
Classifying homomorphism-homogeneous
structures

Dragan Mašulović
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A

endomorphism

homomorphism

Cameron, P. J., Nešetřil, J., Homomorphism-homogeneous
relational structures, Combinatorics, Probability and Computing
15, 91–103 (2006)



Homomorphism-homogeneity

The General Classification Problem.
Classify homomorphism-homogeneous structures.
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Graphs

Objects: finite graphs (X ,∼), no loops
Subobjects: iduced subgraphs
Morphisms: x ∼ y ⇒ f (x) ∼ f (y)

Theorem. [Cameron, Nešetřil 2006]
A finite graph G is homomorphism-homogeneous if and only if
G ∼= k · Km for some positive integers k and m.



Irreflexive structures

Objects: finite structures (X , ρ) where ρ is binary, irreflexive
Subobjects: iduced substructures
Morphisms: x ρ y ⇒ f (x) ρ f (y)

Theorem. [DM, Nenadov, Škorić 2010]
A finite irreflexive binary relational structure (X , ρ) is
homomorphism-homogeneous if and only if it is one of the
following:

1 k · Km for some positive integers k and m,

2 k · C3 for some positive integer k , where C3 denotes the
oriented 3-cycle.



Posets

Objects: posets
Subobjects: subposets
Morphisms: x 6 y ⇒ f (x) 6 f (y)

Theorem. [DM 2007]
A poset (X ,6) is homomorphism-homogeneous if and only if it
is one of the following:

1 every connected component of X is a chain,

2 X is a tree or a dual tree,

3 X splits into a tree and a dual tree,

4 X is locally bounded and dense in the following sense:
whenever a,b, c,d ∈ X satisfy {a,b} 6 {c,d}, there exists
an m ∈ X such that {a,b} 6 m 6 {c,d}
(the Riesz Interpolation Property)



Posets

Objects: posets
Subobjects: subposets
Morphisms: x 6 y ⇒ f (x) 6 f (y)

Theorem. [DM 2007]
A finite poset (X ,6) is homomorphism-homogeneous if and
only if it is one of the following:

1 every connected component of X is a chain,

2 X is a tree or a dual tree,

3 X splits into a tree and a dual tree,

4 X is a lattice.



Tournaments with loops

Objects: finite tournaments, vertices may have loops
Subobjects: induced subtournaments
Morphisms: x → y ⇒ f (x) → f (y)

Theorem. [Ilić, DM, Rajković 2008]
A finite tournament with loops is homomorphism-homogeneous
if and only if it is one of the following:

1 C3 or C◦

3 , where C◦

3 denotes C3 with all loops,

2 acyclic tournaments with precisely one loopless vertex,

3 acyclic tournaments with two consecutive loopless vertices
where both the initial and the final vertex have a loop,

4 acyclic tournaments dense in the following sense:
◮ there exist 0, 1 ∈ V (T ) such that 0⇒ x ⇒ 1 for all

x ∈ V (T ), and
◮ for all x , y ∈ V (T ) such that x → y there is a z ∈ V (T ) such

that z → z and x → z → y .



Digraphs with loops

Objects: finite digraphs, vertices may have loops
Subobjects: induced subdigraphs
Morphisms: x → y ⇒ f (x) → f (y)

Theorem. [DM (submitted)]
Let D be a finite digraph with loops which is disconnected or
uniform (= all loops, or no loops). Then D is homomorphism-
homogeneous if and only if it is one of the following:

1 L + k · 1 for some integer k > 0 and some finite
homomorphism-homogeneous partially ordered set L;

2 n · C3 + m · C◦

3 + k · 1◦ for some n,m, k > 0;

3 n · C◦

3 + m · 1◦ + k · 1 for some n,m, k > 0;

4 n · C◦

3 + m · 1◦ + k · A◦

2(1) for some n,m, k > 0;

5 n · C◦

3 + m · 1◦ + k · A◦

2(2) for some n,m, k > 0;

6 every connected component of D is a dense tournament;



Digraphs with loops

Objects: finite digraphs, vertices may have loops
Subobjects: induced subdigraphs
Morphisms: x → y ⇒ f (x) → f (y)

