraints (with
different coefficients; also in Figure 6). Hence, by verifying that all 21 constraints hold for
every connected, non-homotopic 3-plane drawing on n ≥ 3 vertices, we obtain our result.

▶ Theorem 1. Every non-homotopic 3-plane drawing of a graph on n vertices, n ≥ 3,
contains at most 5.5(n − 2) edges and at most 5.5(n − 2) crossings.

4 Relating Crossing, Edge, Cell, Trail, and Configuration Counts

In this section, we present a number of (in)equalities, each relating the number of certain
cells, configurations, edges, or crossings. Due to space constraints we discuss only two
of these inequalities, the rest can be found in the full version. Our proof relies on the
Density Formula for t = 5. For this value of t, -cells contribute negatively in the formula.
Intuitively, large cells account for many crossings: If many trails end in large cells, we obtain
a lower bound on the sum

∑
a≥6 a|Ca| of sizes of large cells. This yields a lower bound on

the sum
∑

c∈C≥6
(∥c∥ − 5) in the Density Formula, where C≥6 denotes the set of large cells.

If there are few such trails, we obtain configurations that contain many crossed edges.

▶ Lemma 4. If Γ is a 3-saturated drawing, then
∑

a≥6
a|Ca| ≥ ( 4 ↔ ) +

(
5 ↔

)
+

(
3 ↔

)
+

(
5 ↔

)
+ 5 6 . (5.A)

Proof. As we want to obtain a lower bound on the sum
∑

a≥6 a|Ca|, it suffices to count
the number of vertex and edge-segment incidences of large cells. Each trail that ends in a
large cell enters this cell via an inner edge-segment. As no two trails share such an inner
edge-segment, we obtain one edge-segment incidence for each such trail.
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(In)equality |E| |X|

(⋆)
(

4 ↔ 5

)
+

(
4 ↔ 5

)
+

(
4 ↔

)
− 4 = 0 −5

16
−7
16

(⋆)
(

4 ↔ 5

)
+ 2

(
5 ↔ 5

)
+

(
5 ↔ 3

)
+

(
5 ↔ 5

)
+

(
5 ↔

)
− 2 5 = 0 5

16
5
16

(⋆)
(

3 ↔ 5

)
+

(
3 ↔ 5

)
+

(
3 ↔

)
− 3 3 = 0 −11

24
−11
24

(⋆)
(

3 ↔ 5

)
+

(
5 ↔ 4

)
+

(
5 ↔ 5

)
+ 2

(
5 ↔ 5

)
+

(
5 ↔

)
− 5 5 = 0 1

8
−3
8

(⋆)
(

3 ↔ 5

)
− ≤ 0 7

48
1
48

(⋆)
(

5 ↔ 5

)
− ≤ 0 0 1

16
(3.C)

(
3 ↔ 5

)
− ≤ 0 3

16
7
48

(⋆) 4 − − ≤ 0 3
16

5
16

(⋆) 2
(

4 ↔ 5

)
− |E1| − 2 ≤ 0 0 1

16

(⋆) 2
(

5 ↔ 5

)
+

(
4 ↔ 5

)
+

(
3 ↔ 5

)
− 4 5 − ≤ 0 3

16
13
16

(⋆) − ≤ 0 3
16

5
16

(5.A)
(

4 ↔
)

+
(

5 ↔
)

+
(

3 ↔
)

+
(

5 ↔
)

+ 5 6 −
∑

a≥6

a|Ca| ≤ 0 11
60

11
60

(⋆)
∑

a≥6

a|Ca| + 6|E| + 6|X| − 12 3 − 6 4 − 6 4 ≤ 30(|V | − 2) 11
60

11
60

(⋆) 2 4 + 2 5 + 2 5 + 2 6 − 4|E×| ≤ 0 13
80

3
80

(⋆)
(

4 ↔
)

+
(

5 ↔
)

+
(

3 ↔
)

+
(

5 ↔
)

+ 3 3 + 4 + 4 4 + 2 5 + 5 5 − 2|E2| − 4|E3| ≤ 0 11
40

11
40

(⋆) |E1| + |E2| + |E3| − |E×| = 0 −11
20

19
20

(⋆) |E1| + 2|E2| + 3|E3| − 2|X| = 0 11
20

1
20

(⋆) + 2 − 2|E2| ≤ 0 0 1
4

(⋆) |E×| + |E0| − |E| = 0 1
10

11
10

(⋆) 5 + 6 − 2|E0| ≤ 0 1
20

11
20

(⋆) + + + + 2 − 2 5 ≤ 0 3
16

5
16

Figure 6 Certificates for the upper bound on the number of edges and crossings in 3-saturated
drawings in terms of the number of vertices. Each row corresponds to one inequality. In order to
obtain the upper bound on the number of edges, we multiply each inequality with the third entry in
the corresponding row and sum up all the inequalities. To obtain the upper bound on the number
of crossings we proceed likewise using the fourth entry of each row as a coefficient.
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u

c

u

c
vv

Figure 7 A 3 - 5 -trail (light blue). It forms a -configuration (dark) with an adjacent cell.

A 6 -cell is in particular large. As it is incident to only one inner-segment, it is the
endpoint of only one trail. We have not counted the remaining three edge-segment incidences
and the two vertex incidences when considering trails. Therefore, each 6 -cell yields at least
five more edge-segment and vertex incidences. ◀

▶ Lemma 5. If Γ is a 3-saturated drawing, then
(

3 ↔ 5

)
≤ . (3.C)

Proof. Consider a 3 - 5 -trail. As every edge is crossed at most three times, the trail
contains no 4 -cell and we are in the situation represented in Figure 7. The vertices u and v

lie on the boundary of a cell c. As the drawing is 3-saturated, the edge uv is contained in G

and the cell c is a 5 -cell. The trail together with c forms a -configuration. As every
3 - 5 -trail is only part of one such configuration, the statement follows. ◀

5 Discussion

The k-planar crossing number crk(G) is similar to the crossing number, except that the
minimum is taken over all k-plane drawings of G. Clearly, cr(G) ≤ crk(G) for all k and G.
But there are k-planar n-vertex graphs G with cr(G) ∈ O(k) and crk(G) ∈ Ω(kn) [7,
Theorem 2]. By Theorem 1, every 3-plane drawing of an n-vertex graph G has |X| ≤
5.5(n − 2) crossings, and hence cr(G) ≤ cr3(G) ≤ 5.5(n − 2). Although Theorem 1 is tight,
we could have cr(G), cr3(G) < 5.5(n − 2), and a similar question arises for 2-planar graphs.

▶ Question 6.
Are there 3-planar n-vertex graphs G with cr3(G) = 5.5(n − 2) or cr(G) = 5.5(n − 2)?
Are there 2-planar n-vertex graphs G with cr2(G) = 3.3(n − 2) or cr(G) = 3.3(n − 2)?

References
1 Eyal Ackerman. On topological graphs with at most four crossings per edge. Computational

Geometry, 85:101574, 2019. doi:10.1016/j.comgeo.2019.101574.
2 Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer, Berlin, 6th

edition, 2018. doi:10.1007/978-3-662-57265-8_45.
3 Michael A. Bekos, Prosenjit Bose, Aaron Büngener, Vida Dujmović, Michael Hoffmann,

Michael Kaufmann, Pat Morin, Saeed Odak, and Alexandra Weinberger. On k-planar
graphs without short cycles. In Proc. 32nd Internat. Sympos. Graph Drawing Network
Visualization (GD 2024), volume 320 of LIPIcs, pages 27:1–27:17, 2024. doi:10.4230/
LIPIcs.GD.2024.27.

4 Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou. On optimal 2-and
3-planar graphs. In 33rd International Symposium on Computational Geometry (SoCG
2017), 2017. doi:10.4230/LIPIcs.SoCG.2017.16.

5 Rainer Bodendiek, Heinz Schumacher, and Klaus Wagner. Bemerkungen zu einem Sechs-
farbenproblem von G. Ringel. Abhandlungen aus dem Mathematischen Seminar der Uni-
versität Hamburg, 53:41–52, 1983. doi:10.1007/BF02941309.

EuroCG’25



56:8 Crossing Number of 3-Plane Drawings

6 Aaron Büngener and Michael Kaufmann. Improving the Crossing Lemma by characterizing
dense 2-planar and 3-planar graphs. In Proc. 32nd Internat. Sympos. Graph Drawing
Network Visualization (GD 2024), volume 320 of LIPIcs, pages 29:1–29:22, 2024. URL:
https://doi.org/10.4230/LIPIcs.GD.2024.29, doi:10.4230/LIPICS.GD.2024.29.

7 Markus Chimani, Torben Donzelmann, Nick Kloster, Melissa Koch, Jan-Jakob Völlering,
and Mirko H. Wagner. Crossing numbers of beyond planar graphs re-revisited: A framework
approach. In 32nd Internat. Sympos. Graph Drawing Network Visualization (GD 2024),
volume 320 of LIPIcs, pages 33:1–33:17, 2024. doi:10.4230/LIPIcs.GD.2024.33.

8 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):1–37, 2020. doi:10.1145/3301281.

9 Michael Kaufmann, Boris Klemz, Kristin Knorr, Meghana M. Reddy, Felix Schröder, and
Torsten Ueckerdt. The density formula: One lemma to bound them all. In 32nd Internat.
Sympos. Graph Drawing Network Visualization(GD 2024), volume 320 of LIPIcs, pages
7:1–7:17, 2024. doi:10.4230/LIPIcs.GD.2024.7.

10 János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth. Improving the Crossing
Lemma by finding more crossings in sparse graphs. In Proc. 20th Annu. Sympos. Comput.
Geom. (SoCG 2004), pages 68–75, 2004. doi:10.1145/997817.997831.

11 János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth. Improving the Crossing
Lemma by finding more crossings in sparse graphs. Discrete Comput. Geom., 36(4):527–
552, 2006. doi:10.1007/s00454-006-1264-9.

12 János Pach, Gábor Tardos, and Géza Tóth. Crossings between non-homotopic edges. In
Proc. 28th Internat. Sympos. Graph Drawing Network Visualization (GD 2020), volume
12590 of LNCS, pages 359–371, 2020. doi:10.1007/978-3-030-68766-3\_28.

13 János Pach, Gábor Tardos, and Géza Tóth. Crossings between non-homotopic edges. J.
Comb. Theory B, 156:389–404, 2022. URL: https://doi.org/10.1016/j.jctb.2022.05.
007, doi:10.1016/J.JCTB.2022.05.007.

14 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. In Proc. 4th
Internat. Sympos. Graph Drawing (GD 1996), volume 1190 of LNCS, pages 345–354, 1996.
doi:10.1007/3-540-62495-3\_59.

15 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica,
17(3):427–439, 1997. doi:10.1007/BF01215922.

16 Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathem-
atischen Seminar der Universität Hamburg, 29:107–117, 1965. doi:10.1007/BF02996313.

17 Yusuke Suzuki. 1-planar graphs. In Beyond Planar Graphs, Communications of NII Shonan
Meetings, pages 47–68. Springer, 2020. doi:10.1007/978-981-15-6533-5\_4.



Polycube Segmentations via Dual Loops
Maxim Snoep, Bettina Speckmann, and Kevin Verbeek

TU Eindhoven, The Netherlands
[m.snoep | b.speckmann | k.a.b.verbeek]@tue.nl

Abstract
Polycube segmentations for 3D models effectively support a wide variety of applications such
as hexahedral mesh construction, seamless texture mapping, spline fitting, and multi-block grid
generation. However, the automated construction of valid polycube segmentations suffers from
robustness issues: state-of-the-art methods are not guaranteed to find a valid solution. In this paper
we present an iterative algorithm which is guaranteed to return a valid polycube segmentation
for 3D models of any genus. Our algorithm is based on a novel dual representation of polycubes
[Snoep, Speckmann, & Verbeek, 2025]. Starting from an initial simple polycube of the correct genus,
together with the corresponding dual loop structure and polycube segmentation, we iteratively refine
the polycube, loop structure, and segmentation, while maintaining the correctness of the solution.
Our algorithm is robust by construction: at any point during the iterative process the current
segmentation is valid. Furthermore, the iterative nature of our algorithm facilitates a seamless
trade-off between quality and complexity of the solution.

1 Introduction

Polycubes are orthogonal polyhedra with axis-aligned quadrilateral faces. The simple
structure of polycubes enables efficient solutions to various challenging geometric problems.
Bijective mappings from general shapes to polycubes, known as polycube maps, enable the
transfer of solutions computed on polycubes to those general shapes. Polycube maps are used
to solve problems such as texture mapping [7], spline fitting [8], and hexahedral meshing [4].
Formally, a polycube map f is a continuous map from a polycube Q of genus g to a closed
2-dimensional surface M of the same genus. The edges of Q map to a segmentation of
M into patches that correspond to the faces of Q, known as a polycube segmentation (see
Figure 1).

Current methods for constructing polycube segmentations [2,3] are not robust: they are not
guaranteed to return a valid solution. In this paper we describe an iterative robust algorithm

(a) (b) (c)

Figure 1 A polycube loop structure (a) with its polycube segmentation (b) and polycube (c).
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to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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to construct polycube segmentations. Our algorithm is based on a recent characterization of
polycubes via a dual loop structure [5]. In Section 2 we review the necessary background
and then describe our algorithm in Section 3. Section 4 showcases some results from a
proof-of-concept implementation.

2 Preliminaries

Our algorithm is based on the characterization of polycubes by Snoep, Speckmann, and
Verbeek [5]. In this section we review the necessary definitions and results from their work.

A quadrilateral mesh (quad mesh) consists of vertices, edges, and quadrilateral faces.
Each vertex is adjacent to at least one edge. Each edge is adjacent to one or two faces. Each
face consists of four vertices and four edges. A quad mesh is closed if each edge is adjacent
to exactly two faces. A quad mesh is orientable if a consistent circular ordering of vertices
can be assigned to each face, such that edge-adjacent faces have opposite vertex orders along
their common edge. A quad mesh is connected if every vertex can be reached from any other
vertex by traversing edges. We can now define a polycube (see Figure 2).

▶ Definition 2.1. A polycube Q is a closed, connected, orientable quad mesh with vertices
V (Q) such that:
1. Each vertex v ∈ V (Q) has a position p(v) in Z3,
2. Each vertex has degree at least 3,
3. Positions of adjacent vertices differ in exactly one coordinate,
4. Edges incident to the same vertex cannot overlap.

As a consequence, our polycubes have vertices with degrees up to six (see Figure 2a).
The polycube faces are not required to be unit squares (see Figure 2b), as this may not be
general enough for higher genus polycubes (see Figure 2c). According to this definition,
polycubes are also allowed to self-intersect, since this does not pose a problem for surface
maps [6] (see Figure 2d). Note that self-intersections might cause problems for volumetric
methods, such as hex meshing.

Each polycube defines three partial orders on its vertices, corresponding to the three
principal axes (X, Y , and Z). The partial order for the X-axis is defined as follows: for two
vertices v and w, we say that v ≤X w if the x-coordinate of v is less than or equal to the
x-coordinate of w, and there is an edge between v and w. The partial orders for the Y -axis
and Z-axis are defined similarly.

▶ Definition 2.2. Two polycubes Q1 and Q2 are order-equivalent if there exists an iso-
morphism f : V (Q1) → V (Q2) between the quad meshes of Q1 and Q2 such that, for all
v, w ∈ V (Q1) and ∆ ∈ {X, Y, Z}, we have that v ≤∆ w if and only if f(v) ≤∆ f(w).

Figure 2 The variety of polycubes that satisfy Definition 2.1.
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Our input is a triangulated surface mesh M, which we assume to be an orientable
manifold of arbitrary genus bounding a single volume. The mesh M is embedded in R3,
which implies that each vertex has an associated position in R3, and each triangular face has
a corresponding normal vector.

A polycube segmentation of the surface M is defined as a partitioning of M into
conforming quadrilateral subsurfaces, called patches. Conformity implies that all patch corners
coincide exclusively with other patch corners, with no T-junctions. Each patch is assigned a
label corresponding to one of the six (signed) principal axes: {+X, −X, +Y, −Y, +Z, −Z}.
The partitioning qualifies as a polycube segmentation if there exists a polycube whose faces
correspond one-to-one with these patches such that the labels of the patches match the normals
of the respective polycube faces, as seen in Figure 1. Quality of the polycube segmentation is
hard to define; different qualities may be desirable depending on the downstream usage. In
general, the polycube segmentation should be low-distorting, e.g., the mapping between the
polycube segmentation and the corresponding polycube should have low mapping distortion.

2.1 Characterization
Polycubes exhibit a dual loop structure, where each loop represents a strip of quadrilateral
faces whose center points share a single coordinate [1]; see Figure 3. This structure forms a
system of intersecting loops. The places where two loops intersect are loop intersections. The
parts of a loop bounded by two intersection points (but containing no intersection points)
are loop segments. The areas bounded by loop segments are loop regions. Notice that in the
polycube each loop region corresponds to exactly one corner of the polycube.

The loops are labeled as X-, Y -, or Z-loops, depending on the axis perpendicular to the
face normals: for example, an X-loop traverses faces with normals aligned to the Y and Z

axes. Each loop is oriented by splitting the loop into two (parallel) sides: a positive and
negative side. Crossing a loop from its negative to positive side corresponds to an increase in
the associated coordinate, while crossing in the opposite direction results in a decrease. In
our figures, we use the colors purple, lighter purple, orange, lighter orange, green, and lighter
green for +X, −X, +Y , −Y , +Z, and −Z, respectively.

We can use the full set of X-loops of an oriented loop structure to partition the underlying
space (surface or polycube) into regions. We refer to these regions as X-zones. Then, the
X-graph has a vertex for each X-zone, and a directed edge (u, v) for every X-loop with u

and v corresponding to the X-zones on the negative and positive side of the loop, respectively
(see Figure 4). We can define the Y -zones, Z-zones, Y -graph and Z-graph similarly.

Given a loop structure where each loop is labeled with either X, Y , or Z, and is oriented
with a positive and negative side, there exists a complete set of rules that characterize which
of these loop structures correspond to polycube loop structures; i.e., the loop structures that
are dual to a polycube.

X

Y Z

Figure 3 The polycube loop structure consists of the sets X-loops, Y -loops and Z-loops.
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Figure 4 The X-, Y -, and Z-zones along with the X-, Y -, and Z-graph.

▶ Definition 2.3. A loop structure is a polycube loop structure if:
1. No three loops intersect at a single point.
2. Each loop region is bounded by at least three loop segments.
3. Within each loop region boundary, no two loop segments have the same axis label and

side label.
4. Each loop region has the topology of a disk.
5. The X-, Y -, and Z-graphs are acyclic.

This means that for every polycube Q there exists a polycube loop structure that forms
the dual of Q. And conversely, given a polycube loop structure L, there exists exactly one
polycube (up to order-equivalence) that corresponds to L.

3 Algorithm

To compute a polycube segmentation on a surface model M, we propose a method based
on the construction and refinement of polycube loop structures. A polycube loop structure
provides a complete characterization of polycubes, and polycube segmentations can be seen
as the projection of these polycubes onto the surface model. Thus, we can embed a polycube
loop structure on a surface model M and convert it into a polycube segmentation through a
primalization step. This involves placing corners within each loop region of the structure
and connecting these corners when their corresponding loop regions are adjacent.

As such, the method consists of two main steps: (1) constructing embedded polycube
loop structures on a surface model M and (2) converting these loop structures into polycube
segmentations. We can then incorporate these two steps within an iterative framework: we
start with a valid polycube loop structure and refine it by adding or removing loops while
ensuring its validity, see Figure 5. At each iteration, the current polycube loop structure can
be converted into a polycube segmentation for output or intermediate quality evaluation.

The process begins with the initialization of a canonical polycube loop structure based
on the genus of the surface model M. For surfaces of genus 0, this structure consists of
three interleaving loops aligned with the principal axes (X, Y , and Z) representing a single
cube. These three interleaving loops can easily be constructed algorithmically. Surfaces of
higher genus require more complex canonical structures. For genus 1, the natural choice is a
polycube torus, which can be oriented in three distinct directions, each having a different
loop structure. For genus greater than 1, the complexity increases further, as each handle
can be oriented independently. Additionally, for a given canonical polycube of higher genus,
it remains unclear how to embed its polycube loop structure onto the target surface in a
valid manner. As such, we currently initialize solutions for higher-genus surfaces manually.
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Figure 5 Snapshots of solutions during the iterative construction.

3.1 Dual structure
The polycube loop structure on the surface model M is represented as a collection of
embedded loops. Each loop is a self-closing directed path labeled as either X, Y , or Z.
Loop orientation is implicitly defined, with the left side regarded as positive and the right as
negative. These loops serve as projections of the polycube’s dual loops with a specific label,
and as such these loops should approximately align with the corresponding principal axis.
To compute valid and suitable loops, we formulate the problem as a constrained shortest
path search on M, ensuring validity while using weights to enforce alignment.

Not every loop can be added to the polycube loop structure without violating Definition 2.3.
For example, a loop that does not intersect any other loop would violate Condition 2, while
a loop forming a region bounded by seven segments would violate Condition 3. To address
this, we use the method from [5] to enumerate all valid intersection patterns that correspond
to unique polycube loop structures. These intersection patterns serve as hard constraints,
guiding the path-finding algorithm on where the loops should intersect.

To find well-aligned loops, we define the following property. Let p be a point on a loop,
d(p) the vector tangent to the loop at p in the direction of traversal, and n(p) the normal
vector at p with respect to the surface model M. For a well-aligned X-loop we want the cross
product d(p) × n(p), that is the vector perpendicular to d(p) and n(p), to be aligned with
the X-axis for all points on the loop. The same principle applies to Y -loops and Z-loops.

We obtain this property by assigning suitable weights to edges on the surface model
M. Each edge e on M has a defined direction vector d(e) and normal vector n(e). When
computing the path of an X-loop, we assign the weight wX(e) = angle(d(e) × n(e), −→

X )α to
each edge e by measuring its alignment with respect to −→

X , the direction of the X-axis. The
strictness factor α increases the penalty for misalignment. Analogously, we can compute
well-aligned Y -loops and Z-loops using different weights wY and wZ computed in a similar
manner. Note that the edges are directed, and the weights clearly favor a specific direction.
As a result, the computed loops will also be consistently oriented.

A well-aligned loop can then be computed as a (non-empty) shortest path from a point
p on M to itself, using the constraints of the intersection patterns defined earlier and the
appropriate weights for alignment. The resulting loops are both valid and well-aligned.
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3.2 Primalization
To convert the polycube loop structure to a polycube segmentation, we perform primalization
of the polycube loop structure. A patch corner is placed within each loop region and adjacent
patch corners are connected by non-intersecting paths. Since the polycube loop structure is
the dual to a polycube segmentation, the primalization step results in a valid solution.

Two considerations guide the placement of corners. First, corners must be placed in
regions consistent with their specific corner types (see [5] for all possible types). Second,
corners must align globally: In a polycube, there are typically many corners that share either
their x-, y-, or z-coordinate. To preserve these properties, the polycube segmentation must
exhibit similar alignment and consistency across the surface.

4 Results

We have implemented this approach within an iterative framework, embedding it into an
evolutionary algorithm that optimizes polycube segmentations by evaluating solutions based
on three key metrics. First, regularity is maximized by minimizing the number of corners with
a degree other than 4. Second, alignment is maximized by ensuring that the surface normal
at each point on M closely corresponds to the label implied by the polycube segmentation.
Finally, orthogonality is maximized by aiming for near 90-degree corners in each patch of the
polycube segmentation. A showcase of our results can be found in Figure 6.

Figure 6 The polycube loop structure, and its corresponding polycube segmentation and polycube
for a variety of input surface models.
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Abstract
Given a rectangular grid graph, we study the problem of covering the entire graph with tours
that start and end at a given corner and whose lengths do not exceed a given threshold, while
minimizing a quality measure. We consider two objective functions: minimizing the number of tours,
and minimizing the total length of the tours. We present an algorithm that computes the optimal
solution for both objectives in linear time relative to the size of the grid.

1 Introduction

Let G be a rectangular grid graph, that is, a grid graph defined by an nc × nr rectangle such
that all its interior faces are unit squares (i.e., the graph contains no holes). Without loss of
generality, we assume that the number nc of columns is less than or equal to the number nr

of rows in G. Given a special vertex or base station B located in the lower left corner of G,
and a number L ≥ 2(nr + nc − 2), we aim to compute a set of tours that covers the entire
grid. We consider that the length of each tour is constrained by L, and they must start
from and return to B. Since the length of any tour in G is even, we assume that L is even.
Our objective is to solve two independent minimization problems, given by the following
measures: (1) the number of tours, and (2) their total length, which is equivalent to minimize
the total number of repeats of the tours, that is, the total number of times each vertex is
traversed by all tours except its first traversal. Each problem is identified as Min-Tours
Problem (MTP) and Min-Repeats Problem (MRP), respectively.

Our case study is inspired by solar power plants, as their topologies suggest to consider
discretizations to grid points, and they are typically monitored by drones that move according
to the Manhattan distance; see Figure 1. Our problems are related to the family of Vehicle

∗ Supported in part by grants PID2020-114154RB-I00, TED2021-129182B-I00, and DIN2020-011317
funded by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR.
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to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 Stellio Heliostat solar plant (left), and Drone route planning based on discrete points in
Parabolic Trough solar plants (right).

Routing Problems (VRP) [6] that fall within the framework of the TSP-type problems. The
Traveling Salesman Problem (TSP) on solid grid graphs, that is, without holes, is one of the
long-standing open problems in the prominent list The Open Problems Project1 (TOPP).
As a consequence, finding a set of length-constrained tours of minimal total length covering
a graph remains open in general solid grids. One of the questions addressed by our paper
is whether that problem is polynomially solvable in rectangular grid graphs for the case in
which all tours start in a corner. Reducing complex problems to grids has been extensively
proposed in the existing literature [5, 7, 2, 1, 8, 3, 4].

An interesting result from our research is the connection between MTP and MRP. This
connection is achieved by solving the following auxiliary problem termed as Range Level
Problem (RLP), which holds independent theoretical interest: Define the level i ∈ N of G

as the set of vertices in G at Manhattan distance i from B. Determine the maximum level i

such that for every set T of tours covering G with minimum number of repeats, each tour in
T contains at least one point above the level i.

Contributions. Let n be the total number of vertices of G, and kmin the minimum
number of tours required to cover the grid G. Our main contributions can be summarized as
follows: (1) kmin can be found in constant time. (2) The solution to RLP is bounded below
by 2kmin − 3, which implies that the total number of repeats of any set of tours covering G

is at least 2k2
min − 2kmin − 1. (3) In O(n) time we can obtain a set T of tours covering G

such that |T | = kmin, and the number of repetitions of T in G is minimized.

2 The Algorithms

In this section, we introduce basic definitions and outline the general approach of our
algorithms. Our method consists of subdividing the rectangular grid graph into disjoint
regions, followed by an iterative construction of walks that are later transformed into tours.
At first glance, one might assume that a simple greedy strategy suffices to cover G. However,
ensuring optimality is nontrivial, even in structured settings such as rectangular grid graphs.
For instance, a straightforward left-to-right sweeping algorithm fails to achieve an optimal
solution; see the left example in Figure 2. This highlights the need of carefully designing an
optimal procedure. We begin by introducing some additional notation.

▶ Definition 2.1. The level i of G is the set of vertices in G that are at the same Manhattan
distance i from B. Note that at level i there are i + 1 vertices if i ≤ nc − 1.

1 http://cs.smith.edu/~orourke/TOPP/
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B B

Vertical
Descent
(VD)

Painting
Algorithm

(PA)

Figure 2 Overview of the covering strategy for a rectangular grid of 10 × 10, using tours with
length at most 36. The example to the left shows a greedy strategy with total length 128. To
the right, the covering obtained from our algorithms with a total length of 124. The dashed line
represents the level from which each algorithm is applied.

▶ Definition 2.2. Let Ai denote the solid grid graph obtained by removing from G all
vertices located below level i. Here, level i of G is referred to as the baseline of Ai. Vertices
at the baseline of Ai are denoted from left to right with t1, t2, . . . , ti+1.

Our strategy divides the grid into two parts: A2r−1 and G \ A2r−1 for every r ∈
{1, . . . , ⌈ nc

2 ⌉}. First, we focus on computing a set of r walks covering A2r−1 such that the
walks in this set are pairwise disjoint. Moreover, each walk w will be as long as possible
while meeting some constraints, that is, the portion not covered by w is always a grid in
the family depicted in Figure 3. Then, each walk in A2r−1 will be transformed into a tour
starting and ending at B by vertically descending from the baseline of A2r−1 to the bottom
row of G, and then using a horizontal line to connect with B, if needed. We denote this last
process as Vertical Descent (VD). This combined strategy completely covers the grid; see
right example in Figure 2. If the length l of the walks defined in A2r−1 are upper bounded
by L − 2(2r − 1), then the resulting tours meet the length constraint.

▶ Definition 2.3. Let S be the family of grid graphs represented in Figure 3, and defined as
follows:

Any rectangular grid is in S. A rectangular grid with a columns and b rows is denoted
by R(a, b); see left drawing in Figure 3.
S1(a, b, c) with a > c is a grid graph in S obtained from a rectangular grid graph R(a, b)
by removing its subgraph R(a − c, 2) from the upper left corner; see central drawing in
Figure 3.
S2(a, b) is a grid graph in S obtained from R(a, b − 2), a, b ≥ 3, by removing its subgraph
R(1, 2) from the upper left corner and adding a graph R(2, 2) right aligned above its
right top corner; see right drawing in Figure 3.

When making a reference to a particular subfamily of the grids contained in S, we use
the expression R(·), S1(·), or S2(·) for convenience. Similarly, the expression S1(·, ·, 1) will
denote any grid in the subfamily of S1(·) with c = 1.

▶ Definition 2.4. For any grid graph H, let z be the number of vertices in the bottom row
of H. When z > 1 we define a new grid graph AddRow(H) as the grid graph resulting from
adding one row with z vertices at the bottom of H, followed by the removal of the left-most
vertex of this newly added row.

EuroCG’25



58:4 Optimal covering of rectangular grid graphs with tours of constrained length
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Figure 3 General grids defined by family S.

▶ Definition 2.5. Given U ∈ S with a > 1 columns, and an integer l being at least the
perimeter of U , let A = AddRow(U) and p be a walk over A such that its length ℓ(p) ≤ l.
We define A(p) as the portion of A that is covered by p, and R as the complement, i.e.,
R = A \ A(p). In addition, we say p is S-maximal if all of the following conditions hold.
1. R ∈ S \ S1(·, ·, 1).
2. Assuming that vertices in a row (column) of A are ordered from left to right (top to

bottom), for any row (column) there exists a vertex v (s) such that all vertices v′ (s′) of
such row (column) with v′ ≤ v (s′ ≤ s) belongs to A(p), and all the remaining vertices in
such row (column), if any, are in R.

3. Either ℓ(p) = l, or R ∈ {∅, R(a − 2, 1), S1(a − 2, 3, 2)}.

We are now ready to describe the Painting Algorithm (PA). PA divides A2r−1 into two
portions, as shown in Figure 4(b): 1) a zone U1 ∈ S containing the row of t1 and all the rows
above; 2) a trapezoid δ1 containing A2r−1 \ AddRow(U1). At step i > 1 of the algorithm, two
vertices (t2i−1 and t2i) in the baseline of A2r−1 will be connected with an S-maximal walk.
In addition, Ui ∈ S will be the union of the uncovered vertices of Ui−1 and the vertices in the
row that contains t2i−1, and δi will be a trapezoid containing A2r−1 \ ⋃

1≤j≤i AddRow(Uj);
see Figure 4 for a complete example. The final step of PA finalizes the covering depending
on the parity of |V (G)|; see Figures 5 and 6. We use PA to prove the following theorems,
but the proof and the formal definition of PA are omitted in this version.

▶ Theorem 2.6. Let P be a set with r walks of length at most l starting and ending at the
baseline of A2r−1 such that P covers A2r−1. Then, there exists a set P ′ of pairwise disjoint
walks with length at most l starting and ending at the baseline of A2r−1 such that

(i) P ′ covers A2r−1,
(ii) at most one walk in P ′ contains a single repetition, and
(iii) the ending and starting vertices of all walks in P ′ are different.

▶ Theorem 2.7. PA is optimal for covering A2r−1 with r walks and minimum number of
repeats. Moreover, it runs in O(|V (A2r−1)|) time.

3 Min-Tours Problem

We begin with a useful result:

▶ Lemma 3.1. Let P be any set of r walks covering A2r−1, with each walk starting and
ending on its baseline. If |V (G)| is odd, then there is at least one repetition of P in A2r−1.
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Figure 4 Example of Painting Algorithm for covering A2r−1 with l = 26. (a) A5 with 10 rows
and 8 columns; (b) initial zone division in the algorithm; (c)-(d) creating the first walk iteratively;
(e) first walk (in blue) and second zone division; (f)-(g)-(h) creating the second path iteratively; (i)
first two walks (in blue) and third zone division; (j) final covering.

Proof. We will prove that if the number of repetitions of P in A2r−1 is 0, then |V (G)| is
even. Since walks in P start and end on the baseline of A2r−1, they are disjoint if and only
if the following condition is met: for any walk starting in point i and ending in point j > i

of the baseline it follows that any walk starting at i < z < j ends at z < w < j. Thus, P can
be easily transformed into disjoint cycles in G, which can be joined to create a Hamiltonian
cycle. Therefore, |V (G)| is even and the lemma holds. ◀

Since PA is optimal for covering A2r−1, the following decision question is solvable in
constant time: can A2r−1 be covered with r walks of length at most L − 2(2r − 1)? A2r−1
can be covered with 0 repeats iff |V (G)| is even; see Lemma 3.1 and Theorems 2.6 and 2.7.
Then, if kmin > 1 we can establish the following formula to obtain its value:

kmin =
{

min{r : |V (A2r−1)| ≤ r(L − 2(2r − 1) + 1)} if |V (G)| is even,

min{r : |V (A2r−1)| + 1 ≤ r(L − 2(2r − 1) + 1)} if |V (G)| is odd.
(1)
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t2r
bc odd

t2r−1

t2r
bc even

t2r−1

Figure 5 Final step in PA when the grid graph has an odd number of rows. One repetitions is
obtained when the number of columns is odd (left), and no repetitions are obtained for the even
case (right).

t2r

t2r−1

Figure 6 Final step in the Painting Algorithm when A2r−1 has an even number of rows.

Solving the above equation, we get the following theorem:

▶ Theorem 3.2. Give nc, nr and L, the minimum number of tours of length at most L

required to cover a rectangular grid graph with nc columns and nr rows can be obtained with
the formula

kmin =





⌈
L+2−

√
−8ncnr+L2+4L+4

4

⌉
, ncnr is even

⌈
L+2−

√
−8ncnr+L2+4L−4

4

⌉
, ncnr is odd.

(2)

4 Min-Repeats Problem

As kmin can be obtained in constant time, we can achieve a set of tours covering G using
PA and VD over A2kmin−1; for simplicity we use the notation PAkmin+VD. In this section,
we start by analyzing the conditions for which PAkmin+VD is optimal for solving the
Min-Repeats Problem. Then, we extend PA to consider two additional cases by modifying
its final walk, which completes all possible scenarios. We start by providing a lower bound
to the Range Level Problem using the following structural results.

▶ Lemma 4.1. Let T be a set with kmin tours covering G. Then every tour in T contains at
least one point above the level 2kmin − 3.

Using the Pigeonhole Principle and Lemma 4.1, we get:

▶ Lemma 4.2. For any set of kmin tours covering G, the minimum number of repeats is
lower bounded by 2k2

min − 2kmin − 1, and upper bounded by 2k2
min − 2kmin + 1.

▶ Lemma 4.3. Let T be an optimal solution to MRP. Then |T | = kmin.

From Lemma 4.3 and Lemma 4.1, a lower bound to RLP can be readily obtained:

▶ Theorem 4.4. The solution z to RLP satisfies 2kmin − 3 ≤ z.
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t2r−3

t2r−2

bc is even

Figure 7 Final step in the modified Painting Algorithm when |V (G)| is odd. The red cross
indicates the point in the baseline of A2r−2 that will not be covered.

4.1 Optimality conditions for PAkmin + VD when kmin < ⌈nc

2 ⌉
In what follows, we distinguish the cases in which PAkmin + VD obtains a covering of G

with minimum number of repeats. These cases are defined by the following two theorems.

▶ Theorem 4.5. If there exists a set of tours T covering G with minimum number of repeats
such that every tour in T traverses the level 2kmin − 1, then PAkmin + VD produces an
optimal solution for Min-Repeats Problem.

▶ Theorem 4.6. If |V (G)| is even, then PAkmin+VD obtains a set of tours covering G with
minimum number of repetitions.

For demonstrating the previous theorems we use Lemmas 4.2 and 4.3, and the following
lemma which also provides the ingredient describing the case where PAkmin + VD is not
optimal when kmin < ⌈ nc

2 ⌉.

▶ Lemma 4.7. Let d be the number of tours in an optimal solution T to the Min-Repeats
Problem that does not reach the level 2kmin − 1. If d > 0, then d = 1.

4.2 Additional cases
Case 1: kmin < ⌈ nc

2 ⌉, |V (G)| is odd and one tour is below the level 2kmin −1. We describe
a modified version of PA for this scenario, termed as PAO. For a given r, PAO aims to
compute a covering of A2r−2 with r − 1 paths and one point. This point will be the last
point on the baseline of A2r−2; see the red cross in Figure 7. Moreover, the r − 1 walk
obtained with PAO will end as indicated in the figure. As PAO is only applied when |V (G)|
is odd, the case described in Figure 7 is complete. Moreover, PAO covers A2kmin−2 without
repetitions; hence the following holds.

▶ Theorem 4.8. If |V (G)| is odd and there exists a set T of tours covering G with minimum
number of repeats such that one tour in T does not traverse the level 2kmin − 1, then
PAO+VD produces a covering of G with minimum number of repeats in O(|V (G)|) time.

Case 2: kmin = ⌈ nc

2 ⌉. If nc is even, clearly PAkmin+VD is optimal. If nc is odd, we can
demonstrate that the minimum number of repeats for covering Anc−1 is half of the length of
the smallest path in an optimal solution to the Min-Repeats Problem; hence we focus on
minimizing the length of the smallest path. To this end, we change the last walk of PA to
cover a grid of the form R(1, b), which is basically a line. We term this version as PAR, and
the idea to demonstrate that PAR is optimal when nc is odd is to first demonstrate that
the initial kmin − 1 walks of PAR are of maximum length. Then we have:

▶ Theorem 4.9. Consider kmin = ⌈ nc

2 ⌉. An optimal solution to the Min-Repeats Problem
can be obtained with PAkmin+VD when nc is even, or with PAR+VD when nc is odd.
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5 Conclusion

Our strategy can be extended to cases where the base station is located at any vertex on the
boundary of a rectangular grid graph. Our intention is to generalize the concept of levels
from lines to triangular regions. The problem remains also open for other solid grid graphs.
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Abstract
In this paper we explore several notions of convexity in the setting of r-gather, establish the hierarchy
among the variants, and prove their hardness on general graphs. We give an exact polynomial time
algorithm for convex r-gather on unweighted trees and a 4-approximation algorithm for connected
r-gather on general weighted graphs.

1 Introduction

In the r-gathering problem, we are given a set of nodes and centers in a metric space and
create a clustering by assigning nodes to selected centers while minimizing the maximum
distance from the nodes to their assigned center, where at least r nodes must be assigned
to each selected center. The variant where the centers are not given in advance but can
be chosen arbitrarily is called r-gather. It was introduced to transform the problem of
anonymizing sensitive data into a clustering problem [1]. Both problems are NP-hard in
general, and optimal approximation algorithms are known [1, 2]. Both problems are also hard
on weighted spider graphs [7] and r-gathering has efficiently solvable variants on trees [6].

Besides minimizing the distances of nodes in the clusters, further connectivity or prox-
imity properties might be desirable. For example, r-gatherings where each node is assigned
to the nearest selected center were studied [2]. Many notions of connectivity and other clus-
tering constraints are known under the general term of facility location problems [5]. We
want to highlight the notion of geodesic convexity in graphs. In the literature, the standard
definition of a convexity is that for each pair of nodes in the same cluster all shortest paths
are required to lie within that cluster. We use a weaker version in which we only require that
at least one shortest path lies within the cluster. That is partly motivated by the application
of the Anonymous Routing Problem [4]. Pelayo surveyed many results [8], including that
partitioning general graphs into a given number of convex clusters is NP-hard [3].

Our Contribution In Section 2, we formulate and compare multiple variants of r-gather
on graphs that yield a spectrum from convexity to connectivity. In Section 3, we introduce
an algorithm that computes a convex r-gather with optimal diameter on unweighted trees
with n nodes in time O(nr3 log r). We end with Section 4, where we give a 4-approximation
algorithm for the optimal diameter of connected r-gather on general weighted graphs.

∗ This work was started at the Rhein-Ruhr Computational Geometry Workshop 2023.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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2 Relations between Variations of r-Gather

We consider weighted undirected graphs G = (V, E). Given a subset (cluster) V ′ ⊆ V and
nodes v,w ∈ V ′, we denote by dG[V ′](v, w) the length of the shortest v-w-path in the induced
graph G[V ′]. If no such path exists, we set dG[V ′](v, w) = ∞. An optimum solution to the
r-gather problem, is a partition of V into subsets V1, V2, . . . each of size at least r such
that maxi maxv,w∈Vi dG(v, w) is minimized.1 We assume |V | ≥ r, to ensure the existence
of solutions to r-gather, and r > 1, as otherwise, singleton sets yield a clustering with
diameter 0, which is optimal. The following secondary conditions define the variations:

(unrestricted) r-gather has no further conditions,
connected r-gather requires that for each i the induced subgraph G[Vi] is connected,
convex r-gather requires that ∀i∀v, w ∈ Vi : dG(v, w) = dG[Vi](v, w),
for α ≥ 1, α-sum-convex r-gather requires that ∀i :

∑
v,w∈Vi

dG[Vi](v, w) ≤ α
∑

v,w∈Vi

dG(v, w),

for α ≥ 1, α-ratio-convex r-gather requires that ∀i∀v, w ∈ Vi : dG[Vi](v, w) ≤ αdG(v, w).

Denote the respective optimal solutions by d∗, d∗
conn, d∗

conv, d∗
α−sum, d∗

α−ratio. We omit G

and r in the notation as they are usually clear from the context. Observe that if some
connected component of G has less than r nodes, then connected r-gather has no solution
and d∗, d∗

conv, d∗
α−sum, d∗

α−ratio = ∞ (as V1 = V is a solution for these variants but at least
one cluster spans multiple components in each solution). If each connected component has at
least r nodes, then the connected components of G form a partition of V that is a solution
for each variant of r-gather and, hence, all corresponding values are finite. Additionally,
for each variant, the optimal solution has no clusters that span multiple components and a
globally optimal solution can be obtained by solving r-gather on each component separately.

Throughout this section, we present proof sketches and visual explanations. Detailed
proofs will be included in the full version of this paper.

The following lemma shows some basic relations between the variants.

▶ Lemma 2.1. For each α ≥ 1 and each graph, d∗ ≤ d∗
conn ≤ d∗

α−sum ≤ d∗
α−ratio ≤ d∗

conv
holds. Moreover, for α = 1, we have d∗

α−sum = d∗
α−ratio = d∗

conv.

Proof sketch. We may assume that G is connected, since otherwise, the arguments would
hold for each connected component individually. Any convex solution is α-ratio-convex for
each α ≥ 1 and any α-ratio-convex solution is α-sum-convex. These three notions coincide
for α = 1. If d∗

α−sum is finite, any α-sum-convex solution is connected. Lastly, any connected
solution is also an unrestricted solution. ◀

We have the following general upper bound for connected r-gather on unweighted graphs.

▶ Lemma 2.2. For any unweighted graph, it holds that d∗
conn ≤ 2r − 2.

On weighted trees, all restricted variants coincide. However, the following lemma shows
that there are cases where the connected solution is not better than a 2-approximation to
the unrestricted r-gather even if G is an unweighted spider, i.e., a tree where at most one
node has degree larger than 2 (see Figure 1).

▶ Lemma 2.3. For any ε > 0, there exists an unweighted spider graph and a minimum
cluster size r such that d∗

conn > (2 − ε)d∗.

1 The literature commonly considers center clustering and minimizes the radius instead.
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Figure 1 Visual proof of Lemma 2.3: Optimal connected(blue)/unrestricted(red) solutions.

In contrast to trees, we show lower bounds for approximating d∗
conn in terms of d∗

conv
or d∗

α−ratio on weighted planar graphs. Other than the results in Lemma 2.3, these bounds
hold for constant r and even for a constant size of G (see Figures 2 and 3).

▶ Lemma 2.4. For all ε > 0, r = 3, there is a planar graph G such that d∗
conv ≥ ( 5

2 −ε)d∗
conn.

1

1

1

1
2

1
2

1− ε

1− ε

Figure 2 Visual proof of Lemma 2.4: The colored clusters are the optimal connected solution,
whereas the optimal convex solution is to choose the whole graph as a cluster.

▶ Lemma 2.5. Let α > 1. There is a planar graph G such that for r = 3, d∗
α−ratio > 2d∗

conn.

Finally, we have the following relation.

▶ Lemma 2.6. For each graph G with positive edge lengths and each α ≥ D
d , where D is the

length of a longest path in G and d is the length of a shortest edge, we have d∗
conn = d∗

α−ratio.

Proof sketch. Let C be some cluster in the optimal connected solution and u, v ∈ C. Using
that C is connected and the definition of d, D, α, we see that C is α-ratio-convex:

dG[C](u, v) ≤ D ≤ αd ≤ αdG(u, v). ◀

We conclude this section by observing that all our variants are NP-hard in general.

▶ Lemma 2.7. [Corollary from [9]] The connected, α-sum-convex and α-ratio-convex and
convex r-gather problems are NP-hard (for fixed r ≥ 3).

EuroCG’25
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Figure 3 Visual proof of Lemma 2.5: The colored clusters are the optimal connected solution,
whereas the optimal α-ratio convex solution is to choose the whole graph as a cluster

Proof sketch. The solutions to the planar circuit SAT instances constructed in [9] are con-
vex. As the convex and unrestricted solutions are identical in this instance, all other variants
are also NP-hard. ◀

3 Polynomial-Time Algorithm for Trees

We describe a dynamic program that checks for given d and r ∈ N whether a tree has a
connected r-gather with each cluster (a subtree) of diameter at most d. We call such an
r-gather d-valid. The optimal diameter d can be computed using a binary search over all
possible values of d.

