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The random graph

This probably needs no introduction!
R is the unique countable graph which is

I universal (contains all finite and countable graphs) and
I homogeneous (all isomorphisms between finite subgroups

extend to automorphisms).
If you choose edges independently with probability 1/2 in a
countable vertex set, you almost surely get the random graph.
Its automorphism group is simple, contains generic n-tuples of
automorphisms, and embeds all finite or countable groups.
Its first-order theory is the first-order theory of almost all finite
graphs.
And so on . . .



Recognizing R

Theorem
A countable graph X is isomorphic to R if and only if, given any two
finite disjoint sets U and V of distinct vertices of R, there is a vertex z
joined to everything in U and nothing in V.
The proof is probably familiar to you. Given two countable
graphs satisfying the condition, we build an isomorphism
between then by back-and-forth.

Theorem
Let X be a countable graph. Then R is isomorphic to a spanning
subgraph of X if and only if any finite set of vertices of X has a
common neighbour.
This will be needed later. The proof is very similar to that of the
previous theorem. We build a bijection between R and X, but in
the R to X direction we only insist that edges are preserved.



Almost automorphisms
Consider the following groups, described by Claude Laflamme
in his talk:

I Aut1(R) is the group of permutations which change only
finitely many adjacencies (these are called
almost-automorphisms, and Truss denotes the group by
AAut(R));

I Aut2(R) is the group of permutations which change only
finitely many adjacencies at any vertex;

I Aut3(R) is the group of permutations which change
infinitely many adjacencies at only finitely many vertices.

If C(g) denotes the set of pairs {v, w} of vertices whose
adjacency is changed by the permutation g, then
C(g−1) = C(g)g−1

and C(gh) ⊆ C(g) ∪ C(h)g−1
. It easily follows

from this that Auti(R) is a group for i = 1, 2, 3.
It is an exercise to show that

Aut(R) < Aut1(R) < Aut2(R) < Aut3(R) < Sym(R).



The generic bipartite graph

Another character in our story is the graph B obtained (almost
surely) by taking a countable vertex set partitioned into two
parts and choosing at random edges between the two parts.
B has properties resembling those of R. For example, it is the
unique countable homogeneous universal
graph-with-bipartition. [A bipartite graph cannot be
homogeneous unless it is either complete bipartite or null; for
otherwise a pair of vertices in the same bipartite block, and a
non-adjacent pair in different blocks, are not equivalent under
automorphisms of the graph.]



Recognizing B

The characteristic property of B is: if U and V are finite disjoint
sets of vertices in the same bipartite block, then there is a vertex z
in the other block joined to everything in U and nothing in V.
The subgroup of Aut(B) fixing a bipartite block acts highly
transitively on the points of that block. I will call this group
Aut+(B) (but note that it is not a closed subgroup of the
symmetric group).



Three hypergraphs

Consider the following three hypergraphs:
N : the vertex set is that of R; the edges are the

neighbourhoods N(v) = {x : x ∼ v} of vertices v of R.
N ∗: the vertex set is that of R; the edges are the closed

neighbourhoods N(v) = {x : x = v or x ∼ v} of vertices v
of R.

N †: the vertex set is one bipartite block of B; the edges are the
neighbourhoods of vertices in the other bipartite block.

Proposition

The three hypergraphs defined above are isomorphic.



Proof

We build two bipartite graphs from R as follows:
B1: the vertex set is V(R)× {0, 1}; (v, a) ∼ (w, b) if and only if

v ∼ w and a 6= b.
B2: the vertex set is V(R)× {0, 1}; (v, a) ∼ (w, b) if and only if

(either v = w or v ∼ w) and a 6= b.
These are the Levi graphs of the hypergraphs N and N ∗.
Then it is easy to show that B1

∼= B2 ∼= B, by verifying that both
B1 and B2 satisfy the characteristic property of B.