Theorem. [DM (submitted)]
Let D be a finite digraph with loops which is disconnected or
uniform (= all loops, or no loops). Then D is homomorphism-
homogeneous if and only if it is one of the following:

7 for every connected component S of D there is a k > 1
such that D[S] ∼= A◦

k or D[S] ∼= A◦

k (1);

8 for every connected component S of D there is a k > 1
such that D[S] ∼= A◦

k or D[S] ∼= A◦

k (k);

9 for every connected component S of D there exist j and k
such that k > 1 and D[S] ∼= A◦

k , or 1 < j < k and
D[S] ∼= A◦

k (j), or 1 < j < j + 1 < k and D[S] ∼= A◦

k(j , j + 1).



Graphs with loops

Adding loops makes the classification problem more interesting!



Graphs with loops

Adding loops makes the classification problem more interesting!

Unfortunately, adding loops makes it too much fun . . .

Objects: finite graphs (X ,∼), loops allowed
Subobjects: iduced subgraphs
Morphisms: x ∼ y ⇒ f (x) ∼ f (y)

Theorem. [Rusinov, Schweitzer 2010]
Deciding whether a finite graph with loops is homomorphism-
homogeneous is coNP-complete.



Graphs with loops

Adding loops makes the classification problem more interesting!

Unfortunately, adding loops makes it too much fun . . .

Objects: finite graphs (X ,∼), loops allowed
Subobjects: iduced subgraphs
Morphisms: x ∼ y ⇒ f (x) ∼ f (y)

Theorem. [Rusinov, Schweitzer 2010]
Deciding whether a finite graph with loops is homomorphism-
homogeneous is coNP-complete.

Another interpretation: there is no “reasonable” classification of
finite homomorphism-homogeneous graphs with loops allowed.
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Groups

Objects: finite groups
Subobjects: subgroups
Morphisms: homomorphisms of groups

Bertholf D., Walls D.: Finite quasi-injective groups.
Glasgow Math. J. 20(1979), 29–33

(NB: finite quasi-injective = finite homomorphism-homog.)



Lattices

Objects: lattices as algebras (L,∧,∨)
Subobjects: sublattices as subalgebras
Morphisms: homomorphisms of lattices as algebras

Theorem. [Dolinka, DM 2011]

(a) A lattice L is homomorphism-homogeneous if and only if it
is either a chain or every interval of L is a boolean lattice.

(b) A finite lattice L is homomorphism-homogeneous if and only
if it is either a chain or a direct power of 0 < 1.



Semilattices

Objects: semilattices as algebras (S,∧)
Subobjects: subsemilattices as subalgebras
Morphisms: homomorphisms of semilattices as algebras

Theorem. [Dolinka, DM 2011]

(a) A finite homomorphism-homogeneous semilattice is either
a tree or the ∧-semilattice reduct of a lattice.

(b) Every tree is a homomorphism-homogeneous semilattice.

(c) The ∧-semilattice reduct of a distributive lattice is
homomorphism-homogeneous.

(d) (M3,∧) and (N5,∧) are homomorphism-homogeneous.



Universal algebras

Objects: algebras (A,F)
Subobjects: subalgebras
Morphisms: homomorphisms

Theorem. [Jungábel, DM (to appear)]
A monounary algebra A is homomorphism-homogeneous if
and only if A belongs to one of the following classes:

1 every branch in A is infinite;

2 every connected component in A is regular, and for any
two connected components S1,S2 ⊆ A, if cn(S1)|cn(S2)
then ht(S1) > ht(S2) or ht(S1) = 0.



Universal algebras

Objects: algebras (A,F)
Subobjects: subalgebras
Morphisms: homomorphisms

Theorem. [DM (submitted)]
Let K be the class of all finite algebras whose signature
contains at least one at least binary operation. Deciding
whether an algebra from K is homomorphism-homogeneous is
a coNP-complete problem.
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Point-line geometries

Definition. A point-line geometry is
an ordered pair (X ,L) where X is a
set of points, L ⊆ P(X ) is a set of
lines and the following is satisfied:

◮ every line contains at least two
points, and

◮ every pair of points is contained
in at most one line.