Let us consider a fixed diameter d and a rooted tree T . For a node u in T let Tu be the
subtree rooted at u. The depth of a rooted tree is the number of edges of the longest path
from the root to any of its leaves. For an integer δ ≤ d, a partition of the nodes into clusters
is (δ, d, r)-valid if the cluster containing the root (which we call the root cluster) is a subtree
of depth at most δ and each other cluster forms a subtree of size at least r with diameter at
most d. Note that a (δ, d, r)-valid partition is an r-gather if and only if the root cluster has
size at least r.

In the case that there is some (δ, d, r)-valid partition of Tu, let fu(δ) denote the largest
size of the root cluster among all (δ, d, r)-valid partitions of Tu. In the case that there is no
(δ, d, r)-valid partition of Tu, we distinguish two situations: if there is a d-valid r-gather of
Tu (so the root cluster has size at least r as well, but no depth restriction) set fu(δ) = 0,
otherwise we set fu(δ) = −∞ (so there is no d-valid r-gather of Tu at all). In summary:

fu(δ) =





|C|, if a (δ, d, r)-valid partition of Tu exists whose root cluster
C is a largest root cluster over all (δ, d, r)-valid partitions of Tu,

0, if there is a d-valid r-gather but no (δ, d, r)-valid partition of Tu,
−∞, if neither a d-valid r-gather nor a (δ, d, r)-valid partition of Tu exists.

The root cluster in a d-valid r-gather has depth at most d which gives the following fact.

▶ Observation 3.1. A d-valid r-gather of Tu exists if and only if fu(d) ≥ r.

To simplify our formulas we also define fu(−1) = 0 if there is a d-valid r-gather of Tu

(i.e. fu(d) ≥ r by Observation 3.1) and fu(−1) = −∞ otherwise (i.e. if there is no d-valid
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gray clusters also size at least r

δ = δ1 + 1
(depth)

Figure 4 An illustration of a (δ, d, r)-valid partition.

r-gather of Tu at all). The value δ = −1 represents the case that u shall not be part of its
parent’s cluster. This is also represented by the cases fu(δ) = 0.

We compute all values fu(δ) with a dynamic program. For leaves u, fu(δ) = 1 for each
δ ≥ 0 and fu(−1) = −∞ (as r > 1). Otherwise let u1, . . . , ut be the children of u. In the
recursive step, we first compute preliminary values f̃u(δ) for each δ with 0 ≤ δ ≤ d:

f̃u(δ) = 1 + max
δ1,δ2 :

−1≤δ2≤δ1≤δ−1,
δ1+δ2≤d−2

max
i=1,...,t


fui

(δ1) +
∑

j : j ̸=i

fuj
(δ2)


 . (1)

We now show that f̃u(δ) and fu(δ) coincide if fu(δ) ̸= 0. The cases fu(δ) = 0 and δ = −1
are handled in a second step below.

▶ Lemma 3.2. Let u be a non-leaf node in T and δ ≥ 0. If fu(δ) ̸= 0, then f̃u(δ) = fu(δ).

Proof. First, consider the case that there is some (δ, d, r)-valid partition of Tu (so fu(δ) > 0).
Consider a (δ, d, r)-valid partition of Tu with root cluster C of maximum size fu(δ). For
each child uj let Cj = C ∩ V (Tuj

) (possibly Cj = ∅). Let δ1 and δ2 ≤ δ1 denote the two
largest depths among {C1, . . . , Ct} in the respective subtrees (it might be δ1 = δ2) where
we use −1 for the depth of empty clusters Cj = ∅. Let Ci denote a cluster with depth δ1.
As C has depth at most δ, we have −1 ≤ δ2 ≤ δ1 ≤ δ − 1. As C has diameter at most d, we
have δ1 + δ2 ≤ d − 2 (this also works for negative δ1, δ2). Because C is as large as possible,
each Cj is as large as possible under the depth restriction. Moreover, each Cj with j ̸= i is
largest for depth δ2, because δ2 is not smaller than the depth of Cj and, hence, replacing
the given partition of Tuj

by any (δ2, d, r)-valid partition of Tuj
has root cluster of size at

EuroCG’25
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least |Cj |. Hence, |Ci| = fui
(δ1) and |Cj | = fuj

(δ2) for each j ̸= i. This shows

fu(δ) = |C| = 1 + fui
(δ1) +

∑

j : j ̸=i

fuj
(δ2)

≤ 1 + max
δ1,δ2 :

−1≤δ2≤δ1≤δ−1,
δ1+δ2≤d−2

max
i=1,...,t


fui

(δ1) +
∑

j : j ̸=i

fuj
(δ2)


 = f̃u(δ).

Now consider integers δ1, δ2, and i maximizing the right hand side of the recursion (1).
By the assumption of this case, there is a (δ, d, r)-valid partition of Tu. Restricting this
partition to a subtree rooted at a child of Tu gives either a (δ′, d, r)-valid partition of this
subtree for some 0 ≤ δ′ ≤ δ − 1 or a d-valid r-gather. This implies fui(δ1) ̸= −∞ and, for
each j ̸= i, fuj

(δ2) ̸= −∞. Hence, there is a (δ1, d, r)-valid partition of Tui
with root cluster

of size fui
(δ1) or a d-valid r-gather of Tui

. For each j ̸= i there is a (δ2, d, r)-valid partition
of Tuj

with root cluster of size fuj
(δ2) or a d-valid r-gather of Tuj

. Merging the root clusters
for those children uj with fuj

(δ2) > 0 and adding u to it gives a (δ, d, r)-valid partition of
Tu, as the root cluster has diameter at most max{δ1 + δ2 + 2, d} ≤ d and depth at most
δ1 + 1 ≤ δ. This shows that

fu(δ) ≥ 1 + fui
(δ1) +

∑

j : j ̸=i

fuj
(δ2)

= 1 + max
δ1,δ2 :

−1≤δ2≤δ1≤δ−1,
δ1+δ2≤d−2

max
i=1,...,t


fui

(δ1) +
∑

j : j ̸=i

fuj
(δ2)


 = f̃u(δ).

Now consider the case that there is neither a d-valid r-gather nor a (δ, d, r)-valid partition
of Tu (so fu(δ) = −∞). The same arguments as above show that f̃u(δ) = −∞ in this case.
Indeed, if f̃u(δ) ̸= −∞, then f̃u(δ) > 0 and there are integers δ1, δ2 with −1 ≤ δ2 ≤ δ1 ≤
δ − 1, δ1 + δ2 ≤ d − 2, and fui

(δ1) +
∑

j : j ̸=i fuj
(δ2) ≥ 0. We then find a (δ, d, r)-valid

partition of Tu by merging suitable partitions of the subtrees rooted at u’s children.
This shows that f̃u(δ) = fu(δ) whenever f0(δ) ̸= 0. ◀

Consider the case fu(δ) = 0, that is, there is no (δ, d, r)-valid partition of Tu but a
d-valid r-gather of Tu exists. The arguments in the proof of Lemma 3.2 show that we
get f̃u(δ) = −∞ in this case. To compensate for this, the full recursive step works as
follows. First, recursion (1) is evaluated to compute preliminary values f̃u(δ) for each δ with
0 ≤ δ ≤ d. Then we use Observation 3.1 and distinguish two cases. If f̃u(d) ≥ r, then there
is a d-valid r-gather of Tu (by means of Lemma 3.2). Hence, for each δ ≥ 0 we set fu(δ) = 0,
if f̃u(δ) = −∞, and fu(δ) = f̃u(δ) otherwise. We also set fu(−1) = 0. If f̃u(d) < r, then
there is no d-valid r-gather of Tu. So for each δ we set fu(δ) = f̃u(δ) and set fu(−1) = −∞.

Computing the preliminary values via the recursion (1) for fixed u and δ (and recursively
given f values for u’s children) needs time in O(δ2deg(u)). The update round for the values,
if necessary, needs O(d) time. By computing bottom-up, starting at the leaves, we compute
the values of fu(δ) for each node u in T and each δ = −1, . . . , d in time O(d3n) (as δ ≤ d).

By Lemma 2.2 it suffices to search for an optimal d in the range 1, . . . , 2r−2. This shows
that the optimal d can be computed in O(nr3 log r) time.

▶ Theorem 3.3. For each unweighted tree, d∗
conn can be computed in O(nr3 log r) time.
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4 Connected r-Gather Approximation

This section provides an approximation algorithm for the connected r-gather. We call it
Best-or-Fill as it is very similar to the Best-or-Rest algorithm to approximate the r-gathering
problem given by Armon [2]. A variation of the Best-or-Rest algorithm is presented as the
distributed sweep algorithm for r-gather for a distributed setting by Zeng et al. [9]. In the
“Best”-stage, for each node u we compute the smallest ball Bu (with respect to the shortest
path metric) with center u containing at least r nodes. We process these clusters in sorted
order by increasing diameter (breaking ties consistently but arbitrarily). We mark a cluster
Bu if no node from Bu is contained in an already marked cluster and skip it otherwise. At
the end of the stage, we have some marked clusters. We extend this clustering to a connected
r-gather in the “Fill”-stage next. Each node u that is not contained in a marked cluster yet
is assigned to a nearest marked cluster, where the distance is measured from u to a closest
node in the cluster (i.e., the boundary). If several marked clusters are nearest, we take the
marked cluster that was marked first. Extending the marked clusters by their respective
assigned nodes gives a graph partition.

1 1 2 4 1

2

Figure 5 In Best-or-Rest, the remaining node would be assigned to the red cluster on the left.

The key difference to [2, 9] is that we need the distance to the boundary instead of the
center; otherwise, the cluster may not be connected. See Figure 5.

▶ Theorem 4.1. Best-or-Fill is a 4-approximation for connected r-gather on weighted graphs.

Proof. We can construct a path through the center of the balls to prove the approximation
guarantee for the diameter. The same argument with more details can be found in [9]. We
only need to show connectedness, which is clear for the marked clusters from the “Best”-
stage. If v gets assigned to Bu in the “Fill”-stage, then all nodes w from the shortest path
from v to the boundary node x of Bu are (1) not contained in a marked cluster and (2)
are assigned to Bu. (1) is true because otherwise, w would be our destination instead of x.
And (2) is true because the shortest path from w to the boundary of Bu is contained in the
shortest path from v to that cluster. Hence, each extended cluster is connected. ◀
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Abstract
Geometric hitting set problems, in which we seek a smallest set of points that collectively hit a given
set of ranges, are ubiquitous in computational geometry. Most often, the set is discrete and is given
explicitly. We propose new variants of these problems, dealing with continuous families of polyhedra,
and show that they capture decision versions of the two-level finite adaptability problem in robust
optimization. We show that these problems can be solved in strongly polynomial time when the
size of the hitting/covering set and the dimension of the polyhedra and the parameter space are
constant. This leads to new tractability results for finite adaptability that are the first ones with
so-called left-hand-side uncertainty, where the underlying problem is non-linear.

1 Introduction

In this paper we investigate hitting and covering problems for continuous families of polyhedra
and show that they capture decision versions of the two-level finite adaptability problem in
robust optimization.

1.1 Hitting affine families of polyhedra

An affinely parameterized family of polyhedra in Rd, or an affine family of polyhedra for short,
is a continuous family P (Ω) of polyhedra in Rd defined by a domain Ω ⊂ Rp and two affine
maps A : Ω 7→ Rm×d and b : Ω 7→ Rm via

P (Ω) = {P (ω) : ω ∈ Ω} where P (ω) =
{

x ∈ Rd : A(ω)x ≤ b(ω)
}

. (1)

Observe that an affine family of polyhedra has three defining parameters: the dimension d

of the ambient space of the polyhedra, the dimension p of the parameter space Ω, and the
number m of constraints defining each polyhedron. When every polyhedron P (ω) is bounded,
we call P (Ω) an affine family of polytopes. See Figure 1 for examples.

We call a set S ⊂ Rd a hitting set for an affine family of polyhedra if S intersects every
member of that family. See Figure 1 for examples. We adopt the following convention: if an
affine family of polyhedra P (Ω) has one empty member, that is if P (ω) = ∅ for some ω ∈ Ω,
then P (Ω) has no hitting set. We first consider the following computational problem:

Given k ∈ N and an affine family F of polyhedra, does F admit a hitting set of size k?
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
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Figure 1 Two examples of affine families of polygons; For readability, we represent the polygon
P (ω) for only a finite subset of ω in the domain.

1.2 Context: robust optimization and finite adaptability
This continuous hitting set problem arises as the decision version of a special case of the
finite adaptability problem in robust optimization [3]. This line of research in mathematical
programming deals with uncertainty in planning by modeling the decision to make as the
optimization of some objective function under some constraints, with the objective function
and the constraints depending not only of the free variables, but also of some uncertainty
parameter ω. One then searches for an optimal solution that is valid for all values of the
uncertainty parameter ω. Robust optimization problems with successive stages of decision
are of particular interest [18], such as the two-stage robust optimization problem:

inf
xf ∈Rℓ

sup
ω∈Ω

inf
xs∈Rδ

cf
T xf + cs(ω)T xs

s. t. Af (ω)xf + As(ω)xs ≤ b(ω)
(2)

where Ω is the domain of uncertainty, Af (ω), As(ω), b(ω) and d(ω) are input matrices and
vectors depending on the uncertainty parameter ω, and c is a deterministic input vector.
The variables xf and xs correspond to the first and second stages of the optimization, where
the second stage takes place only once the uncertainty ω has been revealed. The problem is
therefore to optimize in the first stage the worst-case outcome from the second stage.

In 2010, Bertsimas and Caramanis [4] proposed to approximate Problem (2) by the
following finite adaptability problem:

inf
xf ∈Rℓ

x1
s,x2

s,...,xk
s ∈Rδ

sup
ω∈Ω

inf
i∈[k]

cf
T xf + cs(ω)T xi

s

s. t. Af (ω)xf + As(ω)xi
s ≤ b(ω)

(3)

(We use [k] to denote the set {1, 2, . . . , k}.) For fixed k this problem is called the k-adaptability
problem. It models the computation, in the first stage, of k candidate values for the second-
stage variable xs. Once the uncertainty ω is revealed, the second stage consists of selecting
one of the k precomputed values that satisfies the constraints and minimizes the objective.
Under a suitable continuity assumption, the value of Problem (3) converges to the value
of (2) as k → ∞ [12, § 2]. See [10, 16, 6, 17] for recent work on Problem (3) and variants.
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In what follows, we assume that Af , As, b, and cs are affine maps, and consider only this
version of the finite adaptability problem.

1.3 Contributions
The continuous hitting problem stated above corresponds to the decision version of the
optimization Problem (3) with no first-stage decision (ℓ = 0); See Lemma 2.1. Like in the
discrete setting, the hitting and covering problems for affine families of polyhedra enjoy
some form of duality. We prove (Lemma 2.2) that the decision version of the general finite
adaptability problem is a special case of the following covering problem:

Given two affine families of polyhedra in Rd and k ∈ N, does there exist k polyhedra
in the second family whose union covers a polyhedron from the first family?

Note that this problem is linear, whereas Problem (3) exhibits some non-linearity. Quantifier
elimination methods can solve these problems in strongly polynomial time when k and the
dimensions are fixed (Theorem 3.1). Similar statements hold for the hitting and covering
problems (see Section 3). A natural question is whether these problems are fixed-parameter
tractable with respect to k and the dimensions; in the full version of this paper, we show that
this is the case for 1-dimensional parameter domain and no first decision (ℓ = 0).

1.4 Background and related works
Continuous families of geometric sets are ubiquitous in computational geometry, most notably
in range searching [1] and the theory of ε-nets [11, 7, 5, 9, 8]. Geometric computation with
uncertainty were also investigated by computational geometers [13]. Hitting set problems were
extensively investigated in discrete and computational geometry for discrete, unstructured
families of sets. One typically expects that deciding whether k points suffice to hit n given
subsets of Rd is NP-hard when k or d is part of the input [14, 15]. When both k and d are
fixed, the problem can be solved in polynomial time via the computation of an arrangement.

What about the tractability of finite adaptability? On the negative side, unless P = NP,
there is no polynomial-time algorithm already in the special case where k = 2, there is no first
decision xf , and As is independent of ω [4, Prop. 5]; that proof requires the dimensions of xs

and ω as well as the number m of rows in As to be part of the input. On the positive side, we
are only aware of two previous results: when Af , As and b are constant (but cs still depends
on ω [17, Prop. B.3] and when k ≤ 3, the number of vertices (and dimension) of Ω is bounded,
and only the right-hand side b of the constraints depends on the uncertainty parameter (that
is, Af , As and d are constant) [12, Theorems 1.1 and 1.2]. Theorem 3.1 therefore identifies
new tractable cases; note that the map As is affine (left-hand-side uncertainty), which makes
the underlying problem non-linear in xf , xs and ω.

2 Relation between hitting/covering and finite adaptability

Let us first consider the k-adaptability problem (3) without first decision (ℓ = 0), that is

inf
x1

s,x2
s,...,xk

s ∈Rδ
sup
ω∈Ω

inf
i∈[k]

cs(ω)T xi
s

s. t. As(ω)xi
s ≤ b(ω)

(4)
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▶ Lemma 2.1. For any real t, the value of the k-adaptability problem without first decision (4)
is at most t if and only if the affine family of polyhedra Pt(Ω) = {Pt(ω) : ω ∈ Ω} defined by

Pt(ω) =
{

x ∈ Rd :
(

As(ω)
cs(ω)T

)
x ≤

(
b(ω)

t

)}

admits a hitting set of size k.

Proof. Let t ∈ R. The value of Problem (4) is at most t if and only if there exists xs =
(x1

s, x2
s, . . . , xk

s) ∈ (Rd)k such that supω∈Ω infi∈[k] s.t. As(ω)xi
s≤b(ω) cs(ω)T xi

s(ω) is at most t.
This is equivalent to the condition that for every ω ∈ Ω, infi∈[k] s.t. As(ω)xi

s≤b(ω) cs(ω)T xi
s(ω)

is at most t. This, in turn, is equivalent to the condition that for every ω ∈ Ω, there exists
i ∈ [k] such that As(ω)xi

s ≤ b(ω) and cs(ω)T xi
s(ω) ≤ t; In other words, xi

s ∈ Pt(ω). Hence,
the value of Problem (4) is at most t if and only if Pt(Ω) admits a hitting set of size k.
Observe that in particular, Problem (4) is infeasible if and only if there is no feasible solution
(x1

s, x2
s, . . . , xk

s), that is no hitting set of size k for P (Ω). ◀

When there is a first decision (ℓ > 0), one may proceed as in Lemma 2.1, mutatis mutandis,
and obtain that the value of Problem (3) is at most t if and only if there exists xf ∈ Rℓ such
that the affine family of polyhedra Pxf ,t(Ω) = {Pxf ,t(ω) : ω ∈ Ω} defined by

Pxf ,t(ω) =
{

xs ∈ Rδ :
(

As(ω)
cs(ω)T

)
xs ≤

(
b(ω) − Af (ω)xf

t − cf
T xf

)}
(5)

admits a hitting set of size k. To simplify this formulation, we fix ℓ and p and, taking
inspiration from the Veronese map, define a “lifting”:

L :





Rℓ+p → Rℓ+p+ℓp

(xf , ω1, ω2, . . . , ωp︸ ︷︷ ︸
ω

) 7→ (xf , ω, ω1xf , ω2xf , . . . , ωpxf ).

For better readability, we let d = ℓ + p + ℓp. We use z to denote a point in Rd, and write
zxf

= (z1, . . . , zℓ)T and zω = (zℓ+1, . . . , zℓ+p)T . For ω ∈ Ω, we decompose Af (ω) into
Af (ω) = AL,0 +

∑
i∈[p] ωiAL,i, where AL,0, AL,1, . . . , AL,p ∈ Rm×δ.

▶ Lemma 2.2. For any real t, the value of the k-adaptability problem (3) is at most t if
and only if there is a member of

⌣
Pt(Rℓ) that can be covered by some k members of

⌣
Qt(Rδ),

where
⌣
Pt(Rℓ) is the affine family of polyhedra in Rd defined by

⌣
Pt(Rℓ) = { ⌣

Pt(xf ) : xf ∈ Rℓ}
where

⌣
Pt(xf ) = L(xf × Ω), and

⌣
Qt(Rδ) is the affine family of polyhedra in Rd defined by

⌣
Qt(Rδ) = { ⌣

Qt(xs) : xs ∈ Rδ} where

⌣
Qt(xs) =





z ∈ Rd :





AL,0zxf
+ As(zω)xs +

∑

i∈[p]

AL,i(zip+ℓ+1, . . . , zip+ℓ+p)T ≤ b(zω)

cf
T zxf

+ cs(zω)xs ≤ t





.

Proof. First, note that for any fixed t ∈ R,
⌣
Pt(Rℓ) and

⌣
Qt(Rδ) are affine families of polyhedra.

For
⌣
Qt(Rδ), this is because As(ω) depend affinely on ω and AL,0, AL,1, . . . , AL,p are constant

matrices. For
⌣
Pt(Rℓ), this is because Ω is a polyhedron. Next, observe that L(Rℓ+p) is the

surface (Σ) ⊆ Rd of dimension ℓ + p defined by the quadratic equations zp+iℓ+j = zjzℓ+i for
1 ≤ i ≤ p and 1 ≤ j ≤ ℓ. Letting π : (z1, z2, . . . , zd) 7→ (z1, z2, . . . , zℓ+p) be the projection that
forgets the last ℓp coordinates, we see that L induces a bijection onto (Σ) with inverse π|(Σ).
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Let us fix t ∈ R and recall the definition of Pxf ,t(ω) from Equation (5). The value
of problem (3) is at most t if and only if there exists (xf , x1

s, x2
s, . . . , xk

s) ∈ Rℓ × (Rδ)k

such that for every ω ∈ Ω, there exists i ∈ [k] such that xi
s ∈ Pxf ,t(ω). Letting St(xs) ={

(xf , ω) ∈ Rℓ × Ω: xs ∈ Pxf ,t(ω)
}

, this becomes: there exists (xf , x1
s, x2

s, . . . , xk
s) ∈ Rℓ ×

(Rδ)k such that {xf } × Ω is covered by St(x1
s) ∪ St(x2

s) ∪ · · · ∪ St(xk
s).

Let us now have the lift L act on this characterization. First, L is a bijection from Rℓ+p

to (Σ), so {xf } × Ω is covered by St(x1
s) ∪ St(x2

s) ∪ · · · ∪ St(xk
s ) if and only if L({xf } × Ω) is

covered by L(St(x1
s))∪L(St(x2

s))∪· · ·∪L(St(xk
s )). On the one hand, L({xf }×Ω) = ⌣

P (xf ) by
definition of ⌣

P. On the other hand, by definition of
⌣
Q we have L(St(xs)) =

⌣
Qt(xs) ∩ (Σ). The

previous condition is therefore equivalent to the existence of (xf , x1
s, x2

s, . . . , xk
s ) ∈ Rℓ × (Rδ)k

such that ⌣
P (xf ) is covered by

(
⌣
Qt(x1

s) ∩ (Σ)
)

∪
(

⌣
Qt(x2

s) ∩ (Σ)
)

∪· · ·∪
(

⌣
Qt(xk

s) ∩ (Σ)
)

. Since
for every xf ∈ Rℓ, the set ⌣

P (xf ) is contained in (Σ), we can drop the intersections with (Σ)
in that condition, and the statement follows. ◀

3 Polynomial complexity bounds

The decision version of the k-adaptability Problem (3) can be expressed using a first-order
formula, whose validity can be determined by general algorithms for quantifier elimination
and existential theory of the reals.

▶ Theorem 3.1. For every constant k, ℓ, δ, p, there is an algorithm that solves the decision
version of the k-adaptability Problem (3) on m constraints, with Ω a polyhedron in Rp given
as an intersection of v halfspaces, in time strongly polynomial in m and v.

Proof. The decision version of Problem 3 consists in deciding, given some real number t,
whether the optimal value of (3) is at most t. This can be cast as deciding the validity of
the formula ∃xf ∈ Rℓ, x1

s, x2
s, . . . , xk

s ∈ Rδ Φ(xf , xs), where

Φ(xf , xs) ≡ ∀ω ∈ Rp (ω ̸∈ Ω)∨
(
(xf , x1

s) ∈ Pt(ω)
)
∨

(
(xf , x2

s) ∈ Pt(ω)
)
∨· · ·∨

(
(xf , xk

s) ∈ Pt(ω)
)

,

and Pt(Ω) is the affine family of polyhedra defined by

Pt(ω) =
{

(xf , xs) ∈ Rℓ+δ :
(

Af (ω)As(ω)
cf (ω)T cs(ω)T

)
(xf , xs) ≤

(
b(ω)

t

)}
.

Note that the polyhedron Pt(ω) encode both the constraints enforced by Af , As, and b on
(xf , xi

s), and the bound t on the optimal value (this is similar to the proof of Lemma 2.1).
The universal quantifier on ω takes care of the supω∈Ω in the formulation (3), while the
disjunction on the terms of the form (xf , xi

s) ∈ Pt(ω) takes care of the infi∈[k].
We next eliminate the universal quantifier in Φ(xf , xs). This quantifier applies to p

variables and there are s ≤ v + k(m + 1) polynomials involved, defining the polyhedra Ω
and Pt(ω). Each polynomial is of degree at most r = 2, and the total number of variables
is kδ + ℓ. Hence, the elimination of the quantifier can be done by a strongly polynomial
algorithm of complexity O

(
(v + m)(kδ+ℓ+1)(p+1)

)
[2, §14, Theorem 14.16]. It produces a

formula with a single existential quantifier on (xf , xs), involving O
(

(v + m)(kδ+ℓ+1)(p+1)
)

polynomials, each of degree is at most 2O(p). The validity of that formula can be decided by
a strongly polynomial algorithm [2, §13, Theorem 13.13] of complexity

(
O

(
(v + m)(kδ+ℓ+1)(p+1)

))kδ+ℓ+1
2O((kδ+ℓ)p) = O

(
(v + m)(kδ+ℓ+1)2(p+1)

)

as claimed. ◀
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The same method yields, for every constant k, p, and d, an algorithm that decides in time
strongly polynomial in m, given a polyhedron Ω in Rp defined by m constraints and an affine
family of polyhedra P (Ω) in Rd, each defined by at most m constraints, whether P (Ω) has a
hitting set of size k; the complexity is mO(1), where the exponent depends on k, p, and d.
Similarly, for every constant k, γ, λ and d there is an algorithm that decides in time strongly
polynomial in m, given an affine family of polyhedra P (Γ) in Rd defined by at most m

constraints, and an affine family of polyhedra Q(Λ) in Rd, defined by at most m constraints,
with Γ ⊆ Rγ and Λ ⊆ Rλ polyhedra defined by at most m constraints each, whether there
exist γ0 ∈ Γ and λ1, λ2, . . . , λk ∈ Λ such that P (γ0) ⊆ Q(λ1) ∪ Q(λ2) ∪ · · · ∪ Q(λk). The
complexity is mO(1), where the exponent depends on k, γ, λ and d.
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Abstract

We address the problem of computing the minimum number of triangles to separate a set of blue

points from a set of red points in R2. A set of triangles is a separator of one color from the other

if every point of that color is contained in some triangle and no triangle contains points of both

colors. We consider several variants of the problem depending on whether the triangles are allowed

to overlap or not and whether all points or just the blue points need to be contained in a triangle.

We show that computing the minimum cardinality triangular separator of a set of blue points from

a set of red points is NP-hard and further investigate worst case bounds on the minimum cardinality

of triangular separators for a bichromatic set of n points.

1 Introduction

Separability problems on colored point sets are concerned with computing a class of objects

of given shapes for a given set of colored points, such that every point of a fixed color is

covered with the computed objects and no object contains points of different colors. The

exact problem varies depending on the underlying optimizing criteria. We study triangles

separating red and blue points in R2. Separating red and blue points from each other is

well studied in computational geometry under the name class cover problems [2, 5, 8] due to

their wide applications in data mining, pattern recognition, learning theory, and operations

research. The problem is formally defined as follows:

▶ Problem 1 (Overlapping-Separation). Input: A set of red and blue points P ⊂ R2

Output: A minimum set T of triangles covering all points such that no member of

T contains points of both colors

Note that this problem can be subdivided into two problems. First find the minimum

number of triangles Tb covering all the blue points in P such that no triangle in Tb contains

a red point. Then compute the minimum number of triangles Tr covering the red, but no

blue points. The set Tb ∪ Tr is an optimal solution for Problem 1. Thus it reduces to:

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
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▶ Problem 2 (Overlapping-Separation-of-blue). Input: A set of red and blue points

P ⊂ R2 Output: A minimum set of triangles covering all blue but no red points of P

However once the triangles are not allowed to intersect each other, the problem becomes

more restricted and spawns two different problems for separating the points as follows.

▶ Problem 3 (Disjoint-Separation). Input: A set of red and blue points P ⊂ R2 Out-

put: A minimum set T of disjoint triangles covering all points such that no member

of T contains points of both colors

▶ Problem 4 (Disjoint-Separation-of-blue). Input: A set of red and blue points P ⊂ R2

Output: A minimum set of disjoint triangles covering all blue but no red points of P

Researchers addressed the problem of computing the minimum number of separators for

a bichromatic point set. Canon and Cowen [5] first considered the problem of finding the

minimum number of circles to separate a bichromatic point set in a general metric space.

They proved that computing the minimum number of circles centered at the blue points to

separate them from the red ones is NP-hard and presented a (ln n+1)-factor approximation

algorithm and devised a PTAS for the problem in Rd. Bereg et al. [3] showed that computing

the minimum number of axis-parallel rectangles to separate a bichromatic planar point set is

NP-hard. In the same paper, they addressed the problem of separating objects by vertical or

horizontal strips and presented a O(r log r + b log b+
√

rb)-time exact algorithm where r and

b are the numbers of red and blue points respectively. They also proved separation to be NP-

hard if the separating objects are half-strips/squares and presented O(1)-approximations.

But separation and partition problems are not only interesting on the algorithmic side.

Motivated by a question of Aharoni and Saks, Dumitrescu et al. [9, 10, 11] showed that

every bichromatic set of n points can be partitioned into ⌊ n
2 ⌋ + 1 monochromatic subsets

with disjoint convex hulls. This is not true if the subsets have a maximum size of 2. They

give an algorithm to find a matching of size 3
7 n, but show that a monochromatic matching

can in some cases only cover 94
95 n points. This is in contrast to the classic problem of Putnam

that every bichromatic set of n blue and n red points admits a perfect matching of the red

and the blue points ([12], for a proof of some generalization, see for instance [1]). The special

case of a maximum size of a matching stabbed by a line with points on a circle has been of

both long-term and recent interest under the name ”necklace folding problem”[6, 13].

cover both cover blue

disjoint
≥ ⌊ n

2 ⌋ + 1 (Proposition 1) ≥ ⌊ n
4 ⌋ + 1 (Proposition 2)

≤ ⌊ n
2 ⌋ + 1 (Proposition 3) ≤ ⌊ 2

7 n⌋ + 1 (Proposition 5)

overlap
≥ 3

8 n − O(1) (Proposition 2) ≥ ⌊ n
4 ⌋ + 1 (Proposition 2)

≤ 13
30 n + O(1) (Proposition 6) ≤ 4

15 n + O(1) (Proposition 4)

Table 1 Bounds on triangles separating bichromatic planar point sets of n points in total.

We show that Overlapping-Separation-of-blue and Disjoint-Separation-of-

blue are NP-hard. Then we prove combinatorial bounds on the number of triangles required

for the problems in the worst case for n points, see Table 1. The paper is organized in the



H. Bergold et al. 61:3

following manner. Section 2 describes the hardness of the problems by a polynomial time

reduction from the Planar Monotone 3-SAT problem. Section 3 presents an overview of

the combinatorial results. Finally, the paper is concluded in Section 4. For detailed proofs

we refer to the full version [4].

2 NP-hardness

In this section we present a polynomial-time reduction from the known NP-hard Planar

Monotone (PM) 3-SAT [7] problem to the problems Overlapping-Separation-of-

blue and Disjoint-Separation-of-blue (Problems 2 and 4). PM 3-SAT is a special

version of 3-SAT, where the usual boolean formula ϕ is in conjunctive normal form, each

clause contains at most 3 literals which are either all positive or all negative. Moreover,

there exists a planar embedding Γϕ of the incidence graph of ϕ, in which the variables lie

on the x-axis, the clauses with positive literals are above the x-axis and the clauses with

negative literals are below the x-axis. Given a PM 3-SAT formula ϕ, we construct a planar

bichromatic point set such that we can decide whether ϕ is satisfiable based on the number

of triangles in a minimum separator. The condition holds whether the triangles are allowed

to overlap or not. Thus we simultaneously address the NP-hardness of problems 2 and 4.

▶ Theorem 2.1. Overlapping-Separation-of-blue and Disjoint-Separation-of-

blue are NP-hard.

Proof sketch. Here we give a simplified reduction for brevity. For the full formal details, see

the full version [4]. Given a PM 3-SAT formula ϕ with k variables x1, . . . , xk, m2 clauses with

2 literals and m3 clauses with 3 literals as well as a corresponding planar embedding Γϕ,

we will construct a bichromatic point set such that all blue points can be covered with

t := k + m2 + 2m3 triangles not containing any red points, if and only if ϕ is satisfiable. If

the cover is possible, it will be possible inside these covering triangles:

(2i, −0.5)

(2i, 0.5) (2i + 1, 0.5)

(2i + 1, −0.5)

(2i, 0)
bi

pc1
i pc3

i

pc2
i pc4

i pc5
i

Figure 1 The covering triangles of the variable gadget of xi are marked in grey. The white space

between the dashed lines can be used for red points.

Let ε > 0 be small enough. First we describe how to replace the variable-vertices of Γϕ

with variable gadgets. The variable xi is represented by vertices in a square. Inside it, place

two covering triangles intersecting in a small triangle next to the point (2i, 0) and place a blue

point bi in it. For every clause c involving xi, place a point pc
i on a top or bottom segment

close enough to the middle as in Figure 1 making sure that they are ordered according to the

order of incidences of the clauses at xi in Γϕ. Use the top segment if and only if c is positive.

Replace the vertex associated to the positive clause c = xi ∨ xj ∨ xk, i < j < k of Γϕ with 2

blue points lc and rc, shifted slightly to the left and right, respectively. Place four covering
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triangles covering each of the pairs of points (lc, pc
i ), (lc, pc

j), (rc, pc
j) and (rc, pc

k) so closely

that no other point is inside and triangles only intersect if their pairs do. If c = xi ∨xj , i < j

has only two literals, its point lc = rc is considered blue and we introduce two covering

triangles covering it and one of pc
i or pc

j . Negative clauses are handled analogously. Then

perturb the placed blue points to establish general position.

Two of the previously placed blue points are incompatible if no covering triangle contains

both. For every pair of incompatible points, we place a red point on the segment between

them, but not into any covering triangle. Figure 1 shows how this is done if both points are

in the same variable gadget. If they are not, the triangles outside of the variable gadgets

are thin enough not to contain the segment completely. In an ε-ball around each blue point,

we place t + 1 extra blue points in such a way that general position of the blue point set is

preserved. We call these points form the blue point cloud around the blue point. The ε-ball

of every red point r is contained in the convex hull of the ε-balls of its defining blue points,

but disconnects it. For every triangle of one point from one of the associated blue point

clouds and two of the other, we place a red point inside it and the ε-ball of r and then delete

r. Since ε is small, they are not contained in any covering triangles. We place these points

such that the full point set is in general position. They constitute the red point cloud of r.

We now show that the thus defined point set can be covered with t triangles if and only

if ϕ is satisfiable. Assume that ϕ is satisfiable. For every false variable, we use the bottom

covering triangle in the variable gadget. For every true variable, we use the top one. For

every positive clause c = xi ∨ xj ∨ xk, we use two triangles:

1. If xi is false, we use the triangle of (lc, pc
i ). If xk is false, we use the triangle of (rc, pc

k).
2. If both xi and xk are false, xj is true, so pc

j has been covered and we are done.

3. Else if xj is false we use (lc, pc
j) or (rc, pc

j), depending on which of the first two triangles

was not used, so lc and rc are not covered twice.

4. If we did not cover both lc and rc this way, we cover their point clouds individually.

If c has only two literals use the covering triangle containing the false literal or cover it

individually. Negative clauses are handled analogously. This covers all blue points with t

triangles. We only use triangles inside covering triangles, so no triangle contains a red point.

Assume now t triangles cover the blue points. Every point cloud contains more than

t points, so some triangle contains at least 2 points of it. This triangle is said to cover

the cloud. No two incompatible clouds are covered by the same triangle, otherwise it would

contain a red point. However the points lc, rc for all clauses c and the points bi for all variables

xi are pairwise incompatible, so we need all t triangles for them, k variable-covering and

m2 + 2m3 clause-covering. If the triangle covering bi covers any pc
i for a positive clause c,

set xi to true, else to false. Since any clause c has one less triangle covering it than literals,

∃xi ∈ c : pc
i is covered by the variable-covering triangle of xi. Hence c is fulfilled. ◀

3 Bounds on the number of triangles

This section roughly describes our techniques for the bounds on the number of triangles

needed to separate a bichromatic point set in general position in the worst case.

Lower bounds: We use two different point sets: When covering both colors with disjoint

triangles, we use points along a closed convex curve, colored alternatingly with blue and red.

This makes sure a triangle can only ever cover three points, however if disjoint, at least as

many triangles as those that reach that bound cover only one point as well:

▶ Proposition 1. Let k ≥ 0. Given a bichromatic point set on a closed convex curve in the

plane such that 2k is the number of times two consecutive points on the curve have different
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colors, there is no set of k disjoint triangles containing all points such that no triangle

contains points of both colors.

Figure 2 Illustration of lower bounds. Left: Proposition 1; Middle: Proposition 2; Right: A red

triangle covering 4 red points: One of the edges cuts off ≥ 3 blue points, so this is the maximum.

In the overlap case, this would give a bound of ⌈ n
3 ⌉, but we can do a little bit better

by considering a slightly different construction: The blue points are equidistributed along

a circle and an almost equal number of red points are placed inside so that any triangle of

three blue points contains one of them. This construction gives the n
4 + Ω(1) lower bounds

right away, whether the triangles are overlapping or not. Some further investigation reveals

that the red points can be chosen such that no five of them can be in a triangle without blue

points. This gives the final result of 1
2

n
2 + 1

4
n
2 + Ω(1) = 3

8 n + Ω(1) triangles for overlapping

triangles covering both point sets.

▶ Proposition 2. There are bichromatic planar n-point sets such that there is no set of ⌊ n
4 ⌋

triangles containing all blue points and no set of 3
8 n + O(1) triangles containing all points

such that no triangle contains points of both colors.

Upper bounds: We use sweeping lines and case distinction at the boundary of the convex

hull. First we prove that our lower bound for disjoint covering of all points is tight.

▶ Proposition 3. Given a bichromatic planar n-point set, there are ⌊ n
2 ⌋+1 disjoint triangles

within the convex hull of P containing all points such that none contains points of both colors.

We also give bounds for the number of triangles needed to cover all blue points in terms

of the number of blue points only, then using the number of red points only to deduce:

▶ Proposition 4. Given a bichromatic planar n-point set, there is a set of 4
15 n+O(1) vertices,

segments and triangles containing no red points and using all blue points as vertices once.

▶ Proposition 5. Given a bichromatic planar n-point set, there are 2
7 n+1 disjoint triangles

containing all blue points such that no triangle contains a red point.

Finally by computer, we show that the maximum number of points in a bichromatic

planar point set without two vertex-disjoint empty monochromatic triangles is 14 and obtain:

▶ Proposition 6. Given a bichromatic planar n-point set, there are 13
30 n + O(1) triangles

containing all points such that no triangle contains points of both colors.
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Figure 3 Sweepline construction of triangles to cover the blue points using the red points only.

4 Conclusion

We have addressed the hardness and bounds on the minimum number of triangular sep-

arators for a bichromatic point set. Theorem 2.1 proves the NP-hardness of Disjoint-

Separation-of-blue but it is questionable whether this problem belongs to NP at all. It

might be ∃R-hard [15].

▶ Conjecture 1. Disjoint-Separation-of-blue is ∃R-complete.

Table 2 contains our results how many triangles we need to use to cover n ≤ 12 points

in the four different settings. Based on this, the OEIS [14] suggests the following formulae

n 2 3 4 5 6 7 8 9 10 11 12

one color, overlap 1 1 2 2 2 2 3 3 3 3 4

one color, disjoint 1 1 2 2 2 2 3 3 3 3 4

both colors, overlap 2 2 3 3 4 4 4 5 5 6 6

both colors, disjoint 2 2 3 3 4 4 5 5 6 6 7

Table 2 Results on covering/separating small bichromatic point sets

for the overlap setting, one of which coincides with our previously proved lower bound:

▶ Conjecture 2. Every planar bichromatic set of n points in general position can be covered

by at most ⌊ 2
5 (n + 4)⌋ monochromatic triangles.

In the following conjecture the blue triangles could even possibly be chosen to be disjoint.

▶ Conjecture 3. The blue points in every planar bichromatic set of n points in general

position can be covered by at most ⌊ n
4 ⌋ + 1 blue triangles.

The main roadblock to proving this conjecture is that in a set of predominantly blue

points, some triangles need to cover at least 4 blue points. However a triangle that covers

4 blue points in convex position cannot be chosen inside the convex hull of those points.

Therefore a similar approach as in the proof of the ⌊ n
2 ⌋ + 1 bound seems out of reach.
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Abstract
Let S be the subdivision of Rd induced by m convex polytopes having n facets in total. Assuming
that the set of hyperplanes supporting these facets is in general position, we prove that S has
complexity O(m⌈d/2⌉n⌊d/2⌋) and that this bound is tight. The bound is mentioned several times in
the literature, but no proof for arbitrary dimension has been published before.

1 Introduction

We consider a collection of m convex polyhedra in Rd, each given as the intersection of
halfspaces, where the total number of halfspaces is n ⩾ m. The family of polyhedra induces
a subdivision S of Rd into cells and faces of dimensions 0 to d. What is the complexity of
this subdivision S, that is, what is the number of its vertices?

When m = 1, S is a single convex polyhedron defined by n halfspaces, so by the
Upper Bound Theorem, its complexity is O(n⌊d/2⌋). At the other extreme, when m = n,
each polyhedron is a halfspace, and S is the arrangement of n hyperplanes, which has
complexity Θ(nd).

We generalize both bounds by showing

▶ Theorem 1.1. The subdivision in Rd induced by m convex polyhedra with a total of n

facets where the set of hyperplanes supporting these facets is in general position, has com-
plexity O(m⌈d/2⌉n⌊d/2⌋), and this bound is tight.

This bound has been mentioned several times in the literature [2, 3, 4, 5, 6], referring
to a manuscript or preprint by Aronov, Bern, and Eppstein from either 1991 or 1995. The
original manuscript no longer exists, and the authors do not recollect their proof. The second
edition [10] of the Handbook of Discrete and Computational Geometry describes the bound
in Section 24.6. In the third edition, however, this section has been silently removed [11].
The chapters on arrangements by Agarwal and Sharir [1, page 58] and Pach and Sharir [8,
page 19] also state the bound.

Hirata et al. [7] claim a slightly weaker result in their Lemma 4.2, but the last line of
their proof does not hold in dimension larger than four.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
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Our proof follows the same lines as the proof of an asymptotic version of the Upper
Bound Theorem by Seidel [9].

2 The upper bound

We assume that the hyperplanes defining the m polyhedra are in general position, so their
arrangement is simple. We pick a generic vertical direction; in particular, no two vertices of
the arrangement will be at equal altitude.

Let v be a vertex of the subdivision S. It is defined by d hyperplanes H. Let I be the set
of polyhedra that contribute to H, and let U be a neighborhood of v that is small enough
such that only the hyperplanes of H intersect it.

The hyperplanes H cut U into 2d cells. One of these cells lies in the intersection P of
the polytopes in I. This polytope P has d edges incident to v. As in Seidel [9], we observe
that at least half of these edges either go up or down with respect to our vertical direction.
Let us assume there are i ⩾ d/2 edges going up. Then there is a unique i-face f in P that
contains those edges [9].

The i-face f lies in an i-flat F that is the intersection of d − i of the hyperplanes in H.
Let H ′ be this subset of hyperplanes. The intersection of F with P is exactly the i-face f ,
and v is the lowest vertex of f .

This implies that the vertex v is uniquely defined by the choice of the d− i hyperplanes H ′

and the intersection polytope P . The polytope P , on the other hand, is uniquely defined by
the at most d polytopes in I. That is, we can uniquely specify v by selecting d− i hyperplanes
and at most i polytopes (that do not yet contribute to those hyperplanes).

For a given i ⩾ d/2, there are therefore O(nd−imi) such vertices, for a total of

d∑

i=⌈d/2⌉
O(nd−imi) = O(m⌈d/2⌉n⌊d/2⌋).

3 The lower bound

Recall the product construction for convex polytopes, as for instance described in Ziegler’s
book [12, page 10]. For polytopes P ⊂ Rp and Q ⊂ Rq the product polytope is defined to be
the set

P × Q =
{(

x

y

)
: x ∈ P, y ∈ Q

}
.

This product polytope has dimension dim(P ) + dim(Q) and its nonempty faces are the
products of nonempty faces of P and nonempty faces of Q. The inequalities describing the
facets of P × Q are the union of the inequalities describing the facets of P (which have
coefficients 0 for the “y-coordinates”) and the inequalities for the facets of Q (which have
coefficient 0 for the “x-coordinates”). The coordinates of the vertices of P × Q are all
concatenations of the (“x”) coordinates of the vertices of P with (“y”) coordinates of vertices
of Q. This implies that the number of facets of P × Q is the sum of the facet numbers of P

and Q, whereas the number of vertices is the product of the vertex numbers.
It is easy to see that something analogous holds for facet and vertex numbers of product

subdivisions:

▶ Lemma 3.1. Let P1, . . . , Pm be p-dimensional polytopes with N facets in total and with V

vertices in the induced subdivision. Similarly let Q1, . . . , Qm be q-dimensional polytopes with
M facets in total and with W vertices in the induced subdivision.
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The set P1 × Q1, P2 × Q2, . . . , Pm × Qm of (p + q)-dimensional polytopes has N + M

facets in total and their induced subdivision has V · W vertices.

Let s > 1 be an integer constant. For integer ℓ ⩾ 3 let C be a regular ℓ-sided convex
polygon in R2 with edges tangent to the unit circle. Consider the s-fold product polytope
Cs = C × C × · · · × C︸ ︷︷ ︸

s times

. It has s · ℓ facets and ℓs vertices. For n = sℓ and d = 2s this is a

particularly simple construction of a d-polytope with n facets and an asymptotically maximal
O(n⌊d/2⌋) vertices.

For integer m ⩾ 1 and 0 ⩽ i < m let Ci be the polygon C rotated by i 2π
ℓm around the

origin and let Pi be the d-polytope Cs
i , where we continue to consider even d = 2s.

We claim that the polytopes P0, . . . , Pm−1 have smℓ facets in total, and their subdivision
has (ℓ · m2)s vertices.