Two overgroups of Aut(R)

The groups Aut(N ) and Aut(N ∗) are both highly transitive
subgroups of Sym(V(R)) containing Aut(R).
They are isomorphic (indeed, conjugate) but not equal.
Moreover, we see later that 〈Aut(N ), Aut(N ∗)〉 < Sym(V(R)).
In the talk, I wondered whether Aut(N ) ∩Aut(N ∗) > Aut(R).
Afterwards, Michael Pinsker pointed out that these two groups
are equal. For a permutation preserving N and N ∗ preserves
the pairs (A, B) with A ∈ N , B ∈ N ∗, A ⊂ B with |B \A| = 1,
and hence the graph structure.
The rest of the talk will involve looking at two types of closure
of these hypergraphs.



Filters

A filter on a set V is a family F of subsets of V satisfying
I X, Y ∈ F implies X ∩ Y ∈ F;
I X ∈ F, Y ⊇ X implies Y ∈ F .

A filter F on a set V is trivial if it consists of all subsets of V.
Given a family A of subsets of V, the filter generated by A is
the upward closure of the set of finite intersections of sets in A;
that is, the set

F = {X ⊆ V : (∃A1, . . . , An ∈ A)(A1 ∩ · · · ∩An) ⊆ X}.



Neighbourhood filters

Let Γ be a graph on a countable vertex set V. The
neighbourhood filter of Γ is the filter F (Γ) generated by
{Γ(v) : v ∈ V}, where Γ(v) denotes the neighbourhood of v in
Γ, the set of vertices adjacent to v.

Proposition

Suppose that Γ has the property that each vertex has a non-neighbour.
Then the filter generated by the closed neighbourhoods
Γ(v) = Γ(v) ∪ {v} is equal to F (Γ).
For, if w 6∼ v, then Γ(v) ∩ Γ(w) ⊆ Γ(v) ⊆ Γ(v).



Neighbourhood filters of R

Proposition

The following three conditions on a graph Γ are equivalent:
I F (Γ) is nontrivial;
I Γ contains R as a spanning subgraph;
I F (Γ) ⊆ F (R).

Proof.
A filter is trivial if and only if it contains the empty set. So F (Γ)
is non-trivial if and only if any finitely many neighbourhoods
have non-empty intersection. This is equivalent to the
statement that R is a spanning subgraph of Γ, as we saw. So (a)
and (b) are equivalent.
If Γ contains R as a spanning subgraph, then R(v) ⊆ Γ(v) for all
v. So (b) implies (c). Conversely, FR is non-trivial (by our proof
that (b) implies (a)), so (c) implies (a).



A remark

So, in some sense, F (R) is the unique maximal neighbourhood
filter; but this is only up to isomorphism, since there are
countable chains of neighbourhood filters all isomorphic to
F (R).
Here is a simple example. Let T be the random 3-edge
colouring of the countable complete graph, with colours red,
green and blue. Let R1 be the graph consisting of red edges,
and R2 the graph consisting of red and green edges, in T. Then
both R1 and R2 are isomorphic to R. Since R1(v) ⊆ R2(v), we
have F (R2) ⊆ F (R1). It is not hard to show that the inequality
is strict.



Another remark

We can now see why 〈Aut(N ), Aut(N ∗)〉 < Sym(V). For the
automorphism groups of both the hypergraphs N and N ∗ are
contained in Aut(F (R)).

Problem
Is it true that 〈Aut(N ), Aut(N ∗)〉 < Aut(F (R))?



Relations

Claude Laflamme said more about the relations between these
groups (and some others) in his talk. Here is one simple fact.

Proposition

Aut2(R) ≤ Aut(F (R)), but Aut3(R) and Aut(FR) are
incomparable.

Problem
Is it true that Aut2(R) < Aut3(R) ∩Aut(FR)?



Topologies

A topology is a family of sets which is closed under finite
intersections and arbitrary unions.
Given a family A of sets, the topology generated by A consists
of all unions of finite intersections of the sets in A.
If F is a filter, then T = F ∪ {∅} is a topology, having the same
automorphism group as F .



Topologies from R

There are two rather more interesting topologies associated
with R.
In the first topology T , a sub-basis for the open sets consists of
the neighbourhoods of vertices. Thus the open sets are all
unions of sets which are finite intersections of neighbourhoods.
The topology T is not Hausdorff: in fact, any two open sets
have non-empty intersection. However, this topology does
satisfy the T1 separation condition.
What about using closed neighbourhoods?