Objects: point-line geometries

Subobjects: induced subgeometries (Y ,L|Y ) where
L|Y = {ℓ ∩ Y : ℓ ∈ L, |ℓ ∩ Y | > 2}

Morphisms: functions that map collin. points to collin. points
∀ℓ ∈ L ∃m ∈ L (f (ℓ) ⊆ m)



Point-line geometries

A point-line geometry is proper if it
contains a pair of intersecting proper
lines (proper line = line with at least 3
points).

Theorem. [Jungábel, DM (in preparation)]
Deciding whether a finite connected improper point-line
geometry which is not a graph is homomorphism-homo-
geneous is a coNP-complete problem.



Point-line geometries

A point-line geometry is proper if it
contains a pair of intersecting proper
lines (proper line = line with at least 3
points).

Theorem. [DM (to appear)]
A finite connected proper point-line geometry is homomor-
phism-homogeneous if and only if it is one of the following:

1 a pencil of lines,

2 the Fano plane,

3 a subdivision of the triangular space T (n), n > 1,

4 a particular trivial projective point-line geometry with only
two proper lines.



Metric spaces

Objects: metric spaces with rational distances
Subobjects: subspaces
Morphisms: nonexpansive maps

d(f (x), f (y)) 6 d(x , y)

Fact. Deciding whether a finite metric space with rational
distances is homomorphism-homogeneous is a coNP-complete
problem.

Theorem. [Dolinka 2012]
The rational Urysohn space (the Fraı̈ssé limit of the class of all
finite metric spaces with rational distances) is homomorphism-
homogeneous.



Traditional metric spaces

Fix a “traditional” normed space (Rn, ‖ · ‖p), n > 1, p ∈ [1,∞]

Morphisms: nonexpansive (1-Lipschitz) maps
‖f (x) − f (y)‖p 6 ‖x − y‖p

Theorem.
(Rn, ‖ · ‖p) is homomorphism-homogeneous if and only if
(Rn, ‖ · ‖p) has the (n + 1)-Kirszbraun Intersection Property.

Proof. Transfinite induction + Helly’s theorem + Closed balls in
(Rn, ‖ · ‖p) are convex and compact. �



Traditional metric spaces

The m-Kirszbraun Intersection Property ( m-KIP).
Let B(xi , ri), i ∈ {1, . . . ,m}, be a collection of m closed balls in
a Banach space (X , ‖ · ‖) such that:

m⋂

i=1

B(xi , ri) 6= ∅,

and let y1, . . . , ym ∈ X be such that,
for all i and j :

‖yi − yj‖ 6 ‖xi − xj‖.

Then we also have:

m⋂

i=1

B(yi , ri) 6= ∅.



Traditional metric spaces

Fact. (R, ‖ · ‖p) is homomorphism-homogeneous for all p.



Traditional metric spaces

Fact. (R, ‖ · ‖p) is homomorphism-homogeneous for all p.

Theorem. [Kirszbraun 1934]
(Rn, ‖ · ‖2) has the m-KIP for all m > 1.
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Fact. (R, ‖ · ‖p) is homomorphism-homogeneous for all p.

Theorem. [Kirszbraun 1934]
(Rn, ‖ · ‖2) has the m-KIP for all m > 1.

Theorem.
(Rn, ‖ · ‖∞) has the m-KIP for all m > 1.

Proof. Helly’s theorem �



Traditional metric spaces

Fact. (R, ‖ · ‖p) is homomorphism-homogeneous for all p.

Theorem. [Kirszbraun 1934]
(Rn, ‖ · ‖2) has the m-KIP for all m > 1.

Theorem.
(Rn, ‖ · ‖∞) has the m-KIP for all m > 1.

Proof. Helly’s theorem �

Theorem.
(R2, ‖ · ‖1) has the m-KIP for all m > 1.

Proof. Helly’s theorem �



Traditional metric spaces

Fact. (R, ‖ · ‖p) is homomorphism-homogeneous for all p.