It suffices to show that the the polygons C0, . . . , Cm−1 have in total mℓ facets and their
induced subdivision has ℓ · m2 vertices, and then repeatedly apply Lemma 3.1. The total
facet number for the m polygons is clearly mℓ. For the vertex count in the subdivision
observe that each of the

(
m
2
)

pairs of the ℓ-gons have their boundaries intersect in 2ℓ points,
which, including the ℓm corners yields overall ℓ · m2 vertices.

If you let ℓ = n
s·m , then P0, . . . , Pm−1 have n facets overall, and the subdivision has

(ℓ · m2)s = nsms

ss
= Θ(n⌊d/2⌋m⌈d/2⌉)

vertices if s is considered a constant and we are considering even dimension d = 2s.
For odd d = 2s+1, take the above construction, choose m intervals, say, Ji = [−1−i, 1+i],

choose ℓ = n−2m
ms for the construction of the Pi’s above, and consider the products Qi = Pi×Ji

for 0 ⩽ i < m. The Ji have 2m “facets” in total and their subdivision has 2m vertices.
Applying Lemma 3.1 then yields that the Qi’s have n facets in total and the number of
vertices in their induced subdivision is

2m · Θ(nsms) = Θ(nsms+1) = Θ(n⌊d/2⌋m⌈d/2⌉) .

4 Open problems

We needed to assume that the n hyperplanes are in general position. Does the upper bound
remain true without these restriction?

One commonly uses a perturbation to prove claims on objects in degenerate position, but
it is not clear how to apply this here: the difficulty is that when we perturb the hyperplanes,
a feature defined by the intersection of some hyperplanes may no longer be a feature of the
intersection of polytopes.

If we only want to count the vertices of the arrangement S, then our proof still seems
to work: consider a vertex v. There may be many hyperplanes containing v, so pick a
subset H of d hyperplanes whose intersection is exactly v. We then proceed as in Section 2,
picking d − i hyperplanes defining an i-flat F and additional i polytopes. What is now
different is that the intersection polytope P of the polytopes does not necessarily intersect F

in an i-flat—the intersection might be lower-dimensional, but at the very least it includes
the vertex v, and that vertex is the bottom point of the intersection, so it is again uniquely
specified.

Going further, the argument also works if we count vertices with multiplicity. Consider a
vertex v lying on a set of hyperplanes belonging to k different polytopes. Consider all subsets
of these k polytopes, and pick a subset if v is a vertex of the subarrangement of the selected
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polytopes, but not of any subfamily. If we count v with multiplicity equal to the number of
such subsets, then our upper bound still holds.

What remains is to bound the number of j-faces of the arrangement, for 1 ⩽ j ⩽ d, and
that’s where a new idea seems to be needed.
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Abstract
We study the problem of determining coordinated motions, of minimum total length, for two arbitrary convex

centrally-symmetric (CCS) robots in an otherwise obstacle-free plane, using the total path length traced by

the two robot centres as a measure of distance. We give an exact description of shortest (but not necessarily

unique) collision-avoiding motions for all initial and goal configurations of the robots.

1 Introduction

1.1 Problem Statement and Related Work

Given a collection of robots in the plane, each with specified initial and goal positions, we are
interested in the problem of characterizing efficient collision-free coordinated motions taking all
of the robots from their initial to their goal position. This problem has a rich history; see the full
version of this paper [6] for a partial overview. More comprehensive overviews of results on the
topic are provided by the recent papers of Abrahamsen and Halperin [1] and Fekete et al. [4].

In this paper, we focus on understanding shortest coordinated translational motions (hereafter
called co-motions) of two convex centrally-symmetric (CCS) robots in an otherwise obstacle-free
plane, using the the total path length traced by the two robot centres as a measure of distance. We
note that the specification of optimal or near-optimal co-motions for two disk robots was recently
identified as one of ten fundamental problems in geobotics by Abrahamsen and Halperin [1].
Our comprehensive description of shortest co-motions, for arbitrary initial and goal placements,
builds on a similar characterization for the special case of disc robots developed by Kirkpatrick
and Liu [7, 8]. Essentially the same techniques were used by Esteban et al. [3] to address the special
case of congruent (i.e. similarly aligned) square robots. The analysis underlying the results of the
current paper, as well as these earlier works, rests heavily on an application of the Cauchy surface
area formula, which was introduced earlier still by Icking et al. [5], in describing optimal motions
for rods (directed line segments) in the plane, where distance is measured by the length sum of the
paths traced by the two endpoints of the rod. (Rod motion can be viewed as the co-motion of two
discs constrained to remain in contact throughout the motion.)

Our results subsume and simplify these earlier results that addressed special cases of optimal
collision-free motion planning for two robots. In doing so, they highlight both the generality and
limitations of the approach initiated in [7, 8]. A critical observation is that optimal co-motions can
be described in terms of the Minkowski sum of the two robots (cf. Figures 1 and 2), rather than
appealing to specific geometric properties of discs or axis-aligned squares.
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A B

B+A A+B

Figure 1 Two CCS objects and their Minkowski sums.

.

Figure 2 Minkowski sums as the locus of intersecting placements of CCS objects.

.

1.2 Our contributions

The coordinated motion of a pair of robots A and B, from initial to goal configuration, involves
either a net clockwise (abbreviated cw) or net counter-clockwise (abbreviated ccw) turn in their
relative orientation. Our results describe either (i) a single globally optimal co-motion, or (ii) two
co-motions (whose length could be arbitrarily similar), one of which one is optimal among all
net-cw co-motions and the other is optimal among all net-ccw co-motions. For all of the optimal
co-motions that we describe, the trace of both robots follows a simple standard form. In this
form, the individual motions are decoupled, but simple modifications facilitate other, potentially
desirable, properties like orientation monotonicity or contact preservation.

The rest of this extended abstract is organized as follows. We start by setting out some basic
definitions as well as some fundamental tools that are used in developing our co-motions and
in proving their optimality. We then summarize the general structure of our proofs, providing
concrete insight by illustrating optimal motions for a representative case. Hopefully this will suffice
to allow the reader to gain a solid intuitive understanding of our approach; full details are provided
in [6]. Other related results mentioned above, including configuration monotonicity and contact
preservation, are left to [6]. in their entirety.
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1.3 Basic Definitions and Tools
We begin with the definition of a few non-standard notions; other more-intuitive notions are
defined in [6]..

ÏDefinition 1.1. The reach of a set of points S in direction θ, is given by

rS(θ) := sup{x cosθ+ y sinθ : (x, y) ∈S}.

For an angle θ, the set of points that realize the supremum are called support points, and the line
oriented at angle π

2 +θ passing through the support points is called the support line (see Figure 3).
When the set S consists of a single point S, we write rS instead of rS for ease of notation.

ÏObservation 1.2. Note that rS(π+θ) = r−S(θ). Furthermore, rS(θ) = rØS(θ), whereØS denotes the
boundary of the convex hull of S.

θ

O

p

L

S

rS(θ) = rp(θ) = d(O,L)

Figure 3 Support line L and support point p defining the reach of S in direction θ.

.

ÏDefinition 1.3. A generic CCS robot, hereafter simply robot, is an open convex and centrally-
symmetric region in the plane. The placement of robot Z at position Z in ℜ2, denoted Z[Z ], is
formed by translating Z so that its centre coincides with Z . Accordingly, rZ[Z ](θ) = rZ (θ)+ rZ(θ).

Ï Definition 1.4. A configuration (A[A],B[B ]) is viable if A[A]∩B[B ] = ;; equivalently if the
separation ofA[A] from B[B ] in direction θ (see Figure 4) is non-negative for some direction θ. We
refer to the direction θ that maximizes the separation ofA[A] from B[B ] as its orientation.

A co-motion of a robot pair takes an initial configuration to a goal configuration, through viable
intermediate configurations:

ÏDefinition 1.5. A (translational) motion ξZ of a robot Z from placement Z[Z0] (i.e. position Z0)
to placement Z[Z1] (i.e. position Z1) is a continuous, rectifiable curve of the form ξZ : [0,1] →ℜ2,
where ξZ(0) = Z0, and ξZ(1) = Z1. The set of points tr (ξZ) = {ξZ(t) | 0 ≤ t ≤ 1} is called the trace
of robot Z under motion ξZ. The length of motion ξZ, denoted `(ξZ), is simply the Euclidean
arc-length of its trace.

EuroCG’25
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θ

O

2rA(θ)

A

B

A

B

rA[A](θ)−rB[B](θ)

Figure 4 The separation ofA[A] from B[B ] in direction θ is rA[A](θ)− rB[B ](θ)−2rA(θ).

Ï Definition 1.6. A coordinated motion m of a robot pair (A,B) from an initial configuration
(A[A0],B[B0]) to a goal configuration (A[A1],B[B1]) is a pair (ξA,ξB), where ξA (resp. ξB) is a motion
of A (resp. B) from placement A[A0] to placement A[A1] (resp. placement B[B0] to placement
B[B1]). The co-motion m is said to be collision-free if the configuration (A[ξA(t )],B[ξB(t )]) is viable,
for all t ∈ [0,1]. Co-motion m = (ξA,ξB) is said to be convex if both ξA and ξB are convex curves. Its
length, denoted `(m), is the sum of the lengths of its associated motions, i.e. `(m) = `(ξA)+`(ξB).

B0

A0

A1

B1

Figure 5 The trace of a co-motion of the robot pair (A,B) from initial configuration (A[A0],B[B0]) (green)
to target configuration (A[A1],B[B1]) (red), with intermediate configurations (yellow)

.
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Figure 5 illustrates a co-motion (blue) of two robots from their initial configuration (green) to a
goal configuration (red). The diamond robot first moves (straight) to its intermediate placement
(orange). Then the disc robot moves around the diamond robot to its goal placement, passing
through intermediate placements with boundary contact. Finally, the diamond robot moves
(straight) to its goal placement.

2 The general approach

2.1 Net counter-clockwise co-motions
We consider co-motions (ξA,ξB) that take a specified CCS robot pair (A,B) from a specified initial
configuration (A[A0],B[B0]) (denotedAB0), with orientation θ0, to a specified goal configuration
(A[A1],B[B1]) (denotedAB1), with orientation θ1. Note that, by the continuity of ξA and ξB, the
range of configuration orientations realized by any co-motion between AB0 and AB1 is either
net-ccw (containing [θ0,θ1]) or net-cw (containing S1 − (θ0,θ1)), or both. It suffices to restrict
attention to minimum length net-ccw co-motions , since net-cw co-motions become net-ccw
co-motions when reflected, together with the initial and goal configurations, across an arbitrary
line.

2.2 Determining motion length
For any convex motion of Z from Z0 to Z1, `(ξZ) = `(ØξZ)−|Z0Z1|, where ØξZ denotes the boundary
of the convex hull of ξZ. Thus, to determine the length of a convex co-motion (ξA,ξB) it suffices to
determine the length of the pair of closed convex curves (ØξA, ØξB). For this we follow an approach—a
direct application of Cauchy’s surface area formula [2, Section 5.3]), first described by Icking et
al. [5]—that allows us to express the the length of two convex curves in terms of the reach of those
curves in all directions.

Ï Lemma 2.1. `(ØξA)+`(ØξB) = ´S1 (r ØξA (θ)+ rØξB (π+θ))dθ.

Note that r ØξA (θ)+ rØξB (π+θ) describes the maximum separation, in direction θ, realized by

a point on ØξA and a point on ØξB. The following observations allow us to give a lower bound
(realizable, as it turns out) on the length of optimal co-motions:

ÏObservation 2.2. If θ lies in the range of orientations realized by the set of all configurations
associated with co-motion m, then for some t ∈ [0,1], the configuration (A[ξA(t)],B[ξB(t)]) has
orientation θ, and hence by the viability property and central-symmetry, r ØξA (θ)+ rØξB (π+ θ) ≥
rξA(t )(θ)+ rξB(t )(π+θ) ≥ rA(θ)+ rB(π+θ) = rA−B(θ) = rA+B(θ).

ÏObservation 2.3. Since the reach of ØξA is at least the reach of the segment A0 A1 and the reach ofØξB is at least the reach of the segment B0B1 it follows that r ØξA (θ)+rØξB (π+θ) ≥ r A0 A1
(θ)+rB0B1

(π+θ).

The pair (ØξA, ØξB) is said to be ccw-tight (with respect to the pair (AB0,AB1)) if for all θ ∈ S1,

r ØξA (θ)+ rØξB (π+θ) = max
(
r A0 A1

(θ)+ rB0B1
(π+θ),rA+B(θ) ·1[θ0,θ1](θ)

)
, (1)

where 1[θ0,θ1] is the indicator function of the range [θ0,θ1]. By the Observations above,

`(m) ≥
ˆ

S1
max

(
r A0 A1

(θ)+ rB0B1
(π+θ),rA+B(θ) ·1[θ0,θ1](θ)

)
dθ−|A0 A1|− |B0B1|, (2)

Thus, by Lemma 2.1, it follows that the ccw-tightness of (ØξA, ØξB) is a sufficient condition for any
convex net-ccw co-motion (ξA,ξB) to be ccw-optimal.

EuroCG’25
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ÏObservation 2.4. To demonstrate a ccw-optimal co-motion (ξA,ξB) takingAB0 toAB1 it suffices
to prove (i) the convexity of both ξA and ξA (typically trivial) and (ii) the ccw-tightness of (ØξA, ØξB).
For the latter, we consistently show that r ØξA (θ) is determined by either A0 or A1, and rØξB (π+θ) is
determined by either B0 or B1 (and hence r ØξA (θ)+ rØξB (π+θ) = r A0 A1

(θ)+ rB0B1
(π+θ)), except for

angles θ (all of which lie in the range [θ0,θ1]), where r ØξA (θ)+ rØξB (π+θ) = rA+B(θ).

2.3 Standard-form co-motions

B0B0

B1

A1

A0

Aint

Figure 6 The trace of two collision-free co-motions from the configuration (A[A0],B[B0)] (green) to
the configuration (A[A1],B[B1)] (red). The dark blue co-motion is net counter-clockwise and the dark red
co-motion is net clockwise.

Figure 6 illustrates two co-motions from the configuration (A[A0],B[B0)] (green) to the configu-
ration (A[A1],B[B1)] (red). The blue co-motion consists of three sub-motions: (i) firstA translates
from placementA[A0] to placementA[Aint] (yellow); (ii) next B translates from placement B[B0] to
placement B[B1], avoidingA[Aint]; (iii) finallyA translates from placementA[Aint] to placement
A[A1]. The red co-motion consists of just two sub-motions: (i) firstA translates from placement
A[A0] to placementA[A1]; (ii) next Bmoves from placement B[B0] to placement B[B1], avoiding
placement A[A1]. As it happens, the blue co-motion is ccw-optimal and the red co-motion is
cw-optimal.

The blue co-motion illustrated in Figure 6 (as well as the red co-motion, viewed from the
opposite side of the host plane) is a special case of what we call standard-form net-ccw co-motions:

1. MoveA from position A0 to some intermediate position Aint, along a ccw-oriented shortest
path that avoids B[B0];

2. Move B from position B0 to position B1, along a ccw-oriented shortest path that avoidsA[Aint];

3. MoveA from position Aint to position A1, along a ccw-oriented shortest path that avoids B[B1].

It turns out that in looking for globally optimal net-ccw co-motions we can restrict attention to
those in standard-form. The proof involves (i) the identification of a suitable choice for the point
Aint in all possible cases, and (ii) the demonstration that for the resulting co-motion m = (ξA,ξB)
the pair (ØξA, ØξB) is ccw-tight. See [6], section 6, for the details of this case analysis. In those cases
where m is convex, it must be ccw-optimal. In those cases where m is not convex we show that
any globally optimal co-motion must be cw-optimal.
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2.4 Establishing counter-clockwise tightness

B0B0

B1

A1

A0
Aint

a0
a1

b0

b1

Figure 7 The trace of an optimal ccw co-motion from the configurationAB0 (green) to the configuration
AB1 (red).

It is instructive to examine a special case, illustrated in Figure 7, one of the co-motions illus-
trated previously in Figure 6. This case provides one of the simplest non-trivial examples of a
ccw-optimal (though not globally optimal, as it happens) co-motion, as well as an illustration of
the form of the proofs that support our claims of optimality.

Let a0 and a1 be the upper tangent points from A0 to (A+B)[B0], and A1 to (A+B)[B1] respec-
tively. These two tangents intersect in a point Aint. Let b0 and b1 be the lower tangent points from
B0 and B1 to (A+B)[Aint] respectively. Note that by construction, the tangent from A0 to a0 passes
through Aint and by symmetry is parallel to the tangent from B0 to b0 (Similarly, the tangent from
A1 to a1 is parallel to the tangent from B1 to b1.)

ÏObservation 2.5. The proof that the pair (ØξA, ØξB) associated with the co-motion m = (ξA,ξB) in
the example above is ccw-tight, follows a pattern, supported by Observation 2.4, that we will use
throughout in our consideration of convex and net-ccw co-motions m, taking initial configuration
AB0 to goal configuration AB1. Specifically, observe that, r ØξA (θ) is determined by either A0 or A1,
and rØξB (π+θ) is determined by either B0 or B1 (and hence r ØξA (θ)+rØξB (π+θ) = r A0 A1

(θ)+rB0B1
(π+θ))

except for angles θ (all of which lie in the range [θ0,θ1]), where r ØξA (θ)+ rØξB (π+θ) = rA+B(θ)

3 Conclusion

In those cases where the ccw-tight standard-form co-motion that we identify is convex, the co-
motion is ccw-optimal, by Observation 2.4. In those cases where the identified co-motion is not
convex we show (cf. Section 4.2) in [6]. that any globally optimal co-motion must be cw-optimal.

Taken together this provides a constructive proof of our main result:

Ï Theorem 3.1. For any given initial and goal configurations, there is a globally optimal co-
motion m∗ = (ξ∗

A
,ξ∗
B

) of standard form. The length of m∗, and hence any globally optimal motion,

satisfies `(m∗) = `( Ütr (ξ∗
A

)− tr (ξ∗
B

))−|A0 A1|− |B0B1|.

Acknowledgments. We acknowledge, with appreciation, several helpful discussions with Dan
Halperin.
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Abstract
Let P be a set of colored points. Given a query rectangle Q, we wish to report all k colors of points
contained in Q together with their frequencies, in time strictly linear in the output complexity k.
This appears to be difficult, so we study two relaxations: (1) the offline or batched version where we
answer m queries at once, and (2) a version where we allow only restricted queries.

1 Introduction

Let P be a set of n points in R2, each of which has a color from the set {1..ϕ}, and let Pc

denote the subset of points of color c. Motivated by chromatic nearest neighbor queries [13]
we wish to store P so that given an axis aligned query rectangle Q we can efficiently report
the colors of the points appearing in the query range, together with their frequency. That
is, we wish to report a set of k color, frequency pairs (c, f) so that |Pc ∩ Q| = f > 0 and
the sum of the frequencies is |P ∩ Q|. See Figure 1. This is also known by the rather
non-descript name of type-2 color counting [9]. Our main goal is to obtain a linear space
data structure achieving a strictly output sensitive query time of the form O(q(n) + k), i.e. a
query time strictly linear in the output size k (and whose dependency q(n) on n is of course
also sublinear, and preferably even (poly-)logarithmic). We work in the pointer-machine
model of computation.

Related work. Color frequency counting is a form of generalized intersection searching [8,
9, 10]. In 1D, both the problem of reporting the color frequencies of points within a query
interval [2] and the problem of reporting the color frequencies of intervals containing a
query point [9] have been solved since 1995 with datastructures of size O(n) and query time
O(log n + k). In 2D there exists a simple datastructure of size O(n log n) with query time
O(log n + k log n): we first report all intersected colors in O(log n + k) time using a colored
range reporting query [12], and then for all k colors separately perform a standard uncolored
range counting query in O(log n) time each using 2D range trees [4]. On the other hand,
Gupta et al. [8] (Theorem 1.11) show how to obtain O(log n + k) query time using O(n1+ε)
space, where ε > 0 is some arbitrarily small constant (their result is for color reporting, but
also applies to color frequency reporting); this works in any constant dimension d, not just in

q

Figure 1 Some colored points and a query rectangle q, with color-frequencies ((red, 2), (blue, 2)).

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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2D. Note that neither of these approaches achieve our goal of using linear space with strictly
output sensitive query time.

In the word-RAM model, some progress has been made recently. In 2020, Chan et al. [3]
give a datastructure of size O(n log1+ε n) with query time O( log n

log log n + k log log n). In 2023,
Afshani et al. [1] solve approximate color frequency counting with an additive error ε for
dominance queries with O(n) space and O(log n + ε−1) query time. We are not aware of
similar results in the pointer-machine model.

In external memory with block size B, Ganguly et al. [7] give a datastructure of size O(n)
that answers constant-factor approximate frequency reporting queries in O(logB n + log∗ B +
k/B) time.

Challenges & Results. We take some steps towards our goal of strict output sensitivity
using linear space. This turns out to be challenging: it is unclear how to achieve even e.g.
O(n0.99 + k) query time. Most data structures follow a divide-and-conquer approach that
partitions the space (and thereby the input point set). However, this may cause the points
Pc ∩ Q of color c to be stored in many, say g(n), different places in the data structure. This
means that we have to aggregate their frequencies at query time. If this happens for Ω(k)
colors, we get an Ω(kg(n)) cost in the query time. If we instead store the points per color,
we may have to spend Θ(log n) time per color to actually count the subset that lies in Q.
We present progress on two restricted variants of the problem.

The offline problem. If we are given m queries in a batch, we can answer all of them
in O(

√
m log m(m + n log3 n)) + K) time using O(n) space, where K is the total output

complexity of all queries. See Section 3. Note that e.g. for m = Θ(n) we thus essentially
obtain O(

√
n log4 n + k) time per query. This improves over the naive near-linear space

solution (with query time O(log n + k log n)) by a factor log n when the average output
complexity of a query is Ω(

√
n log4 n).

In the above approach we encounter a batch of dominance frequency reporting queries
where the point defining the query range is separated from P by an (x, −y)-monotone
curve. We show that we can also solve the online version of this problem efficiently
in Section 4, by reducing the problem to frequency reporting for interval × interval
intersection.

2 Preliminaries

For two (corner) points p and q, we say p is dominated by q, written p ≺ q, iff p lies in the
bottom-left quadrant of q. If neither p ≺ q nor q ≺ p, then p and q are incomparable.

We focus on dominance frequency reporting, where the query region is a quadrant or
2-sided rectangle (−∞, x] × (−∞, y] defined by its top-right corner (x, y). See Figure 2.
Given a data structure for dominance queries we can then also efficiently answer queries in
which the query range is a 3-sided, or a 4-sided rectangle [x1, x2] × [y1, y2].

▶ Theorem 2.1. Assume we are given a datastructure for dominance frequency reporting using
S(n) space with Q(n, k) query time (with Q(n, k)/ log n non-decreasing), where the colors
are reported in a fixed order. We can then create a datastructure for frequency reporting with
3-sided rectangles in O(Q(n, k)) time using O(S(n) log n) space, or with 4-sided rectangles in
O(Q(n, k)) time using O(S(n) log2 n) space.



E. Glazenburg and F. Staals 64:3

q4 q3 q2

Figure 2 A four-, three-, and two-sided rectangle q4, q3, and q2.

3 Offline algorithm for dominance frequency reporting

We first consider the offline version of the dominance frequency reporting problem in which
we wish to answer a set Q = {q1, .., qm} of m dominance frequency reporting queries on
P . We show how to answer all m queries in O(

√
m log m(m + n log n) + K) time, where

K =
∑

i ki, and ki is the output complexity of query qi.
First note that, if we have O(n1+ε) space available (for some ε > 0), we can build the

O(n1+ε) space datastructure from Gupta et al. [8] and answer all queries in O(log n + k)
time each. In this setting we thus assume to have only linear space available.

Let Q′ = q1, .., qm′ ⊆ Q be an ordered set of queries. If qi ≺ qj for all i < j, then we say
Q′ is a dominating sequence. If neither qi ≺ qj nor qj ≺ qi for all pairs of queries qi and qj ,
and Q′ is sorted by x-coordinate, then we say Q′ is an incomparable sequence. See Figure 3.
This extra structure allows us to solve all ℓ queries in Q′ efficiently:

▶ Lemma 3.1. We can answer all queries in a dominating or incomparable sequence Q′

of length m′ in O(n log n + m′ + K ′) time using O(n) space, where K ′ =
∑

i ki is the total
output size of Q′.

Proof sketch. See Figure 3. For a dominating sequence we know that, for all i < j, all points
contained in qi are also contained in qj , meaning the answer only ’grows’ as we go from q1
to qm′ . As such we can sweep a point q from the bottom-left to the top-right, starting at
(−∞, −∞) and passing through all queries in order. We maintain the color frequencies of the
set of points Pbl ⊆ P to the bottom-left of q, and each time we reach a query qi we simply
output this answer in O(m′ + K ′) total time. Each point is added to Pbl once, in O(log n)
time each, so in O(n log n) total time.

We handle an incomparable sequence similarly. Observe that an incomparable sequence
forms a staircase. We can sweep a point q along the staircase from top-left towards bottom-
right, maintaining the set of points Pbl in its bottom-left quadrant. We output the current
answer each time we reach a query in O(m′ + K ′) total time. Each point is added to and
removed from Pbl at most once, in O(n log n) total time. ◀

The crux of the algorithm is that in any set of m queries there exists either a dominating
sequence or a incomparable sequence of size at least

√
m; this is known as the Erdös-Szekeres

theorem [5]. We can find such a large sequence in O(m log m) time [6, 11]. For the purpose
of self-containment we give a simple geometric proof of these two (known) facts Frank: for
the case of dominance ranges below.

▶ Lemma 3.2 (Erdös-Szekeres theorem). Given a set Q of m queries, we can either find (i)
a set Q′ ⊆ Q of

√
m dominating queries, or (ii) a set Q′ ⊆ Q of

√
m incomparable queries,

in O(m log m) time.

Proof. For ease of description we insert a query q0 that is dominated by all other queries.

EuroCG’25



64:4 Strictly output sensitive color frequency reporting

q1
q2

q3
q4

q1
q2

q3
q4
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q

Figure 3 A dominating sequence and an incomparable sequence, with the path of q shown.
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Figure 4 The graphs G and T on a set of queries, with the level of each query.

Consider the dominance graph G = (Q, A) where there is a directed arc (qi, qj) ∈ A if
and only if qi ≺ qj . Let the level ℓ(qi) of a query qi be the length of a longest path from q0
to qi in G. See Figure 4.

Suppose there exists a query qi with ℓ(qi) ≥ √
m. Then there is a path of length

√
m

in G, and this path corresponds to a dominating sequence of length at least
√

m, which
would establish (i). Otherwise, all queries have level less than

√
m. Then by the pigeonhole

principle there must be a level with at least m/
√

m =
√

m queries in it. All queries at the
same level are incomparable, since if we have two queries qi and qj with qi ≺ qj , then qj

must be an ancestor of qi in G, so ℓ(qj) > ℓ(qi). Hence, establishing (ii).
We have now shown that either (i) or (ii) holds, but graph G can have O(m2) arcs and

will thus take too long to construct. Instead we construct a subgraph T of G with only O(m)
arcs that preserves a longest path from q0 to—and thus the level of—each query.

Consider a query qj ̸= q0 in G of level ℓ(qj) = t, and consider all arcs (qi, qj) pointing to
qj for which ℓ(qi) = t − 1. Note that there must be at least one such arc, otherwise qj can
not have level t. We insert only the arc coming from the leftmost such qi into T . The level
of each query in T is the same as in G, which we can see by induction on the level t. As
a base case, q0 clearly still has level 0. For the inductive step, our induction hypothesis is
that all queries of level t have the same level as in G. Each query qj of level t + 1 in G has
exactly one incoming arc in T coming from a node of level t by definition of T ; therefore, qj

also has level t + 1 in T , finishing the induction. We can construct T in O(m log m) time
by sweeping a horizontal line upwards, computing the level and incoming arc of all queries
below the sweepline. ◀

We will repeatedly apply Lemma 3.2 to find the longest remaining dominating or in-
comparable sequence of queries, and answer them using Lemma 3.1. We work in rounds.
In each round r = 1, 2, .. we get a set of mr queries, with m1 = m, and we find a set Qr

of √
mr dominating or incomparable queries in O(mr log mr) time. We answer these using
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q

Figure 5 The six possible intervals w.r.t. q, with their left endpoint highlighted.

Lemma 3.1 in O(n log n + √
mr + Kr) time (where Kr is the output size of Qr). Each

round r thus takes thus O(mr log mr + n log n + Kr) time. In the next round r + 1 we
have mr+1 = mr − √

mr queries left. Ignoring the output sensitive K, the total runtime
can thus be written as T (m, n) = T (m − √

m, n) + O(m log m + n log n), which solves to
T (m, n) = O(

√
m log m(m + n log n)).

▶ Theorem 3.3. We can answer a set Q of m dominance frequency reporting queries in
O(

√
m log m(m + n log n)) + K) time, using O(n) space.

Similar to Theorem 2.1 we can generalize this result to (4-sided) rectangles:

▶ Theorem 3.4. We can answer a set Q of m rectangle frequency reporting queries in s

time, using O(n log2 n) space.

4 Restricted queries

In Lemma 3.1 we saw an efficient algorithm to answer a batch of incomparable queries,
which form a staircase. Note that we could ignore all points above the staircase, as they are
not contained in any of the queries. So, all relevant points lie below the staircase, and in
other words the queries are ’separated’ from the points P . More precisely, there exists an
(x, −y)-monotone curve C such that all points P lie below C, and all queries Q lie above C

(e.g. the staircase itself translated to the bottom-left a tiny amount). In this section we show
that this scenario does not only allow for a fast algorithm in the offline setting, but also in
the online setting, where we are given an (x, −y)-monotone curve C such that all points P

lie below C, and we wish to answer queries that lie above C. We call this the curve-restricted
version of the dominance frequency reporting problem.

In order to answer these curve-restricted queries, we first show how to answer 1D interval
intersection frequency reporting queries. Here we have a set of n colored 1D intervals, and
given a query interval q wish to report the color frequencies of all intervals intersecting q.

▶ Lemma 4.1. We can build a datastructure of size O(n) to answer interval intersection
frequency reporting queries in O(log n + k) time.

Proof. Let q = (ql, qr) be a query interval. Combinatorically, there are 6 different types of
intervals with respect to q, as shown in Figure 5, depending on if the start and endpoint is
before, inside, or after q. We wish to count exactly (1) the intervals whose left endpoint lies
inside q, and (2) the intervals that contain q’s left endpoint. Note that these two sets are non-
overlapping. To this end we build (1) a range frequency reporting datastructure on the left
endpoints of all intervals [2], and (2) an interval-stabbing frequency reporting datastructure
on the intervals themselves [9], both using O(n) space. We query both datastructures once
per query in O(log n + k) time, leading to the claimed result. ◀

We can use this to solve the restricted dominance frequency reporting problem:

▶ Lemma 4.2. We can build a datastructure for the restricted dominance frequency reporting
problem using O(n log n) space, with O(log n + k) query time.
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Figure 6 Left: a set of points below a curve C (drawn axis-aligned for simplicity of drawing) and
a query above it, with their respective intervals drawn. Right: the intervals drawn in 1D.

Proof. We show that a query in this problem can be reduced to a 1D interval intersection
problem; the claimed time and space then follow from Lemma 4.1.

See Figure 6. For each point p, consider the interval Ip of the curve C contained in its
top-right quadrant. Similarly, for a query q consider the interval Iq of the curve C contained
in its bottom-left quadrant. A query q contains a point p if and only if Iq and Ip overlap:
iff Iq and Ip overlap then there is some point s on C such that p ≺ s ≺ q, so q contains
p. Therefore we can use an interval intersection datastructure, built on the intervals Ip

and queried with intervals Iq, to solve this problem. We ignore here the time required to
actually compute Iq; this may depend on the actual curve C chosen, but for example for an
axis-aligned staircase this can be computed in O(log n) time. ◀
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Abstract
A path-based support is a graph together with a set of paths. We consider the problem of constructing
straight-line drawings of path-based tree or cactus supports that (i) minimize the sum of the number
of bends on all paths, (ii) minimize the curve complexity, i.e., the maximum number of bends on any
path, or (iii) maximize the number of 0-bend paths, then the number of 1-bend paths, etc.

1 Introduction

A hypergraph H = (V, A) is a set V of vertices and a set A of subsets of V , called hyperedges.
Hypergraphs can be visualized as node-link bipartite graph drawings with vertices V ∪ A, as
Hasse diagrams (upward drawing of the transitive reduction of the inclusion relation between
hyperedges), or as Euler diagrams (enclosing the vertices of each hyperedge by a simple
closed curve). We consider the metro map metaphor, where each hyperedge is visualized with
a metro line along which the vertices in the hyperedge are the stations; see Fig. 1. As each
metro line is a path ph for a hyperedge h, the union of the paths is a path-based support of the
hypergraph H = (V, A): a support graph G = (V, E) and a set P = {ph; h ∈ A} of paths of G

such that ph contains exactly the vertices of h. Moreover, each edge of G is contained in at
least one path of P. We say that G is a planar path-based support, a path-based tree support,
or a path-based cactus support if G is planar, a tree, or a cactus1, respectively. A special case
are linear hypergraphs/supports where any two hyperedges/paths share at most one vertex.

We study how to draw a support graph G so that the number of bends per path or the
total number of bends on all paths is small. We focus on straight-line drawings where paths
can only bend at vertices. The curve complexity of a drawing of a path-based support is
the minimum b such that each path has at most b bends. The (planar) curve complexity of
a path-based support is the minimum curve complexity over all its (planar) straight-line
drawings. If in a planar embedding of a linear path-based support (G, P) no two paths touch,
i.e., they are either disjoint or properly intersect, the question if G is drawable such that no
path has a bend corresponds to the ∃R-hard problem of pseudo-segment stretchability [19].

Related Work. Visualizing hypergraphs with the metro map metaphor has practical appli-
cations [13] and gives rise to theoretical considerations [11]. It is NP-complete to decide if
there is a planar path-based support and NP-hard to find a path-based support with the
minimum number of edges [5], however a path-based tree support [20] and a (not necessarily
path-based) cactus support [4] can be constructed in polynomial time, if they exist. More

∗ This research began at the Graph and Network Visualization Workshop 2024 (GNV’24) in Heiligkreuztal.
1 A cactus is a connected graph where each edge is contained in at most one cycle.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 Different representations for the same hypergraph, from metrosets.ac.tuwien.ac.at [13].

work on computing planar supports can be found in [6, 7, 14, 15, 16]. Given a path-based
support, the problem of embedding the support graph has also been studied: with spring
embedders [12], mixed-integer programming [18], simulated annealing [3], and other tech-
niques [1, 2, 10, 12, 17, 18]. Dobler et al. [8, 9] considered the problem of drawing hyperedges
as lines or line-segments where the order of the vertices of the hyperedges is not given.

Our Contribution. In Section 2, we show that the (planar) curve complexity can be
efficiently determined for linear path-based cactus supports. In Section 3 we show that the
corresponding problem is NP-hard even for restrictive non-linear path-based tree-supports,
whereas the total number of bends can be efficiently minimized. We conclude with the
parameterized complexity of determining the planar curve complexity, minimizing the sum of
bends, maximizing the number of 0-bend, then 1-bend, etc. paths; see Fig. 2 for a comparison
of the objectives.

(a) (b)

Figure 2 If we first draw as many paths with zero bends as possible, then there can be a path
with Θ(n) bends in a caterpillar with n vertices (a), even though the curve complexity is 2 (b).
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Figure 3 Linear path-based cactus supports. Paths of length at least two are indicated by colors.

2 Linear Hypergraphs

Two adjacent edges are aligned in a drawing of a support if they are contained in one line
and disjoint except for their common end point. Any alignment requirements for a tree can
be realized in a planar way. Thus, the planar curve complexity of a tree equals its curve
complexity. However, this is not true for linear path-based cactus supports (Fig. 3a).

▶ Theorem 2.1. The curve complexity of a linear path-based cactus support is 0.

Proof Sketch. Consider bridges as cycles of length two. We show by induction on the number
of cycles that there is a drawing in which all cycles are drawn convex and in which two
incident edges are aligned if and only if they are contained in the same path. This is possible,
since in a linear support every cycle contains edges of at least three different paths, and,
thus, can bend at least three times. ◀

Cycle C of a path-based support is aligned at a vertex v if its two edges incident to v

belong to the same path. For vertex v of a path-based cactus support, consider the constraint
graph H(v) that has a node for each cycle containing v and, for each path containing v and an
edge from each of the two cycles, has an edge between the corresponding two nodes. E.g., in
Figure 3a, graph H(v) contains triangle ⟨C1, C2, C3⟩, while in Figure 3b it contains a 4-cycle.

▶ Theorem 2.2. The planar curve complexity of a linear path-based cactus support is 0 if
and only if (i) at most one cycle at any vertex is aligned and (ii) if a cycle C is aligned at
vertex v, then the constraint graph of v is bipartite. This can be determined in linear time.

Proof Sketch. If two cycles are aligned, then the two cycles must cross in a drawing without
bends. If a cycle C is aligned at a vertex v, then the cycles of any path in H(v) must alternate
between the interior and the exterior of C in a planar drawing without bending paths. Thus,
H(v) is bipartite. Assume that Conditions (i)–(ii) are fulfilled for all vertices. By induction
on the number of cut vertices, we show that there is a planar drawing in which all cycles
are drawn convex and two incident edges are aligned if and only if they are contained in
the same path. A component of a vertex v is the subgraph of G induced by a connected
component of G − v together with v. Choose a cut vertex v such that all but at most one
component G0 of v consists of a simple cycle or an edge. Starting from a drawing of G0, we
add the other components along maximal paths in H(v); see Fig. 4. ◀

▶ Corollary 2.3. The planar curve complexity of a linear path-based support is 0 if the
underlying support graph is a tree and at most 1 if the underlying support graph is a cactus.

Proof. The conditions in Theorem 2.2 are trivially fulfilled for a tree, since there are no
cycles. Follow the construction in the proof of Theorem 2.2. When inserting new components,
break all paths at v unless the path contains an edge of G0. This way the conditions in
Theorem 2.2 are fulfilled and the first drawn vertex of a path will be its only bend, if any. ◀

EuroCG’25
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3 Not Necessarily Linear Hypergraphs

Different from linear hypergraphs, the curve complexity in trees and cacti is in general
unbounded. The curve complexity of path-based tree supports is in Ω(log n): in the complete
binary tree with n vertices and a path from each leaf to the root, one path must bend at
each inner vertex. The curve complexity of path-based cactus supports is in Ω(n): among
the paths P : ⟨v0, v1, v2, . . . , vn−1⟩ and Q : ⟨v0, v2, v4, . . . ⟩, P bends at least n/2 − 1 times.

▶ Theorem 3.1. It can be decided in polynomial time whether the (planar) curve complexity
of a path-based cactus support (G = (V, E), P) is 0.

Proof. If there are three edges e, e1, and e2 incident to v and two paths in P , one containing
e and e1 and the other containing e and e2 then there is no drawing without bends. Otherwise
we merge paths that share an edge into one path. Thus, in the obtained cactus support
(G = (V, E), P ′) no two paths share an edge and it has (planar) curve complexity zero if and
only if (G = (V, E), P) does. If there are two paths in P ′ that intersect twice then the two
paths would contain a cycle and, thus, cannot both be drawn on a straight line. Otherwise,
the support is linear and we can apply Theorem 2.1 or Theorem 2.2, respectively. ◀

▶ Theorem 3.2. Given a path-based tree support (G = (V, E), P), an alignment of E, in
which the sum of the bends in all paths is minimum, can be computed in polynomial time.

Proof. For each vertex v, consider the complete graph G(v) on the set N(v) of neighbors of v.
The weight of an edge {u, w} of G(v) is the number of paths in P that contain {u, v} and
{v, w}. Consider a maximum matching M(v) on G(v) and align two edges {u, v} and {v, w}
if and only if {u, w} ∈ M(v). These maximum matchings yield an optimum solution. ◀

▶ Theorem 3.3. It can be decided in polynomial time whether the planar curve complexity
of a path-based tree support (G = (V, E), P) is 0 or 1.

Proof. We use a 2-SAT formulation. There is a variable xe1e2 for each pair e1, e2 of incident
edges. We interpret xe1e2 as true if and only if e1 and e2 are not aligned. For any three
incident edges e1, e2, e3 we need the consistency condition that whenever e1 is aligned to
e2 then e1 cannot be aligned to e3, i.e., the clause xe1e2 ∨ xe1e3 . If we insist on having no
bends then we need for any two incident edges e1, e2 on the same path the condition ¬xe1e2 .
If we aim for at most one bend per path then we add for any four edges e1, e2, e3, e4 on
a path where e1, e2 and e3, e4 are incident the condition that at least one among the two
pairs must be aligned, i.e., the clause ¬xe1e2 ∨ ¬xe3e4 . This yields a 2-SAT formulation with∑

v∈V deg(v)(deg(v) − 1) variables and O(
∑

p∈P |p|2 +
∑

v∈V deg3(v)) clauses. ◀

The curve complexity is at most two if the support graph is a caterpillar. Thus, the curve
complexity of a path-based caterpillar support can be determined in polynomial time.

▶ Theorem 3.4. It is NP-hard to decide whether the curve complexity of a path-based tree
support is at most b even if (i) b = 3 and the diameter of the support graph is at most five or
(ii) the maximum degree of the support graph is at most three.

Proof Sketch. Given a 3-SAT formula Φ with n variables and m clauses, we construct a
tree support adhering to Constraints (i) and (ii), resp. In the following, we give the details
for (i), i.e., b = 3 and diameter five (see Fig. 5).

For each variable vi, i = 1, . . . , n, there is a variable gadget that consists of a path
vi, xi, ¬vi. A clause gadget of a clause cj , j = 1, . . . , m, is a perfect binary tree of height two

EuroCG’25
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Figure 5 Graph corresponding to clauses c1 = v2 ∨ v3 ∨ v4 and c2 = v1 ∨ v2 ∨ v3. The drawing
corresponds to a truth assignment in which v1, v3, and v4 are true and v2 is false.

rooted at a vertex labeled cj whose leaves are labeled with the variables of cj where one
variable appears twice, once in each of the different subtrees rooted at the children of cj . For
each clause there are four copies of the clause gadget. Finally, there is a central vertex x that
connects to each central vertex xi, i = 1, . . . , n, of the n variable gadgets as well as to each
of the 4m central vertices labeled cj , j = 1, . . . , m, of the clause gadgets. See Fig. 5. The set
of paths contains a path from any leaf labeled vi of a clause gadget of a clause cj to the leaf
labeled vi or ¬vi in the variable gadget of vi, depending on whether vi or ¬vi appears in cj .

In a bend minimum drawing, the path from x to exactly one leaf of a clause gadget has
two bends and 0 or 1 bend otherwise. There is at least one copy of each clause gadget such
that each path ending there bends also in x. For each i = 1, . . . , n, the edge {x, xi} is aligned
with either {xi, vi} or {xi, ¬vi}. Interpreting the former as vi being set to true, then there is
a satisfying truth assignment if and only if there is a drawing of curve complexity three.

For Case 2 we modify the NP-hardness proof: we construct a tree with O(nm) vertices
and maximum degree 3 and a set of O(n2m2) paths that admits a drawing with b =
2 · (⌈log2 n⌉ + ⌈log2 m⌉ + 1) bends per path if and only if Φ has a satisfying truth assignment.
See Fig. 6. ◀

▶ Theorem 3.5. The (planar) curve complexity for a path-based tree support (G, P) is FPT
parameterized by |P|; there is a kernel with O(|P|) vertices.

Proof. For each leaf v, there is a path that ends in v, thus, the number of leaves is at most 2|P|.
Shrink all vertices of degree 2, extending paths ending there. Now the number of inner
vertices is less than the number of leaves, i.e. the size of the resulting tree is less than 4|P|. ◀

▶ Theorem 3.6. The (planar) curve complexity for path-based tree supports is FPT parame-
terized by the vertex cover number k; there is a kernel with O(k2) vertices and O(k2) paths.

Proof Sketch. Let (G, P) be a path-based tree support. After removing all leaves of G, the
resulting graph G′ has at most 2k − 1 vertices and at most

(2k−1
2

)
paths. Let e = {v, v′} be

an edge of G′. Let u, w be two leaves of G that were adjacent to v such that P contains a
path through e and u or w, respectively. Then at least one of the two paths must bend at v.
Moreover, if at least three paths share their central part in G′ and extend on both ends to
distinct leaves or if four paths extend to a pair of leaves on both ends, at least one of these
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paths has two bends at its leaves. It suffices to maintain at most six paths of P with the
same part in G′ in order to obtain a support with the same curve complexity as (G, P). ◀

▶ Theorem 3.7. The (planar) curve complexity for a path-based tree support is XP parame-
terized by the maximum number k of paths in P passing through a vertex. Deciding if the
(planar) curve complexity is at most b is FPT parameterized by k + b.

Proof Sketch. We employ a bottom-up dynamic programming algorithm. For each vertex v,
we consider feasible drawings of the subtree Gv rooted at v including the parent edge of v.
For each such drawing, we store for each of the at most k paths passing through v the
number of bends in Gv. To this end, we use a simple brute-force strategy, testing all possible
combinations of alignments of edges incident to v that are contained in the same path with
possible choices of subdrawings for the children of v. As this exhaustively explores the search
space, the correctness of the algorithm follows. For the FPT (XP) runtime, observe that in
each feasible drawing each path through vertex v has between 0 and b bends (b is trivially
bounded by n) while we have to check at most 2k edges for alignment (2 edges per path). ◀

If in addition, for each allowed number β of bends, we keep track of the number nβ of
paths that are entirely located within the already drawn subtree, we get the following.

▶ Corollary 3.8. The problem to first maximize the number of 0-bend paths, then the number
of 1-bend paths, then the number of 2-bends paths, and so on, for path-based tree supports
is XP parameterized by k + b where k is the maximum number of paths in P for which a
single vertex is internal and b denotes the maximum number of bends allowed on each path.
Moreover, there is an XP-algorithm parameterized by k + b∗ where b∗ denotes the maximum
number of bends for which we want to maximize the number.

By additionally keeping track of the number of bends per cycle and applying Theorem 3.1,
the dynamic program generalizes to cacti.

▶ Corollary 3.9. Theorems 3.7 and 3.8 generalize to path-based cactus supports.
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4 Open Problems for Tree and Cactus Supports

(a) What is the complexity of deciding whether the curve complexity is two? (b) Is the curve
complexity W[1]-hard if parameterized by the maximum number of paths through a vertex?
(c) Is it NP-hard to maximize the number of paths with no bends?
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Abstract
The Fréchet distance is a well-established distance measure in computer science. We show that
the discrete Fréchet distance of two disjoint simple curves in an unweighted planar graph cannot
be approximated better than a factor of 1.2 in subquadratic time, unless the Orthogonal Vector
Hypothesis (OVH) fails. This improves upon a recent result of Driemel, van der Hoog and Rotenberg
[SoCG22] both in terms of generality and approximation factor.