Other constructions

Consider the three topologies T , T ∗ and T † generated by the
three families of sets N , N ∗ and N † defined earlier.

Proposition

I The three topologies defined above are all homeomorphic.
I The homeomorphism groups of these topologies are highly

transitive.

This follows from the isomorphism of the corresponding
neighbourhood hypergraphs.



A remark

Note that T and T ∗ are not identical: the identity map is a
continuous bijection from T ∗ to T but is not a
homeomorphism.

Problem
Is it true that Aut(T †) > Aut(N †)?
The right-hand group is the group of permutations induced on
a bipartite block by its stabiliser in Aut(B).

Problem
What is the relationship between the automorphism group of F (R)
and the homeomorphism group of T ?
They cannot be equal since then Aut(T ) would contain
Aut(T∗).



Another topology

The second topology U is obtained by symmetrising this one
with respect to the graph R and its complement Rc; in other
words, we also take closed neighbourhoods in Rc to be open
sets. So a basis for the open sets consists of all sets of the form

Z(U, V) = {z ∈ V(R) : (∀u ∈ U)(z ∼ u) ∧ (∀v ∈ V)(z 6∼ v)}

for finite disjoint sets U and V: that is, the sets of witnesses for
the characteristic property of R.
Again it holds that all the non-empty open sets are infinite.
This time the topology is totally disconnected. For given u 6= v,
there is a point z ∈ Z({u}, {v}); then the open neighbourhood
of z is open and closed in the topology and contains u but not v.
By Sierpiński’s Theorem, this topology is homeomorphic to Q.
So R as a countable topological space is homeomorphic to Q.



k-neighbourhood graphs

Given a connected graph X, let Xi(v) denote the set of vertices
at distance i from v, and let Xk(v) denote the set of vertices at
distance at most k from v (called the k-neighbourhood of v in
the graph X).

Problem
What can be said about graphs X for which the k-neighbourhoods
generate a non-trivial filter? In particular, which graphs are
“maximal” with this property (in the sense that R is when k = 1)?
Clearly a graph with non-trivial k-neighbourhood filter has
diameter at most 2k (else there are two vertices whose
k-neighbourhoods are disjoint) and at least k + 1 (else every
k-neighbourhood is the entire vertex set).



Integral metric spaces

A metric space is integral if all distances are integers.
There is a unique countable homogeneous universal integral
metric space M∞. Moreover, for any m > 1, there is a unique
countable homogeneous universal integal metric space of
diameter m, say Mm. These spaces arise from the path metrics
in certain interesting graphs R∞ and Rm. Here R2 is the random
graph R.

Proposition

An integral metric space is isometric to Mm if and only if, for any
finite set A of vertices, and any Katětov function on A, that is, any
function f from A to {0, 1, . . . , m} which satisfies

|f (a)− f (b)| ≤ d(a, b) ≤ f (a) + f (b)

for all a, b ∈ A, there exists a point z satisfying d(z, a) = f (a) for all
a ∈ A.



k-neighbourhoods

Proposition

Suppose that k + 1 ≤ m ≤ 2k. Form a graph on Mm by joining two
points if their distance is at most k. Then the resulting graph is
isomorphic to R.

Proof.
Let U and V be finite disjoint sets in Mm. Define f on U ∪V to
take the value k on U and k + 1 on V. The inequality m ≤ 2k
shows that f is a Katětov function. So there exists a point z with
d(z, a) = f (a) for all a ∈ U ∪V. Then z is joined to all vertices in
U and to none in V, in the distance-≤ k graph defined in the
Proposition.



And finally . . .

Here are two problems which arose in the talk. The first was a
question of Jarik Nešetřil; the second is a refinement of a
question of Greg Cherlin.

Problem

I We saw that the topology U constructed from R in a natural way
is homeomorphic to Q. Make this explicit; that is, find an
explicit bijection between the vertex set of R (in your favourite
description) and Q which is a homeomorphism.

I Let G be a highly-transitive permutation group of countable
degree which contains no non-trivial finitary permutations.
Does G contain a subgroup H such that the closure of H (in the
topology of pointwise convergence) is isomorphic to Aut(R) (as
permutation group)?