Theorem. [Kirszbraun 1934]
(Rn, ‖ · ‖2) has the m-KIP for all m > 1.

Theorem.
(Rn, ‖ · ‖∞) has the m-KIP for all m > 1.

Proof. Helly’s theorem �

Theorem.
(R2, ‖ · ‖1) has the m-KIP for all m > 1.

Proof. Helly’s theorem �

These are the only homomorphism-homogeneous
“traditional” metric spaces!



Traditional metric spaces

Example. [J. T. Schwartz 1969]
(Rn, ‖ · ‖p) doesn’t have 3-KIP for p ∈ (1,2) ∪ (2,∞), n > 2:
there exist x1, x2, x3, y1, y2, y3 ∈ R

n and an r > 0 such that

‖yi − yi‖p 6 ‖xi − xj‖p for all i and j , and
3⋂

i=1
B(xi , r) 6= ∅, but

3⋂
i=1

B(yi , r) = ∅.



Traditional metric spaces

Example.
(Rn, ‖ · ‖1) doesn’t have 4-KIP for n > 3:
there exist x1, . . . , x4, y1, . . . , y4 ∈ R

n and an r > 0 such that

‖yi − yi‖1 6 ‖xi − xj‖1 for all i and j , and
4⋂

i=1
B(xi , r) 6= ∅, but

4⋂
i=1

B(yi , r) = ∅.
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Various kinds of homogeneity

A

Y -morphism

X -morphism

Cameron, P. J., Nešetřil, J., Homomorphism-homogeneous
relational structures, Combinatorics, Probability and Computing
15, 91–103 (2006)



Various kinds of homogeneity

" homomorphism-homogeneity
HH-homogeneity: homomorphism homomorphism

MH-homogeneity: monomorphism homomorphism

IH-homogeneity: isomorphism  homomorphism

MM-homogeneity: monomorphism monomorphism

IM-homogeneity: isomorphism  monomorphism

II-homogeneity: isomorphism  isomorphism

# (ultra)homogeneity



Various kinds of homogeneity

II MM HH

IM MH

IH



Various kinds of homogeneity

Theorem. [Cameron, Lockett 2010]

II

IM = MM

IH = MH = HH

Countably infinite posets Finite posets

IH = MH = HH

IM = MM = II



Various kinds of homogeneity

Theorem. [Rusinov, Schweitzer 2010]

II HH = MH

IM

IH

MM MM

HH = MH

IM = II

IH

Countably infinite graphs Finite graphs



Various kinds of homogeneity

Question. Is MH always equal to HH?



Various kinds of homogeneity

Question. Is MH always equal to HH?

Answer. [Hartman, Hubička, DM (submitted)]
NO.

Example 1. Digraphs with loops.



Various kinds of homogeneity

Question. Is MH always equal to HH?

Answer. [Hartman, Hubička, DM (submitted)]
NO.

Example 2. Colored graphs.
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Classifiability v. nonclassifiability

Where is the borderline between classifiability and
nonclassifiability for finite structures?



Classifiability v. nonclassifiability

Where is the borderline between classifiability and
nonclassifiability for finite structures?

Theorem. [DM, Nenadov, Škorić 2011; Ilić, DM, Rajković 2012]
B = all finite structures (X , ρ) where ρ ⊆ X 2.
X ′ = {x ∈ X : x ρ x}, ρ′ = ρ|X ′ .

C = all (X , ρ) ∈ B such that (X ′, ρ′) is⇆-connected.

D = all (X , ρ) ∈ B such that (X ′, ρ′) is⇆-disconnected.

1 Deciding whether a structure from D is homomorphism-
homogeneous is in P (⇐ we have explicit descriptions).

2 Deciding whether a structure from C is homomorphism-
homogeneous is coNP-complete.



Classifiability v. nonclassifiability

Where is the borderline between classifiability and
nonclassifiability for finite structures?

A feeling (Hypothesis?)

For the class of finite relational structures where vertices with
“loops” form a “connected” substructure, deciding homomor-
phism-homogeneity is coNP-complete. Otherwise it is in P.
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