1 Introduction

The Fréchet distance is a widely studied measure in computational geometry that quantifies
the similarity between two curves. It captures the intuitive notion of traversal, often ana-
logized to a person and a dog walking along two distinct paths while maintaining a flexible
leash. The (strong) Fréchet distance of the two paths equals the shortest length the leash
can possibly have, taken over all ways which the person and the dog may traverse their
path. The Fréchet distance has many applications, such as hand signature matching, mo-
tion analysis, and geographic information systems [3, 6, 8, 9, 11–15, 17]. Alt and Godau [2]
show how to compute the discrete Fréchet distance between curves with n and m vertices
each in O(mn log(n + m)) time. Agarwal et al. [1] improve this to O(nm(log log n)/ log n)
(assuming n ≥ m).

Conditional lower bounds for the Fréchet distance. Bringmann [4] showed, conditioned
on OVH, that no strongly subquadratic algorithm can exist to compute the Fréchet distance
between curves in the plane. Bringmann and Mulzer [5] extended the lower bound for
intersecting curves in R1. Buchin, Ophelders and Speckmann [7] showed that (assuming
OVH) there can be no strongly subquadratic algorithm that computes anything better than
a 3-approximation for pairwise disjoint planar curves in R2 and intersecting curves in R1.

Driemel, van der Hoog, and Rotenberg recently introduced the discrete Fréchet distance
of paths in a graph [10]. They showed that for all fixed 0 < δ < 1, the discrete Fréchet
distance of two disjoint simple paths of length n and m in an integer-weighted planar graph
cannot be approximated better than a factor of 1.01 in O((nm)1−δ) time, unless the ortho-
gonal vector hypothesis (OVH) fails (assuming m = Ω(nγ) for some constant γ > 0). This
lower bound is complemented by a classic Dynamic Program which, given a distance oracle
over the graph, computes the discrete Fréchet distance in O(nm) time. The lower bound
in [10] applies only to weighted graphs and does therefore not exclude the existence of a
fast algorithm on unweighted planar graphs. A closer inspection of their argument reveals
that their proof cannot simply be adapted to the unweighted case by subdividing long edges
often enough. In this case, new vertices get introduced to the graph and their arguments
break down. In this extended abstract we provide a conditional lower bound that applies to
unweighted planar graphs as well. We slightly improve the approximation factor.
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▶ Theorem 1.1. Let P, Q be disjoint simple paths in an unweighted planar graph. Let
|P | = n and |Q| = m = nγ for some constant γ > 0. Then for all 0 < δ < 1 one cannot
approximate the discrete Frèchet distance between P and Q with a factor better than 1.2 in
O((nm)1−δ) time unless OVH fails.

2 Preliminaries

Fréchet distance. We assume we have a simple path P = (p1, . . . , pn) with n vertices
and a simple path Q = (q1, . . . , qm) with m vertices such that they are vertex-disjoint, and
contained inside a graph G with N vertices and M edges. The discrete Fréchet distance
DF (P, Q) is defined in [10] as follows: A sequence (ai, bi)i∈[k] of pairs of indices is called
a monotone walk if for all i ∈ [k − 1] we have ai+1 ∈ {ai, ai + 1} and bi+1 ∈ {bi, bi + 1}.
Let F be a monotone walk from (1, 1) to (n, m). The cost of a walk is the maximum of
dist(pi, qj) over (i, j) ∈ F , where dist() denotes the usual distance in an unweighted graph.
The discrete Fréchet distance is the minimum cost of a monotone walk from (1, 1) to (n, m).

DF (P, Q) = min
F

cost(F ) = min
F

max
(i,j)∈F

dist(pi, qj).

Orthogonal vectors. The OVH is a popular hardness conjecture. Given two sets of
vectors U, V ⊆ {0, 1}d of sizes |U | = n and |V | = m, the OV problem is to find out if some
vector of U is orthogonal to some vector of V , i.e. if we have

∑d
i=1 uivi = 0 for some u ∈ U

and v ∈ V .

▶ Definition 2.1 (Williams [16], see also Bringmann [4]). The orthogonal vector hypothesis
states that for all δ > 0, there exists constants ω > 0 and 1 > γ > 0 such that the OV
problem for vectors of dimension d = ω log n and m = nγ cannot be solved in O((nm)1−δ)
time.

For space reasons, some proofs are omitted from this extended abstract.

3 Vector Gadgets

In this section we describe the lower bound construction based on the orthogonal vector
hypothesis (OVH). The goal is to construct from some given OV instance in linear time
a graph and two paths P, Q such that DF (P, Q) ≤ 5 if and only if the OV instance is a
yes-instance and DF (P, Q) ≥ 6 otherwise. This suffices to prove Theorem 1.1. We start by
describing two vector gadgets, one for the person, called the orange vector gadget, and one
for the dog, called the blue vector gadget. Given two vectors u, w ∈ {0, 1}d, we construct
an orange gadget for u and a blue gadget for w. We assume w.l.o.g. that u1 = ud = 0 and
w1 = wd = 1. This can be achieved w.l.o.g. by preprocessing the OVH instance. We prove
that the gadgets have the following crucial property: Under the assumption that the person
and dog are already positioned at the start of the gadget, the person and dog can traverse
the gadgets maintaining a distance of 5 if and only if u and v are orthogonal.

Let us define the blue and orange vector gadgets for person and dog as in Figure 1. The
construction comes with equivalence classes of vertices labelled either 0, 1, x, I, A, B, y1, y2
in the orange gadgets, or 0′, 1′, x′, I ′ in the blue gadgets, and two special vertices called β

and (⋆). Let us call a pair of vertices (0, 1) or (0′, 1′) as highlighted in Figure 1 a box. The
length of a vector gadget is the number of boxes in it. For a vector u ∈ {0, 1}d, we can
encode it inside an orange vector gadget of length d as a path P (u) (see Figure 2). Let the
term Gu denote the orange vector gadget corresponding to vector u.
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0 1

Ix

x

0 1

B

β

(⋆)

A

A

person entrance

next orange vector gadget

dog entrance

orange box

blue box

Ix

x

0 1

0′ 1′

I ′x′

x′

0′ 1′

I ′x′

x′

0′ 1′

next blue vector gagdet

y1

y2

0 1 x I

0′ 4 5 5 6
1′ 5 6 6 6
x′ 5 6 6 5
I ′ 6 6 5 4

Figure 1 Vector gagdets for the person (orange) and the dog (blue) of length three, and a
corresponding distance table.
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Figure 2 Example of encoding the vector u = (0, 1, 0) in the orange gadget and the vector
v = (1, 0, 1) in the blue gadget. Note that the paths traverse exactly one vertex of each box,
thereby encoding a binary vector.
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The restriction of P (u) to the orange boxes within the gadget Gu encodes the vector
u. In general, we will define a path P through the graph that traverses each vector gadget
once, such that for all orange vector gadgets Gu, the path P restricted to Gu equals P (u).
Likewise we can encode a vector v ∈ {0, 1}d inside a blue vector gadget Gv of length d as a
subpath Q(v).

The pairwise distance between vertices of the blue and vertices of the orange gadgets is
given in the table in Figure 1. We will later make sure that when we use these gadgets as part
of a larger graph, that none of the distances described in the distance table changes. For the
next lemma we require additional notation. If Gu is some orange vector gadget of length d,
let b1(u), . . . , bd(u) denote the d boxes in it. For some index i ∈ {1, . . . , d − 1}, let us define
next(bi(u)) := bi+1(u). For the last box in the gadget, the term next(bd)(u) is undefined.
Likewise, if Gv is some blue vector gadget of length d, we let b′

1(v), . . . , b′
d(v) denote the d

boxes in it. Similar as before we let next(b′
i(v)) := b′

i+1(v) for all i ∈ {1, . . . , d − 1} and
next(b′

d(v)) is undefined. Let B be the set of all orange boxes and B′ be the set of all blue
boxes, i.e.

B :=
⋃

u∈U

{b1(u), . . . , bd(u)}, B′ :=
⋃

v∈V

{b′
1(v), . . . , b′

d(v)},

where U, V ⊆ {0, 1}d are the input sets of the original OV instance. Two boxes bi(u) ∈ B
and b′

j(v) ∈ B′ are called locally orthogonal, if uivj = 0, where ui, vj are the i-th and j-th
component of the vectors u, v. This is equivalent to saying that at least one of the paths
P (u) and Q(v) crosses a 0 or 0′ in the box bi(u) or b′

j(v).
▶ Lemma 1. Let b ∈ B, b′ ∈ B′ be boxes such that both next(b), next(b′) are defined. Assume
the person is sitting on the 0 or 1 in the box b, and the dog is sitting on the 0 or 1 in the
box b′. If b, b′ are locally orthogonal and next(b), next(b′) are locally orthogonal, then there
is a way for the person and the dog to traverse their paths, while maintaining a distance of
5, such that after some time they are simultaneously sitting in next(b) and next(b′).

In particular, this lemma implies the following: If the person and the dog are positioned
such that the person is currently on the first vertex of P (u) for some vector u, and the dog
is on the first vertex of Q(v) for some vector v, and (u, v) are orthogonal, then they can
simultaneously traverse P (u) and Q(v), while maintaining a distance of 5.

Proof of Lemma 1. Since the boxes are locally orthogonal, either the person or the dog is
currently sitting on a 0. We construct a traversal. First, the one sitting on a 0 stays put,
while the other one makes a step. This is legal, since dist(0, x′) = dist(x, 0′) = 5. Now both
make a step. This is legal, since dist(x, I ′) = dist(I, x′) = 5. The one lagging behind makes
a step, so that now both are on I and I ′. Since the vectors are locally orthogonal at the
next box, at least one of the person or the dog has a 0 in the next box. The being with
a 0 in the next box makes a step, while the other stays put. This is again legal because
dist(x, I ′) = dist(I, x′) = 5. Both simultaneously make a step. Since the being with the 0
in the next box went first, they are now on a 0, and we have dist(0, x′) = dist(x, 0′) = 5.
Finally, the being lagging behind makes the last step, so now both beings are inside the next
box (which is legal since dist(0, 0′), dist(0, 1′), dist(1, 0′) ≤ 5). ◀

The sufficient condition of Lemma 1 is accompanied by the following necessary condition.
Given some orange box b, let us say the person is adjacent to b, if he is positioned either
inside b, or at a vertex x immediately before or after b (but not at A or y1, if b happens to
be the first/last box). Given some blue box b′, let us say the dog is adjacent to b′, if he is
inside b′, or at a vertex x′ immediately before or after b′. The following lemma essentially
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states that if at some point of time the person and dog are both inside a vector gadget, they
are forced to traverse both vector gadgets simultaneously at ‘the same speed’.
▶ Lemma 2. Let b ∈ B, b′ ∈ B′ be boxes such that both next(b), next(b′) are defined. If
currently the person is adjacent to b and the dog is adjacent to b′, and they traverse their
paths while maintaining a distance of at most 5, then after finitely many steps we have
that simultaneously the person is adjacent to next(b) and the dog is adjacent to next(b′).
Furthermore, if next(b), next(b′) are not locally orthogonal, then it is impossible for the
person and dog to continue on their paths.

4 Full construction

We describe the complete reduction from the OV problem to the discrete Fréchet distance.
Given an instance of OV with sets U, V ⊆ {0, 1}d, we first pre-process it for technical reasons.
For this, if V = {v(1), . . . , v(n)}, consider the binary string str(V ) := v(1)v(2) . . . v(n) ∈
{0, 1}nd created by writing down all vectors in V one after another. A consecutive substring
of some string s1s2 . . . sk is a substring sasa+1 . . . sb−1sb for some 1 ≤ a < b ≤ k.
▶ Lemma 3. An instance U, V ⊆ Rd of OV can be preprocessed in linear time O(d(n + m)),
resulting in a new instance U ′, V ′ ⊆ Rd′ such that

a yes-instance stays a yes-instance and a no-instance stays a no-instance,
for all u′ ∈ U ′, u′

1 = u′
d = 0 and for all v′ ∈ V ′, v′

1 = v′
d = 1,

if the instance is a no-instance, then for all u′ ∈ U ′ the vector u′ is not only non-
orthogonal to every v′ ∈ V ′, but even non-orthogonal to all consecutive substrings of
str(V ′) of length d.

Let us from now on assume that U, V ⊆ Rd satisfy the guarantees of the preprocessing.
We define a graph G and paths P, Q based on U, V as in Figure 3. For each vector u ∈ U the
graph contains a unique orange vector gadget Gu. For each vector v ∈ V the graph contains
a unique blue vector gadget Gv. Before every orange vector gadget there is a vertex A,
and after every orange vector gadget there are vertices y1, y2, B. Consecutive blue gadgets
are simply connected by connecting the last and first 1′ of the respective gadgets. Finally,
vertices α, α⋆, z′, β, β⋆, and paths between α and α⋆ as well as between β and β⋆ are added
to the graph. This completes the description of the planar graph G. The orange path P

starts at A before the first orange gadget and ends at B after the last orange gadget and
traverses the orange gadgets in-between. The blue path Q goes from α to α⋆, traverses the
blue gadgets, then goes from z′ to β⋆ to β. This completes the description of P and Q.

Observe the following properties: Vertices A or B have all vertices of all blue vector
gadgets entirely within distance 5. Vertices α and β have all vertices of all orange vector
gadgets entirely within distance 5. On the other hand, if the dog is standing on α⋆, the only
vertices of P within a reach of 5 are vertices labelled A. Similarly, if the dog stands on β⋆,
the only vertices of P within a reach of 5 are vertices labelled B.
▶ Lemma 4. If (U, V ) is a yes-instance of OV, then DF (P, Q) ≤ 5.

Proof sketch. If u ∈ U is orthogonal to v ∈ V , the person and the dog can employ the
following strategy: The dog stays at α, while the person goes to the orange gadget Gu

corresponding to u and waits at A before gadget Gu. Then the dog walks over α⋆ to the
blue gadget corresponding to v. Then, the person and the dog simultaneously move to the
first box of their respective gadget, and traverse their gadget in unison (which is possible
due to Lemma 1 since u, v are orthogonal). The dog waits while the person goes via y1 and
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β
(⋆)

A

A
B

B
α

α⋆

β⋆
z′

Q

P

y2

y1

y2
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Figure 3 Complete construction of the reduction from OVH, for the two sets U =
{(0, 1, 0), (0, 0, 0)} and V = {(1, 1, 1), (1, 0, 1)}.
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y2 to the vertex B immediately after Gu. Then the person waits while the dog walks all of
the remaining path Q to β. Finally, the person walks all of the remaining path P . It can
be checked that this maintains a maximum distance of 5. ◀

▶ Lemma 5. If DF (P, Q) ≤ 5, then (U, V ) is a yes-instance of OV.

Proof sketch. Consider a traversal of P and Q where at all times, the person and the dog
are within distance 5 of one another. At some point of time, the dog is on α⋆. This implies
the person is on a vertex A right before some orange gadget Gu corresponding to some
u ∈ U . Now the person cannot move on his own, so the dog has to move. The dog may walk
through the blue gadgets for some time on his own, but at some point of time t0 the person
has also to move away from A into Gu to either 0 or 1. Since z′ is at distance greater than
5 from 0 and 1, this time t0 occurs before the dog finished traversing all the blue gadgets.
But now due to Lemma 2 the person and the dog have to move with the same speed at least
until the person has passed Gu. This implies that u is orthogonal to a consecutive substring
of length d of the string str(V ). Due to the preprocessing (Lemma 3), this actually means
that (U, V ) is a yes-instance. ◀
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[SoCG22] both in terms of generality and approximation factor.

1 Introduction

The Fréchet distance is a widely studied measure in computational geometry that quantifies
the similarity between two curves. It captures the intuitive notion of traversal, often ana-
logized to a person and a dog walking along two distinct paths while maintaining a flexible
leash. The (strong) Fréchet distance of the two paths equals the shortest length the leash
can possibly have, taken over all ways which the person and the dog may traverse their
path. The Fréchet distance has many applications, such as hand signature matching, mo-
tion analysis, and geographic information systems [3, 6, 8, 9, 11–15, 17]. Alt and Godau [2]
show how to compute the discrete Fréchet distance between curves with n and m vertices
each in O(mn log(n + m)) time. Agarwal et al. [1] improve this to O(nm(log log n)/ log n)
(assuming n ≥ m).

Conditional lower bounds for the Fréchet distance. Bringmann [4] showed, conditioned
on OVH, that no strongly subquadratic algorithm can exist to compute the Fréchet distance
between curves in the plane. Bringmann and Mulzer [5] extended the lower bound for
intersecting curves in R1. Buchin, Ophelders and Speckmann [7] showed that (assuming
OVH) there can be no strongly subquadratic algorithm that computes anything better than
a 3-approximation for pairwise disjoint planar curves in R2 and intersecting curves in R1.

Driemel, van der Hoog, and Rotenberg recently introduced the discrete Fréchet distance
of paths in a graph [10]. They showed that for all fixed 0 < δ < 1, the discrete Fréchet
distance of two disjoint simple paths of length n and m in an integer-weighted planar graph
cannot be approximated better than a factor of 1.01 in O((nm)1−δ) time, unless the ortho-
gonal vector hypothesis (OVH) fails (assuming m = Ω(nγ) for some constant γ > 0). This
lower bound is complemented by a classic Dynamic Program which, given a distance oracle
over the graph, computes the discrete Fréchet distance in O(nm) time. The lower bound
in [10] applies only to weighted graphs and does therefore not exclude the existence of a
fast algorithm on unweighted planar graphs. A closer inspection of their argument reveals
that their proof cannot simply be adapted to the unweighted case by subdividing long edges
often enough. In this case, new vertices get introduced to the graph and their arguments
break down. In this extended abstract we provide a conditional lower bound that applies to
unweighted planar graphs as well. We slightly improve the approximation factor.
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▶ Theorem 1.1. Let P, Q be disjoint simple paths in an unweighted planar graph. Let
|P | = n and |Q| = m = nγ for some constant γ > 0. Then for all 0 < δ < 1 one cannot
approximate the discrete Frèchet distance between P and Q with a factor better than 1.2 in
O((nm)1−δ) time unless OVH fails.

2 Preliminaries

Fréchet distance. We assume we have a simple path P = (p1, . . . , pn) with n vertices
and a simple path Q = (q1, . . . , qm) with m vertices such that they are vertex-disjoint, and
contained inside a graph G with N vertices and M edges. The discrete Fréchet distance
DF (P, Q) is defined in [10] as follows: A sequence (ai, bi)i∈[k] of pairs of indices is called
a monotone walk if for all i ∈ [k − 1] we have ai+1 ∈ {ai, ai + 1} and bi+1 ∈ {bi, bi + 1}.
Let F be a monotone walk from (1, 1) to (n, m). The cost of a walk is the maximum of
dist(pi, qj) over (i, j) ∈ F , where dist() denotes the usual distance in an unweighted graph.
The discrete Fréchet distance is the minimum cost of a monotone walk from (1, 1) to (n, m).

DF (P, Q) = min
F

cost(F ) = min
F

max
(i,j)∈F

dist(pi, qj).

Orthogonal vectors. The OVH is a popular hardness conjecture. Given two sets of
vectors U, V ⊆ {0, 1}d of sizes |U | = n and |V | = m, the OV problem is to find out if some
vector of U is orthogonal to some vector of V , i.e. if we have

∑d
i=1 uivi = 0 for some u ∈ U

and v ∈ V .

▶ Definition 2.1 (Williams [16], see also Bringmann [4]). The orthogonal vector hypothesis
states that for all δ > 0, there exists constants ω > 0 and 1 > γ > 0 such that the OV
problem for vectors of dimension d = ω log n and m = nγ cannot be solved in O((nm)1−δ)
time.

For space reasons, some proofs are omitted from this extended abstract.

3 Vector Gadgets

In this section we describe the lower bound construction based on the orthogonal vector
hypothesis (OVH). The goal is to construct from some given OV instance in linear time
a graph and two paths P, Q such that DF (P, Q) ≤ 5 if and only if the OV instance is a
yes-instance and DF (P, Q) ≥ 6 otherwise. This suffices to prove Theorem 1.1. We start by
describing two vector gadgets, one for the person, called the orange vector gadget, and one
for the dog, called the blue vector gadget. Given two vectors u, w ∈ {0, 1}d, we construct
an orange gadget for u and a blue gadget for w. We assume w.l.o.g. that u1 = ud = 0 and
w1 = wd = 1. This can be achieved w.l.o.g. by preprocessing the OVH instance. We prove
that the gadgets have the following crucial property: Under the assumption that the person
and dog are already positioned at the start of the gadget, the person and dog can traverse
the gadgets maintaining a distance of 5 if and only if u and v are orthogonal.

Let us define the blue and orange vector gadgets for person and dog as in Figure 1. The
construction comes with equivalence classes of vertices labelled either 0, 1, x, I, A, B, y1, y2
in the orange gadgets, or 0′, 1′, x′, I ′ in the blue gadgets, and two special vertices called β

and (⋆). Let us call a pair of vertices (0, 1) or (0′, 1′) as highlighted in Figure 1 a box. The
length of a vector gadget is the number of boxes in it. For a vector u ∈ {0, 1}d, we can
encode it inside an orange vector gadget of length d as a path P (u) (see Figure 2). Let the
term Gu denote the orange vector gadget corresponding to vector u.
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0 1

Ix

x

0 1

B

β

(⋆)

A

A

person entrance

next orange vector gadget

dog entrance

orange box

blue box

Ix

x

0 1

0′ 1′

I ′x′

x′

0′ 1′

I ′x′

x′

0′ 1′

next blue vector gagdet

y1

y2

0 1 x I

0′ 4 5 5 6
1′ 5 6 6 6
x′ 5 6 6 5
I ′ 6 6 5 4

Figure 1 Vector gagdets for the person (orange) and the dog (blue) of length three, and a
corresponding distance table.
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P (u)

Q(v)
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Figure 2 Example of encoding the vector u = (0, 1, 0) in the orange gadget and the vector
v = (1, 0, 1) in the blue gadget. Note that the paths traverse exactly one vertex of each box,
thereby encoding a binary vector.
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The restriction of P (u) to the orange boxes within the gadget Gu encodes the vector
u. In general, we will define a path P through the graph that traverses each vector gadget
once, such that for all orange vector gadgets Gu, the path P restricted to Gu equals P (u).
Likewise we can encode a vector v ∈ {0, 1}d inside a blue vector gadget Gv of length d as a
subpath Q(v).

The pairwise distance between vertices of the blue and vertices of the orange gadgets is
given in the table in Figure 1. We will later make sure that when we use these gadgets as part
of a larger graph, that none of the distances described in the distance table changes. For the
next lemma we require additional notation. If Gu is some orange vector gadget of length d,
let b1(u), . . . , bd(u) denote the d boxes in it. For some index i ∈ {1, . . . , d − 1}, let us define
next(bi(u)) := bi+1(u). For the last box in the gadget, the term next(bd)(u) is undefined.
Likewise, if Gv is some blue vector gadget of length d, we let b′

1(v), . . . , b′
d(v) denote the d

boxes in it. Similar as before we let next(b′
i(v)) := b′

i+1(v) for all i ∈ {1, . . . , d − 1} and
next(b′

d(v)) is undefined. Let B be the set of all orange boxes and B′ be the set of all blue
boxes, i.e.

B :=
⋃

u∈U

{b1(u), . . . , bd(u)}, B′ :=
⋃

v∈V

{b′
1(v), . . . , b′

d(v)},

where U, V ⊆ {0, 1}d are the input sets of the original OV instance. Two boxes bi(u) ∈ B
and b′

j(v) ∈ B′ are called locally orthogonal, if uivj = 0, where ui, vj are the i-th and j-th
component of the vectors u, v. This is equivalent to saying that at least one of the paths
P (u) and Q(v) crosses a 0 or 0′ in the box bi(u) or b′

j(v).
▶ Lemma 1. Let b ∈ B, b′ ∈ B′ be boxes such that both next(b), next(b′) are defined. Assume
the person is sitting on the 0 or 1 in the box b, and the dog is sitting on the 0 or 1 in the
box b′. If b, b′ are locally orthogonal and next(b), next(b′) are locally orthogonal, then there
is a way for the person and the dog to traverse their paths, while maintaining a distance of
5, such that after some time they are simultaneously sitting in next(b) and next(b′).

In particular, this lemma implies the following: If the person and the dog are positioned
such that the person is currently on the first vertex of P (u) for some vector u, and the dog
is on the first vertex of Q(v) for some vector v, and (u, v) are orthogonal, then they can
simultaneously traverse P (u) and Q(v), while maintaining a distance of 5.

Proof of Lemma 1. Since the boxes are locally orthogonal, either the person or the dog is
currently sitting on a 0. We construct a traversal. First, the one sitting on a 0 stays put,
while the other one makes a step. This is legal, since dist(0, x′) = dist(x, 0′) = 5. Now both
make a step. This is legal, since dist(x, I ′) = dist(I, x′) = 5. The one lagging behind makes
a step, so that now both are on I and I ′. Since the vectors are locally orthogonal at the
next box, at least one of the person or the dog has a 0 in the next box. The being with
a 0 in the next box makes a step, while the other stays put. This is again legal because
dist(x, I ′) = dist(I, x′) = 5. Both simultaneously make a step. Since the being with the 0
in the next box went first, they are now on a 0, and we have dist(0, x′) = dist(x, 0′) = 5.
Finally, the being lagging behind makes the last step, so now both beings are inside the next
box (which is legal since dist(0, 0′), dist(0, 1′), dist(1, 0′) ≤ 5). ◀

The sufficient condition of Lemma 1 is accompanied by the following necessary condition.
Given some orange box b, let us say the person is adjacent to b, if he is positioned either
inside b, or at a vertex x immediately before or after b (but not at A or y1, if b happens to
be the first/last box). Given some blue box b′, let us say the dog is adjacent to b′, if he is
inside b′, or at a vertex x′ immediately before or after b′. The following lemma essentially
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states that if at some point of time the person and dog are both inside a vector gadget, they
are forced to traverse both vector gadgets simultaneously at ‘the same speed’.
▶ Lemma 2. Let b ∈ B, b′ ∈ B′ be boxes such that both next(b), next(b′) are defined. If
currently the person is adjacent to b and the dog is adjacent to b′, and they traverse their
paths while maintaining a distance of at most 5, then after finitely many steps we have
that simultaneously the person is adjacent to next(b) and the dog is adjacent to next(b′).
Furthermore, if next(b), next(b′) are not locally orthogonal, then it is impossible for the
person and dog to continue on their paths.

4 Full construction

We describe the complete reduction from the OV problem to the discrete Fréchet distance.
Given an instance of OV with sets U, V ⊆ {0, 1}d, we first pre-process it for technical reasons.
For this, if V = {v(1), . . . , v(n)}, consider the binary string str(V ) := v(1)v(2) . . . v(n) ∈
{0, 1}nd created by writing down all vectors in V one after another. A consecutive substring
of some string s1s2 . . . sk is a substring sasa+1 . . . sb−1sb for some 1 ≤ a < b ≤ k.
▶ Lemma 3. An instance U, V ⊆ Rd of OV can be preprocessed in linear time O(d(n + m)),
resulting in a new instance U ′, V ′ ⊆ Rd′ such that

a yes-instance stays a yes-instance and a no-instance stays a no-instance,
for all u′ ∈ U ′, u′

1 = u′
d = 0 and for all v′ ∈ V ′, v′

1 = v′
d = 1,

if the instance is a no-instance, then for all u′ ∈ U ′ the vector u′ is not only non-
orthogonal to every v′ ∈ V ′, but even non-orthogonal to all consecutive substrings of
str(V ′) of length d.

Let us from now on assume that U, V ⊆ Rd satisfy the guarantees of the preprocessing.
We define a graph G and paths P, Q based on U, V as in Figure 3. For each vector u ∈ U the
graph contains a unique orange vector gadget Gu. For each vector v ∈ V the graph contains
a unique blue vector gadget Gv. Before every orange vector gadget there is a vertex A,
and after every orange vector gadget there are vertices y1, y2, B. Consecutive blue gadgets
are simply connected by connecting the last and first 1′ of the respective gadgets. Finally,
vertices α, α⋆, z′, β, β⋆, and paths between α and α⋆ as well as between β and β⋆ are added
to the graph. This completes the description of the planar graph G. The orange path P

starts at A before the first orange gadget and ends at B after the last orange gadget and
traverses the orange gadgets in-between. The blue path Q goes from α to α⋆, traverses the
blue gadgets, then goes from z′ to β⋆ to β. This completes the description of P and Q.

Observe the following properties: Vertices A or B have all vertices of all blue vector
gadgets entirely within distance 5. Vertices α and β have all vertices of all orange vector
gadgets entirely within distance 5. On the other hand, if the dog is standing on α⋆, the only
vertices of P within a reach of 5 are vertices labelled A. Similarly, if the dog stands on β⋆,
the only vertices of P within a reach of 5 are vertices labelled B.
▶ Lemma 4. If (U, V ) is a yes-instance of OV, then DF (P, Q) ≤ 5.

Proof sketch. If u ∈ U is orthogonal to v ∈ V , the person and the dog can employ the
following strategy: The dog stays at α, while the person goes to the orange gadget Gu

corresponding to u and waits at A before gadget Gu. Then the dog walks over α⋆ to the
blue gadget corresponding to v. Then, the person and the dog simultaneously move to the
first box of their respective gadget, and traverse their gadget in unison (which is possible
due to Lemma 1 since u, v are orthogonal). The dog waits while the person goes via y1 and
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β
(⋆)
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A
B

B
α

α⋆
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y2

y1
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Figure 3 Complete construction of the reduction from OVH, for the two sets U =
{(0, 1, 0), (0, 0, 0)} and V = {(1, 1, 1), (1, 0, 1)}.
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y2 to the vertex B immediately after Gu. Then the person waits while the dog walks all of
the remaining path Q to β. Finally, the person walks all of the remaining path P . It can
be checked that this maintains a maximum distance of 5. ◀

▶ Lemma 5. If DF (P, Q) ≤ 5, then (U, V ) is a yes-instance of OV.

Proof sketch. Consider a traversal of P and Q where at all times, the person and the dog
are within distance 5 of one another. At some point of time, the dog is on α⋆. This implies
the person is on a vertex A right before some orange gadget Gu corresponding to some
u ∈ U . Now the person cannot move on his own, so the dog has to move. The dog may walk
through the blue gadgets for some time on his own, but at some point of time t0 the person
has also to move away from A into Gu to either 0 or 1. Since z′ is at distance greater than
5 from 0 and 1, this time t0 occurs before the dog finished traversing all the blue gadgets.
But now due to Lemma 2 the person and the dog have to move with the same speed at least
until the person has passed Gu. This implies that u is orthogonal to a consecutive substring
of length d of the string str(V ). Due to the preprocessing (Lemma 3), this actually means
that (U, V ) is a yes-instance. ◀
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1 Introduction

Euclidean minimum spanning trees (EMSTs) are a well-known structure in computational
geometry: for a set P of n points in R2, an EMST T connects the points with (straight-line)
edges, whose length corresponds to the Euclidean distance between the connected points. To
obtain a minimum spanning tree, the total edge length of T must be minimized.

In this abstract we study the kinetic EMST problem, in which the input changes continu-
ously over time: The input set P consists of a set of trajectories: pi(t) describes the location
of point i at time t, for 1 ≤ i ≤ n. We are generally interested in efficient data structures
to maintain kinetic EMSTs [5], and in bounding the number of combinatorial changes an
(optimal) EMST undergoes [1, 4]. In many practical applications of kinetic EMSTs, such as
visualization of time-varying data and physical networks, making abrupt changes to the edge
set can be confusing, disruptive, or even impossible. In such cases, it is essential that the
E(M)ST is stable: Small changes in the input, should result in small changes in the output.

Meulemans et al. [2] introduced a framework for algorithm stability, with various definitions
that address the trade-off between solution quality and stability. Solution quality is measured
by the optimization function of the problem in question; in case of EMST the length of a
spanning tree is measured. In particular, the topological stability of algorithmic problems can
be analyzed: an algorithm is topologically stable if its output behaves continuously (albeit
possibly at an arbitrary speed) as the input changes over time. For this type of stability
analysis, we want to consider (continuous) paths in the input space I of an algorithm A,
and see what paths they map to in the solution space S of A. For EMST, I consists of all
possible placements of P in R2, and S considers all (combinatorial) spanning trees on P .

To ensure that such continuous paths are well-defined, the framework requires specifying
a topology for both I and S [3]. For kinetic EMSTs, the natural choice for the topology TI

I

A
I S

Figure 1 An algorithm A maps an instance I ∈ I to a spanning tree in the flip graph describing S.
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of I is the standard topology on R2n. However, the solution space S is discrete: spanning
trees change by updating the edge set that defines the solution. To facilitate the stability
analysis, we need a notion of continuity, which is achieved by defining the topology TS of S
using a flip graph: vertices represent (combinatorial descriptions of) spanning trees on P ,
and edges connect vertices if we consider changing from one spanning tree to the other a
continuous change (see Figure 1). We see S as a simplicial 1-complex of the considered flip
graph, allowing paths in I to be mapped to paths in S. For more details, see [3].

The topological stability ratio ρTS of a problem is defined as the ratio between the quality
of a topologically stable solution and an optimal (and possibly unstable) solution. In [2], the
topological stability of kinetic EMSTs is analyzed for state-aware algorithms. Such algorithms
can maintain a solution that may be updated as the input continues to change. In contrast,
we analyze ρTS of kinetic EMSTs computed by stateless algorithms. A stateless algorithm
does not maintain a state, that is, a solution that is updated over time, but instead decides
beforehand on a solution for each possible input; essentially defining a (static) function.

For stateless algorithms we can prove a lower bound on ρTS using the fact that a stateless
algorithm is a continuous function. Let A : I → S be a continuous function. With slight
abuse of notation, we often use a set, for example D ⊆ I as input for A to talk about the
set AD of solutions that A maps the inputs in D to. Specifically, omitting the brackets
ensures that this notation corresponds to function composition, for (parameterized) paths
in I. In this abstract, we show that such a function A, that computes a topologically stable
(approximation of an) EMST on n moving points, produces at least a

√
n-approximation, if

A is a continuous function. In other words, we prove that ρTS is at least Ω(
√
n) and we do

so for a topology TS of S defined by edge flips: any (combinatorial) edge may be replaced by
any other edge, as long as all input points are still connected after the flip (see Figure 1).

I Theorem 1.1. For a stateless algorithm A solving the kinetic EMST problem on n (moving)
input points, if TS is defined by edge flips, then ρTS(EMST, TI , TS) = Ω(

√
n).

Observe that state-aware algorithms can trivially achieve ρTS = 1 by following an optimal
solution, if TS is defined by edge flips, since edge flips suffice to keep an EMST optimal.

2 A Lower Bound on ρT S of Stateless Kinetic EMSTs

The remainder of this abstract works towards proving Theorem 1.1; omitted proofs are found
in Section 4.3 of [3]. Intuitively, we use topological arguments to show that the continuity of A
and the topology of the input and solution spaces prevent function A from being injective.
We carefully choose the geometry of the input instances we consider, such that any spanning
tree chosen by A for the inputs that violate injectivity results in an Ω(

√
n)-approximation.

More specifically, the proof is structured as follows. We assume that A is a continuous
function and consider a part D ⊆ I of the input space that is homeomorphic to a disk. We
show that the boundary δD of this set D must map to a part of S that cannot have holes,
since A is continuous. More precisely, the image of δD under A cannot contain cycles of the
flip graph S and hence δD maps to a tree-like part of S. Thus, different parts of δD map to
the exact same vertex of S. For those inputs we show an approximation factor of Ω(

√
n).

For ease of explanation, we consider inputs on point set P = {p1, p2, . . . , p2n} consisting
of 2n moving points in 1-dimensional Euclidean space. This affects our computations only by
constant factors compared to inputs with n points; we still work towards proving Theorem 1.1.

Constructing the inputs. We consider a restricted set of inputs, in which the points in P
lie on a line, and form sets P1 = {p1, . . . , pn} and P2 = {pn+1, . . . , p2n} of n points each.
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We are going to consider two permutations Π and Π′ of both P1 and P2; either point
set can be in either permutation. Intuitively, Π and Π′ correspond to a row-by-row and
column-by-column traversal in a

√
n×√n grid; see Figure 2a for a visual interpretation.

To create concrete input instances, we consider combinations X on Y of permutations
X and Y of the subsets P1 and P2, respectively: For such an instance X on Y , the points
in P1 are ordered according to X, and consecutive points are located at distance 1 from
one another. Similarly, the points in P2 are ordered according to Y , and consecutive points
are also at distance 1. The points of P1 are placed before the points on P2 and the (last)
point pn ∈ P1 is at distance n from the (first) point pn+1 ∈ P2. See Figure 2b.

We are now ready to construct our set D ⊆ I of inputs; see Figure 3a. First, we define the
instances on the boundary δD of D: Consider the four instances Ia = Π on Π, Ib = Π on Π′,
Ic = Π′ on Π′, and Id = Π′ on Π. The boundary δD consists of four paths δab, δbc, δcd and δda

through I. The path δab has its endpoints at Ia and Ib, and is otherwise defined by a linear
interpolation of the positions of points in P2. Paths δbc, δcd and δda are defined analogously.

Observe that the boundary δD basically forms a square in I. Any point inside the square
defines an instance in which P1 and P2 are (linearly) interpolating between Π and Π′.

We now prove two crucial lemmata on the length of a spanning tree on certain instances.

I Lemma 2.1. For instances Ia, Ib, Ic and Id, any spanning tree T that has more than one
edge (p, p′) with p ∈ P1 and p′ ∈ P2, can be turned into a spanning tree T ′ with only one
such edge, such that the total edge length of T ′ is smaller than the total edge length of T .

Proof sketch. Any additional such edge can be replaced by a shorter edge between two
points, either both in P1 or both in P2. See Figure 3b. J

I Lemma 2.2. For a set P of n uniformly-spaced collinear points, and an arbitrary (combi-
natorial) spanning tree T on P , the length of T is an Ω(

√
n)-approximation of the length of

an EMST, when the permutation of the points in P is Π or Π′.

Proof sketch. Consider an arbitrary spanning tree T on n points in permutation Π or Π′.
Via a case distinction we show that an arbitrary edge of T has length Ω(

√
n) for Π or Π′;

if it is shorter for Π, then it has length Ω(
√
n) for Π′, and vice versa. After proving this, it

follows that, for Π or Π′, at least half of the edges of T are of length Ω(
√
n), and hence T

has a total length of at least Ω(n
√
n) for that permutation. Observe that an EMST connects

the points in the order in which they occur on the line, leading to a length of OPT = n− 1.
As such, the length of T is Ω(

√
n) ·OPT for one of the two permutations. J

(a) (b)

p1 p5

p21 p25

p6

p11

p16

p2 p3 p4

p10

p15

p20

p22 p23 p24

p1 pn pn+1 p2n

1 n− 1

n

Figure 2 Construction in instances for Theorem 1.1: (a) The orderings of the two permutations
Π and Π′ on a small point set with n = 25 (in blue and red, respectively). (b) A concrete input
instance with point sets P1 and P2 uniformly spaced, and distance n between the sets.
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(a) (b)

Ia = Π on Π Ib = Π on Π′

Id = Π′ on Π Ic = Π′ on Π′

p1 pn pn+1 p2n
δbc

δab

δcd

δda
n1

pi pj

Figure 3 (a) The set of inputs D ⊆ I. (b) An instance Ia, Ib, Ic or Id with multiple edges
between P1 and P2. These edges are drawn as arcs for clarity, but are straight lines in a geometric
spanning tree. Replace the red edge by (pi, pj) to shorten the spanning tree.

Mapping to the flip graph. Given our input instances D ⊆ I we can now investigate the
mapping by A to the flip graph defining S. We start considering specific instances in δD.

I Lemma 2.3. Let I, I ′ ∈ δD, with I 6= I ′, be two instances for which P1 or P2 are positioned
as follows: the points are collinear, have unit distance between consecutive pairs, and are
ordered according to Π in I and according to Π′ in I ′. If I and I ′ are mapped by A such that
A(I) = A(I ′), then A(I) or A(I ′) is an Ω(

√
n)-approximation of the EMST.

Proof sketch. By Lemma 2.1 we may assume that A(I) and A(I ′) are modified to have only
a single edge between P1 and P2, since this can only shorten their total edge length.

Assume without loss of generality that the conditions in the lemma hold for P1. Then
Lemma 2.2 applies to the subtree on P1: this is an Ω(

√
n)-approximation for A(I) or A(I ′).

To finish the proof, we show that even if the remainders of A(I) and A(I ′) are as short as
possible, one of them (in its entirety) is still a Ω(

√
n)-approximation. The edge between P1

and P2 has length at least n, and the spanning tree on P2 (and also P1) has length at least
n− 1. Thus, the total length of A(I) or A(I ′) is at least 2n− 1 + c ·n√n, for some c > 0, and
an EMST has length at most 2n− 2 + n = 3n− 2, resulting in an approximation factor of

2n− 1 + c · n√n
3n− 2 ≥ 2n− 1 + c · n√n

3n = 2
3 −

1
3n + c · √n

3 ≥ x√n for x = c

3 & n ≥ 1
2 . J

As Lemma 2.3 applies to any pair out of Ia, Ib, Ic and Id, we get the following corollary.

I Corollary 2.4. If instances I, I ′ ∈ {Ia, Ib, Ic, Id}, with I 6= I ′, are mapped by A such that
A(I) = A(I ′), then A(I) or A(I ′) is an Ω(

√
n)-approximation of the EMST.

Finally, we consider the whole boundary δD and prove that either A violates injectivity
for parts of δD, or A maps δD around a hole in S (a cycle in the flip graph), in which case we
find a contradiction with A being a continuous function. For the latter case of this proof, we
consider the fundamental group of S. The fundamental group of a graph is a basic concept in
computational topology; essential concepts about this group are found in Section 4.3 of [3].

Proof sketch for Theorem 1.1. Consider the boundary δD of our input instances D. By
Corollary 2.4, A maps the instances Ia, Ib, Ic, Id ∈ δD to different solutions in S or the
theorem holds. Hence, we assume that Ia, Ib, Ic, Id map to different solutions in S.

Remember, TS is defined by a flip graph, and we consider S to be the corresponding
simplicial 1-complex. We make a case distinction on whether certain paths of δD are mapped
injectively to S or not; see Figure 4. In the first two cases, Lemma 2.3 directly applies.
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(a) (b)

A(Ia) A(Ib)

A(Id) A(Ic)

Aδbc
Aδab

Aδcd
Aδda

A(Ia) A(Ib)

Aδda Aδbc

Aδab

δcdA(Id) A(Ic)

(c)

A(Ia) A(Ib)

A(Id) A(Ic)

Aδbc

Aδab

Aδcd

Aδda

Figure 4 Cases for the mapping of δD by A. Opposite paths share (blue) a vertex, (a) on Aδab

and Aδcd, or (b) on Aδbc and Aδda. Otherwise, (c) Aδab ∩ Aδcd = ∅ and Aδbc ∩ Aδda = ∅.

Finally, we consider the case in which both Aδab ∩ Aδcd = ∅ and Aδbc ∩ Aδda = ∅. We
use a topological argument to derive a contradiction in this case: We consider two paths f
and g starting at point u ∈ δda and ending at point v ∈ δbc and use the fact that f and g are
homotopic; see Figure 5a. Since A is a continuous function, Af and Ag are also homotopic.

We then consider the fundamental group of S to describe loops `f and `g that represent
Af and Ag, respectively. We define a deformation retract of both Af and Ag that removes
any “unnecessary” spikes: essentially all parts of Af and Ag that double back on themselves
are removed; see Figure 5b. We show that this removal corresponds to simplifying the
algebraic descriptors of `f and `g by removing adjacent inverses.

We want to repeatedly remove spikes from Af and Ag until we find the base paths
F,G : [0, 1]→ S, respectively, that connect A(u) to A(v) and cannot be shortened anymore
using this operation. Equivalently, we can repeatedly check for adjacent inverses in the
descriptors of `f and `g, that correspond to Af and Ag, until we find descriptors `F and `G,
respectively, which correspond to loops that contain the base path (F and G, respectively)
from A(u) to A(v). Note that A(u) may be the end of a spike that could be retracted. To
prevent this, we apply a technical trick, to ensure that F and G must keep A(u) and A(v)
as their endpoints. Even with this trick, our removal of adjacent inverses corresponds to a
deformation retract, which is a homotopy. As homotopies are equivalence relations, Af , Ag,
F , and G are homotopic. Similarly, `F and `G are homotopic to `f and `g, respectively.

We are now ready to derive a contradiction by making a case distinction on whether
the descriptors of `F and `G are exactly the same or not. When `F and `G have different
descriptors, then by definition, F and G cannot be homotopic, leading to a contradiction.

(a) (b) (c)

u = Ia Ib

Id v = Ic

δbc

δab

δcd

δda

A(v)

A(u)

Af(x)

A(v)

A(u)

Figure 5 (a) Homotopic paths f (blue) and g (red). (b) The mappings Af (blue) and Ag (red).
The edges of the graph S are partitioned into spanning tree T (black) and generator edges (yellow).
The point (Af)(x) can be retracted. (c) Base path F = G is draw green. The blue vertex shows
A(Ib); the red vertex shows A(Id). Since A(Ib) /∈ F , the green vertex is closest to A(Ib) on F = G.
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Thus, consider the case in which the descriptors of `F and `G are exactly the same, and
hence Af and Ag can both retract to the same base path F = G; see Figure 5c. In this case,
(parts of) δab, δbc, δcd and δda are mapped to the base path: when we traverse the base path
from A(u) to A(v), we start by traversing Aδab and Aδda, and end by traversing Aδbc and
Aδcd. At some point during this traversal Aδab swaps to Aδbc, or Aδda swaps to Aδcd, and at
that point Aδbc ∩ Aδda 6= ∅ or Aδab ∩ Aδcb 6= ∅, respectively, leading to a contradiction. J

3 Conclusion

We proved a lower bound on ρTS for stateless kinetic EMSTs using a combination of geometric
and topological arguments. Interestingly, our proof relies entirely on the geometry of the
considered input instances and on the fact that the topology of the solution space resembles
a flip graph. However, note that the exact structure of the flip graph is irrelevant; it needs
to be only connected. Our result hence extends to any connected flip graph for EMSTs.
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Abstract
Static and dynamic bubble charts are used to visualize numerical data associated with geospatial
locations. As overlapping discs affect readability and interpretability, we consider the problem of
carefully reducing overlaps by displacement. We show that the underlying problem is NP-hard and
propose approaches based on convex and non-convex quadratic programming. We evaluate our
approaches on real-world data and provide a functional prototype.

1 Introduction

In this paper, we consider time-series data that is associated with a fixed spatial location,
e.g., passenger numbers at different airports over time, or the population of cities over time.
Bubble charts are often used to visualize such data: the position of each disc corresponds to
the data point location and the radius encodes the statistic of interest [6, 8, 15]. A well-known
problem of bubble charts is that discs obscure each other [2, 7, 9]. Examples of strategies
to tackle this problem are: to scale down the discs which might lead to non-perceivable
discs, to use transparent discs which can lead to high visual clutter [13], or to optimize the
stacking-order [2] where still big parts of the discs’ interior can be obscured. Our strategy is
disc displacements. Removing all overlaps by displacement can lead to unclear associations
between discs and data points [1, 3] and large parts of the background getting occluded. We
do not enforce an overlap-free displacement, but optimize it with multiple criteria for the
static and dynamic case, i.e., the discs can change their position and radius over time.

The input is a time series of T epochs and n data points where every data point 1 ≤ i ≤ n

has for every time epoch 1 ≤ t ≤ T a 2D location pi,t, which we call its pinning point, and a
radius ri,t. We denote a disc of data point 1 ≤ i ≤ n and time epoch 1 ≤ t ≤ T by Di,t with

timeline

Figure 1 Dynamic problem setting: each box captures a moment in time, black dots correspond
to the pinning points, crosses to disc centers.
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input complying violation

Figure 2 We set ξ = 0.5 and display the region with distance ξ times the disc radius in yellow
for the orange disc and in dark blue for the blue disc.

(a) Accuracy (b) Conflicts (c) Stability

Figure 3 Our objectives. (b) Lenses (black) occur when discs are in conflict and the arrows
depict the lenses’ widths that are part of our objective. (c) We display the disc of time epoch t with
solid lines and for time epoch t + 1 with dashed lines.

disc center ci,t where the radius is ri,t; see Figure 1. To allow a clear association, we want to
find disc centers for every data point and time epoch where the distance between the center
of each disc and its pinning point is at most ξ times its radius, where 0 < ξ ≤ 1; see Figure 2.

||−−−−→ci,tpi,t|| ≤ ξ · ri,t. (1)

We call this constraint Pinning. Amongst all disc placements that respect Pinning, we aim
for three optimization dimensions, as illustrated in Figure 3.

Accuracy: We want to minimize the sum of the squared Euclidean distances between the
pinning point and disc center after displacement.

fAccuracy =
n∑

i=1

T∑

t=1
||−−−−→ci,tpi,t||2. (2)

Conflict: We want to minimize the lenses obtained by the intersection of two discs which
we mathematically describe by the difference of the squared sum of the radii and the
squared distance between the disc centers.

fConflict =
∑

Di,t,Dk,t

max
(

0, (ri,t + rk,t)2 − ||−−−−→
ci,tck,t||2

)
(3)

Stability: We want to minimize the sum of the squared Euclidean distances between the
displacement of two consecutive time epochs.

fStability =
n∑

i=1

T −1∑

t=1
||−−−−−−→
di,t+1di,t||2. (4)

Overall, we model our objective f as a weighted sum of the three criteria with balancing
factors ρ1, ρ2, ρ3 as follows:

f = ρ1 · fAccuracy + ρ2 · fConflict + ρ3 · fStability → min . (5)
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(c) (d)

(b)

(a)(a)

(b)

Figure 4 Basic components in the NP-hardness construction, with × marking pinning points.
(a) Unit disc with blue “core” of radius ξ. (b) Forced pair: the only way to place the discs given
the pinning points and core size is as illustrated. For (c)+(d) we illustrate two placements of non-
intersecting discs within strategically placed forced pairs (blue): one version uses orange discs, the
other discs with transparent filling. (c) Straight channel segment (blue) that forces the propagation
of orange discs downwards (and transparent discs upwards). (d) Bent channel segment (blue) that
forces the propagation of orange discs to the left and down (and transparent discs up and right).

2 Problem Complexity

In the following, we show that the decision problem “Does the given input have a solution
without overlaps with bounded displacement” is NP-hard, even in the static case when all
discs are the same (unit) size and the allowed displacement from the target location is the
same for all discs. Note that this decision problem captures the extreme case of minimizing
Conflict eq. (3). Its hardness implies that the optimization problem is also NP-hard.

▶ Theorem 2.1. Deciding whether n unit discs can be placed without overlaps, while ensuring
that each disc center is within distance at most ξ of its given target location is NP-hard, for
any fixed ξ, where 0 < ξ < 1.

Proof. The proof relies on a polynomial-time reduction from a variant of the classic NP-hard
problem 3-SAT. An instance of the 3-bounded Planar 3-SAT problem [10] is a boolean
formula ϕ in conjunctive normal form (CNF) such that: (i) each clause has at most 3 literals,
(ii) each variable appears as a literal in exactly 3 clauses, and (iii) the associated graph G(ϕ)
is planar. Given a formula ϕ with variables X and clauses C, the associated graph G(ϕ) has
vertex set X ∪ C and edges {(xi, cj) | clause cj contains xi or xi}.

Next, we sketch how to convert an instance ϕ of the 3-bounded Planar 3-SAT problem
into an instance I(ϕ) of unit discs, each with a specified target location, and a parameter
ξ, such that ϕ is satisfiable if and only if I(ϕ) can be realized without disc overlaps where
each disc center is at most distance ξ from its target location. In particular, using the basic
components illustrated in fig. 4, we show how to model: (i) each variable with a fixed set
of target disc locations (a variable gadget), (ii) each clause with a fixed set of target disc
locations (a clause gadget), and (iii) directed “wires” of target disc locations connecting
variable gadgets to clause gadgets.

Wires are built by concatenating straight and bent channel components. A wire in in a
charged state if it forces the propagation of some disc color in its specified direction (and
uncharged otherwise). The clause gadget (fig. 6) has one connection port for each of its three
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Figure 5 Variable gadget. The ring of discs can be in one of two placements (orange or
transparent). Wires are shown connected to positive ports on the west and south sides and negative
port on the east side.

literals, to which a wire originating at the variable gadget of the corresponding variable is
attached. (If a clause has only two literals one of these ports is blocked as it would be with a
charged wire attachment.) The gadget allows a realization without overlap if and only if at
least one of the wires attached to its connection ports is uncharged.

The variable gadget (fig. 5) is a large square ring (with slightly concave sides) bounded by
a collection of forced pairs. The discs between these forced pairs can be in one of two states,
all orange (corresponding to true) or all transparent (corresponding to false). These inside
discs are exposed on all four sides of the gadget, permitting the attachment of a wire on
each side at either a positive or a negative connection port. If the variable gadget is in state
true, then a wire attached to a negative connection port is unavoidably charged. Similarly,
if the variable gadget is in state false, then a wire attached to a negative connection port is
unavoidably charged. Otherwise, the attached wire could be uncharged.

Thus, if a wire is connected on one end to a positive (resp. negative) port on a variable
gadget associated with variable x, and on the other end to one of the three ports of a clause
gadget whose associated clause contains the literal x (resp. x), then a positive (resp. negative)
truth assignment to the variable gadget will permit a realization of the clause gadget that is
free of overlap.

⇒) By construction, a satisfying assignment of the boolean formula ϕ allows for a
realization of I(ϕ) with bounded displacement unit discs placed without overlaps, by (i)
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(a) (b)

(d)(c)

Figure 6 (a) clause gadget in state with three charged incoming wires. (b) ((c) and (d)) the same
gadget with uncharged wires attached at the north (west and east) connection ports.

selecting the orange discs for each true variable gadget and the transparent discs for each
false variable gadget, (ii) selecting an uncharged state for all wires connecting to positive
ports on true variable gadgets, and all wires connecting to negative ports on true variable
gadgets (all other wires are necessarily charged), and (iii) selecting a overlap-free placement
for every clause gadget that takes advantage of the freedom associated with one of its
uncharged attachments..

⇐) In the opposite direction, suppose I(ϕ) can be realized with bounded displacement
unit discs placed without overlaps. Choose any such realization that maximizes the total
number of wires in an uncharged state. Furthermore, for every variable gadget, either (i) all
attached wires that are uncharged (resp. charged) attach at positive (resp. negative) ports,
in which case the variable gadget must be in a true realization, or (ii) all attached wires that
are uncharged (resp. charged) attach at negative (resp. positive) ports, in which case the
variable gadget must be in a false realization. In either case, we can extract the assignment
of the variables of ϕ by examining each variable gadget.

Since each clause is realized without overlapping discs, each clause gadget has at least
one port with an uncharged attached wire, and hence at least one literal that is satisfied by
the associated truth assignment. So the entire CNF formula ϕ evaluates to true.

It remains to show that the conversion of ϕ into I(ϕ) can be accomplished in polynomial
time. Recall that the associated graph G(ϕ) has vertex set V = X ∪ U , so it is linear in the
size of the input ϕ. Note that the number of edges is at most 1.5|V |, as variable vertices have
degree 3 and clause vertices degree at most 3. It is known that any max-degree-3 n-vertex
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planar graph has an orthogonal drawing on an n/2 × n/2 grid with at most one bend per
edge (every vertex is at integer coordinates and every edge is axis-aligned with at most one
turn) [4]. Starting with such an embedding of G(ϕ) we can increase the size of the grid to
allow the realization of G(ϕ) with unit discs, replacing vertices of G(ϕ) with vertex gadgets
and clauses gadgets, and edges of G(ϕ) with wire gadgets. This requires only a constant
refinement of the underlying grid to provide sufficient space to avoid overlap.

There are two other concerns that need to be addressed: (i) as things are illustrated, it
is not clear that it is possible to restrict target locations for disc centers to points on some
suitably refined grid, and (ii) even if this is the case, it is necessary to argue that wire lengths
that accommodate the placement of many disjoint unit discs can be chosen in a way that is
compatible with the layout of G(ϕ). Both of these can be addressed by observing that our
constructions do not rely in an essential way on the abutment of discs that is apparent in
our figures. In particular, despite the resulting lack of rigidity in our constructions, all of our
arguments would continue to hold, using the same target points, if the disc radius is reduced
to 1 − ε, and ξ is replaced by ξ + ε/2 where ε is some sufficiently small positive constant.
Thus, there is a reduction from 3-bounded Planar 3-SAT to a stronger disc placement problem
in which discs are required to be separated by at least ε and each disc is constrained to be
placed within distance ξ + ε/2 of its target position. This latter problem is equivalent to a
ε-separated disc placement problem in which each disc is constrained to be placed within
distance ξ of its ε-perturbed target position. Of course, ε-perturbation of targets is sufficient
to move them to grid positions on some suitably refined grid. ◀

In the theorem above we have assumed that the target locations are properly inside their
corresponding discs. If this is not the case, Strijk et al. showed that given a set of points in
the plane, placing a unit disc for each point such that the disc boundary contains the point
and no two discs overlap is NP-hard [14].

3 Non-Convex Mathematical Programming Formulation

As shown in Section 2, the underlying problem is NP-hard. We present a mathematical
programming formulation. While the properties Accuracy, Stability, and Pinning can be
formulated as an efficiently-solvable convex formulation [5], the property Conflict leads to a
non-convex formulation. In Section 4, we will present an efficient heuristic where we replace
the non-convex formulation of Conflict with a convex formulation.

Let pi,t = (Xi,t, Yi,t) and ci,t = (xi,t, yi,t). To model the displacements, we introduce
variables for the disc centers xi,t, yi,t ∈ [−∞, ∞] and variables for the distance of disc centers
and pinning points dxi,t, dyi,t ∈ [−∞, ∞] for 1 ≤ i ≤ n and 1 ≤ t ≤ T . We introduce the
following constraints, to assign variables correctly and while respecting Pinning.

xi,t = Xi,t + dxi,t and yi,t = Yi,t + dyi,t and dx2
i,t + dy2

i,t ≤ ξ2r2
i,t (6)

For Conflict, we introduce a cost variable ci,k,t for every pair of discs (Di,t, Dk,t).

ci,k,t ≥ (rk,t + ri,t)2 − (xi,t − xk,t)2 − (yi,t − yk,t)2 and ci,k,t ≥ 0 (7)



A. Bonerath, W. Evans, J.-H. Haunert, D. Kirkpatrick, and S. Kobourov 69:7

√ 2r
1

√ 2r
2x2 − x1

y
2

−
y
1

(a) circumscribed diamonds (b) costs for overlap (push apart)

Figure 7 Convex formulation of conflicts with circumscribed diamonds.

Then, the formulation of Conflict, Accuracy, and Stability is straightforward.

fConflict =
n∑

i=1

n∑

k=i+1

T∑

t=1
ci,k,t (8)

fAccuracy =
n∑

i=1

T∑

t=1
dx2

i,t + dy2
i,t (9)

fStability =
n∑

i=1

T −1∑

t=1
(dxi,t − dxi,t+1)2 + (dyi,t − dyi,t+1)2 (10)

Overall, given ξ, and ρ1, ρ2, and ρ3, we obtain the objective by Equation (5).

4 Heuristic: Convex Mathematical Programming Formulation

As expected, preliminary experiments with the non-convex program showed that this approach
is not suitable for real-world data sets. We suggest to solve our problem heuristically by
replacing each disc with its circumscribed diamond that we define as the bounding square
of a disc with side-length equal to the diameter of the disc, and which is rotated by 45◦;
Figure 7. This approach is adapted from Niedermann and Haunert [12] and Meulemans [11].

To allow a convex formulation, we enforce that the initial east-west and north-south
order of the pinning points is preserved after the displacement. More formally, for every
pair of discs Di,t and Dk,t that could be in conflict after the displacement, we introduce the
following two linear constraints:

if Xi,t ≤ Xk,t: xi,t ≤ xk,t and otherwise: xk,t ≤ xi,t (11)
if Yi,t ≤ Yk,t: yi,t ≤ yk,t and otherwise: yk,t ≤ yi,t. (12)

With the enforced order, we can formulate Conflict as a linear constraint. Let Di,t and
Dk,t be two discs that could possibly be in conflict after displacement with ri,t < rk,t. Let
c′ ∈ R be a variable that represents the costs for Conflict, i.e., the width of the smaller side
of the rectangle that is derived by the intersection of the boundaries of the circumscribed
diamonds. We introduce the constraints depending on the east-west and north-south order.
In the following, we give the constraints for Xi,t ≤ Xk,t and Yi,t ≤ Yk,t; see Figure 7.

c′
i,k,t ≥

√
2(rk,t + ri,t) − (xk,t − xi,t) − (yk,t − yi,t) and c′

i,k,t ≥ 0 (13)

The other three cases can be derived analogously. Then, we can replace fConflict by:

f ′
Conflict =

n∑

i=1

n∑

k=i+1

T∑

t=1
ci,k,t. (14)
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5 Experiments

We performed experiments on different data sets and compared the two presented approaches.
Results can be found under http://www2.geoinfo.uni-bonn.de/html/visualization/
bubblecharts/.

6 Outlook

It would be interesting whether one can show an approximation factor for the diamond
approximation. Further, we plan to extend this work by introducing other algorithmic
approaches and analyze this project from a perceptual point of view.
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Abstract
Beyond-planar graph classes are defined via forbidden crossing patterns in a drawing. In this work,
we study topological crossing patterns that are specified by topological graphs that come with a fixed
embedding. We give a parameterized algorithm that decides for any fixed family F of topological
crossing patterns, whether a given graph G admits a drawing that avoids all patterns in F and that
has at most c crossings in FPT time w.r.t. c. In particular, this shows that the weak and strong
fan-planar crossing number as well as the 1-planar straight-line crossing number are FPT.

1 Introduction

Beyond-Planarity [10, 5] is a concept aimed at capturing classes of graphs that admit draw-
ings where crossings are in some sense well-distributed. An example are k-planar graphs
which admit a drawing where every edge has at most k crossings. We study the problem
of testing whether a graph G admits a drawing with at most c crossings that satisfies the
restriction R. An interesting question is for which beyond-planar graph classes this problem
is FPT with respect to c. Hamm and Hliněný [8] gave a positive answer for 1-planar graphs.
A recent result of Hliněný and Colin de Verdière [4] gave FPT algorithms for various crossing
number related problems such as the gap-planar crossing number.

Often the restriction R is expressed in terms of forbidden configurations of crossings
that a drawing of G must avoid. Recently Münch and Rutter [11] proposed a formalization
of such configurations as combinatorial crossing patterns and showed that, for any fixed
family F of combinatorial crossing patterns, there is an algorithm that decides whether G
admits a drawing with at most c crossings that avoids all patterns in F in FPT time with
respect to c. A combinatorial crossing pattern is present if and only if it is contained as
some kind of subgraph in the planarization of the drawing. While this suffices to capture
a rich set of beyond-planar graph classes, there are beyond-planar graphs where this is
too restricted. Two cases are weak/strong fan-planar graphs [1] and straight-line 1-planar
graphs [12]. Both can also be described in terms of forbidden crossing configurations but the
presence of a forbidden configuration in a drawing additionally requires that the embedding
the drawing induces on the subgraph is the same as in the forbidden pattern. We propose
a notion of topological crossing patterns and show the following meta theorem, which in
particular implies that the beyond-planar crossing number is FPT for straight-line 1-planar
graphs as well as for weak and strong fan-planar graphs.

▶ Theorem 1. For any fixed family F of topological crossing patterns, the problem of testing
whether a given graph G admits a drawing with at most c crossings that avoids all patterns
in F is FPT with respect to c.
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(e) (f)(b) (d)(a) (c)

Figure 1 Examples of topological crossing patterns. Real vertices are depicted as disks, subdi-
vision vertices as crosses.

Figure 2 A topological graph G (left) that contains the topological pattern P shown in Figure 1d.

Our algorithm has two phases. First, we bound the treewidth of the input graph based
on Grohe’s FPT-algorithm for crossing number [7, 11]. Second, we show that the set of
graphs that admit a planarization with at most c crossings that has an embedding that
avoids all patterns in F is defineable in monadic second-order logic. The result then follows
from Courcelle’s Theorem [3]. We remark that Hamm, Klute and Parada [9] simultaneously
and independently obtained an analogous result based on similar core ideas.

2 Topological Crossing Patterns

A topological crossing pattern is a topological graph P = (VP , EP ) with VP = R ∪ S with a
fixed outer face such that (i) each subdivision vertex in S has degree 1, (ii) each vertex is
incident to a crossed edge, (iii) the set of real vertices R does not contain a cut-vertex v such
that P − v contains a connected component without crossing vertices and (iv) R does not
contain a split-pair u, v such that P−{u, v} contains a connected component without crossing
vertices. Conditions (ii) – (iv) are necessary technical conditions but they are also natural
assumptions as our crossing patterns shall express conditions on crossing configurations in
drawings rather than structural conditions on the input graph.

Two topological crossing patterns are isomorphic if there is an isomorphism between
them that maps real vertices to real vertices, subdivision vertices to subdivision vertices, and
preserves the embedding including the crossings and the outer face. We say that a topological
graph D contains a topological crossing pattern P if and only if a topological crossing
pattern isomorphic to P can be obtained from D by subdividing edges with subdivison
vertices as well as deleting edges and isolated vertices; see Figure 2 for an illustration. It
can be shown that a drawing of a graph is (i) weakly fan-planar if and only if it avoids
the patterns in Figure 1(a), (b), (ii) strongly fan-planar if and only if it avoids the patterns
in Figure 1(a), (b), (c) [1] and (iii) straight-line 1-planar if and only if it avoids the patterns
in Figure 1(d), (e), (f) [12].

3 Relational Structures and Monadic Second-Order Logic

Let R be a finite set of relation symbols and let each R ∈ R be associated with an ar-
ity ρ(R) ∈ N. An R-structure is a tuple S = ⟨DS , (RS)R∈R⟩ where the domain DS is a
finite set and for each R ∈ R, RS is a ρ(R)-ary relation. An ordered structure (X,≤) is
a structure X together with a linear ordering of its domain. Monadic second-order logic
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v we

v1 e1 e2 e3 w1

out1,1(v, e) := out(v, e)

out2,3(v, e) := e ∈ F ∧ v = e

in1,1(v, e) := in(v, e) ∧ e /∈ F

in1,2(v, e) := e ∈ F ∧ v = e

in1,3(v, e) := in(v, e) ∧ e ∈ F

Figure 3 Illustration of a transduction that subdivides edges.

(MS for short) is the fragment of second-order logic that allows quantification over elements
and over unary relations (i.e., subsets of the domain) but no quantification of arity greater
than 1. For an R-structure X and an MS-formula φ, we write X ⊨ φ if X is a model of φ.
A subset L of the set of R-structures is MS-definable if L = {X | X ⊨ φ} of a monadic
second-order formula φ. An MS-formula φ is order-invariant if for any structure X and
linear orderings ≤ ,≤′ we have (X,≤) ⊨ φ if and only if (X,≤′) ⊨ φ.

A graph G is a relational structure ⟨V ∪E, in, out⟩ where in, out ⊆ V ×E are the outgoing
and the incoming incidence relation of G, respectively. A planarization P is a relational
structure ⟨G, cont⟩ that consists of a graph G and a relation cont ⊆ V × E × E, where
additionally some vertices may be labeled as crossing vertices. Such crossing vertices need
to have in-degree 2 and out-degree 2 and cont describes for each crossing vertex v which pairs
of in- and outgoing edges stem from the same original edge of the original graph. A planar
map is a relational structure ⟨P, succ⟩, where P is a planarization and succ ⊆ V × E × E

encodes a planar rotation system of the graph P as a counterclockwise successor relation. A
plane map ⟨M,vo, eo⟩ consists of a planar map together with two constants, a vertex vo and
an edge eo incident to vo, which together encode the outer face as the face that lies right of
the edge eo when traversing it from vo.

An MS-transduction transforms a structure S with domain DS into a structure T with
domain DT ⊆ DS × {0, . . . , n} for a fixed n ∈ N. Transductions may have parameters that
specify subsets of the domain. We now give an example of a transduction with parameter F
that associates with a graph G the graph G′ that we obtain from G by subdividing every
edge in F ; see Figure 3 for an illustration. For the domain of G′ we use (V ∪ E) × {1} ∪
F × {2} ∪ F × {3}; i.e, the transduction is 3-copying. For vertices and edges not in F we
use only the first copy. For each edge e in F we use the first and the third copy to represent
the two edges into which e is subdivided, and we use the second copy of e as the subdivision
vertex. The non-trivial relations corresponding to G′ are given in Figure 3; all remaining
ones are false.

The composition of two MS-transductions is again an MS-transduction. For every MS-
transduction and every MS-formula φ, there exists a backwards translation of φ which is an
MS-formula ψ with the property that if a structure T is defined from a structure S by the
transduction, then S ⊨ ψ if and only if T ⊨ φ [3, Thm. 1.40]. For example, if φ defines
a graph property, the transduction above implies that there exists a formula ψ(F ) with
free variable F such that G ⊨ ψ(F ) if and only if G′ ⊨ φ, where G′ is obtained from G

by subdividing the edges in F . In particular, the formula ∃Fψ(F ) expresses that a graph
can be modified to satisfy the property φ by subdividing some of its edges once; i.e., these
graphs are MS-definable.

For a plane map M and a fixed set of edges E′ there is an MS-definable transduction
that associates with M the planar map where every edge in E′ is subdivided. Similarly there
are MS-definable transductions that associate with M the planar map where a fixed set of
edges and a fixed set of vertices is removed. Further, for any fixed plane map F the set of
plane maps that are isomorphic to F is MS-definable. Together this shows the following.
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▶ Theorem 2. Let F be a family of topological crossing patterns. The set of plane maps
that contains no pattern from F is MS-definable.

4 Constructing a Plane Map from a Planarization

Let P be a planarization with at most c crossings. Our goal is to define a transduction Φ
whose number of parameters is bounded in c and that associates with P an embedding E
(encoded as a plane map). Due to space constraints, we only sketch the biconnected case.

A split component with respect to a vertex pair {u, v} is irrelevant if it contains no cross-
ing vertex. An edge is called irrelevant if it is contained in some irrelevant split component.
The remaining edges are relevant. By property (iv), a topological crossing pattern that
occurs in an embedding of P cannot contain an irrelevant edge. Thus we may arbitrarily re-
embed the irrelevant split components. We call two planar embeddings E , E ′ of P equivalent
if for each vertex v of G, we have that the circular order of their incident relevant edges are
the same. For an embedding E , a vertex v and an edge e incident to v, we write (E , v, e) to
denote the plane embedding of P whose outer face is the face that lies right of e seen from v.

▶ Lemma 3. Let P be a planarization, let E , E ′ be two equivalent planar embeddings of P
and let (v, e) be a pair of a vertex v and a relevant edge e incident to v. Let f, f ′ be the faces
that lie to the right of e when traversing it starting at v in E and E ′, respectively. Then, for
any topological crossing pattern F , we have that F is contained in (E , f) if and only if it is
contained in (E ′, f ′).

We now express for each planar embedding E of P an equivalent embedding using sets
with MS-definable properties whose number is bounded in c. Thus, by existentially quan-
tifying these sets, for each planar embedding of P , we can obtain an equivalent one. Like
Courcelle, whose work [2] is the basis of our construction, we need an auxiliary order ≤,
which we only use for decisions that affect irrelevant edges. As a first step, we number the
crossings in P by specifying c pairwise disjoint sets C1, . . . , Cc, each of which contains at
most one crossing vertex, such that Ci = ∅ implies Ci+1 = ∅. We refer to the unique element
in Ci as ci (if it exists). We associate

with each crossing vertex ci, four sets of edges E1
i , . . . , E

4
i called the rotation set of ci,

with each pair (ci, cj) with i < j of crossing vertices, a set Wi,j of path edges that
constitute a simple path wi,j from ci to cj , called the witness path of ci and cj , and a
set Mi,j of R-marker edges,
with each partition P of a subset of the set C of crossing vertices, a merge scheme, which
consists of sets X1

P , . . . , X
c
P of crossing vertices.

We call such an association an embedding scheme of (P,≤). We let Σ denote the set of
all embedding schemes of (P,≤) and we let Ω denote all the planar embeddings of P .

▶ Theorem 4. There is a relation Φ ⊆ Σ × Ω that (i) associates with each embedding
scheme S of an ordered planarization (P,≤) at most one planar embedding in Ω and (ii) for
each planar embedding E ∈ Ω there exists an embedding E ′ ∈ Ω that is equivalent to E and
such that there exists an embedding scheme S ∈ Σ with (S, E ′) ∈ Φ.

Proof. Let E be a fixed embedding. We construct an embedding scheme that encodes an
embedding equivalent to E . Recall that in the biconnected case the embedding is determined
by flipping R-nodes and ordering P-nodes.

First, let µ be a node of the SPQR-tree of P . If sk(µ) contains a crossing vertex, then
let ci be the crossing vertex with the smallest index that is contained in sk(µ). The rotation
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Figure 4 R-node: (a) separates (c1, c2) but not (c3, c4), (b,c) choice of marker edge (red).

of ci uniquely determines the embedding sk(µ). We encode this rotation as four pairwise
disjoint sets Ei

1, . . . , E
i
4, each containing exactly one edge incident to ci according to the

counterclockwise order around ci. Observe that while ci may decide the embeddings of
more than one such block, they all associate the exact same sets with ci.

If sk(µ) does not contain a crossing vertex, we distinguish cases based on the type of µ.
For S-nodes there is no embedding decision. For a P-node consider the virtual edges that
do not correspond to irrelevant split components. If there are at most two such virtual
edges, then the embedding of the P-node is inconsequential for the rotation system of the
relevant edges and we can simply order all virtual edges according to ≤. If there are at least
three such components, the distribution of the crossing vertices to the virtual edges of sk(µ)
defines a partition Pµ of the crossing vertices. We encode the order of the virtual edges into
a sequence of sets X1

Pµ
, . . . , Xc

Pµ
, each of which is either empty or contains a distinct set

from Pµ. The order of these corresponds to the left to right order in E , starting with the
parent edge if it contains a relevant edge. Moreover, we again require Xi

Pµ
= ∅ ⇒ Xi+1

Pµ
= ∅.

Observe that, from this information, we can fully recover the order of the relevant edges of
the P-node and we can simply put the irrelevant virtual edges at the end, according to the
order ≤. Moreover, observe that distinct nodes of the SPQR-tree yield distinct partitions.
Therefore, the given information influences only the embedding choice of sk(µ).

We only sketch the R-node case, where the embedding is a binary decision. A pair of
crossing vertices ci, cj is separated by µ if their witness path wi,j contains an edge e that
belongs to a virtual edge of µ and that is incident to a vertex of sk(µ); see Fig. 4a. To
encode the embedding, we take the last edge ε of sk(µ) that belongs to the witness path
of the lexicographically smallest crossing pair that is separated by µ. We then take an
edge from the edge ε′ of skel(µ) that succeeds ε in counterclockwise order as marker edge
(Figure 4b), unless ε′ also belongs to the witness path (Figure 4c).

Clearly an embedding scheme constructed as described above encodes an embedding
equivalent to ε, thus (ii) holds. Conversely for (i), it can be shown that there is an MS-
formula that expresses that an embedding scheme has a form that is obtained from an
embedding in the way described above. In the positive case, a unique embedding can be
obtained from the embedding scheme as described above, where the order ≤ is used to order
the irrelevant edges. ◀

An embedding scheme S is valid if (S, E) ∈ Φ for some E ∈ Ω. In this case, we write Φ(S)
for E . All the conditions stated in the proof of Theorem 4 can be expressed in MS, thus
by combining Theorem 4 with Courcelle’s transduction [2] we obtain that Φ is indeed a
transduction with parameter S. Let F be a fixed family of crossing patterns. By existentially
quantifying the embedding scheme S and requiring that the transduced plane map avoids
all crossing patterns in F , which is MS-definable by Theorem 2, we obtain the following
theorem. The order-invariance follows from Lemma 3 and the observation that a different
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order ≤′ yields an equivalent embedding.

▶ Theorem 5. For any fixed family F of crossing patterns, the set of ordered planariza-
tions (P,≤) with at most c crossings that admit an embedding that avoids all patterns in F
is MS-definable by an order-invariant formula φ.

Using transductions to add up to c crossings in a similar fashion to Grohe [7], the fact
that order-independent model-checking is FPT with respect to treewidth [6] and a reduction
that bounds the treewidth in terms of the crossing number [7, 11] yields Theorem 1.
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Abstract
This paper addresses the problem of efficiently decomposing a set of points in the plane into mutually
avoiding parts, along with its abstraction in terms of chirotopes and oriented matroids. In [M. Bouvel,
V. Féray, X. Goaoc and F. Koechlin. A canonical tree decomposition for chirotopes. Proceedings
SoCG 2024] and [M. Bouvel, V. Féray, X. Goaoc and F. Koechlin. A canonical tree decomposition
for order types, and some applications. arXiv:2403.10311, 2024], the authors introduced a specific
tree decomposition of a rank-3 acyclic uniform oriented matroid (or, in particular, of a finite set of
points in general position in the plane), by means of a geometric inductive construction. They raised
the question of how to efficiently compute this decomposition tree. In this paper, we reformulate this
decomposition in terms of the theory of tree representations of set families, especially of symmetric-
crossing families. Using an appropriate data structure, we then answer the above question and give
a method to calculate this tree in time O(n3) where n is the number of elements.

Related Version This paper is an extended abstract of the paper [8].

1 Introduction

This paper is based on notions addressed in the conference paper [2] and its full version [3].
Given a set of points P in the plane in general position (that is, no three of them are

colinear), a bipartition (A, A) of points of P is said to be mutually avoiding if no line
spanned by two points of A separates two points of A and vice versa. In other words, no line
spanned by two points of A intersects the convex hull of A and vice-versa. See Figure 1.

In [2, 3], they generalize the notion of mutually avoiding bipartitions to “rank-3 acyclic
uniform oriented matroids” using the notion of “chirotopes” (more precisely, they use the
notion of “order types” but we prefer to speak of oriented matroids). They introduce the
notion of “(canonical) tree decomposition” of a set of points P ⊆ R2 in general position
(labeled by a set E), or more generally of a rank-3 acyclic uniform oriented matroid M

on a ground set E. The leaves of such a tree correspond to elements of E and every
node is decorated with a smaller set of point, or oriented matroid, that is either convex
or indecomposable (i.e., it has no mutually avoiding bipartition). From this tree, we can
retrieve P , or M , and all its mutually avoiding bipartitions. (See Section 2 for details.)

▶ Example 1.1. Figure 2 depicts a configuration P of points in the plane. Figure 3 shows
the tree decomposition of (the oriented matroid of) this set of points.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
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to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 A set of eight points. No line spanned by two blacks points or two grays points separates
two grays points or two black points, respectively. Such a bipartition is said to be mutually avoiding.
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Figure 2 A set P of 17 points for Example 1.1. A zoom-in is applied to nearly linear points.
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Figure 3 The tree decomposition for the points of Figure 2.

In [2, 3], this tree decomposition is built using a so-called “bowtie-operation” in an
inductive way. The main result is that this yields a well-defined unique (canonical) tree
having the properties alluded to above. In the present paper, rather than using this operation,
we use the fact that the family of mutually avoiding bipartitions is symmetric-crossing.
This result was proven in [3] in their construction, and we prove it again in another way.

From this, we can address and characterize the decomposition tree in terms of set families,
yielding an alternative viewpoint. We use seminal results from [7], and their formulations from
[5], to represent a symmetric-crossing family by a tree (its “crossing-free representation”).

Then, in this way, and using an appropriate data structure (equivalent to a representation
of a rank-2 uniform oriented matroid), we can efficiently compute the tree decomposition.
Our method runs in time O(n4) where n is the size of the ground set E of M , and can be
improved to run in time O(n3) using techniques from [10]. We thus provide an answer to
the open question of [3, Paragraph 1.4 (1)]: “How efficiently can one compute the canonical
chirotope tree of a given rank-3 uniform acyclic oriented matroid?”.

Let us mention that various classical families can be represented by a tree in similar ways,
such as those of modules of a (directed) graph, or splits of a graph (e.g. see [7, 6, 11, 9]).
We refer to the thesis [4] for a state-of-the-art on representing a set family by a tree.

2 Oriented matroids, mutually avoiding sets, and tree decomposition

Oriented matroids [1] are combinatorial structures that can be used to study incidence and
convexity relations in affine point configurations (but not only), and that can be defined in
several equivalent ways. Here, we only need to define them by means of their chirotopes.
The reader not familiar with oriented matroids does not need the following definition to
understand the paper and can focus on the realizable case (of real points) presented next.

▶ Definition 2.1. A rank-3 uniform oriented matroid is defined by its chirotope χ,
which is a mapping χ : E3 → {−, 0, +} that satisfies the following axioms:

(Uniform) If two elements are equal amongst x1, x2, x3 then χ(x1, x2, x3) = 0, otherwise
χ(x1, x2, x3) ̸= 0.
(Alternating) For any permutation σ and x1, x2, x3 ∈ E, χ(xσ(1), xσ(2), xσ(3)) = sign(σ) ·
χ(x1, x2, x3).

EuroCG’25
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(Three terms Grassmann-Plücker relation) For all b1, ..., b3, x, y ∈ E, if χ(x, b2, b3).
χ(b1, y, b3) > 0 and χ(y, b2, b3).χ(x, b1, b3) > 0, then χ(b1, b2, b3).χ(x, y, b3) > 0.

In this extended abstract we will not define acyclic nor convex for an oriented matroid;
see [1] or [8]. For a point configuration, it is always acyclic, and convex has the usual meaning.

▶ Definition 2.2. Let us fix an orientation of the plane (clockwise or counterclockwise)
for the entire paper. An acyclic uniform rank-3 oriented matroid M on the ground set
E = {1, ..., n} is said to be realizable if and only if there is an affine configuration of points
in general position P = {p1, ..., pn} ⊆ R2 such that, for each B = (e1, e2, e3) ∈ E3, we
have χ(B) = + if the triple of points (pe1 , pe2 , pe3) follows the orientation of the plane, and
χ(B) = − otherwise. (The value of χ can also be defined as the sign of a determinant.)
Then, P is called a realization of M , and we may say that M is the oriented matroid
associated to P . (Not every uniform rank-3 oriented matroid M is realizable.)

We use the terminology of “mutually avoiding” partitions from [3], although the following
definition appears as “modular bipartition” in [3, Definition 3.5]. (In fact, there are some
structural similarities with modules in graphs.) In what follows, we denote E \ A by A.

▶ Definition 2.3. Let M be an acyclic rank-3 uniform oriented matroid on E. Let A ⊆ E.
The pair of sets (A, A) is said to be mutually avoiding in M if and only if for all x1, x2 ∈ A

and for all y1, y2 ∈ A, χ(x1, x2, y1) = χ(x1, x2, y2) and χ(y1, y2, x1) = χ(y1, y2, x2). Abusively,
we say that the set A is mutually avoiding (with A). Observe that if A or A have size 0 or 1
then (A, A) is considered as mutually avoiding.

Our definition below for the tree decomposition is different from the one of [3]. We can
actually use two equivalent viewpoints: the one from [3] using the “bowtie-operation” and
the one below. This equivalence is a reformulation of the main result [3, Theorem 1.3]. (The
statement below actually contains several statements at once, but we do not detail this here.)

▶ Definition 2.4. Let M be a rank-3 acyclic uniform oriented matroid on E. The (canonical)
decomposition tree TC of M is the unique tree such that the following properties hold.

The leaves of TC are (in bijection with) the elements of E.
Each (non-leaf) node x is associated to an oriented matroid M(x) defined on a ground
set E′ ⊆ E chosen in the following way. Consider the subsets E1, ..., Ek of E given by
leaves of the k subtrees obtained by removing x from TC (where k is the degree of x). In
every subset Ei, 1 ≤ i ≤ k, we choose exactly one element, i.e., we have |Ei ∩ E′| = 1.
Elements of E′ are called representatives for x.
Up to isomorphism, M(x) does not depend on the choice of these representatives.
For each node x, the oriented matroid M(x) is either convex or indecomposable (that is,
with no mutually avoiding sets).
No two adjacent nodes of TC are associated to convex oriented matroids.
A bipartition (A, A) of E is mutually avoiding if and only if:

either there is an edge e of TC such that the sets of leaves of the two subtrees obtained
by removing e from TC are A and A;
or there is a node x such that A is a union of some subsets amongst the subsets
E1, ..., Ek as defined above, and such that the restriction of (A, A) to the set of
representatives for x is mutually avoiding in M(x).

▶ Proposition 2.5 (Rewriting of [3] Lemma 3.9). Let F be the family of sets A ⊆ E such that
(A, A) is mutually avoiding in M . Then F is symmetric-crossing (the definition follows).
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3 Known results about representing symmetric-crossing families

In this section we will introduce the results from [5] to represent symmetric-crossing
families by trees. An example is shown on Figure 4. By convention, when F ⊆ 2E is a
family over E then E, ∅ and all the singletons of E are in F . Two sets A, B ⊆ E are said to
be crossing if and only if A ∩ B, A \ B, B \ A, and A ∩ B are non-empty. A set A ∈ F is
said to be crossing-free if there is no set B ∈ F such that A and B are crossing. A family
F ⊆ 2E is said to be symmetric if, for all A ∈ F , we have A ∈ F .

▶ Definition 3.1. A family F on a set E is said to be symmetric-crossing if it is symmetric
and, for all A, B ∈ F that are crossing, we have A ∩ B ∈ F .

The following theorem/definition is a rewriting of a result from [7] rewritten in [5].

▶ Theorem 3.2. Let F ⊆ 2E be a symmetric-crossing family. Then there exists a unique
crossing-free representation of F defined as follows. First, it consists of a tree TC whose
leaves are (in bijection with) the elements of E. Second, every (non-leaf) node has a type,
either Complete, Circular, or Prime, and each Circular node is given a circular ordering of
its adjacent eddges. Third, for all A ⊆ E, the set A belongs to F if and only if one of the
following cases (a), (b), or (c) is true. (Note that the three cases are mutually exclusive.)

(a) There is an edge e of TC such that the sets of leaves of the two subtrees obtained by
removing e from TC are A and A. (In this case, A and A are crossing-free in F .)

(b) There is a node x of type Complete such that A is a union of at least 2 and at most k − 2
subsets amongst the subsets E1, ..., Ek, where k denotes the degree of x and E1, ..., Ek

denote the subsets of E given by leaves of the k subtrees obtained by removing x from TC.
(c) There is a node x of type Circular such that A is a union of at least 2 and at most k − 2

subsets amongst the subsets E1, ..., Ek as defined in case (b), and these subsets correspond
to consecutive edges in the circular ordering given for x.
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16

17

Complete

Circular

Prime

Prime

Prime

Figure 4 A crossing-free tree representation of a symmetric-crossing family F over E = {1, ..., 17}.
The leaves of the node of type Circular are displayed around the node consistently with the circular
ordering at this node. Hence, for example, by case (c) of Definition 3.2, {1, 2, 3, 9, 10, 11, 12, 13} is a
member of F but not {1, 2, 7}. By case (a), {6, 16, 17} ∈ F . By case (b), {16, 17} ∈ F .

EuroCG’25



71:6 Computation of the tree decomposition of a set of points in the plane

4 The data structure used: symmetrized orderings

Let us introduce symmetrized orderings, a simple combinatorial tool that we use to construct
the family of mutually avoiding bipartitions of a rank-3 uniform oriented matroid.

▶ Definition 4.1 (Symmetrized ordering). Let X be a ground set. Consider a set of diameters
of a circle, one for each e ∈ X, such that one of the two endpoints is labeled by e and the
other one by e. Then, the circular ordering of these labels along the circle (following the
orientation of the plane) is called a symmetrized ordering (over X).

The outer circle in Figure 5 shows an example of a symmetrized ordering. Symmetrized
orderings trivially correspond to representations of uniform rank-2 oriented matroids (except
that, in oriented matroids, replacing all the elements by their opposites yields the same
oriented matroid). As a consequence, if M is a uniform rank-3 oriented matroid on the
ground set E, then, for any e ∈ E, the rank-2 oriented matroid M/e can be represented by a
symmetrized ordering σe. See [1] for the general definition of M/e. In the realizable case,
M/e is obtained by projecting all elements of E \ e onto a circle centered at e. The example
of a symmetrized ordering in Figure 5 is obtained in this way in the realizable case.

An interval of a symmetrized ordering σ over a set E is a subset A of element of σ such
that the elements of A appear consecutively in σ (in any order) and all the element of A are
in E (and not opposites of elements of E).
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Figure 5 A symmetrized ordering obtained from the set of points of Figure 2 associated to M/5.
In clockwise ordering, we obtain σ5 = 4, 3, 2, 1, 0, 7, 6, 4, 3, 2, 1, 0, 7, 6. The set {0, 1, 2} is an interval,
but not {1, 2, 3, 4} and neither {1, 2, 3, 4}.

5 Contributions

In all the statements below, M is a rank-3 acyclic uniform oriented matroid on E = {1, ..., n},
and F is the family of mutually avoidings sets of M .

▶ Theorem 5.1. Let A ⊆ E. Then, A ∈ F if and only if, for every e ∈ E, either A or A is
an interval in the symmetrized ordering σe associated to M/e.
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Sketch of proof. Geometrically, this reformulates mutual avoidance as a local property
around each vertex, based on lines formed with other vertices. See details in [8]. ◀

As a corollary, one obtains a new proof of Proposition 2.5, since the family F can be
viewed as an intersection of symmetric-crossing families. Then, the next theorem gives a new
perspective on the decomposition tree, by expressing it as a crossing-free tree representation.
Figures 3 and 4 show these two related tree representations for the example of Figure 2.

▶ Theorem 5.2. The canonical tree decomposition of M is obtained by decorating the nodes
of the crossing-free representation of F (in particular, the underlying trees are the same).

Sketch of proof. Since F is symmetric-crossing by Proposition 2.5, F has a crossing-free
representation with tree TC by Theorem 3.2. One has to relate this setting to Definition 2.4.

In the tree TC , the leaves are in bijection with E.
Let x be a node of this tree and let E1, ..., Ek be the subsets of leaves given by the
subtrees T1, ..., Tk obtained by removing x. To each node x we associate an oriented
matroid M(x) defined on a set E′ such that E′ ∩ Ei = ei for all 1 ≤ i ≤ k, and we show
that the choice of the representative elements ei ∈ Ei does not affect the resulting M(x).
We show that x cannot be of type Complete. Furthermore, we show that if x is of type
Circular or Prime then M(x) is convex or indecomposable, respectively.
We show that two nodes that are adjacent in TC cannot both be decorated by convex
oriented matroids.
A subset A of E is in F if and only if there is a node x such that A is a union of the Ei’s
of x and the restriction of (A, A) to E′ is mutually avoiding in M(E′).

With those claims, we have shown that TC decorated by the oriented matroids M(x) exactly
corresponds to the canonical tree decomposition of Definition 2.4. ◀

▶ Theorem 5.3. The family F can be computed in time O(n3) and has size O(n2). It implies
that we can compute the canonical tree decomposition of M in time O(n4).

Sketch of proof. Since the number of intervals of any σe is O(n2), F has size O(n2). We can
show that computing any σe can be done in time O(n · log(n)) hence the set of intervals of
any σe can be computed in time O(n2) which implies that we can compute F in time O(n3).
We can compute the crossing-free representation of F as follows. First, we compute the set
of crossing-free elements of F . This can be done in time O(n4) since F has size O(n2). Then,
we sort those sets by inclusion to obtain the shape of the tree. This can be done in time
O(n2) since there is O(n) crossing-free elements. Lastly, for every node x, we can test if its
associated oriented matroid is convex in time O(n3). If it is, then we can find an associated
circular ordering in time O(n · log(n)). By marking every node by their type or decorating it
by its corresponding oriented matroid, we obtain either the crossing-free representation of F
or the canonical tree decomposition of M . The total computation time is O(n4). ◀

The above method is fairly easy to compute. The computation time can be improved
using [10] (precisely Theorem 2, Corollary 1, Property 4, and part of the proof of Theorem 8).

▶ Theorem 5.4. We can compute the canonical tree decomposition of M in time O(n3).

Acknowledgments. We wish to thank Christophe Paul and Hugo Jacob for useful discussions.
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Abstract
Valleys are objects central to computing Continuous Dynamic Time Warping for polygonal curves.
We study how the choice of the underlying distance function impacts existence and properties of
valleys. In particular, we show that not all metrics guarantee their existence but that all seminorm-
induced pseudometrics do. The metric that is induced by the vector space’s equipped norm even
admits a constructive characterisation of valleys especially suited for use in CDTW algorithms.

1 Introduction and Preliminaries

Continuous Dynamic Time Warping (CDTW) has been employed in approaches to measuring
the similarity of polygonal curves robustly to outliers and sampling rates [4, 5]. A polygonal
curve P in a normed vector space (R2, ∥ · ∥) is represented by a point sequence ⟨p0, . . . , pn⟩
with n ∈ N and pi ̸= pi−1 for i ∈ {1, . . . , n}. Its arc length is ∥P∥ :=

∑n
i=1 ∥pi −pi−1∥ and we

denote its arc length parametrisation by P∥·∥ : [0, ∥P∥] → R2. Given polygonal curves P,Q,
the considered CDTW definition under norm ∥ · ∥ and distance function d : R2 × R2 → R≥0
goes back to the work in [6, Chapter 6] and can be stated as follows [5, Lemma 1]:

cdtw∥·∥,d(P,Q) := inf
γ∈Ψ∥·∥(P,Q)

∫ ∥P ∥+∥Q∥

0
d(P∥·∥(γ1(z)), Q∥·∥(γ2(z))) dz.

The set Ψ∥·∥(P,Q) contains monotone paths γ : [0, ∥P∥ + ∥Q∥] → [0, ∥P∥] × [0, ∥Q∥] through
the joint parameter space of P,Q such that there are piecewise continuously differentiable
parametrisations fP , fQ : [0, ∥P∥+∥Q∥] → R2 of P,Q respectively with γ1(z) =

∫ z

0 ∥f ′
P (y)∥ dy

and γ2(z) =
∫ z

0 ∥f ′
Q(y)∥ dy as well as γ′

1(z) + γ′
2(z) = 1 for all z ∈ [0, ∥P∥ + ∥Q∥].

Computing CDTW is therefore equivalent to finding an optimal monotone path through
this parameter space, similar to other continuous measures such as the Fréchet distance [1].
It is in fact closely related to computing a lexicographically optimal Fréchet path [11], which
minimises a profile function of attained distance values lexicographically. The profile measures
for how long every distance value is exceeded, so CDTW minimises the area under the profile.
Optimal CDTW paths depend on the norm ∥ · ∥ that scales the parameter space, the distance
function d that endows the parameter space with a terrain, and the regularisation constraint
that limits the speed of paths. The above definition regularises the sum of component speeds
to equal 1, so that γ(z) = (x1, x2)T for any path γ ∈ Ψ∥·∥(P,Q) implies x1 + x2 = z.

Intuitively, the points in parameter space reachable after duration exactly z are the ones
on the line of slope −1 through γ(z). Since CDTW realises steepest monotone descent in the
terrain [11], optimal subpaths for a pair of curve segments may be induced by minima of d on
lines of slope −1. Exact CDTW algorithms utilise this by dividing the parameter space into
cells that correspond to segment pairs, computing costs of optimal subpaths within each cell,
and propagating optimum cost functions through the grid of cells in a dynamic program [5, 3].
This requires that optimal subpaths and optimum cost functions are well-behaved. We are
interested in the former and thus focus on polygonal segments, i.e. curves P,Q with n = 1
segment each, while extending the domains of their arc length parametrisations to R.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
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Minima relevant for optimal paths are then attained on a line, dubbed valley [5], under
previously used distance functions, namely the 2-metric [10] and the 1-metric [3, Chapter 5].
We study existence and properties of valleys more generally, motivated by the aforementioned
optimum cost functions being unwieldy under e.g. the 2-metric. Exact CDTW computations
seem prone to algebraic issues in such cases [5, 9]. Hence, admitting a large class of distance
functions can enable approximations of a desired function through more well-behaved ones.
To ensure that the (Lebesgue) integral from the CDTW definition exists as a value in [0,∞],
we consider lower semicontinuous functions, i.e. functions whose sublevel sets are closed in
the topology given by the equipped norm ∥ · ∥. For a real number µ ∈ R the µ-sublevel set of
a real-valued function f : dom(f) → R is defined as S≤µ(f) := {x ∈ dom(f) | f(x) ≤ µ}.

▶ Definition 1.1 ([3, Definition 2]). Let d : R2 ×R2 → R≥0 be lower semicontinuous. A valley
under d for polygonal segments P,Q is a line ℓ ⊆ R2 not of slope −1 such that for almost
every (x1, x2)T ∈ ℓ the function y 7→ d(P∥·∥(x1 + y), Q∥·∥(x2 − y)) is non-increasing on R≤0
and non-decreasing on R≥0. If all P,Q have a valley under d, then d guarantees valleys.

In the following, we say for short that a point (x1, x2)T ∈ R2 with the above property has
the monotonicity property. It suffices that almost every point of a valley ℓ has this property,
i.e. we may exclude a null subset of ℓ, because this has no effect on the CDTW integral.

Furthermore, we make use of gauge functions given by their 1-sublevel sets: Let K ⊆ R2 be
absorbing and balanced (i.e. both

⋃{λK | λ ∈ R} = R2 and
⋃{λK | λ ∈ [−1, 1]} ⊆ K hold)

as well as closed. The gauge of K is GK : R2 → R≥0 with GK(x) := inf{λ ∈ R≥0 | x ∈ λK},
which satisfies S≤µ(GK) = µK for all µ ∈ R≥0 by the assumptions on K. If K is moreover
convex (i.e. λx+ (1 − λ)x′ ∈ K holds for all pairs x, x′ ∈ K and all λ ∈ [0, 1]), then GK is a
seminorm and induces a pseudometric, and if K is additionally bounded with regard to ∥ · ∥,
then GK is a norm and induces a metric. Conversely, every norm or seminorm is the gauge
of its absorbing, balanced, convex and closed 1-sublevel set. (See [12, pp. 39–40].) We define
sets M(p) := {(x1, x2)T ∈ R2 | (|x1|p + |x2|p)1/p ≤ 1}, so that GM(p) is the p-norm for p ≥ 1
and thus induces the p-metric (p′, q′) 7→ GM(p)(p′ − q′) on R2. For p ∈ (0, 1) the gauge GM(p)
is not a norm, but in this case the function (p′, q′) 7→ [GM(p)(p′ − q′)]p is a metric on R2.

2 Basic Insights and Examples

The monotonicity property for valleys from Definition 1.1 is based on quasiconvex functions,
i.e. functions whose sublevel sets are convex (cf. [2, Section 3.4]). As quasiconvexity is invariant
to compositions with non-decreasing functions, this also applies to distance functions that
guarantee valleys. Furthermore, every such distance function d satisfies a necessary condition
that is related to joint quasiconvexity. For continuous d it even implies joint quasiconvexity
if d is also translation-invariant, i.e. if d(p, q) = d(p+ t, q + t) holds for all p, q, t ∈ R2.

▶ Theorem 2.1. Let d : R2 × R2 → R≥0 be lower semicontinuous and guarantee valleys.
1. If f : R≥0 → R≥0 is lower semicontinuous and non-decreasing, f ◦ d guarantees valleys.
2. Provided d is continuous at (p, q), (p′, q′) ∈ S≤µ(d) with ∥p′ − p∥ = ∥q′ − q∥ and µ ∈ R≥0,

the µ-sublevel set S≤µ(d) of d contains (λp+ (1 − λ)p′, λq + (1 − λ)q′) for all λ ∈ [0, 1].
3. In case d is continuous everywhere and translation-invariant, d is jointly quasiconvex.

Proof. 1. Because f is non-decreasing, we have d(p, q) ≤ d(p′, q′) ⇔ f(d(p, q)) ≤ f(d(p′, q′))
for (p, q), (p′, q′) ∈ R2 ×R2. A valley under d for polygonal segments P,Q thus is a valley
under f ◦ d too, as f cannot invalidate the monotonicity property from Definition 1.1.
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2. Consider polygonal segments P := ⟨p, p′⟩ and Q := ⟨q′, q⟩. It is (P∥·∥(0), Q∥·∥(z0)) = (p, q)
and (P∥·∥(z0), Q∥·∥(0)) = (p′, q′) with z0 := ∥p′ − p∥ = ∥q′ − q∥. Further let ℓ be a valley
under d for P,Q and let (x1, x2)T ∈ ℓ with x1 + x2 = z0. If the monotonicity property
from Definition 1.1 holds for (x1, x2)T, the values attained by d between (p, q) and (p′, q′)
are either at first non-increasing and then non-decreasing or only one of the two, which
gives d(λp+ (1 − λ)p′, λq + (1 − λ)q′) ≤ max{d(p, q), d(p′, q′)} ≤ µ for all λ ∈ [0, 1].
Otherwise, the continuity of d at (p, q), (p′, q′) implies that for each ε > 0 there is a δε > 0
with d(P∥·∥(δ), q) ≤ µ+ ε and d(P∥·∥(z0 + δ), q′) ≤ µ+ ε for all δ ∈ [−δε, δε]. Also, the
monotonicity property holds for almost every (x′

1, x
′
2)T ∈ ℓ with x′

1 + x′
2 − z0 ∈ [−δε, δε],

so all points between (p, q) and (p′, q′) are limit points of S≤µ+ε(d). They are therefore
contained in

⋂{S≤µ+ε(d) | ε > 0} = S≤µ(d) since the sublevel sets of d are closed.
3. Let (p, q), (p′, q′) ∈ S≤µ(d) with µ ∈ R≥0, and let x := p− q, x′ := p′ − q′, t := (x′ − x)/2.

The translation-invariance of d gives d(x′,0) = d(p′, q′) and d(x+ t, t) = d(p, q). Now (2)
applies to (x+ t, t), (x′,0) ∈ S≤µ(d) due to ∥x′ − (x+ t)∥ = ∥t∥ = ∥0 − t∥ and continuity
of d, so d(λ(x+ t) + (1 −λ)x′, λt) ≤ µ holds for all λ ∈ [0, 1]. Using translation-invariance
again yields (λp+ (1 − λ)p′, λq + (1 − λ)q′) ∈ S≤µ(d) for all λ ∈ [0, 1] as desired. ◀

▶ Example 2.2. The 2-metric guarantees valleys of slope 1 if ∥ · ∥ is the 2-norm [10] since
the terrain in parameter space then consists of ellipses that have axes of slope 1 and −1 [11],
see Figure 1a for P := ⟨(1, 0)T, (−23, 7)T⟩ and Q := ⟨(0, 0)T, (0, 25)T⟩. Its non-metric square
(p, q) 7→ [GM(2)(p− q)]2 works too by Theorem 2.1 (1) and has already been used [4].

The translation-invariant metric (p, q) 7→ [GM(1/2)(p− q)]1/2 does not guarantee valleys
because it violates the condition from Theorem 2.1 (3), see Figure 1b. Meanwhile, the metric
(p, q) 7→ GM(1)(p) + GM(1)(q) for p ≠ q and (p, p) 7→ 0, which is an absolutely homogeneous
post office metric, satisfies the condition from Theorem 2.1 (2) but does not guarantee valleys:
Relevant minima for P,Q are not attained on a single line, as indicated in Figure 1c.

(a) 2-metric induced by 2-norm (b) Metric based on star set (c) PO metric based on 1-norm

Figure 1 Terrains under some distance functions in a parameter space with ∥ · ∥ = GM(2)

Intuitively, a distance function d is rather straightforward if it is translation-invariant
because then all information is given by x 7→ d(x,0). In Figure 1a and 1b we observe that
the terrain consists of affinely transformed versions of M(2) and M(1/2) respectively.

▶ Lemma 2.3 ([1, Lemma 3]). Let d : R2 ×R2 → R≥0 be translation-invariant and let P,Q be
polygonal segments. Define φ : R2 → R2,∆: R2 → R≥0 by φ(x1, x2) := P∥·∥(x1) −Q∥·∥(x2)
and ∆(x1, x2) := d(P∥·∥(x1), Q∥·∥(x2)). If P,Q are not parallel, then the affine map φ has an
affine inverse φ−1 : R2 → R2 with S≤µ(∆) = φ−1(S≤µ(x 7→ d(x,0))) for all µ ∈ R≥0. Else,
both φ and ∆ are constant either on every line of slope 1 or on every line of slope −1.
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The condition from Theorem 2.1 (3) is achievable via gauges of absorbing, convex sets.
A natural way to always obtain valleys is making the sets balanced too, giving seminorms.
This result generalises those for the 2-metric [10, Lemma 4] and 1-metric [3, Lemma 24].

▶ Theorem 2.4. Every seminorm-induced pseudometric d on R2 guarantees valleys.

Proof. There is a balanced, convex and closed K ⊆ R2 with d(p, q) = GK(p− q) for p, q ∈ R2.
Let P,Q be polygonal segments and let φ : R2 → R2 be as in Lemma 2.3, so for (x1, x2)T ∈ R2

it is d(P∥·∥(x1), Q∥·∥(x2)) = GK(φ(x1, x2)). Assume first that P,Q are parallel. Then GK ◦φ
is constant either on every line of slope 1 or −1 by Lemma 2.3. In the latter case every line ℓ
not of slope −1 is a valley for P,Q by Definition 1.1. In the former case it suffices to discern
one point that has the monotonicity property, so consider L := {φ(y,−y) | y ∈ R}.

For each µ ∈ R≥0 we have S≤µ(GK) = µK and L ∩ µK is either empty or the line L or a
bounded segment/point on L due to the properties of K. If L∩µK ∈ {∅, L} for all µ ∈ R≥0,
then GK is constant on L and every (y,−y)T with y ∈ R has the monotonicity property. Else,
there is a µ ∈ R≥0 with L∩µK non-empty and bounded, so GK attains its minimum on L by
continuity at φ(y0,−y0) for a y0 ∈ R. Together with GK being quasiconvex on L, as L ∩ µK
is convex for all µ ∈ R≥0, it follows that the monotonicity property from Definition 1.1 holds
for (y0,−y0)T and ℓ := {(y0 + λ,−y0 + λ)T | λ ∈ R} is a valley of slope 1 for P,Q.

Now assume that P,Q are not parallel. Lemma 2.3 says S≤µ(GK ◦φ) = φ−1(S≤µ(GK)) =
φ−1(µK) for all µ ∈ R≥0. Since φ−1 is a bijective affine map, the set K ′ := φ−1(K)−φ−1(0)
inherits the properties of K and further satisfies µK ′ = φ−1(µK) − φ−1(0) for all µ ∈ R≥0,
so GK′ = (GK ◦ φ) ◦ (x 7→ x+ φ−1(0)). Given any line Lz := {(x1, x2)T ∈ R2 | x1 + x2 = z}
of slope −1 with z ∈ R, examining Lz ∩ µK ′ for µ ∈ R≥0 works as above and yields x0 ∈ Lz

such that the monotonicity property from Definition 1.1 holds for x0 + φ−1(0).
It remains to show that there is a valley ℓ containing such points. Each line of slope −1

except L0 is of the form λL1 = Lλ for a λ ∈ R \ {0}, so z = 1 gives λx0 ∈ Lλ for all λ ∈ R.
Furthermore, we have GK′(λx) = |λ|GK′(x) for all x ∈ L1 and all λ ∈ R since K ′ is balanced.
Thus, every point in ℓ := {λx0 + φ−1(0) | λ ∈ R} has the monotonicity property, similar to
the proof of Theorem 2.1 (1) applied to fλ(y) := |λ|y for λ ∈ R \ {0} and y ∈ R≥0. ◀

▶ Example 2.5. The 1-metric guarantees valleys that can have negative slope if ∥ · ∥ is the
2-norm [3], see Figure 2a for P := ⟨(0.2, 0.1)T, (−19, 5.7)T⟩ and Q := ⟨(0.1, 0.2)T, (13,−17)T⟩.
By Theorem 2.4 the pseudometric (p, q) 7→ G[−1,1]×R(p−q) works too, see Figure 2b, but note
that being seminorm-induced or translation-invariant is not necessary: The post office metric
(p, q) 7→ GM(2)(p) + GM(2)(q) for p ̸= q and (p, p) 7→ 0 guarantees valleys, see Figure 2c.

(a) 1-metric induced by 1-norm (b) Pseudometric based on slab (c) PO metric based on 2-norm

Figure 2 Terrains under more distance functions in a parameter space with ∥ · ∥ = GM(2)



M. Buchin and J. E. Swiadek 72:5

3 Valleys under the Equipped Norm

Valleys of negative slope are not so easy to deal with in CDTW algorithms since monotone
paths cannot travel along them [3, Section 5.5]. We show that the metric induced by the
equipped norm ∥ · ∥ fortunately guarantees valleys of positive slope. To this end, we identify
the valley-relevant points from the proof of Theorem 2.4 that minimise a gauge on a line.
The next lemma utilises duality (cf. [2, Section 5.1.6]), but we give an elementary proof.

▶ Lemma 3.1. Let L = {x ∈ R2 | uT · x = z} be a line specified by u ∈ R2 \ {0} and z ∈ R.
The gauge GK : R2 → R≥0 of an absorbing, balanced, closed and bounded set K ⊆ R2 attains
its minimum on L at (z/z0)v0, where v0 ∈ arg max{uT · v | v ∈ K} and z0 := uT · v0.

Proof. First of all, we have (z/z0)v0 ∈ L because uT · (z/z0)v0 = z holds by definition of z0.
If z = 0, then (z/z0)v0 = 0 minimises the gauge GK . Otherwise, for all x ∈ L it is x ̸= 0 and
thus GK(x) > 0, as K is bounded, as well as x/GK(x) ∈ K, as K is closed. This yields

GK(x) = |z|
|z| · GK(x) = |z|

|uT · x| · GK(x) = |z|
|uT · (x/GK(x))| ≥ |z|

|uT · v0| = |z|
|z0|

for all x ∈ L, where the inequality follows from v0 maximising v 7→ uT · v on K and thereby
also maximising v 7→ |uT · v| on K, as K is balanced. Furthermore, v0 ∈ K and K being
balanced also imply |z/z0| ≥ |z/z0|GK(v0) = GK((z/z0)v0), which completes the proof. ◀

(a) Minimising norm on a line

K

L

v0
µ0v0

u

0

(b) Identifying positive slope

K′

L1

v00

(c) Computing valley points

Figure 3 Characterisation of valleys under a norm with regular hexagons as sublevel sets

Geometrically, Lemma 3.1 can be interpreted as follows: Scale K by µ0 = |z/z0| ∈ R≥0
such that L is a supporting line of µ0K, i.e. L ∩ µ0K ̸= ∅ and µ0K is contained in a closed
half-plane given by L. The minimum of GK on L is attained on L ∩ µ0K, see Figure 3a.

▶ Theorem 3.2. The metric d induced by the equipped norm ∥ · ∥ on R2 guarantees valleys of
positive slope. Computing such a valley for polygonal segments P = ⟨p0, p1⟩ and Q = ⟨q0, q1⟩
reduces to Lemma 3.1 with K := S≤1(∥ · ∥) and u ⊥ (p1 − p0) if P,Q are parallel, or else
with K ′ := φ−1(K) − φ−1(0) and u′ := (1, 1)T, where φ : R2 → R2 is as in Lemma 2.3.

Proof. It is d(P∥·∥(x1), Q∥·∥(x2)) = ∥φ(x1, x2)∥ = GK(φ(x1, x2)) for (x1, x2)T ∈ R2. If P,Q
are parallel, the proof of Theorem 2.4 says that they have a valley of positive slope under d:
In case of opposite directions, every line not of slope −1 is a valley, while the codirectional
case yields a valley of slope 1 through (y0,−y0)T ∈ R2 such that GK attains its minimum on
L := {φ(y,−y) | y ∈ R} at φ(y0,−y0). It then is φ(y,−y) = 2y · p1−p0

∥p1−p0∥ + φ(0) for y ∈ R,
so Lemma 3.1 applies using a u ∈ R2 \ {0} with uT · (p1 − p0) = 0 and z := uT · φ(0).
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If P,Q are not parallel, the proof of Theorem 2.4 says that there is a valley through φ−1(0)
and x0 + φ−1(0) such that x0 ∈ L1 minimises GK′ on L1 := {(x1, x2)T ∈ R2 | x1 + x2 = 1}.
It is x0 = (1/z0)v0 with v0 ∈ arg max{(1, 1) · v | v ∈ K ′} and z0 := (1, 1) · v0 by Lemma 3.1,
meaning the goal is to find such a v0 with positive components. The affine map φ gives unit
vectors φ(±1, 0) − φ(0) = ± p1−p0

∥p1−p0∥ and φ(0,±1) − φ(0) = ∓ q1−q0
∥q1−q0∥ in the boundary of K,

so the boundary of K ′ contains (±1, 0)T and (0,±1)T. As K ′ is closed and convex, we have
L1 ∩R2

≥0 ⊆ {v ∈ K ′ | (1, 1) · v ≥ 1} ⊆ L1 ∪ (L1 ∩R2
≥0 + {(λ, λ)T | λ ∈ R≥0}) and obtain a v0

as desired, see Figure 3b. The latter inclusion is since supporting lines of the convex set K ′

through a boundary point (1, 0)T, (0, 1)T ∈ L1 are constrained by (0,±1)T, (±1, 0)T ∈ K ′. ◀

We can constructively apply this characterisation e.g. to norms that have polygons as
sublevel sets. Such norms generalise the 1-norm, which allows exact CDTW algorithms [3],
and can be used to approximate CDTW under the unwieldy 2-norm, as proposed in [5].

▶ Corollary 3.3. If K := S≤1(∥·∥) is a polygon with vertex sequence ⟨v1, . . . , vk⟩, the metric d
induced by ∥ · ∥ on R2 guarantees positively sloped valleys computable in time O(log(k)), or in
time O(1) given K = ψ(R) for a regular polygon R ⊆ R2 and a linear map ψ : R2 → R2.

Evaluating a polygonal norm via the approach in [8] and finding valleys via Theorem 3.2
are both possible through binary search on the vertices of the (necessarily convex) polygon [7],
as indicated in Figure 3c. If the polygon is regular, we can compute the result directly.

Acknowledgements. The authors thank André Schulz for a helpful discussion.
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Abstract
We consider intersection representations of graphs, in which every vertex is represented by a union
of k horizontal or vertical segments in the plane, with two vertices x and y being adjacent if and
only if at least one segment representing x intersects a segment from the representation of y.

We may further restrict the representations considered, by forbidding intersections between
parallel segments, or by forbidding intersections between the i-th segment in the representation of x

and the j-th segment in the representation of y unless i = j. This results in four types of graph
representations.

Each of these four types gives rise to a graph parameter defined as the smallest k for which a
graph G admits a representation of the given type. We describe how these parameters relate to each
other, and study their relationship to other known graph parameters.

1 Introduction

Interval graphs are one of the most fundamental graph classes. There are several natural
ways to generalize interval graphs to larger classes. One possibility are the k-interval
graphs [8, 6, 16], which are the intersection graphs in which each vertex is represented by
a union of up to k intervals, all belonging to the same line. A closely related class are the
k-track graphs [8, 9], whose representation is obtained by first choosing k parallel lines,
and then associating to each vertex a union of k intervals, with each of the k chosen lines
containing one of the intervals. Clearly, a graph has a k-track representation if and only if it
is a union of k interval graphs on a common vertex set.

These representations give rise to two graph parameters, known as the interval number
interval(G) and the track number track(G), defined as the smallest k such that G has a
k-interval representation or a k-track representation, respectively. These two parameters
differ for some bipartite graphs [17] and some planar graphs [14, 7, 4].

A different way to generalize interval graphs is to consider segments in two directions, say
horizontal and vertical. This yields the class of 2-DIR graphs [12], which are the intersection
graphs of horizontal and vertical segments. We say that a 2-DIR representation is pure if
no two parallel segments in it intersect, so each intersection involves one horizontal and
one vertical segment. The class of graphs that admit such a representation is denoted by
PURE-2-DIR [12] (also known as grid intersection graphs [10]). Necessarily, all such graphs
are bipartite.

In this paper, we consider graphs that generalize 2-DIR and PURE-2-DIR in a similar
way as k-interval and k-track graphs generalize interval graphs. Specifically, we obtain
the following four types of intersection representations, which also naturally induce their
respective graph parameters.

▶ Definition 1.1 (Impure-line representation). An impure-k-line representation of a graph G =
(V, E) is a family of k-tuples of horizontal or vertical line segments R = {(R1(v), . . . , Rk(v)) : v ∈
V } such that {u, v} ∈ E ⇔ ∃ℓ, m ∈ {1, . . . , k} : Rℓ(u) ∩ Rm(v) ̸= ∅.
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▶ Definition 1.2 (Impure-tile representation). An impure-k-tile representation of a graph
G = (V, E) is an impure-k-line representation R = {(R1(v), . . . , Rk(v)) : v ∈ V } such that
∀u, v ∈ V : ∀ℓ, m ∈ {1, . . . , k} : ℓ ̸= m ⇒ Rℓ(u) ∩ Rm(v) = ∅.

▶ Definition 1.3 (Pure-line representation). A pure-k-line representation of a graph G = (V, E)
is an impure-k-line representation R = {(R1(v), . . . , Rk(v)) : v ∈ V } such that ∀u, v ∈
V, ∀ℓ, m ∈ {1, . . . , k}, if Rℓ(u)∩Rm(v) ̸= ∅, then precisely one of Rℓ(u), Rm(v) is a horizontal
line segment.

▶ Definition 1.4 (Pure-tile representation). A pure-k-tile representation of a graph G = (V, E)
is a pure-k-line representation R = {(R1(v), . . . , Rk(v)) : v ∈ V } such that ∀u, v ∈ V : ∀ℓ, m ∈
{1, . . . , k} : ℓ ̸= m ⇒ Rℓ(u) ∩ Rm(v) = ∅.

We remark that for a fixed k and a graph G on n vertices, the above representations
require only O(log n) bits per vertex, thus yielding an efficient implicit representation [11].

▶ Definition 1.5 (Parameters pure-tile, pure-line, impure-tile, impure-line). Given a graph G,
we define the following four parameters:

il(G) is the least k such that G has an impure-k-line representation,
it(G) is the least k such that G has an impure-k-tile representation,
pl(G) is the least k such that G has a pure-k-line representation,
pt(G) is the least k such that G has a pure-k-tile representation.

We will first focus on the relationships among these four parameters. Among other
results, we completely characterize the cases when one of the four parameters can be bounded
as a function of another. This is the topic of Section 2. Next, in Section 3, we present
results showing how these four parameters relate to other natural quantities, such as the
degeneracy, the maximum degree, the thickness, the arboricity or the number of vertices of
the represented graph.

Due to space constraints, we omit most of the proofs.

2 Bounds on our parameters

From the definitions, we directly obtain the following relationships between the four parame-
ters.

▶ Observation 2.1. For any graph G, pt(G) ≥ pl(G) ≥ il(G) and pt(G) ≥ it(G) ≥ il(G).

▶ Lemma 2.2. For any graph G, il(G) ≤ pl(G) ≤ 2 · il(G).

We also note that the constant 2 in the lemma is the best possible, as il(K3) = 1 because it
is an interval graph, but pl(K3) > 1 as by the characterization of pure-1-line graphs due to
Asinowski et al. [1], all graphs G with pl(G) = 1 must be bipartite which K3 is not.

By the previous results, we see that a graph class can fall into just four possible cases
based on the boundedness of the parameters. These are as follows.

(I) The four parameters il, it, pl, pt are all bounded.
(II) The parameters il, it, pl are bounded, while pt is unbounded.

(III) The parameters il, pl are bounded, while pt and it are unbounded.
(IV) The four parameters il, it, pl, pt are all unbounded.
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We call these types Type-I to Type-IV respectively. It is easy to observe that Type-I and
Type-IV classes exist. For a Type-I class, we may consider the class of graphs with maximum
degree 1, for which all the parameters are clearly equal to one. To obtain a Type-IV class, we
may consider any class with 2Θ(n2) graphs on n vertices, as having any parameter bounded
by a constant would imply that there are at most 2O(n log n) graphs on n vertices in the class,
as the representations require only O(n log n) bits.

Next, we exhibit Type-II and Type-III graph classes. For Type-II, we consider the class
of complete graphs.

▶ Lemma 2.3. Given a complete graph Kn on n ≥ 2 vertices, pt(Kn) = ⌈log2(n)⌉.

▶ Observation 2.4. Given a complete graph Kn on n ≥ 2 vertices, pl(Kn) ≤ 2.

The two results together with the facts that it(Kn) = 1, il(Kn) = 1 as all complete graphs
are interval graphs show that complete graphs indeed form a Type-II class. Moreover, we can
extend this to show that any Type-II class must have an unbounded clique number ω(G).

▶ Lemma 2.5. For any graph G, it(G) ≤ pt(G) ≤ ω(G) · it(G).

In fact, this also implies a characterization of Type-II classes.

▶ Corollary 2.6. If a class of graphs G has a bounded impure-tile parameter, then it is Type-II
if and only if its clique number is unbounded, and it is Type-I otherwise.

Having constructed a class of Type-II, we continue with exhibiting a class of Type-III. In
this case, we use the class of complete multipartite graphs.

▶ Lemma 2.7. For any K ≥ 3 there exists a complete multipartite graph GK such that
it(GK) > K and pl(GK) ≤ 2. In particular, the impure-tile parameter may be unbounded
while pure-line is bounded.

▶ Lemma 2.8. For any graph G with χ(G) ≥ 2, we have it(G) ≤ ⌈log2(χ(G))⌉ · (il(G))2.

Proof. We start by decomposing the graph G into ⌈log2(χ(G))⌉ bipartite graphs. Let φ be
a χ(G)-coloring of G. We split the complete graph Kχ(G) into ⌈log2(χ(G))⌉ bipartite graphs
H1, . . . , H⌈log2(χ(G))⌉ on vertices [χ(G)]. We then blow up each of the graphs Hi into a graph
Gi with the vertex set V (G) with two vertices u, v ∈ V (G) forming an edge in the graph Gi

if and only if {φ(u), φ(v)} ∈ E(Hi) and {u, v} ∈ E(G).
Next, we build an impure-k2-tile representation from an impure-k-line representation R

of a bipartite graph Gi partitioned into A∪̇B. For every pair (α, β) ∈ [k] × [k], we create a
tile that contains the representations Rα(u) for all u ∈ A and Rβ(v) for all v ∈ B.

Given an edge {u, v} with u ∈ A, v ∈ B, by definition there exists a pair of line segments
Ra(u), Rb(v) such that Ra(u)∩Rb(v) ̸= ∅. The edge is then realized by the intersection in the
tile corresponding to the pair (a, b). Moreover, every pair of vertices that is not connected by
an edge has no intersections between any two representing line segments in the impure-k-line
representation, and therefore we cannot create the edge in the impure-k2-tile representation.

Applying the construction on the ⌈log2(χ(G))⌉ bipartite graphs Gi yields the theorem. ◀

Similarly to Type-II classes, the lemma implies a characterization of Type-III classes.

▶ Corollary 2.9. If a class of graphs G has bounded impure-line parameter and bounded
clique number, then it is Type-III if and only if its chromatic number is unbounded, and it is
Type-I otherwise.
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3 Our parameters versus known parameters

Having defined new graph parameters, it is natural to relate these to the already known ones,
and we do precisely that.

3.1 Degeneracy and maximum degree
We start with degeneracy and maximum degree.

▶ Lemma 3.1. If G is a d-degenerate graph, then pt(G) ≤ d.

We can use the 2-factor theorem to obtain similar results to Lemma 3.1 for graphs with
bounded maximum degree in Theorem 3.3. If we restrict our attention to bipartite graphs,
we can improve the bound for pt(·) slightly in Theorem 3.2.

▶ Theorem 3.2. If G is a bipartite graph with maximum degree ∆, then pt(G) ≤ ⌈∆/2⌉.

▶ Theorem 3.3. If G is a graph with maximum degree ∆, then it(G) ≤ ⌈∆/2⌉ and pt(G) ≤
⌈(∆ + 1)/2⌉.

Note that already for ∆ = 3 the bounds in Theorems 3.2 and 3.3 are tight since, by an
argument dating back to Sinden [15], the subdivision of K3,3 is not a string graph and hence
also not a 2-DIR graph.

However, for larger ∆, we can no longer provide tight examples. This is because our
explicit constructions of graphs with large it(·) use Ramsey-type arguments, and the resulting
graphs tend to have high degrees.

We saw that bounded maximum degree implies bounded pt(·), and therefore for any ∆,
the class of all graphs with maximum degree at most ∆ is of Type I. On the other hand,
our next two results show that the weaker assumption of bounded chromatic number does
not imply the boundedness of any of our four parameters, since even the class of bipartite
graphs is of Type IV. The proof is constructive, using a Ramsey-type argument. Later, in
Theorem 3.10, we also give a nonconstructive counting argument yielding the same result.

▶ Theorem 3.4. For all d ≥ 2, there exists a bipartite graph Gd with it(G) ≥ d.

▶ Corollary 3.5. For all d ≥ 2, there exists a bipartite graph Gd with il(G) ≥ d.

We remark that Mustaţă and Pergel [13] showed that it is NP-hard to distinguish a
PURE-2-DIR graph from a graph which is not a string graph, even when the input graph has
degree bounded by 8. Therefore, any class of graphs “sandwiched” between PURE-2-DIR
and string graphs is NP-hard to recognize even on graphs of degree at most 8. In contrast,
Theorem 3.3 shows that such a hardness result cannot be extended to general impure-k-tile
graphs for k ≥ 4, or pure-k-tile graphs for k ≥ 5, since these classes already contain all the
graphs of degree at most 8.

3.2 Graph thickness, arboricity, interval and track numbers
We now relate our parameters to graph parameters which describe the decomposition of
the original graph into graphs from a restricted class. We start with graph thickness, the
minimum number of planar graphs the original graph can be decomposed to. By Lemma 3.1
and the fact that planar graphs are 5-degenerate, we know that for any planar G, pt(G) ≤ 5.
However, we can do even better by using better representations of bipartite planar graphs [3].
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▶ Theorem 3.6 (de Fraysseix, Ossona de Mendez, and Pach [3]). Any bipartite planar graph
is a contact intersection graph of horizontal and vertical line segments.

▶ Theorem 3.7. For any planar graph G, pt(G) ≤ 2.

Proof. By the four color theorem, let us have a 4-coloring φ : V (G) → {1, 2, 3, 4}. We
decompose the edges G into two bipartite graphs G1, G2 based on the coloring as follows:
G1 = (V (G), {e ∈ E(G) : φ[e] = {1, 3} ∨ φ[e] = {2, 4}}), G2 = (V (G), E(G) \ E(G1)).

By Theorem 3.6, both G1 and G2 are contact intersection graphs of horizontal and vertical
line segments. Therefore, G has a pure-2-tile representation. ◀

We also immediately notice that this is tight as there are graphs that require two tiles: in
particular, the complete graph on four vertices K4, which by Lemma 2.3 requires at least two
tiles. Moreover, this implies that for any G, pt(G) cannot be much larger than thickness(G).

▶ Corollary 3.8. For any graph G, pt(G) ≤ 2 · thickness(G).

However, it is known that the thickness of a complete bipartite graph Kn,n is ⌈ n2

4n−4 ⌉ [2],
and yet pt(Kn,n) = 1, so the two parameters can be far from each other in the other direction.

Similarly, we consider arboricity. There, it suffices to observe that every forest is 1-
degenerate, and thus, by Lemma 3.1, we have the following corollary.

▶ Corollary 3.9. For any graph G, pt(G) ≤ arboricity(G).

Again, the two parameters can be quite far from each other, and this can, again, be proved
using the complete bipartite graph Kn,n: every forest can cover at most 2n − 1 edges, and
there are in total n2 edges in the graph, thus arboricity(Kn,n) ≥ Ω(n), while pt(Kn,n) = 1.

Another decomposition parameter is the edge-chromatic number, which is equal to the
smallest number of matchings into which a graph can be decomposed. Since this parameter
is equal to ∆(G) or ∆(G) + 1, Theorem 3.3 shows that graphs of bounded edge-chromatic
number have bounded pt(·), while the converse does not hold, as shown by the example of
Kn,n.

Finally, we consider the interval and track numbers. These two parameters are incompara-
ble to pure-tile, as interval(Kn) = track(Kn) = 1 yet pt(Kn) = ⌈log2(n)⌉, while on the other
hand, pt(Kn,n) = 1 while track(Kn,n) ≥ interval(Kn,n) = ⌈ n+1

2 ⌉ by a result of Griggs [5].
It is also clear that it(G) ≤ track(G) and il(G) ≤ interval(G), which by Lemma 2.2

implies pl(G) ≤ 2 · interval(G) ≤ 2 · track(G).

3.3 Number of vertices
Finally, we show bounds on the parameters with respect to the number of vertices of the
graphs. We start with a lower bound, showing that there exist bipartite n-vertex graphs
with impure-line representations requiring Ω(n/ log n) lines using a counting argument.

▶ Theorem 3.10. There exists n0 ∈ N such that ∀n ≥ n0, there exists a bipartite graph G

with n vertices such that il(G) ∈ Ω( n
log n ).

This bound also holds for the three remaining parameters, as we showed the impure-line
parameter to be less than or equal to the remaining parameters.

Next, we complement this result with an upper bound, though a gap remains.

▶ Lemma 3.11. Every graph on n vertices has a pure-
⌈

n
2

⌉
-tile representation.

Again, this also holds for the three remaining types of representations, as a pure-tile
representation is the most restricted type of the four representations we consider.
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Abstract
In this paper, we study the problem of guarding an n-vertex orthogonal polygon P with unlimited-

vision sliding cameras that can move back and forth along an orthogonal line segment s. These
cameras can see a point p in the polygon P if and only if there exists a line segment completely in
P and containing p that is perpendicular to s. In this paper, we restrict camera placement to the
vertical edges of the polygon. So, each camera can move along a vertical edge of the polygon and
covers the interior part of the polygon, which is perpendicular to it. To solve the problem, we model
it as a graph and demonstrate that solving the vertex cover problem on this graph is equivalent to
solving our original problem. Although the vertex cover problem is NP-hard in general, we prove
that our graph is bipartite, allowing it to be solved in polynomial time.

1 Introduction

The art gallery problem is a well-known problem in computational geometry, and its goal
is to completely guard an interior part of a polygon [14]. Some variants of this problem
are NP-hard. For example, vertex guarding (where all guards lie on the vertices) and point
guarding (where each guard can be anywhere in the polygon) are NP-hard even for orthogonal
polygons [1, 13, 14]. Some limits on the number of guards have been found. For example, ⌊ n

3 ⌋
guards are sufficient and sometimes necessary to cover an arbitrary polygon. For orthogonal
polygons, at most ⌊ n

4 ⌋ guards are needed [14]. There are also many different approximation
algorithms for these problems, such as [7].
The problem of guarding orthogonal polygons with sliding cameras is a newer version of
the art gallery problem, initially introduced by Katz and Morgenstern in 2011 [11]. In this
version, each camera moves back and forth along an orthogonal line segment s and guards
the interior regions of the polygon that are perpendicular to s. The objective of the problem
is minimizing either the number of cameras or the total length of the segments along which
the cameras move. Later, a polynomial-time algorithm was proposed to minimize the total
length; however, so far, no polynomial-time algorithm has been developed for minimizing the
number of cameras.

Contributions. In this paper, we give an exact algorithm to solve the problem of guarding
an orthogonal polygon P with sliding cameras placed on the vertical edges of P . Our goal
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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is to minimize the number of cameras needed and, for this, we reduce it to a vertex cover
problem like [8]. Figure 1 shows the minimum number of cameras in four different versions of
the problem. In Figure 1(a) and Figure 1(b), both vertical and horizontal sliding cameras are
allowed, but in Figure 1(a) they can only be on the edges of the polygon, and in Figure 1(b)
they can be anywhere in the polygon. In Figure 1(c) and Figure 1(d), sliding cameras are
placed exclusively on the vertical or horizontal edges of the polygon.

Figure 1 An orthogonal polygon and the minimum number of sliding cameras to cover it in
different versions: (a) Sliding cameras can be placed vertically and horizontally on the edges of the
polygon. (b) Sliding cameras can be placed vertically and horizontally anywhere in the polygon. (c)
Sliding cameras can be placed on vertical edges of the polygon. (d) Sliding cameras can be placed
on horizontal edges of the polygon.

In the rest of the paper, we first review the relevant background in Section 2 and then
in Section 3, we describe the partitioning of the polygon and its representation as a graph.
Finally, in Section 4, we show that solving vertex cover problem in this graph is equivalent
to the solution of our problem.

2 Related works

Guarding with sliding cameras was first introduced by Katz and Morgenstern [11]. They have
worked on a special case of the problem and gave a polynomial time algorithm for solving it.
To do this, they transformed the problem into an equivalent problem by modeling it to a
chordal graph and finding the minimum number of cliques on this graph. For the general case
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of the problem where vertical and horizontal guards are allowed, they gave a 3-approximation
algorithm for x-monotone orthogonal polygons (A polygon P is x-monotone if every vertical
line intersects the polygon boundaries at most twice). At the end, they presented the problem
with the objective of minimizing the total length of the sliding cameras. This problem was
solved by Durocher and Mehrabi [8]. They have shown that it is solvable in polynomial time
by reducing it to the minimum weight vertex cover problem in bipartite graphs. This problem
is polynomial even for orthogonal polygons with holes, but for finding the minimum number
of sliding cameras in orthogonal polygons with holes, they have proved it is NP-hard. In 2014,
Durocher and Mehrabi [9] gave an approximation algorithm for finding the minimum number
of sliding cameras with 3.5 approximation factor and O(n 5

2 ) time order. Later, in 2017, they
found out that this factor was incorrect. Biedl et al. gave an O(1)-approximation algorithm
for the problem. Besides, for orthogonal polygons with holes, they proved that it is NP-hard
even for the case that only horizontal (vertical) cameras are allowed. Their algorithm works
for polygons with holes, too. In 2017, DeBerg et al. [7] presented a polynomial algorithm for
a special case where polygons are x-monotone. Moreover, their algorithm achieves O(n) time
complexity for orthogonal polygons whose dual graph, derived from vertical decomposition,
forms a path. Later, Bandyapadhyay and Basu Roy [3] have investigated approximation
algorithms for the problems of finding minimum number of horizontal sliding cameras and
minimum number of horizontal and vertical sliding cameras. For these problems, they proved
the existence of a PTAS algorithm using the local-search framework. Also, in the case
of horizontal sliding cameras, their proof is also valid for polygons with holes. In 2021,
Biedl and Mehrabi [4] investigated different models of guarding orthogonal polygons. They
showed that for each of the rectangular, staircase, periscope, and sliding cameras guarding,
if the orthogonal polygon is with bounded tree-width, the time order of their algorithm is
polynomial. Another form of the problem is k-transmitters sliding cameras problem. For
this problem, Biedl et al. [5] showed that finding the minimum number of sliding cameras in
any orthogonal polygon and for every k > 0 is NP-hard and gave an O(1)-approximation
algorithm for finding the minimum number of horizontal sliding cameras and the case in
which both horizontal and vertical sliding cameras are allowed.

3 Modeling the polygon as a graph

In our problem, we get an orthogonal polygon P as our input and want to place m sliding
cameras S = {s1, s2, ... sm} on some of vertical edges of this polygon which can cover the
entire interior part of P by moving on their edge ei. Depending on the edge, each camera
moves back and forth along it, covering the area to its right or left, which is inside the
polygon and perpendicular to it. The goal is to minimize m, which means minimizing the
number of cameras needed.

3.1 Partitioning the Polygon P

To solve our problem, we divide our polygon P into rectangular partitions through its reflex
vertices. To do this, use the same way as Katz and Morgenstern did in [11]. Extend the two
edges of P incident to every reflex vertex inward until they hit the boundaries of P . Figure 2
shows a polygon P and its reflex vertices. After extending its reflex vertices, the polygon
divided into several rectangles. The Set Rec(P ) represents these rectangles.

▶ Lemma 3.1. The number of rectangles created after partitioning the polygon P with n

vertices and r reflex vertices is O(n2).

EuroCG’25
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Figure 2 Partitioning of polygon P through its reflex vertices

Proof. As [12] showed, there are n−4
2 reflex vertices in each orthogonal polygon P . So, we

have O(n) reflex vertices. Furthermore, it was proven in [2] that the number of rectangles
created after partitioning through reflex vertices is at most r2 +r+1, which means O(n2). ◀

3.2 Construction of the graph GP

To construct the equivalent undirected graph GP for our problem, we utilize the sets E(P )
and Rec(P ). The set E(P ) represents the vertical edges of the polygon P , while the set
Rec(P ) as previously defined, denotes the rectangles formed after partitioning the polygon.
Each ei in E(P ) corresponds to a vertex in the graph GP . Thus, for each ei in E(P ), we
create a vertex vi in the graph GP . Therefore, graph GP has O(n) vertices. Now, two
vertices vi and vj are adjacent in GP if and only if their corresponding edges ei and ej in
P see a common rectangle R in Rec(P ). It is evident that each rectangle R in Rec(P ) is
visible from exactly two edges, ei and ej of P . In fact, based on the cameras’ field of view,
each rectangle is observed by one camera from above and one from below. As we traverse
each rectangle R in Rec(P ), if the edge between vi and vj of GP was inserted before, no
additional edge is added; otherwise, we insert an edge between these vertices.
Figure 3 shows a polygon P and the graph GP constructed from P .

▶ Observation 3.2. After constructing the graph GP , each rectangle in the set REC(P )
corresponds to an edge in GP . Since each rectangle can be covered by exactly two edges of P ,
and during the construction of graph GP , an edge is inserted between two vertices if their
corresponding edges in P see a common region; this means that every rectangle contributes
an edge to GP . On the other hand, there might be more than one common rectangle between
two edges of P ; in this case, an edge between two vertices of GP can represent more than
one rectangle of P .
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Figure 3 an orthogonal polygon P and its equivalence Graph GP in the unlimited-vision sliding
cameras problem

4 An algorithm for solving the problem of minimizing the number of
vertical sliding cameras

The Vertex Cover problem is generally NP-hard; however, it has been proven [6] that the
problem can be solved in polynomial time for bipartite graphs due to its equivalence to the
Maximum Matching problem. Therefore, we want to show that GP is a bipartite graph, and
by solving vertex cover, our problem is solved.

▶ Definition 4.1. For a given graph G = (V, E), the vertex cover problem is to find a subset
of its vertices V such that every edge in E has at least one endpoint in this subset [10].

After constructing the graph GP , we prove that solving vertex cover in graph GP is equal
to solving our problem and then show that graph GP is a bipartite graph.

▶ Theorem 4.2. The problem of guarding an orthogonal polygon P with the minimum number
of vertical sliding cameras placed on the edges of P reduces to the vertex cover problem in
graph GP

Proof. Let CG be any vertex cover of GP and let SP be a guarding of P . Now, we should
show CG is a minimum vertex cover of GP if and only if SP is an optimal guarding of P .
For the first part, suppose any vertex cover CG and we find a guarding SP of P by it. For
each edge (vi, vj) if vi is a vertex in CG we choose the edge ei of P . Otherwise, we choose ej

of P . Since at least one vertex of each edge in GP is in CG, by Observation 3.2 we conclude
that each rectangle of the polygon P is covered by at least one sliding camera. This shows
that the number of vertices in every CG is equal to the number of sliding cameras in SP . So,
the minimum vertex cover is equal to the minimum number of sliding cameras needed to
cover P .
For the second part, suppose any guarding SP in polygon P . Similar to the previous part we
find a vertex cover in GP . For each edge ei in the SP , choose the equivalent vertex vi in GP

and put it in the CG. We know that all the rectangles Rec(P ) are covered by SP and by the
Observation 3.2, we know that any edge in graph GP is equal to one or more rectangles of
polygon P . So, when all these rectangles are covered, all the edges of the graph GP have
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at least one incident vertex to it in the CG and CG is a vertex cover for GP . As a result,
guarding SP is a vertex cover of GP and the minimum number of cameras needed to cover
the polygon P is equal to the minimum vertex cover of GP . By these two parts, we conclude
that our reduction is correct and the theorem is proved. ◀

▶ Lemma 4.3. The graph GP , constructed from the polygon P , is bipartite.

Proof. We construct the graph by only vertical edges of the polygon P . There are two types
of vertical edges in the polygon P : Edges whose inferior region is inside the polygon and
edges whose superior region is inside the polygon. Two edges of the same type can’t see a
common area of the polygon. As a result, their equivalent vertices in the graph GP aren’t
adjacent. So, vertices of each type belong to one side of the bipartite graph. ◀

5 Conclusion and future work

In this paper, we introduced a special case of guarding with sliding cameras where each
camera moves back and forth through the edges of the polygon. We developed an exact
algorithm for solving the problem of minimizing the number of vertical cameras needed
to cover the polygon. To solve the problem, we used a reduction like [8] to the vertex
cover problem in bipartite graphs. We can extend our solution, with some modifications, to
the problem of guarding a polygon using the limited-vision version of sliding cameras. In
this version, a parameter l is provided as input, representing the maximum distance each
camera can cover. To solve the problem, we first determine whether the polygon can be
fully covered by these cameras. Then, if possible, we draw parallel lines at a distance of l

from the edges and extend them until they intersect the polygon’s boundaries. Finally, we
apply our algorithm to compute the minimum number of cameras required. However, in this
version, certain rectangular regions may be visible from only a single edge of the polygon.
As a result, those edges must be selected, which may lead to an increased in the number of
sliding cameras compared to the previous version. We are also working on the problem of
guarding orthogonal polygons using vertical and horizontal sliding cameras placed on the
edges. For another future work, we can study the problem of guarding an orthogonal polygon
using limited-vision sliding cameras that can be placed anywhere within the polygon. We
conjecture that this problem is NP-hard.
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Abstract
In a promise setting an algorithm utilizes the properties of a specified input domain to achieve a
higher efficiency. The domain of the input instance needs to be correct to exclude errors. In contrast,
a robust algorithm always terminates by either solving the given instance correctly or by reporting
the instance not to be in the domain. In case of geometric intersection graphs, robust algorithms
may use beneficial geometric properties. Hence, we are able to exclude input instances by identifying
forbidden substructures. In this work, we present a robust algorithm for finding triangles in general
disk graphs in linear time by considering planarity or crossing properties respectively.

1 Introduction

When considering algorithmic problems, we determine the running time in dependency of a
specific input. We can often observe that some input classes are easier to solve than others if
they have properties that simplify the given problem. We will refer to such input classes
as input domains. An algorithm tailored to a specific input domain utilizes the advantages
to gain efficiency. Algorithms in the so called promise setting are fault-prone if the input
does not belong to the expected domain, e.g. the algorithm returns a wrong result due to
false assumptions. However, it could be hard to test beforehand whether an input instance
belongs to the expected input domain. Robust algorithms circumvent these difficulties:

▶ Definition 1.1 (Raghavan and Spinrad [9]). A robust algorithm for a problem P on a
domain C solves P correctly, if the input is from C. If the input is not in C, the algorithm
may either produce a correct answer for P or report that the input is not in C.

In their work Raghavan and Spinrad [9] give a robust polynomial-time algorithm for the
Clique-problem in unit disk graphs. Recently, Klost and Mulzer [7] reconsidered the concept
of robust algorithms in the domain of intersection graphs. They present robust algorithms
for finding triangles and the unweighted girth, that is the length of the shortest cycle, in unit
disk graphs. They also give a robust algorithm for finding a triangle in a transmission graph.

Disk graphs are defined on a set S ⊆ R2 of n sites in the plane, where each site s ∈ S

has an associated radius rs. The disk graph D(S) on S is defined as D(S) = (S, E), where
E = {{s, t} | ∥st∥ ≤ rs + rt} with ∥st∥ being the Euclidean distance between the sites s and
t. This is equivalent to requesting that the disks defined by s and t intersect and thus the
graph is undirected.

Given an abstract undirected graph G = (V, E), we say that G is a disk graph, if there
exists a set of sites S, such that G = D(S). We say that the set S realizes the disk graph.
Graph G is called a unit disk graph if there is a realization with sites that all have the same
radius.

Klost and Mulzer also studied a directed variant of disk graph, called transmission graphs.
Here two sites are connected by a directed edge st if t lies in the disk defined by s. In this
paper we will however focus on disk graphs.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Determining if a given abstract graph is realizable as a disk graph is known to be
∃R-complete [5] and therefore testing beforehand if a given graph is a disk graph is not
feasible.

In this paper we will extend the recent results by a robust algorithm for finding triangles
and computing the unweighted girth in the domain of general disk graphs.

2 Preliminaries

We assume that the input is an abstract unweighted undirected graph G = (V, E), given in
an adjacency list representation. Throughout the paper, we will denote by n the number
of vertices and by m the number of edges of a given graph. Given a vertex v of a graph,
we denote by N(v) the set of vertices that are adjacent to v, and by deg(v) = |N(v)| the
degree of v. In the adjacency list representation, a set of k neighbors of v can be reported
in O(k) time, and testing if two vertices u and v are adjacent takes O(min(deg(v), deg(u)))
time. The girth of a graph G is the length of the shortest cycle in G.

In the proof below, it will be beneficial if all adjacency lists are sorted by a common
order. With a given order of vertices, we are able to produce sorted adjacency lists in linear
time with respect to vertices and edges.

▶ Lemma 2.1. Let G = (V, E) be an abstract graph in adjacency list representation and
let π be a total order on V . Assume that π is represented in a way, such that the vertices
can be iterated over in this order in linear time. Then we can generate a sorted copy of the
adjacency lists according to this order in O(n + m) time.

Proof. We iterate over V in the order of π. When visiting the ith vertex vi we pass through
its adjacency list. For each vertex u in the adjacency list of vi, we do the following: If we
encounter u for the first time, we store a new adjacency list l′

u for u and add vi as its only
vertex. However, if the adjacency list l′

u already exists, i.e. we have seen u before, we insert
vi to the end of l′

u.
We can iterate over the vertices in O(n) time. For each vertex we iterate over its adjacency

list once with constant running time for each entry. Thus, the algorithm takes O(n + m)
overall time.

With this procedure, we add a vertex vi to the end of the new adjacency lists l′ exactly
when it appears in π. Hence, a vertex vi is inserted after all vertices with index j < i and
before all vertices with index ℓ > i. The new adjacency lists now contain all adjacent vertices
in the desired order. ◀

There are several algorithms known which check in linear time if an abstract graph is
planar [1, 4]. These algorithms make use of Kuratowski’s theorem which states that a finite
graph is planar if and only if the graph does not contain a subgraph which is a subdivision
of K5 or K3,3 [8]. Such a subdivision is known as a Kuratowski subgraph.

A given geometric realization of a disk graph G naturally induces an embedding of the
graph into the plane. Let S be the sites realizing the graph. Then each vertex is embedded
at the coordinate of the corresponding site and the edges are embedded as the straight lines
between the sites. When it is clear from the context we will not differentiate between a
vertex and its site in a realization.

Throughout the paper, we will need some basic properties on disk graphs which are
originated from their geometry. The following result stated by KKMRSS [6] is a crucial
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Figure 1 If two edges intersect, at least three of the disks corresponding to their endpoints have
a common point.

ingredient for the correctness of our algorithms.1

▶ Lemma 2.2 (KKMRSS [6]). Let D(S) be a disk graph on a set of sites S that is not plane,
i.e., the embedding that represents each edge by a line segment between its endpoints has two
segments that cross in their relative interiors. Then, the associated disks of three of the sites
defining the edges intersect in a common point

The proof builds on the observation that two intersecting disks form a lens that has to be
intersected by at least one disk of a crossing edge, see Figure 1. For further details we refer
to the arXiv version of the work by KKMRSS [6]. By contraposition, we get the following
Corollary.

▶ Corollary 2.3. If a (unit) disk graph does not contain a triangle, then it is planar

Proof. The contraposition of Lemma 2.2 states that if the (unit) disk graph does not contain
a triangle, the embedding of any realization is plane. Thus, the graph is planar. ◀

3 Finding Triangles in General Disk Graphs

In their previous work, Klost and Mulzer [7] described a robust algorithm to find triangles in
unit disk graphs. Their algorithm makes use of the well known geometric property that unit
disk graphs with at least one vertex with degree larger than five contain a triangle that uses
this vertex. As often in intersection graph settings, the problem becomes more involved if we
allow the size of the objects to vary. In the case of general disk graphs the radii of the disks
may differ in size. Particularly, every star is a general disk graph (see Figure 2) and thus
the property used by Klost and Mulzer is not applicable for general disk graphs. However,
Corollary 2.3 holds for general disk graphs and can still be applied.

This is a similar situation to the geometric case considered by KKMRSS [6]. Similarly
to their algorithm, we consider the case where G is planar separately from the non-planar
case. As there are algorithms that find triangles and compute the girth in planar graphs
in linear time [2], the first case can easily be handled. For the non-planar case, we need an

1 Even though we cite the version of the lemma that is given by KKMRSS [6], let us mention that this
fact has been known for a long time (e.g., [3]), also in more general contexts such as intersection graphs
of pseudodisks (we would like to thank Shakhar Smorodinsky for pointing this out).
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Figure 2 Every star can be realizied as a general disk graph.

approach tailored to the robust setting for general disk graphs. Corollary 2.3 implies either
the existence of a triangle or the non-realizability as a disk graph. Our algorithm will make
use of the existence of a subgraph that is a Kuratowski subdivision. Let G be a non-planar
graph and GK = (VK , EK) be a subgraph of G that forms a Kuratowski subdivision. Let
GiK be the subgraph of G induced by VK . The correctness of the algorithm will depend on
the following lemma.

▶ Lemma 3.1. Let G be a non-planar disk graph, let GK = (VK , EK) ⊆ G be a Kuratowski
subdivision on G. Also let GiK be the induced subgraph of VK . Then there exists a triangle
in GiK that contains an edge of EK .

Proof. As G is a disk graph, there is a set S of sites realizing G. Consider the embedding
induced by S. As by definition GK is a non-planar subgraph of G, there is at least one pair
of crossing edges ei, ej ∈ EK in its straight line embedding induced by S. See Figure 3 for
an illustration. By Lemma 2.2, at least three of the vertices incident to ei and ej form a
triangle. This directly implies that one of the edges ei or ej is an edge of the triangle and
the statement follows. ◀

Lemma 3.1 is the main ingredient to solve the non-planar case in our robust algorithm. If
the graph is not planar, we will explicitly check for each edge of EK if it is part of a triangle.
Details are given in the following theorem.

▶ Theorem 3.2. There is a robust algorithm to find a triangle in a graph in the domain of
general disk graphs that runs in O(n + m) time.

Proof. The Algorithm In the first step of the algorithm we run a planarity test, e.g. Boyer
and Myrvold [1], on the graph G. If the test reports that the graph is planar, we run
the algorithm by Chang and Lu [2] to find the girth on planar graphs. We return the
triangle if the girth is three or the non-existence of a triangle otherwise.
If G is not planar, the planarity testing algorithm returns a Kuratowski subgraph
GK = (VK , EK) of G which we can examine. Note that even if we knew a pair of crossing
edges in some embedding of GK this pair might not form a triangle in a realization of
the disk graph. Thus, we need to explicitly check for all edges of GK if they are part
of a triangle. For this, note that the top-level array of the adjacency list representation
of G induces an ordering. We use this ordering to compute an ordered adjacency list
representation of G by applying Lemma 2.1. Let i be the index of v in the top level array.
Then we store this index with the vertex object of v during the sorting.
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vi

vi+1

vj

vj+1

Figure 3 There is a pair of crossing edges in the embedding of GK .

w

u

v

w

Figure 4 The vertices u, v form an edge in EK and have a common neighbor. Thus, the triangle
u, v, w is found. The green edges are edges in GiK .
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In order to test for triangles of the form described by Lemma 3.1, we iterate over all
edges {u, v} ∈ EK . Consider the adjacency lists of u and v. Traverse those lists in an
interleaved fashion, always progressing in the list in which the index stored with the
current vertex is smaller. If the same vertex w is found in both lists, stop and report the
triangle u, v, w, see Figure 4. Otherwise, if no such triangle was found after testing all
edges in EK , report that G is not a disk graph.

Correctness The correctness of the planar case follows from the previous algorithms [6]. If a
triangle is reported in the non-planar case, it was explicitly checked that all edges are
present in G and thus it is valid. On the other hand, if no edge e ∈ EK of the Kuratowski
subdivision is part of a triangle, then by Lemma 3.1 G cannot be a disk graph.

Running Time The running time of the planarity test of Boyer and Myrvold, as well as the
running time for finding the girth in a planar graph are in O(n) [1, 2]. Computing the
sorted adjacency lists takes O(n + m) time by Lemma 2.1. Each vertex of GK has degree
at most four. Thus, the adjacency list of each vertex is considered O(1) times, when
explicitly checking all edges in EK . The procedure described above for finding a common
vertex in two adjacency lists takes time proportional to their length. Hence, the overall
time spent on traversing adjacency lists is O(m). The stated running time of O(n + m)
for our algorithm follows. ◀

The robust algorithm for computing the girth in the domain of general disk graphs
directly follows from Theorem 3.2. In the planar case, we compute the girth as before but
return the value even if it is more than three. In the non-planar case, there has to be a
triangle and the girth is 3 or the input graph is not a disk graph. Thus, we do the same as
in Theorem 3.2 except for when we find a triangle, we return 3 and not the triangle itself.

▶ Corollary 3.3. There is a robust algorithm to compute the girth of a graph in the domain
of general disk graphs that runs in O(n + m) time.

4 Conclusion

We showed that a clever use of Kuratowski subdivisions leads to a robust linear time algorithm
for finding triangles and computing the girth in the domain of general disk graph. It would
be interesting to see if there are properties of general disk graphs and transmission graphs
that allow sublinear running times similar to the unit disk graph algorithm by Klost and
Mulzer [7]. We believe that this is just the beginning of a systematic study of efficient robust
algorithms for abstract representations of geometric intersection graphs. For example, we
think that our results can be generalized to intersection graphs of more general objects, such
as pseudodisks or homothets of a single fat convex object.
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Abstract
Pseudoline arrangements are fundamental objects in discrete and computational geometry, and
different works have tackled the problem of improving the known bounds on the number of simple
arrangements of n pseudolines over the past decades. The lower bound in particular has seen two
successive improvements in recent years (Dumitrescu and Mandal in 2020 and Cortés Kühnast et
al. in 2024). Here we focus on the upper bound, and show that for large enough n, there are at
most 20.6496n2 different simple arrangements of n pseudolines. This follows a series of incremental
improvements starting with work by Knuth in 1992 showing a bound of roughly 20.7925n2

, then a
bound of 20.6975n2 by Felsner in 1997, and finally the previous best known bound of 20.6572n2 by
Felsner and Valtr in 2011. The improved bound presented here follows from a simple argument to
combine the approach of this latter work with the use of the Zone Theorem.

1 Introduction

An arrangement of pseudolines in the Euclidean plane is a finite set of n simple curves
extending to infinity in both directions such that every two curves intersect at exactly one
point where they cross. They have been the subject of numerous works, the earliest of which
going back to at least the 1920’s [13]. We refer the reader to the corresponding chapter of
the Handbook [15, Chapt. 5] for a thorough overview of the subject.

We will always assume pseudoline arrangements are simple, meaning that no three
pseudolines intersect at a common point. Following [6], we will consider our arrangements
to be marked1, meaning that they come with a distinguished unbounded cell called the
north-cell (the unique cell lying on the other side of all pseudolines is called the south-cell).
Two pseudoline arrangements are isomorphic if one can be mapped to the other one by an
orientation preserving homeomorphism of the plane which preserves the north-cell.

Wiring diagrams. One particularly nice way of drawing (in our case simple) pseudoline
arrangements, introduced by Goodman [8] is through wiring diagrams. In a wiring diagram,
the n pseudolines are constrained to lie on n horizontal lines (or “wires”), except around
points where they cross another pseudoline and move to a neighboring wire. Figure 1 shows
an example of an arbitrarily drawn pseudoline arrangement next to a realization of the same
arrangement as a wiring diagram.

Number of pseudoline arrangements. It is known that the number Bn of non-isomorphic
arrangements of n pseudolines is 2Θ(n2) but the leading hidden constant in the exponent is
not known. Let c− = lim infn→∞

lg Bn

n2 and c+ = lim supn→∞
lg Bn

n2 (throughout the paper,

1 Note that the final bound we obtain here applies similarly to unmarked arrangements or arrangements
in the projective plane, as these differences only affect lower order factors.
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Figure 1 An arbitrarily drawn pseudoline arrangement (left) and the same arrangement drawn
as a wiring diagram (right). In both cases, the north-cell is marked by a star.

we use lg to denote the logarithm in base 2). It is in fact an open question whether c− = c+,
i.e. whether the limit of lg Bn

n2 exists. The first bound on c− was given by Goodman and
Pollak in the 1980’s [9] who showed c− ≥ 1/8. This was improved in the 1990’s to c− ≥ 1/6
by Knuth [10], who also showed c+ < 0.79249 and conjectured c+ ≤ 0.5. The upper bound
was then improved by Felsner [5] to c+ < 0.6975 and finally to c+ < 0.6572 in 2011 by
Felsner and Valtr [6] who also showed c− ≥ 0.1887. The lower bound saw some recent
additional improvements. In 2020, Dumitrescu and Mandal [4] showed c− > 0.2083. In
2024, Cortés Kühnast, Felsner and Scheucher [12] and Dallant [2] independently discovered
similar methods to improve the previous construction, which resulted in a merged paper [11]
showing the currently best known bound of c− > 0.2721.

Figure 2 A pseudoline arrangement and its associated directed acyclic dual graph.

Cutpaths and upper bound. Consider the directed acyclic graph which is dual to the
wiring diagram, with edges oriented from north to south (see Figure 2). A path from the
north-cell to the south-cell in the graph is called a cutpath of the arrangement. Informally,
the set of all cutpaths represents all combinatorially distinct ways one can insert a new
pseudoline in the pseudoline arrangement. The approach of Felsner and Valtr for the upper
bound, as did that of Knuth earlier, relies on bounding the quantity γn, defined as the
maximum number of cutpaths an arrangement of n pseudolines can have. As shared in a
remark by Knuth [10, p. 97], an argument by Bern shows that one can use the sharpest
version of the Zone Theorem to show that γn ≤ O(2.711n), yielding the bound c+ < 0.7194.
Knuth also conjectured that the “bubblesort arrangements” of size n, which (in a slightly
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different setting than the one presented here) have n2n−2 cutpaths, maximize this number.2
If true, this would yield c+ ≤ 0.5. Felsner and Valtr show γn ≤ O(2.487n) without using
the Zone Theorem, resulting in the previously best known bound of c+ < 0.6572. They also
report that a construction by Ondřej Bílka shows γn ≥ Ω(2.076n), thus disproving Knuth’s
conjecture on the maximum number of cutpaths.

We use a simple argument to combine their method with the use of the Zone Theorem,
thus improving the upper bound on the number of cutpaths to roughly γn ≤ O(2.461n),
in turn resulting in c+ < 0.6496. The argument, given in the next section, results in a
bound expressed as the maximum of a certain function over some domain. We then explain
how to obtain an upper bound on this function through a branch and bound through linear
relaxation based approach, resulting in our final bound. We also describe in the full version
of this paper [3] a family of arrangements showing γn ≥ Ω(2.083n), a slight improvement on
the construction by Bílka.

2 Improved upper bound on the number of pseudoline arrangements

We start by giving a brief overview of the approach of Felsner and Valtr [6] to bound the
maximum possible number γn of cutpaths in an arrangement of n pseudolines. Using the
fact that Bn+1 ≤ γn · Bn, this then yields a bound on Bn by induction.

Consider an arrangement A of n pseudolines represented as a wiring diagram, together
with a cutpath p traversing A from the north cell to the south cell. The path of p can be
described by choosing for each cell it reaches, which pseudoline bounding the cell from below
it crosses to exit the cell. We classify these exits into different categories. Consider a cell f

with d exits (i.e. d pseudolines bounding it from below), which we label 1, 2, . . . , d from left
to right. If d = 1, we call the single existing exit the unique exit of f . Otherwise, we call
exit 1 the left exit of f and exit d the right exit of f . All other exits are called middle exits
of f .

The following fact was proven by Knuth.

▶ Lemma 2.1 ([10]). Any pseudoline in A can appear at most once as a middle exit of a
cell visited by p.

If the cutpath crosses k pseudolines as a middle exit and u as a unique exit, one can thus
ecode it by choosing the k pseudolines the cutpath will cross as a middle exit, and fixing
some binary string βp of length n − k − u. Any time a cell is reached, we check if it has
a unique exit or if one of the middle exits is among the k chosen, and we take that exit if
this is the case. If it is not the case (which happens at most n − k − u times), we consume
one entry of βp to choose whether we take the left or right exit. This encoding shows that
for any fixed k, the number of cutpaths taking k middle exits and u unique exits is at most(

n
k

)
2n−k−u.
This bound can be further refined by analyzing the repartition of middle exits among

visited cells more carefully, showing that the number of cutpaths taking k middle exits and
u unique exits is at most (

n − u

k

) (
n

n − u

)k

2n−k−u.

2 Knuth verified this to be true for n ≤ 9. However, in the setting of the present paper, this is not true
even for small n, where the “odd-even sort arrangements” maximize this number at least up to n = 10
(note that in Knuth’s setting, these also have n2n−2 cutpaths). Thanks to Günter Rote for verifying
this.

EuroCG’25



76:4 Improved Bound on the Number of Pseudoline Arrangements via the Zone Theorem

Here we have encoded the cutpath by describing its course from the north-cell to the
south-cell, but one can also choose to encode it in the other direction, by rotating the
whole plane by 180 degrees and describing its course from the south-cell to the north-cell.
The crucial observation made by Felsner and Valtr is that any middle exit in the original
description corresponds to a unique exit in the rotated description (and similarly any middle
exit in the rotated description corresponds to a unique exit in the original description).
Felsner and Valtr exploit the refined bound, together with the freedom to choose in which
direction to encode a cutpath, to show their best bound of roughly γn ≤ 4n · 2.487n.

Improving the upper bound.

In order to improve the upper bound, we will pay closer attention to the total number of
middle exits among all cells visited by p. Let Γ(m, k, u, m′, k′, u′) denote the set of cutpaths
of A such that when viewed from the north-cell to the south-cell

the total number of middle exits taken is k,
the total number of unique exits taken is u,
the total number of middle exits among cells visited (including those which were not
taken) is m,

and when viewed from the south-cell to the north-cell
the total number of middle exits taken is k′,
the total number of unique exits taken is u′,
the total number of middle exits among cells visited (including those which were not
taken) is m′,

Stated more precisely, the bound shown by Felsner and Valtr is the following3.

▶ Lemma 2.2 ([6]). For all m, k, u, m′, k′, u′ such that k ≤ m and k ≤ n − u, we have

|Γ(m, k, u, m′, k′, u′)| ≤
(

n − u

k

) (
m

n − u

)k

2n−k−u.

By symmetry we also have that for k′ ≤ m′ and k′ ≤ n − u′,

|Γ(m, k, u, m′, k′, u′)| ≤
(

n − u′

k′

) (
m′

n − u′

)k′

2n−k′−u′
.

Note that the conditions k ≤ m and k ≤ n−u (and similarly for k′ ≤ m′ and k′ ≤ n−u′)
always hold, as a cutpath cannot take more middle exits than there are such exits, and a
taken exit cannot be both a middle and a unique exit simultaneously. The correspondence
between middle exits and unique exits in the rotated arrangement implies k ≤ u′ and k′ ≤ u.
Lemma 2.1 implies m ≤ n and m′ ≤ n.

In order to get a tighter grip on m and m′, our simple idea is to complement the use of
Lemma 2.1 to bound them separately with the use of (the tight version of) the Zone Theorem
to bound them conjointly (one could obtain the same bound we obtain here without using
Lemma 2.1 at all, but its use makes some of the arguments simpler). Call zone of a pseudoline

3 Felsner and Valtr state the bound only for the case n − u ≤ m. However, their proof easily carries over
to the case n − u > m by replacing the partitions of [n] into n − u subsets they consider in their proof
with colorings of [n] using n − u colors. Alternatively, one can notice that the almost immediate upper
bound of

(
m
k

)
2n−u−k is less than the bound stated in the lemma when n − u > m, as shown in the full

version of this paper [3].
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the set of cells supported by that pseudoline, and call complexity of the zone the sum of the
number of edges over all the cells in the zone (an edge may be counted twice if it appears
in two different cells of the zone). Then the following holds.

▶ Theorem 2.3 (Zone Theorem [1, 14]). In an arrangement of n + 1 pseudolines, the com-
plexity of the zone of any given pseudoline is at most 9.5n − 3.

In the full version of this paper [3], we use these constraints and a procedure based on
linear programming and branch-and-bound, to show that γn ≤ n6 · 2α·n where α < 1.2992.
This together with Bn+1 ≤ γnBn yields our final bound.

▶ Theorem 2.4. For large enough n, the number Bn of simple arrangements of n pseudolines
is at most 20.6496n2 .

Proof. Let n0 be an integer such that for all n ≥ n0, γn ≤ 2α·n, where α < 1.2992. For any
n ≥ n0, we thus have Bn+1 ≤ 2α·nBn. By induction, it follows that

Bn+1 ≤ 2α·(n0+(n0+1)+...n)Bn0 ≤ 2α
(n−n0+1)(n0+n)

2 Bn0 .

As α < 1.2992 this last expression is at most 20.6496n2 for large enough n. ◀

In the full version [3] we also provide a construction showing the following.

▶ Theorem 2.5. For any n > 0, there exists an arrangement of n pseudolines with Ω(2.083n)
cutpaths.

3 A potential avenue for improvements

In our upper bound on Bn, we have exploited the leading constant of 9.5 in the tight Zone
Theorem. While this constant can not be improved in general, we note that we do not need
the full power of this theorem in our proof. Indeed, by appropriately choosing the order in
which we encode the pseudolines, it is enough for our purpose to know that in any pseudoline
arrangement, at least one of the lines has a small zone complexity (as opposed to all of the
lines having at most a certain zone complexity). This would lead to an additional term of
order Θ(n lg n) in the length (in bits) of the encoding, but this is negligible in front of the
leading term of order Θ(n2). In this light, we propose the two following conjectures (the
second being a weaker consequence of the first).

▶ Conjecture 1. Let L be an arrangement of n pseudolines. Then the average of the zone
complexities of the pseudolines in L is at most 9n + O(1).

▶ Conjecture 2. Let L be an arrangement of n pseudolines. Then there is at least one
pseudoline in L whose zone complexity is at most 9n + O(1).

The question of improving the average zone complexity was previously raised by Zer-
bib [16] (without proposing an explicit constant), who showed that a weaker statement
implied by such an improvement holds true. Note that we cannot hope for a better constant
than 9 in our conjectures, as one can construct even straight line arrangements meeting this
bound (for example by taking all lines supporting the edges of a regular convex (2k+1)-gon).
If either conjecture holds true, our method would give an upper bound of Bn < 20.6074n2

for large enough n. We note in passing that a confirmation of Conjecture 1 could also for
example replace the use of the Zone Theorem in the work of Goaoc and Welzl [7]. This would
improve the upper bound on the variance of the number of extreme points of a uniformly
random labeled n-point order type from 3 to 2 + o(1).
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Abstract
We study the fractional Helly number of families of sets in Rd where every intersection between t

members of the family has its Betti numbers bounded from above by a function of t. Although the
Radon number of such families may not be bounded, we show that their fractional Helly number
is d + 1. To achieve this, we introduce graded analogues of the Radon and Helly numbers. This
generalizes previously known fractional Helly theorems.

Related Version arXiv:2411.18605

1 Introduction

The well-known theorem of Helly [3] states that the intersection of all members of a finite
family of convex sets in Rd is nonempty if and only if every d + 1 members of the family
intersect. We say that the family of all convex sets in Rd has Helly number d + 1. Here, we
are interested in yet another parameter that arises when studying families of convex sets:
the fractional Helly number of an infinite family F . It is the smallest integer s such that
for every finite subfamily F ′ ⊂ F , if an α-fraction of the s-tuples of F ′ intersect, then some
βF (α)|F ′| members of F ′ intersect. In the case of the family of convex sets in Rd, it is d + 1
[7]. The fractional Helly number seems more robust than the Helly number. For instance,
Matoušek proved [9] that the family AB,d := {P ≤ 0}P ∈RB [X1,...,Xd] has a fractional Helly
number of d + 1, even though the Helly number of this family is unbounded.

Kalai and Meshulam conjectured a fractional Helly theorem that generalizes Matoušek’s
result. Before presenting it, we introduce the (hth) homological shatter function ([6], see [1]),
which describes the maximal topological complexity of intersections among increasingly many
sets. It is defined as

ϕ
(h)
F :





N → N ∪ {∞}
k 7→ sup

{
β̃i(

⋂
F ∈G

F,Z2) | G ⊂ F , |G| ≤ k, 0 ≤ i ≤ h

}
,

where β̃i(X,Z2) denotes the i-th reduced Betti number with coefficients in Z2 of the
topological space X. We can now state the following combination of two conjectures by
Kalai and Meshulam ([6, Conjectures 6 and 7], see [1, Conjecture 1.9 and 1.10]):

▶ Conjecture 1.1 (Kalai and Meshulam, [6]). For every (possibly infinite) family F of sets
in Rd with ϕ

(d)
F growing at most polynomially, the fractional Helly number of F is at most

d + 1.

Notice that this conjecture implies Matoušek’s result. Indeed, the Milnor-Thom theorem [10,
Theorem 3] states that ϕ

(h)
AB,d

(k) ≤ (1 + Bk)d.
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Goaoc, Holmsen, and Patáková [1, Corollary 1.3] proved a weaker version of the conjecture,
where the (⌈d/2⌉th) homological shatter function ϕ

(⌈d/2⌉)
F is bounded by a constant instead

of being a polynomial. In this case, we can define the (hth) homological complexity of F as:

HCh(F) := sup
k∈N

ϕ
(h)
F (k).

Contributions
Here, we prove that results used by Goaoc et al. [1] can be combined to prove a new theorem
that brings us a step closer to Conjecture 1.1.

▶ Theorem 1.2. For every integers b, d ≥ 0 and α ∈ (0, 1), there exists a nonstationary
function Ψd,b : N → N such that: If F is a family of subsets of Rd satisfying ϕ

(⌈ d
2 ⌉)

F ≤ Ψd,b,
then F has a fractional Helly number of at most d + 1.

Unfortunately, despite being nonstationary, the functions Ψb,d are far from having a
polynomial growth; they are somewhere between the inverse Ackermann function and the
iterated logarithm (log∗).

A convenient method for adapting the proof of Goaoc et al. is to introduce graded
analogues of the standard parameters of F as a convexity space. This new framework enables
us to directly apply their results rather than transposing each proof. These graded parameters
may also be of independent interest.

2 Standard parameters

In order to prove Theorem 1.2, let us recall the main results used by Goaoc et al. We first
need to define the notion of F-convex hull. Given a family F on a ground set X, we define
the F-convex hull of a set P ⊂ X, denoted by convF (P ), as the intersection between all the
members of F containing P . In particular, this allows us to define four parameters.

The Radon number r(F) of a family F , denoted by r(F), is the smallest integer r such
that every set S ⊂ X of cardinality r can be split into two nonempty disjoint parts
S = P1 ⊔ P2 satisfying convF (P1) ∩ convF (P2) ̸= ∅.
The Helly number of a family F , denoted by h(F), is the smallest integer h with the
following property: If in a finite subfamily S ⊂ F , every h′ ≤ h members of S intersect
(we say that S forms a h-clique), then all members of S intersect. If no such h exists, we
set h(F) = ∞.
The k-th colorful Helly number of a family F , denoted by chk(F), is the smallest number
of colors m ≥ k such that for every coloring of a subfamily F ′ ⊂ F with m colors, if every
subfamily that contains one element of each color forms a k-clique, then at least one color
class itself forms a k-clique.1
The k-th fractional Helly number of a family F , denoted by fhk(F) is the smallest integer
s such that there exists a function βF : (0, 1) → (0, 1) with the following property: For
every finite subfamily F ′ ⊂ F , whenever a fraction α of the s-tuples of F ′ forms a k-clique,
a subset G of F ′ of size βF (α)|F ′| forms a k-clique. When k = ∞, a k-clique is a subset
where the intersection among all its elements is nonempty: fh(F) := fh∞(F) defines the
regular fractional Helly number.

1 When k = ∞, it does not define the regular colorful Helly number. However, when k = h(F), it does.
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Notice that when h(F) ≤ k, fhk(F) coincides with the fractional Helly number of F .

Several relations hold between such parameters for every family2. Levi’s inequality [8]
states that h(F) ≤ r(F) − 1. More recently, Holmsen and Lee [4, Theorem 1.2] proved that
the k-th fractional Helly number is bounded from above by the k-th colorful Helly number,
which in turn is bounded from above by a function m(·) of the Radon number [5, Lemma 2.3]:

fhk(F) ≤ chk(F) for any k ∈ N, (1)
chk(F) ≤ max (m (r(F)) , k) if h(F) ≤ k, with m(·) defined by [5, Lemma 2.3], (2)

When the ground set is Rd, Goaoc et al. [2] first proved that a function of the homological
complexity and the dimension bounds the Helly number from above. Patáková [11] later
improved the result to prove that it also bounds the Radon number from above:

h(F) < r(F) ≤ r
(

HC(⌈ d
2 ⌉)(F), d

)
with r(·, ·) defined by [11, Theorem 2.1]. (3)

Combined with Inequalities (2) and (1), it implies that a finite homological complexity
ensures a finite fractional Helly number [11, Theorem 2.3]. Goaoc et al. [1, Corollary 1.3]
later improved the result; a finite homological complexity actually ensures a fractional Helly
number of at most d + 1.

3 Graded parameters

The homological shatter function can be viewed as a graded analogue of the homological
complexity, in the sense that it is equal to:

ϕ
(h)
F (t) = sup

F ′⊂F
|F ′|=t

HCh(F ′).

We can similarly define the t-th graded Radon, Helly, and k-colorful Helly numbers of the
family F as:

r(t)(F) := sup
F ′⊂F
|F ′|≤t

r(F ′), h(t)(F) := sup
F ′⊂F
|F ′|≤t

h(F ′), ch(t)
k (F) := sup

F ′⊂F
|F ′|≤t

chk(F ′).

3.1 Relations in the graded realm
These graded numbers follow the same relations as their ungraded analogues; we can consider
all subfamilies of size t and apply the known relations between the ungraded numbers. We
get the following relation by applying Inequality (2):

ch(t)
k (F) ≤ max

(
m
(

r(t)(F)
)

, k
)

if h(t)(F) ≤ k. (4)

When the ground set of F is Rd, applying Inequality (3) also yields:

h(t)(F) < r(t)(F) ≤ r
(

ϕ
(⌈ d

2 ⌉)
F (t), d

)
. (5)

2 The relations were initially proved for convexity spaces, but Patáková [11] mentioned they also hold for
families of sets. We can also adapt the definitions of graded parameters to consider only parameters of
convexity spaces.
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Naively transposing Inequality (1) using the graded formalism does not seem relevant.
However, upon closer inspection of Holmsen’s result [4, Theorem 1.2], it turns out that it
states a more general inequality, providing the first bridge between the graded and ungraded
parameters:

fhk(F) ≤ ch(kℓ)
k (F) if ch(kℓ)

k (F) ≤ ℓ and k < ℓ. (6)

Indeed, for every integers k < ℓ, having ℓ′ := ch(kℓ)
k (F) ≤ ℓ means that some patterns of

fixed size kℓ′ (called the complete ℓ′-tuples of missing edges [5, §3]) are forbidden in the
hypergraph of k-intersections. This is the only property needed to ensure that fhk(F) ≤ ℓ′.

If we want to end up with a fractional Helly number rather than just a k-fractional Helly
number, we need the parameter k to be greater than h(F); in particular, we need h(F) to
be finite. Fortunately, we can relate the growth of the graded Helly numbers to the Helly
number: Graded Helly numbers must either grow fast or be stationary.

▶ Lemma 3.1. If h(t)(F) < t for all t > t0, then h(F) ≤ t0.

Proof. Notice that we have h(t)(F) > h(t−1)(F) if and only if h(t)(F) = t. Thus, the
assumption implies that the sequence h(t)(F) is stationary starting from t0. Since
h(t)(F) −−−→

t→∞
h(F), it follows that h(F) = h(t0)(F) ≤ t0. ◀

3.2 Wrapping up the relations

We have all the analogues of the relations needed for the proof. We first combine Inequality (5)
with Inequality (4):

ch(t)
k (F) ≤ m

(
r
(

ϕ
(⌈ d

2 ⌉)
F (t), d

))
if h(t)(F) ≤ k ≤ m

(
r
(

ϕ
(⌈ d

2 ⌉)
F (t), d

))
. (7)

We can then combine Inequality (6) with Inequality (7): If there exist k, ℓ such that

m
(

r
(

ϕ
(⌈ d

2 ⌉)
F (kℓ), d

))
≤ ℓ and h(kℓ)(F) ≤ k < ℓ, (8)

then fhk(F) ≤ m
(

r
(

ϕ
(⌈ d

2 ⌉)
F (kℓ), d

))
.

We now relate the Helly number with the homological shatter function. We can check
that, by combining Equation (5) and Lemma 3.1, for any b0 ≥ 0, if the family satisfies

∀b′ ≥ b0, ϕ
(⌈ d

2 ⌉)
F (r(b′ + 1, d)) ≤ b′, (9)

then h(F) < r(b0, d). Indeed, it ensures that for any t ∈ {r(b′, d), . . . , r(b′ +1, d)}, r(t)(F) ≤ t

since r and ϕ
(⌈ d

2 ⌉)
F are non-decreasing.

Let us assume that the condition (9) is satisfied for some b0. It remains to find the right
values for k, ℓ that satisfy Condition (8). As previously mentioned, we want to set k ≥ h(F),
say k = r(b0, d). Satisfying Condition (8) comes down to looking for a value ℓ > k such that:

m
(

r
(

ϕ
(⌈ d

2 ⌉)
F (ℓr(b0, d)), d

))
≤ ℓ. (10)
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3.3 Definition of the function Ψd,b0

To summarize conditions (9) and (10), we introduce a nonstationary function Ψd,b0 : N → N
that satisfies Condition (9) and Ψd,b0(m(r(b0, d))r(b0, d)) ≤ b0. We can check that any
function bounded from above by such a Ψd,b0 satisfies Conditions (9) and (10) with ℓ =
m(r(b0, d)) (since the functions m and r are non-decreasing).

To make such a function explicit, we inverse Rd : b′ 7→ r(b′ + 1, d) by defining S : N → N
as S(x) = max{b′ ∈ N | x ≥ r(b′ + 1, d)}. Next, we define Ψd,b0 : N → N as follows:

Ψd,b0(t) =
{

b0 if r(b0, d) ≤ t ≤ m(r(b0, d))r(b0, d)
S(t) if t > m(r(b0, d))r(b0, d)

.

Note that the function S is defined as the inverse of the rapidly growing function Rd. Patáková
[11] does not specify an upper bound, but the function r seems to be (very roughly) bounded
from above by a function in E5 in the Grzegorczyk hierarchy. Consequently, the best growth
we can currently hope for S, and thus for Ψd,b, is only marginal: S is somewhere between
the inverse Ackermann function and the iterated logarithm (log∗).

4 Proof of the theorem

We can finally prove Theorem 1.2.

Proof. Let F a family of subsets of Rd satisfying ϕ
(⌈ d

2 ⌉)
F ≤ Ψd,b0 .

– The function ϕ
(⌈ d

2 ⌉)
F satisfies Condition (10) for k = r(b0, d) and ℓ = m(r(b0, d)), ensuring

that fhk(F) ≤ m
(

r
(

ϕ
(⌈ d

2 ⌉)
F (kℓ), d

))
< ∞.

– The function ϕ
(⌈ d

2 ⌉)
F satisfies Condition (9), ensuring that h(F) ≤ r(b0, d) = k.

Since k ≥ h(F), we get fh(F) = fhk(F) < ∞.

We conclude with a direct consequence of Goaoc et al.’s theorem [1, Theorem 1.2]: if a
family G with ground set Rd with a finite homological shatter function has a finite fractional
Helly number, then this number is at most d + 1. ◀

Note that even if the topology of the ground set (in our case, Rd) sets the parameter d,
the parameter b0 may vary. For a given ϕ

(⌈ d
2 ⌉)

F , we only need to find one value of b0 such that
ϕ

(⌈ d
2 ⌉)

F ≤ Ψd,b0 to apply the theorem. This condition becomes less restrictive as b0 increases.

5 Example of families with a given homological shatter function

The homological shatter function of a family is always non-decreasing. It turns out that all
non-decreasing function can be realized as the homological shatter function of some family.

▶ Lemma 5.1. For any non-decreasing function f : N → N, and for every h ≥ 0 and
d ≥ h + 2, there exists a family of sets F in Rd such that ϕ

(h)
F = f .

Proof. Consider countably many disjoint filled boxes in Rd. For i ≥ d − h, define a family
Fi := {F

(i)
1 , . . . , F

(i)
i } as follows. (For i < d − h, we can adapt the construction.) Place f(i)

disjoint (d − h − 1)-dimensional polytopes with i facets inside the i-th box, and label the
facets of each polytope from 1 to i.

EuroCG’25



77:6 A fractional Helly theorem

Define the set F
(i)
k as the complement of all facets labeled k within the box. The

intersection of all members of Fi is the complement of the boundaries of these polytopes
inside the box. By Alexander’s duality, the h-th Betti number of this intersection is

β̃h

( ⋂

F ∈Fi

F,Z2

)
= f(i).

Moreover, for any strict subfamily F ′
i ⊊ Fi, we have β̃h′

(⋂
F ∈F ′

i
F,Z2

)
= 0 for all h′ ≤ h.

In fact, the only subfamilies of F :=
⋃

i∈N Fi whose intersection has a nonzero h′-th Betti
number for some h′ ≤ h are precisely the families Fi. It follows that

ϕ
(h)
F (t) = sup

{
β̃h

( ⋂

F ∈Fi

F,Z2

)
| #Fi ≤ t

}
= f(t),

since f is non-decreasing. ◀

For every d > 3, the integer h = ⌈ d
2 ⌉ satisfies d ≥ h + 2; the family obtained from

Lemma 5.1 satisfies the conditions of Theorem 1.2 despite not satisfying the conditions of [1,
Corollary 1.3]. Naturally, we do not need to apply Theorem 1.2 to bound the fractional Helly
number of this family; its nerve complex is a disjoint union of simplices, thus the fractional
Helly theorem for convex sets in R can be applied.

Acknowledgments. The author would like to thank Xavier Goaoc for his guidance
during the research process, Niloufar Fuladi for her valuable feedback on the writing and the
reviewers for their helpful comments.

References
1 Xavier Goaoc, Andreas F. Holmsen, and Zuzana Patáková. Intersection patterns in spaces

with a forbidden homological minor, 2024. arXiv:2103.09286.
2 Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner. Bounding

Helly numbers via Betti numbers. In A Journey Through Discrete Mathematics: A Tribute
to Jiří Matoušek, pages 407–447. Springer International Publishing, Cham, 2017. doi:
10.1007/978-3-319-44479-6_17.

3 Eduard Helly. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten.
Monatshefte für Mathematik und Physik, 37:281–302, 1930.

4 Andreas F. Holmsen. Large cliques in hypergraphs with forbidden substructures.
Combinatorica, 40(4):527–537, Aug 2020. doi:10.1007/s00493-019-4169-y.

5 Andreas F. Holmsen and Donggyu Lee. Radon numbers and the fractional Helly
theorem. Israel Journal of Mathematics, 241(1):433–447, Mar 2021. doi:10.1007/
s11856-021-2102-8.

6 Gil Kalai. Combinatorial expectations from commutative algebra. In I. Peeva anv V. Welker,
editor, Combinatorial Commutative Algebra, volume 1(3), pages 1729–1734. Oberwolfach
Reports, 2004. URL: https://api.semanticscholar.org/CorpusID:85558093.

7 Meir Katchalski and Andy Liu. A problem of geometry in Rn. Proceedings of the American
Mathematical Society, 75(2):284–288, 1979.

8 Friedrich W. Levi. On Helly’s theorem and the axioms of convexity. Journal of the
Indian Mathematical Society, 15:65–76, 1951. URL: https://api.semanticscholar.org/
CorpusID:125497683.

9 Jirí Matoušek. Bounded VC-dimension implies a fractional Helly theorem. Discrete &
Computational Geometry, 31:251–255, 2004.



Marguerite Bin 77:7

10 John Milnor. On the Betti numbers of real varieties. Proceedings of the American
Mathematical Society, 15(2):275–280, 1964.

11 Zuzana Patáková. Bounding Radon number via Betti numbers. International Mathematics
Research Notices, 04 2024. doi:10.1093/imrn/rnae056.

EuroCG’25



Visualization of Event Graphs for Train Schedules
Johann Hartleb1, Marie Schmidt2, Samuel Wolf2, and
Alexander Wolff2

1 DB InfraGO AG, Germany
johann.hartleb@deutschebahn.com

2 Universität Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

Abstract
Software that is used to compute or adjust train schedules is based on so-called event graphs. The
vertices of such a graph correspond to events; each event is associated with a point in time, a location,
and a train. A train line corresponds to a sequence of events (ordered by time) that are associated
with the same train. The event graph has a directed edge from an earlier to a later event if they are
consecutive along a train line. Events that occur at the same location do not occur at the same time.

In this paper, we present a way to visualize such graphs, namely time-space diagrams. A
time-space diagram is a straight-line drawing of the event graph with the additional constraint that
all vertices that belong to the same location lie on the same horizontal line and that the x-coordinate
of each vertex is given by its point in time. Hence, it remains to determine the y-coordinates of the
locations. A good drawing of a time-space diagram supports users (or software developers) when
creating (software for computing) train schedules.

To enhance readability, we aim to minimize the number of turns in time-space diagrams. To
this end, we establish a connection between this problem and Maximum Betweenness. Then we
develop exact reduction rules to reduce the instance size. We also propose a parameterized algorithm
and devise a heuristic that we evaluate experimentally on a real-world dataset.

Related Version Full version: https://arxiv.org/abs/2503.01808

1 Introduction

Train schedules are subject to constant changes due to interferences such as temporary
infrastructure malfunctions or congestions due to high traffic volume. As a consequence,
train schedules must be adjusted in real-time to remedy the disturbances via rerouting and
other means. In recent years, the automation of this process has gained track. DB InfraGO
AG, a subsidiary of Deutsche Bahn AG, is developing approaches based on a so-called event
graph [5] as an underlying structure that encodes the necessary information to (re-)compute a
train schedule. An event graph models trains running on specific routes on an infrastructure
via events. For the further automation and for real-time human intervention, it is important
that the event graph can be easily read by humans. For this purpose, we propose a drawing
style and algorithms that aim to produce comprehensible drawings of the event graph.

▶ Definition 1 (Event Graph). An event graph E is a directed graph. Let V (E) denote the
vertex set of E . Each vertex v of E , called event, is associated with a location ℓ(v), a positive
integer train(v), and a point of time t(v) when the event is scheduled. For two different
events u and w, if t(u) = t(w), then train(u) ̸= train(w) and ℓ(u) ̸= ℓ(w). There is an arc
(u, w) in E if (i) train(u) = train(w), (ii) t(u) < t(w), and (iii) there is no event v with
train(v) = train(u) and t(u) < t(v) < t(w).

For a train z, we call the sequence v1, . . . , vj of all events with train(v1) = · · · = train(vj) = z

ordered by t(·) the train line of train z. We propose to visualize event graphs as follows.
41st European Workshop on Computational Geometry, Liblice, Czech Republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
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Figure 1 (a) Two different time-space diagrams of the same event graph E with locations {1, . . . , 6}.
(b) The location graph of E ; the colored paths are the train lines, the gray numbers the weights.

▶ Definition 2 (Time-Space Diagram). Let E be an event graph, let Y = |ℓ(V (E))|, and
let y : ℓ(V (E)) → {1, 2, . . . , Y } be a bijection. The time-space diagram induced by y is the
straight-line drawing of E in the plane where event v is mapped to the point (t(v), y(ℓ(v)).

In a time-space diagram (see Figure 1a for two examples), we call y(p) the level of location p.
Given a drawing Γ of an event graph E and three consecutive events of a train line in E
with pairwise distinct locations p, q, r, we say that there is a turn in Γ if the level of q is
smaller/larger than the levels of p and r.1 Experiments suggest that minimizing a classical
graph drawing objective, the number of crossings, often does not yield comprehensible
drawings. Instead, minimizing the number of turns in a drawing seems to be a promising
objective, as Figure 2 illustrates. Therefore, we consider the following problem.

▶ Problem 3. Let E be an event graph. Find a time-space diagram Γ of E that minimizes
the number of turns along the train lines in Γ.

Figure 2 Two time-space diagrams of the same event graph. Left: A crossing-minimal drawing
with zero crossings (and 71 turns). Right: A turn-minimal drawing with one turn (and five crossings).

Note that the numbers of turns in a time-space diagram is determined solely by the
function y, which represents an ordering of the locations. Therefore, Problem 3 is closely
related to the following problem.

1 Note that this definition does not consider the case where consecutive events have the same location.
It is easy to see, however, that we can normalize the graph such that consecutive events always have
different locations without changing the optimal solution of Problem 3.
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▶ Problem 4 (Maximum Betweenness). Let S be a finite set, and let R ⊆ S × S × S

be a finite set of ordered triplets called constraints. A total order ≺ satisfies a constraint
(a, b, c) ∈ R if either a ≺ b ≺ c or c ≺ b ≺ a holds. Find a total order that maximizes the
number of satisfied constraints.

Note that there is a one-to-one correspondance between (optimal) solutions of Problems 3
and 4. Maximum Betweenness is NP-hard [10], which implies the NP-hardness of Problem 3.
Maximum Betweenness has been studied extensively [4,11–13]. In particular, it admits
1/2-approximation algorithms [2, 9], but for any ε > 0 it is NP-hard to compute a (1/2 + ε)-
approximation [1]. Note that, due to the different objectives, these (non-) approximability
results do not carry over to Problem 3; see [8] for details.

When translating to Maximum Betweenness, we lose information about the train lines.
However, this information proves to be beneficial for our purposes. In particular, we want to
leverage the natural sparseness of train infrastructures. We define two auxiliary graphs that
capture the connections between locations in E , which we use in our algorithms.

▶ Definition 5 (Location Graph). Let E be an event graph. The location graph L of E is an
undirected weighted graph whose vertices are the locations of E . For two locations p ̸= q, the
weight w({p, q}) of the edge {p, q} in L corresponds to the number of arcs (u, v) or (v, u) in
the event graph E such that ℓ(u) = p and ℓ(v) = q and train(u) = train(v). If w({p, q}) = 0,
then p and q are not adjacent in L.

See Figure 1b for an example. Note that the train line of a train z in the event graph
corresponds to a walk (a not necessarily simple path) in the location graph. Abusing the
notation of a train line, we also call this path in the location graph a train line of z.

▶ Definition 6 (Augmented Location Graph). Let E be an event graph. The augmented
location graph L′ of E is a supergraph of the location graph L of E containing additional
edges {ℓ(vi−1), ℓ(vi+1)} for each consecutive triplet (vi−1, vi, vi+1) of a train line in E .

The augmented graph L′ has the crucial property that three consecutive events vi−1, vi, vi+1
of a train line whose locations can cause a potential turn form a triangle in L′.

2 Exact Algorithms

An exact reduction rule. There are substructures that can be solved easily and indepen-
dently. Consider the location graph L of an event graph E . We call a vertex p ∈ V (L) a
terminal if a train starts or ends at p, and we say that a path in L is a chain if each of its
vertices has degree exactly 2 in L and the path cannot be extended without violating this
property. If a chain contains no terminals, and trains move through the entire chain without
turning back, then there is always a turn-minimal drawing of E that contains no turn along
the chain. This is due to the fact that any turn on the chain can be moved to a non-chain
vertex adjacent to one of the chain endpoints.

We now sketch a generalization of this intuition. We call two vertices whose removal
disconnects a graph a separating pair. Let {s, t} be a separating pair of L, let C be a
connected component of L − {s, t}, and let C ′ = L[V (C) ∪ {s, t}]. We call C a transit
component if C does not contain any terminal, and if the trains passing through C ′ via s

also pass through t (before possibly passing through s again).
A transit component C is contractible if, for each path associated to a train line in C, we

can assign a direction such that the resulting directed graph is acyclic; see in Figure 3.
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Figure 3 A transit component that is part of a larger location graph. Each train is represented
by a sequence of arcs of the same color. Some trains share edges. The component is contractible
with respect to the set of trains.

▶ Reduction Rule 1 (Transit Component Contraction). Let E be an event graph, let L be its
location graph, and let C be a contractible transit component that is separated by {s, t}.
For each train z that traverses C, replace in E the part of the train line of z between the
events that correspond to s and t by the arc (directed according to time) that connects the
two events.

▶ Theorem 7. Let E be an event graph. If E ′ is an event graph that results from applying
Reduction Rule 1 to E, then a turn-optimal drawing of E and a turn-optimal of E ′ have the
same number of turns.

Proof sketch. Let Γ be a turn-optimal drawing of E , and let Γ′ be a turn-optimal drawing
of E after applying Reduction Rule 1 once; to a contractible transit component C. We now
turn Γ′ into a drawing of E without introducing new turns. We expand the mapping y′

corresponding to Γ′ by placing C between the levels of y′(s) and y′(t) such that the ordering
of the locations in C respects a topological ordering. Due to the topological ordering, C

contains no turns, whereas turns at s and t are preserved.
Conversely, we can transform Γ into a drawing of E ′ without changing the number of

turns. Since C contains no terminal, we can move any turn in C to one of the two locations
s and t that separate C from the rest of the location graph, and then replace every train line
that traverses C by a straight-line segment connecting the two events that correspond to s

and t (on that train line). For a complete proof, see [8]. ◀

A parameterized algorithm. We use dynamic programming on a nice tree decomposition
of the augmented location graph L′. For a definition of a (nice) tree decomposition, see [3].
Since three consecutive locations of a train line form a triangle in L′, there must be a bag
that contains all three locations. Hence, it suffices to check each bag for potential turns in
order to find a drawing with the minimum number of turns. For the full proof, see [8].

▶ Theorem 8. Let E be an event graph, and let L′ be its augmented location graph. Computing
a turn-optimal time-space diagram of E is fixed-parameter tractable with respect to the treewidth
of L′.
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3 A Greedy Heuristic Approach

The heuristic tries to minimize the number of turns by iteratively inserting trains into an
ordering of locations such that the inserted train does not violate the existing ordering and
such that its train line is as monotone as possible. The idea is as follows.

Given an event graph E and its associated location graph L with train lines Z =
{z1, . . . , zk}, we sort Z with respect to the total weight of the edges of the train lines in L,
in descending order.

For simplicity, we assume that each train line is a simple path in L. If this is not the case,
we decompose each non-simple train line into multiple simple train lines. We construct a
directed auxiliary graph G that is initially empty and to which we iteratively insert the edges
of each train line until we obtain a directed version of L. For a directed graph (or simply a
set of arcs) H, let E(H) be the set of undirected edges that correspond to the arcs of H.

Let i ∈ {1, . . . , k} the index of the current iteration. For each connected component P of
E(zi) \ E(G), we do the following. Note that P is adjacent to at most two vertices of G. If
P is adjacent to exactly two vertices p and q in G, we test whether there is a q–p path in G.
If this is the case, we select among the edges of P one that has the smallest weight in L. We
reverse the selected edge. Then we insert the vertices and the directed edges of P into G.
(The reversal ensures that G remains acyclic.)

After the last iteration, we compute a topological order π of G and draw the time-space
diagram of E induced by π. See [8] for the pseudocode of the heuristic.

4 Experimental Analysis

We test the effectiveness of the reduction rule and of the heuristic on an anonymized and
perturbed dataset with 19 instances provided by DB InfraGO AG; see Figure 4 for an
overview of the dataset. The result of each experiment is the average value over 25 repetitions
of the experiment. We implemented our algorithms in the programming language Python.
We used Networkx [7] to handle most of the graph operations and Gurobi [6] to solve the
integer linear program. All experiments were conducted on a workstation running Fedora 40
with Kernel 6.10.6 using an Intel-7-8850U CPU with 16GB RAM.
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Figure 4 Left: Instances with respect to the number of events and the number of locations.
Right: The histogram depicts the frequency (y-axis) of the number of trains (x-axis) in the dataset,
i.e., there are 5 instances containing 5 trains.
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Effectiveness of the reduction rule. Our implementation of Reduction Rule 1 is restricted
to exhaustively contract chains. But even with this restriction, the reduction rule proves to
be effective on the provided dataset. On average, the number of locations was reduced by
75%, where the best result was a reduction by 89% (instance 50_4) and the worst result was
a reduction by 55% (instance 20_3). A full evaluation is shown in Figure 5.
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Figure 5 Results of the effectiveness of applying contractions, restricted to contracting chains.
The bar diagram shows the number of locations in each instance before and after contraction.

Effectiveness of the heuristic. We compare the results of our heuristic to the corresponding
optima, which we obtained using the integer linear program (ILP) described in [8], and to the
heuristic EM-algorithm that Filipović, Kartelj, and Matić [4] developed for the Maximum
Betweenness problem. We use the implementation of the EM-algorithm of Filipović et
al. [4] and their parameter settings. On average, our algorithm yields results that are four
times better than those of the EM-algorithm on the original instances. On the reduced
instances, our algorithm loses its advantage; there, the two approaches perform comparably
on average. However, our approach is significantly faster, as our algorithm takes 0.2 s on
the slowest instance while the EM-algorithm takes 26.3 s. See Figures 6 and 7 for a detailed
overview of the effectiveness and runtime, respectively. Note that we show the runtime of
the ILP approach only on the reduced instances since the ILP did not converge on most of
the original instances within a time limit of one hour.

5 Conclusion and Future Work

In this work we have introduced the problem of computing turn-minimal time-space diagrams
to visualize event graphs. We have established a connection between this problem and
Maximum Betweenness, we have presented an FPT-algorithm parameterized by the
treewidth of the location graph, and we have proposed a heuristic for solving large instances.

The heuristic produces drawings that are still far from optimal, thus it would be interesting
to improve this heuristic or to find a better one. As part of our ongoing research, we have
developed a new exact integer linear programming approach that shows promising preliminary
results, solving the largest real-world instance in less than a second.
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Figure 6 Comparison of the effectiveness between our heuristic (Greedy Train Direction), the
EM-algorithm of Filipović et al. [4], and the optimum; on the original and the reduced instances.
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Abstract
Let S be a set of n sites in the plane, where each site s ∈ S has an associated radius rs > 0, and
let D(S) be the disk intersection graph defined on S. A subset Ssep ⊆ S is a balanced separator if
S \ Ssep can be separated into two subsets S1, S2 the size of each being at most a constant fraction
of n with no edges between them.

We describe a data structure for maintaining a balanced separator consisting of O(
√

n) cliques
under insertions and deletion of sites in S, where each update requires O(log2 n) amortized time.
The data structure requires O(n log n) space.

1 Introduction

Balanced separators divide graphs into three parts: two parts whose size is at most a constant
fraction of the number of vertices in the graph which only have outgoing edges towards the
third part, the separator. As such, they directly lead to divide-and-conquer approaches and
thus play an integral part in many graph-based algorithms and data structures [3, 7, 9, 10, 12].

For most geometric intersection graphs balanced separators can be arbitrary large, as
these graphs can contain arbitrary large cliques. Thus, using separators in this context
requires bounding other aspects apart from only the size to efficiently use balanced separators.
For example, for disk intersection graphs there exist separators consisting of O(

√
n) cliques [1].

This was recently used by Chan and Huang [5] (in their full version [6]) in a subroutine to
dynamically maintain a disk intersection graph under insertions and deletions. In their work
they use a rebuilding approach—they repeatedly build static separators.

In this work we extend a result for computing a static clique-based balanced separator for
intersection graphs of certain fat geometric objects by de Berg et al. [1] into a dynamic data
structure for disk intersection graphs. Our data structure maintains a balanced separator
consisting of O(

√
n) cliques under insertions and deletions of sites. These updates require

O(log2 n) amortized time each and the data structure requires O(n log n) space. While this
data structure follows a rebuilding approach as well, it allows updates in between the rebuilds.

2 Preliminaries

Let S be a set of point sites in the plane with associated radii rs. We will consider the sites
as disks with center s and radius rs and often do not distinguish between a site and the
associated disk. The disk intersection graph D(S) of S has vertex set S and two sites are
adjacent if and only if their disks intersect.

▶ Definition 2.1. A subset Ssep ⊆ S is a β-balanced separator for D(S), if S \ Ssep can be
partitioned into two subsets S1, S2 with no edges between them and max{|S1|, |S2|} ≤ βn.
41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
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For a decomposition C(Ssep) of Ssep into cliques, and a given weight function γ on the
cliques, we define the weight of the decomposition as w(Ssep) :=

∑
C∈C(Ssep) γ(|C|).

We assume the real RAM [11] as computational model. This requires some careful
considerations [4] when using quadtrees in Section 4, as no floor function is available.

3 Balanced Clique Separators by de Berg et al.

In this section, we summarize the separators defined by de Berg et al. [1]. They construct
balanced clique separators of small weight in the more general setting of intersection graphs
of certain fat objects in arbitrary dimension. We will however focus on the easier case of
disks in the plane and do some slight alterations in preparation for the later extension.

Let H0 be a square of minimum side length, such that H0 completely contains at least
n
50 sites from S.1 Without loss of generality, we assume that H0 is a square with side length
1, centered at the origin. Subdivide the plane with a grid G0 centered at the origin, where
each grid cell has side length 1√

n
. Then, H0 is the

√
n × √

n neighborhood of the origin. Let
Hi be the (

√
n + 2i) × (

√
n + 2i) neighborhood of the origin for i = 1, . . . ,

√
n. Each Hi has

side length 1 + 2i√
n

. Note that H√
n has a side length of 3.

Each Hi defines a partition of S into the sites Sin(Hi) whose disks are completely
contained in Hi, the sites Sout(Hi) whose disks are completely outside Hi, and the sites
S∂(Hi) whose disks intersect the boundary of Hi. Hence, the set S∂(Hi) is a separator for
each i = 0, . . . ,

√
n.

A disk is called large, if its radius is at least 1
4 and small otherwise. Let Slarge be the

set of sites with a large associated disk that intersect H√
n. We define the set of candidate

separators as the set of all Ssep(Hi) := S∂(Hi) ∪ Slarge.

▶ Lemma 3.1 (Lemma 2.1 in [1]). For any 0 ≤ i ≤ √
n we have:

max (|Sin(Hi)|, |Sout(Hi)|) <
49
50n

Proof. First, consider |Sout(Hi)|. There are at least n
50 sites in H0. These sites are either in

Sin(Hi) or in S∂(Hi) for all i = 0, . . . ,
√

n. Thus, each Sout(Hi) contains at most 49
50 n sites.

Secondly, we bound |Sin(Hi)|. Consider a grid G× with arbitrary center and cell size 1
2 . Since

H0 is the smallest square containing at least n
50 sites, each of the at most 7 × 7 cells of G×

covering Hi contains less than n
50 sites and the claim follows. ◀

Now that we know that we have a set of O(
√

n) balanced candidate separators, we
define a clique decomposition for each of them in such a way, that at least one of the clique
decompositions will have small weight.

Consider all sites with a small associated disk that can be part of a separator, namely
S∗ := S \ (Sin(H0) ∪ Sout(H√

n) ∪ Slarge). We partition S∗ into size classes based on the radii
of the disks. For integers r with 1 ≤ r ≤ rmax where rmax := ⌈log n/2⌉ − 2, define:

S∗
r :=

{
s ∈ S∗

∣∣∣∣
2r−1
√

n
≤ rs <

2r

√
n

}

Furthermore, let S∗
0 be the set of all disks in S∗ with a radius smaller than 1√

n
.

1 In the original proof of de Berg et al. [1] the minimum square contained the complete objects. Using
only the sites is a variant of Chan and Huang [5] introduced in their full version [6].
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3

B

s
p

Ds
D

Figure 1 The situation when s of a large disk Ds is not contained in B. In this case, the disk D

with radius 1
4 contained in Ds is completely contained in B and contains the center of a cell.

▶ Lemma 3.2. All sets S∗
r with 1 ≤ r ≤ rmax can be decomposed into at most O

(
n

22r

)
cliques.

Proof. For a fixed r, consider a grid Gr−1 with cells of side length 2r−1
√

n
centered at the origin.

Note that G0 is a subdivision of Gr−1. Then, H√
n is covered by the union of the cells of the

3
√

n
2r−1 × 3

√
n

2r−1 subgrid of Gr−1 centered at the origin. As some sites in S∗
r can lie outside H√

n,
we also have to consider them. As the radius of their disks is less than 2r

√
n

, it suffices to
extend the subgrid to a size of ( 3

√
n

2r−1 + 4) × ( 3
√

n
2r−1 + 4) to contain all sites of S∗

r .
All disks of sites of S∗

r which lie in the same cell of Gr−1 are stabbed by the center of the
cell and thus form a clique. ◀

▶ Lemma 3.3. Slarge can be decomposed into O(1) cliques C(Slarge).

Proof. Let B be a square with side length 4 centered at the origin. Furthermore, consider a
subdivision of B into O(1) cells Σ of side length 1

4 . If s ∈ Slarge is contained in B, then, as
above, the center of the cell that contains s stabs its disk Ds. In the other case, the radius
of Ds is larger than 1

2 as Ds ∩ H√
n ̸= ∅. Let p be a point on the boundaries of both Ds and

H√
n and let sp be the line segment between s and p. Then the disk D with radius 1

4 with
its center on sp that has p on its boundary is completely contained in Ds ∩ B. Furthermore,
D contains the center of the cell σ ∈ Σ that contains the center of D. See Figure 1. Hence,
all disks associated with Slarge are stabbed by centers of Σ. ◀

Each site in S∗
0 will form its own clique. Let C(S∗) be the set of all cliques discussed

above. C(S∗) induces a clique decomposition on each of the candidate separators Ssep(Hi).
Note that Ssep(Hi) might contain only subcliques of the cliques defined by Lemma 3.2. Let
Ŝsep(Hi) be the separator Ssep(Hi) where each partial clique was extended to the respective
complete clique of C(S∗). The following Lemma 3.4 implies that at least one Ŝsep(Hi) is a
balanced separator with weight O(

√
n).

▶ Lemma 3.4 (Lemma 2.3 in [1]). If γ(t) ∈ O(t1/2−ε), ε > 0, then
∑√

n
i=1 w(Ŝsep(Hi)) ∈ O(n).

4 Efficient Computation and Maintenance of the Separators

In this section we will describe how a separator with γ(t) = 1 can be found with the help of
static data structures. We will then use these data structures to maintain a separator under
insertions and deletions of sites. See Figure 2 for an overview of the components.
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balanced binary tree
of size classes

segment tree Tred-black tree Bi

representing size class i

interval tree
representing clique C

red-black tree of clique
intervals C∂ covering subtree

enumerates size classes

contains cliques of size class i in each node

references cliques

disk of site s
covering s∂

contains disks of clique as intervals s∂

Figure 2 The data structures for obtaining the separator. An arrow between two components
indicates references from one to the other.

4.1 Obtaining a Static Separator
First, we need the square H0 as described above. It can be found by building a compressed
quadtree on the sites. We use the algorithm described by Buchin et al. [4] which constructs
the quadtree in O(n log n) time on a real RAM, but has the disadvantage that compressed
cells might not be aligned on a global grid. This tree has size O(n). After building the
compressed quadtree, we can find a smallest quadtree cell H0 that contains at least n

50 sites in
O(n) time. With this H0 the proof for Lemma 3.1 can be still applied, as each Hi intersects
at most 49 quadtree cells with a size in [ 1

2 , 1) (with larger leaf cells or compressed cells split
further to reach that range).

Once the square H0 is known, we can find the square H√
n and the set of all disks that

intersect H√
n in O(n) time. We will only continue with these disks, as other disks cannot be

part of a separator. For each size class r with 1 ≤ r ≤ rmax we maintain a red-black search
tree [8] Br that stores all cliques in lexicographical order by their associated cells of Gr−1.
Similarly, we maintain a red-black tree Blarge storing the cliques of Slarge by their stabbing
point and a red-black tree B0 storing the sites of S∗

0 as singleton cliques. Obtaining the cells
used to define a clique and constructing these trees requires O(n log n) overall time. The
trees Br are stored in a balanced binary search tree for retrieval. In order to find the clique
decomposition for each Ŝsep(Hi), we observe:
▶ Observation 4.1. For each s ∈ S, the set s∂ = {i | s ∈ S∂(Hi)} is an interval that is a
subset of {0, . . . ,

√
n}. This interval can be found in O(log n) time for a fixed site.

The next step is to extend this observation to cliques. Let C be a clique. Then we define

C∂ =
⋃

s∈C

s∂

Each clique C is represented by an interval tree [8] based on a red-black tree where each
disk is inserted as its interval s∂ . This interval tree allows us to find the interval C∂ in
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constant time after construction and can be built in O(|C| log |C|) time. For a site s it also
allows us to find the intervals C∂ ∪ s∂ and (C \ {s})∂ in O(log |C|) time.

It remains to find the clique separator Ŝsep(Hi) of minimal size. This is equivalent to
finding the i which minimizes the number of sets C∂ with i ∈ C∂ , excluding the cliques of
Slarge. For this we construct a perfect binary tree T over the leaves 0, . . . ,

√
n which is treated

as a segment tree [2]. To store the covering intervals of each node we use red-black trees as
well, which hold pointers to the respective cliques. Additionally, we store in each node of T
the minimum number of intervals on the path to any leaf (including the respective node).
Then, the intervals C∂ , excluding Blarge, are inserted into T . As a property of segment trees,
each interval is added to the red-black trees of at most O(log n) nodes, requiring O(log2 n)
updates to node minimums. Overall, this requires O(n log2 n) time and O(n log n) space.

This tree can now be used to find a balanced clique separator by traversing the tree from
the root to a leaf, always descending into the node with the smallest count associated to
it, collecting all sets of cliques encountered along the way. Additionally, all cliques of Blarge
must be added. Obtaining the O(log n) sets of cliques requires O(log n) time. Following
Lemma 3.4, merging all (disjoint) sets of cliques yields O(

√
n) cliques.

▶ Lemma 4.2. Given n sites with associated radius in the plane, then a 49
50 -balanced clique

separator for D(S) can be found in O(n log2 n) time using O(n log n) space.

4.2 Maintaining a Dynamic Separator
For Lemma 3.1 we require that H0 is the smallest square (or quadtree cell) containing n

50 sites.
When adding or removing sites we cannot guarantee this anymore. Hence, to implement
updates for the data structure described in Section 4.1, we periodically rebuild the data
structure from scratch. In between the rebuilds we update the internal data structures and
the separator as well. That way we can maintain a weaker separator.

▶ Lemma 4.3. Let S be a set of n sites and H0 as above. After adding or removing up to
n
99 sites, resulting in n′ sites total, we have for any 0 ≤ i ≤ √

n:

max (|Sin(Hi)|, |Sout(Hi)|) <
99
100n′.

Let n be the size after the last rebuild of the data structure. When inserting a site s, it
is first checked if the number of updates since the last rebuild would be above n

99 . If this is
the case, then the complete data structure is rebuild including the new disk according to
Lemma 4.2. This requires O(log2 n) amortized time per insertion. When no rebuild occurred
it is checked whether s intersects H√

n. If not, then we are done. Otherwise, the tree Br for
the size class r of s is used to identify the clique C that s belongs to. If the clique does not
exist, an empty interval tree is added as C to Br. Then, s∂ is inserted into the interval tree.
When s is not a large disk, then in addition T is updated regarding the extended interval
C∂ . This involves removing C∂ from all previous nodes and inserting the extended C∂ anew,
while updating the node minimums accordingly. Afterwards, the separator is updated if
required by following the minimum path in T . Updating T including its nodes requires
O(log2 n) time and the remaining steps require O(log n) time.

Deleting a site s follows the same general steps and requires O(log2 n) amortized time.

▶ Theorem 4.4. There is a data structure of size O(n log n) which maintains a 99
100 -balanced

separator of O(
√

n) cliques for the disk intersection graph of n sites in the plane with
associated radius. Insertions or deletions of sites require O(log2 n) amortized time.

EuroCG’25
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Note that the separator of Theorem 4.4 is maintained implicitly as a set of O(log n) sets
of cliques—actually constructing the separator requires O(

√
n) time. In case the actual

separator is required, the data structure of Theorem 4.4 can be used with a hysteresis
approach. For this, the data structure is updated as usual, but the separator update is only
applied if the number of cliques in the previously chosen separator grows by O(

√
n) or a

global rebuild occurs.
Adjusting Theorem 4.4 for a non-constant weight function γ is straightforward. When

γ(t) can be computed in O(log2 t) time, then the bounds of Theorem 4.4 still apply.
Similarly, the approach for convex fat objects of de Berg et al. [1] is also applicable.
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Abstract1

Beacon routing is the study of how to indirectly route objects through various domains. Consider2

two points a - which we think of as the attractor - and b - which we think of as the ball or beacon3

- lying on a smooth closed curve in the plane. In curve-restricted beacon routing, b moves along4

the curve as long as its Euclidean straight-line distance to a decreases, until this distance is locally5

minimal. Assuming b moves infinitely faster than a, the goal is to move a along the curve in such a6

way that a ends up meeting b. We say that a curve is universal if there always exists a strategy7

to catch the ball from every initial configuration of the attractor and the ball. Recent work of8

Abrahamsen et al. has shown that every simple curve is universal. The authors also conjectured9

that all curves with rotation number one are universal. In this note, we disprove their conjecture10

and present a curve with rotation number one which is not universal.11

Lines 153

1 Introduction12

Beacon routing [2] is the study of how to indirectly route objects through various domains.13

Let γ : S1 → R2 be a smooth closed curve in the plane, and let a and b be two points on γ.14

In curve-restricted beacon routing [1] b always moves closer to a if possible while staying on15

the curve. More precisely, b moves as long as its distance to a decreases, until a point where16

the distance is locally minimal. As soon as the position of a allows b to get closer to a, b17

moves again. We may think of a as the attractor and b as the ball. We can directly control18

the position a, but we have no direct control over b. We assume that b moves infinitely faster19

than a. Our goal is to move a along the curve in such a way that a meets b (see Figure 1).20

Note that a bit of care is required to properly define this problem and make sure γ is generic21

enough for the problem to be well-defined. As is carefully explained in [1, Section 3.1], we22

must assume that γ is regular, C2-continuous, and intersects its evolute transversely, away23

from its cusps.24
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a a a a a a

b

bb

b

b

b

Figure 1 An example of a strategy for the attractor to catch the ball on a c-shaped closed simple
curve. (Figure from [1].)

25

26

×2 ×3 ×2

Figure 2 Any curve can by “multiplied” by taking multiple copies of it at (almost) the same
location.

27

28

A given curve γ is universal if there always exists a strategy to catch the ball from29

every initial configuration [1]. Biro et al. [2] ask whether every simple curve is universal;30

Abrahamsen et al. [1] show that the answer is yes. There also exist non-universal curves;31

the simplest such curve is the “double circle”, and in fact any curve that is “doubled” or32

“multiplied” is an example of such a curve, since a and b will always stay close to each other33

on different “copies” of the curve. Refer to Figure 2 for some examples; for proper definitions34

and proofs see [1].35

The rotation number (also called the index or Whitney index) [4] of a closed curve is36

defined as the number of revolutions a tangent vector completes as it traverses the curve37

once. Inspired by the fact that by multiplying curves as in Figure 2 we can create counter38

examples with any rotation number k > 1, Abrahamsen et al. [1] conjectured that every39

curve with rotation number one is universal.40

In this note, we disprove their conjecture by presenting a curve with rotation number 141

that is not universal.42

2 Counterexample43

▶ Theorem 2.1. There exists a curve γ of rotation number 1 and a pair of points (a, b) on44

γ such that, no matter how a moves on γ, a will never reach b.45

We illustrate our construction in Figure 3. We begin by defining a family of paths46

c1, c2, . . . , c7 : [0, 4] → R2 such that:47

1. For all i ∈ [7] and for choices of constants C, δ, ϵ > 0, we set:48

- ci(0) = (−1, −iϵ) and ci
′(0) = (1, 0).49

- ci(1) = (1, iϵ + δ) and ci
′(1) = (1, 0), choosing δ so that c3(0) = c3(1), i.e. δ = ϵ(i + 1).50

- ci(2) = (1, iϵ − C) and ci
′(2) = (−1, 0).51

- ci(3) = (−1, iϵ − C) and ci
′(3) = (−1, 0).52

- ci(4) = ci+1(0) and ci
′(4) = (1, 0), with indices wrapping around so that c8 := c1.53

2. For all t ∈ (0, 1) ∪ (2, 3) and i ∈ [7], ci(t) is contained in the strip {(x, y)| − 1 < x < 1}.54

3. For all i ∈ [7] − {2}, the tangent vector of each path ci does not accomplish a single55

revolution, as t ranges from 0 to 1. The tangent vector of c2 is the exception, and makes56

a single positive revolution.57
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4. For all i ∈ [7], ci traces a counter-clockwise loop between ci(1) and ci(2), so that the58

tangent vector of each path ci accomplishes a single negative revolution as t ranges from59

1 to 2.60

5. For all i ∈ [7], ci traces a horizontal line segment between ci(2) and ci(3).61

6. For all i ∈ [7], ci smoothly interpolates between ci(3) and ci(4) without adding to the62

rotation number.63

7. For each fixed i ∈ [7], the geometric image of the intervals (0, 1), (1, 2), (2, 3) and (3, 4)64

under ci are all pairwise disjoint.65

By construction, the union of such a collection of 7 paths, ∪ici, is a closed curve γ with66

rotation number one. The crucial desired property that we would like to ensure with such a67

construction is the following:68

▶ Lemma 2.2. The paths c1, c2, . . . , c7 can be chosen such that, for all i ∈ [7], if we position69

a and b either respectively at starting positions ci(0) and ci+1(0) or starting positions ci(1)70

and ci+1(1), then no matter how we move a along ci:71

If we reach a point where a is at ci(1), then b is at ci+1(1).72

If we reach a point where a is at ci(0), then b is at ci+1(0).73

x = −1 x = 1

c7

c1

c6
c5

c4

c3

c2

Figure 3 Our construction γ has rotation number one and is not universal: there exist configura-
tions from which the ball can never be caught. For example, start with a at one of the lowest points
of the curve (on the purple strand) and b just above it (on the blue strand). The vertically aligned
points have x-coordinates either −1 or 1.

74

75

76

77

Sketch of Proof. To motivate the Lemma and our counter-example, recall that, as discussed78

earlier, the double circle curve is a simple example of a non-universal curve. One way to79

look at our construction and to think of Lemma 2.2 is to take the necessary steps to alter80

the double circle into a curve of rotation one, while keeping the desired non-universality. To81

that effect, let us picture the double circle as being obtained from two copies of a circle at82

almost the same location, one blue (call it c2) and the other turquoise (call it c3), cutting83

both at an arbitrary point, and switching their endpoints before reconnecting. Suppose that84

the outer loop ends up being the blue loop c2. Since the double circle has rotation number85
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two, we add a counter clockwise loop to subtract one to the rotation number, get again a86

curve with rotation number one (see Figure 4).87

Figure 4 The doubled circle can be thought of as a prototype example with two paths (blue and
turquoise). We modify the doubled circle with a counter clockwise loop (on the right) to achieve
rotation number 1. However these two paths fail to verify Lemma 2.2.

88

89

90

Taking a closer look at this curve, we see that unfortunately this construction only works91

in one direction. If the attractor a is on the blue curve c2, then b follows on the turquoise92

curve c3. However if a leads on the turquoise curve, then b gets “stuck” in the blue loop93

we introduced, after which a need only catch up to it (see Figure 5). We show that we can94

introduce a sequence of 5 “intermediate” curves to solve this problem. ◀95

▶ Remark. Note that the lemma is clear for all parameters t ∈ [1, 4] so we may consider only96

the restriction of curves ci to the interval (0, 1).97

Proof of Lemma 2.2. In light of the previous explanation and the remark, we start by98

defining c2 (the blue curve on Figure 5) to trace a single counter-clockwise loop between99

c2(0) and c2(1) while c3 traces a line segment between c3(0) and c3(1) (the turquoise curve100

on Figure 5).101

▶ Remark. Note that in our analysis, for the sake of simplicity and economy of diagram102

making, we shall assume that a moves from the left to the right in the forward direction.103

For all the pairs of curves we introduce, a direct symmetry argument solves the backwards104

direction. The only exception is the pair c1 and c2, for which we detail the backwards case105

explicitly in .106

a a

b bc2

c3

Figure 5 If the attractor a leads on the turquoise curve c3, the ball b gets trapped in the loop on
the blue curve c2.

107

108

The first intermediate curve is the curve c1 (in purple on Figure 6), which is essentially109

a multiplied copy of a curve “shaped like an 8” and thus has rotation number 0 (see the110

rightmost diagram of Figure 2). In the forward case, as seen on Figure 6 (top), this curve has111

the property that if a leads on c1, then b follows on c2 and escapes the added loop. We thus112

now have curves c1, c2 and c3 with the desired property of Lemma 2.2 with the exception of113

the last pair c3 and c1. Namely, if a leads on c3 (turquoise), b does not follow on c1 (purple).114

The backwards case is illustrated on Figure 6 (bottom).115
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a ba

b

a
b

a

b

c1

c2

a
b

a

b

a
b

a

b

c1

c2

Forward Direction

Backward Direction

Figure 6 Adding an intermediate purple curve c1 to act as c3 for c2 fixes our previous problem,
where if a leads on the purple c1, b now follows on the blue c2 instead of getting stuck in its loop.
However, we simply postponed the problem to the last pair of curves c3 and c1.

116

117

118

To fix this last problem, we introduce the curve c7 (pictured in red), which is designed as119

a spiral to ensure that if a leads on c7, b follows along on c1 (purple) and is guided to escape120

the double eight (see Figure 7). The last issue to fix now is that if a leads on c3 (turquoise),121

b will not quite follow on this new red curve c7. However note that c3 and c7 have the same122

topology and are both a simple line with no loops. So we need only introduce a fine enough123

sequence of intermediate curves that interpolate between the flat line curve c3 (turquoise)124

and the spiraling c7 (red). As can be seen on the original Figure 3 depicting our counter125

example, three intermediate curves c4, c5, c6 that each progressively spiral with less than a126

right-angled bend from each other are enough to accomplish this task, leading to the claim127

in the lemma. Note that we implictly also rely on the following remark, which should be128

clear from the description of our process.129

▶ Remark. At any point and for all the curve pairs we’ve constructed, moving a back and130

forth instead of simply moving a monotonously along the curve does not introduce any new131

dynamics and we can safely assume without loss of generality that a moves monotonously132

along the curve it is on.133

◀134
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a

a

a

a

b

b

b

b

c7

c1

Figure 7 Introducing the red curve c7 to act as c3 for c1 solves the previous pathology: if a leads
on c7, b now follows on c1. We have thus moved the problem to finding intermediate curves from
the much simpler c7 back to the flat turquoise curve c3.

135

136

137

3 Discussion138

We have presented a curve that has rotation number one, but is not universal, answering in139

the negative the question posed by Abrahamsen et al. [1].140

However, our curve is arguable not very close to being simple, since it is relatively141

complicated, and has 108 self-intersections. Thus, it would be interesting to find out142

whether a simpler example exists. Moreover, it would be interesting to understand whether143

universality of curves can be classified or related to other properties, such as the number of144

self-intersections.145

Beyond closed curves, Ockenfels, Okamoto and Schnider initiate the study of the same146

problem when the underlying domain is a graph [3]. They show that every orthogonal straight-147

line plane graph is universal, and they conjecture the same is true for any straight-line plane148

graph. The same question for graphs with curves edges may also be asked.149

Even more generally, it would be interesting to understand beacon routing on general150

embedded graphs, that are not necessarily planar.151
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Abstract1

We challenge the idea that edge insertions are local improvement operations and show that the2

edge-insertion algorithm must sometimes insert an edge between vertices that are at the farthest3

combinatorial distance apart, and that this edge must cross linearly many edges of the triangulation4

for the algorithm to escape a local optimum and return the optimal triangulation.5

Lines 123

1 Introduction6

The edge insertion algorithm introduced by Edelsbrunner et al. [1, 2] provides an escape7

from the local optima where regular edge flipping algorithms for triangulations tend to8

get stuck. It generalises the usual elementary diagonal flip in quadrilaterals to the more9

powerful operation of inserting an edge between any two vertices in the triangulation,10

followed by the retriangulation of the polygonal region left after removing all edges of the11

original triangulation which crossed the inserted edge. It currently offers the best polynomial12

algorithms for a number of optimisation problems, such as the min-max angle problem ([2]).13

While flips are inherently local elementary operations, edge insertions are not. It is then14

natural to wonder exactly how non-local edge insertions have to be to guarantee optimisation.15

Perhaps surprisingly - especially in contrast with the closely related max-min problem where16

the Delaunay triangulation can be reached via flips - we show that edge insertions cannot17

be constrained to be local operations at all when trying to optimise triangulations for the18

min-max angle problem. In particular, we give an example where the edge insertion algorithm19

must insert an edge between vertices that are at the farthest combinatorial distance apart,20

and that this edge must also cross linearly many edges for the edge insertion algorithm to21

escape a local optimum and return the min-max angle triangulation.22

▶ Theorem 1.1. For any integer n ∈ N, there exists a triangulation Tn with 4n+ 5 edges23

and combinatorial diameter n + 2, such that, in order to successfully return the min-max24

angle triangulation, the edge insertion algorithm must insert an edge between vertices which25

are at combinatorial distance n+ 2. Furthermore, that edge intersects 2n edges of Tn.26

2 Background - The Edge Insertion Algorithm27

Recall that a triangulation of a finite set of points S in the Euclidean plane is a maximally28

connected plane graph with set of vertices S. We denote by µ the function that maps a29

triangle t in T to the value of its maximum angle. The example we provide concerns the30

min-max angle problem, namely the task of finding the triangulation of a fixed point set in the31

plane which minimises the maximum value of µ over all triangles t in the triangulation. The32

measure µ(T ) of a triangulation T is defined as the quantity max{µ(t) | t a triangle in T }.33

If T and T ′ are two triangulations of the same point set, we say that T is an improvement34

of T ′ and write T ≺ T ′ if µ(T ) < µ(T ′) or if µ(T ) = µ(T ′) and the set of triangles t in T35
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such that µ(t) = µ(T ) is a strict subset of the set of such triangles in T ′. A triangulation T36

is optimal if there is no improvement of T .37

Given a triangulation T of a point set S in the plane, the edge insertion UV , for U, V ∈ S38

is the following procedure (Fig. 1):39

Algorithm 11

Edge Insertion(((T , UV )))
T ′ ←− T40

Add the edge UV and remove from T ′ all edges that intersect UV41

This creates two polygonal regions L and R on either side of the inserted edge42

Retriangulate L and R optimally43

This can be done by brute force or by dynamic programming when possible44

Return T ′45

U

L

R

U

L

R

V V

T T ′

Figure 1 : The edge insertion of an edge UV (in bold) in a triangulation T of a planar point set.
The original edges of T which intersect UV are shown in dashed lines on the leftmost diagram while
the optimally retriangulated ones are shown on the rightmost diagram. The affected regions L and
R are highlighted in light and dark grey.

46

47

48

49

The edge insertion algorithm is then the following:50

Algorithm 21

Edge Insertion Algorithm(((S)))
Input: S a planar point set51

Output: an optimal triangulation Topt for S52

Construct an arbitrary triangulation T of S53

repeat T ′ ←− T54

for all edges UV with U ̸= V ∈ S do55

T ′′ := Edge Insertion(T , UV )56

if T ′′ ≺ T then T ←− T ′′ and exit the for-loop57

end if58

end for59

until T = T ′60

The correctness of the above algorithm was proven in [2]. By being more parsimonious in61

which candidate edge insertions should be considered, and getting rid of dynamic programming62
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for the retriangulation step in favour of a smarter iterated ear-removal process, the following63

running time was obtained:64

▶ Theorem 2.1 (Theorem (Edelsbrunner, Waupotitsch and Tan)). Given a finite set of points65

S in the plane, the edge insertion algorithm returns the optimal min-max angle triangulation66

in time O(|S|2 log |S|).67

3 The Manta Ray Triangulation68

In this section, we describe the construction of our pathological triangulation and prove69

Theorem 1.1.70

Proof of Theorem 1.1. We describe the construction for Tn, as seen on Fig. 2. Starting71

with an isosceles triangle OAB, consider the ray rA (resp. rB) starting at A (resp. B)72

and meeting the line OA (resp. OB) with a clockwise (resp. counterclockwise) angle of θ.73

The direction of the rays is chosen such that, for any point R lying on rA (resp. rB), the74

triangle ARB is direct. Let us fix n ∈ N. We inductively construct points A0, A1, . . . , An75

and B0, B1, . . . , Bn in the following way:76

A0 = A, B0 = B.77

For all 0 ≤ i ≤ n, |AiAi+1| = |BiBi+1| = |AiBi|.78

ψ

A

A1

θ

A2

P

ϕ

rA

O

ω

B

B1

B2

rB

Bn An

∞

θ′

Figure 2 : The “manta ray” triangulation Tn.79

We additionally define a point P , lying on the perpendicular bisector of A and B on the80

same side of the line AB as A1, “far away” from A (exactly how far will be made precise81

shortly). We can then consider the triangulation containing the triangles OAB, AnPBn,82

as well as the edges (Ai, Bi), (Ai+1, Bi), (Ai, Ai+1) and (Bi, Bi+1), for 0 ≤ i ≤ n − 1. We83

readily check that this triangulation has 4n+ 5 edges and combinatorial diameter n+ 2.84

EuroCG’25
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Let us introduce some additional notation for the angles. By construction, for 1 ≤ i ≤ n− 1,85

the angles ∠Ai+1AiBi are all equal, let us call this angle ϕ. The triangle angle at O in OAB86

will be denoted by ω and the angle ∠A1AO by ψ. Call θ the complementary angle π − ψ.87

We also denote by α the largest angle between the line OA and the perpendicular to AB88

passing through A (see Fig. 3). By construction, for all 1 ≤ i ≤ n, the angle between the89

ray rA and the perpendicular to the line AB passing through Ai does not depend on i. We90

denote that angle by β. Note that this triangulation has three degrees of freedom and can91

be fully parametrised by P , ω and θ, so that we may refer to it as Tn(P, ω, θ).92

The proof of the theorem follows from the following claim after taking Tn := Tn(P, ω0, θ0):93

▶ Claim 1. There exists a position of P and a value of ω0 and θ0 such that the following94

inequalities hold in the triangulation Tn(P, ω0, θ0):95

(i) ϕ < ω96

(ii) ψ > ω97

(iii) α < ω98

(iv) β < ω99

(v) ∠AnPBn < ω100

Inequality (i) and (v) show that ω is the largest angle in Tn. Thus inserting any edge101

which does not contain O cannot yield an improvement. Inequality (ii) shows that any edge102

insertion that does not use the edge OP does not yield an improvement of Tn. Indeed, any103

edge OX with X = Ai or X = Bi, 1 ≤ i ≤ n, forces the existence of the triangle OAA1 or104

OBB1 in the triangulation. Finally, inequalities (iii) and (iv) show that inserting the edge105

OP and re-triangulating by joining P to all the other vertices indeed yields an improvement106

of Tn (in fact, the min-max angle triangulation itself). Indeed, for any choice of P , we have107

both ∠OAP < α and ∠AAiP < α so these last two inequalities hold also for all the angles108

∠OAP and ∠AAiP .109

A0

A1

A2

P

rA

O
B0

B1

B2

rB

α

β

∞

Figure 3 : The optimal triangulation minimising the maximum angle.110

Proof of the claim. Let θ be the smallest angle between the lines OA and AA1. We first111

eliminate a degree of freedom by adding the constraint θ = 2
3θ

′ (see Fig. 2). Through112
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straightforward angle-chasing, one can then check that enforcing ω > 10
13π together with (v)113

gives us suitable values for the claim and we need only fix any ω0 in that range (which then114

also fixes the value of θ0). ◀115

◀116

▶ Remark. If we want the points to be in general position, we can simply perturb the Ai117

(resp. Bi) to lie on a concave curve by nudging A1 (resp B1) slightly towards the inside of118

the basket (to ensure the triangles OAA1, OBB1 are still needed) and nudging Ai+1 so that119

the segment Ai−1Ai+1 lies outside of the basket (similarly for each Bi).120
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