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The random graph

This probably needs no introduction!
R is the unique countable graph which is

» universal (contains all finite and countable graphs) and

» homogeneous (all isomorphisms between finite subgroups
extend to automorphisms).

If you choose edges independently with probability 1/2 in a
countable vertex set, you almost surely get the random graph.
Its automorphism group is simple, contains generic n-tuples of
automorphisms, and embeds all finite or countable groups.

Its first-order theory is the first-order theory of almost all finite
graphs.

Andsoon...



Recognizing R

Theorem

A countable graph X is isomorphic to R if and only if, given any two
finite disjoint sets U and V of distinct vertices of R, there is a vertex z
joined to everything in U and nothing in V.

The proof is probably familiar to you. Given two countable
graphs satisfying the condition, we build an isomorphism
between then by back-and-forth.

Theorem

Let X be a countable graph. Then R is isomorphic to a spanning
subgraph of X if and only if any finite set of vertices of X has a
common neighbour.

This will be needed later. The proof is very similar to that of the
previous theorem. We build a bijection between R and X, but in
the R to X direction we only insist that edges are preserved.



Almost automorphisms
Consider the following groups, described by Claude Laflamme
in his talk:

» Aut;(R) is the group of permutations which change only
finitely many adjacencies (these are called
almost-automorphisms, and Truss denotes the group by
AAut(R));

» Auty(R) is the group of permutations which change only
finitely many adjacencies at any vertex;

» Aut3(R) is the group of permutations which change
infinitely many adjacencies at only finitely many vertices.

If C(g) denotes the set of pairs {v, w} of vertices whose
adjacency is changed by the permutation g, then

C(g~1) = C(g)¢ " and C(gh) C C(g) UC(h)$ . It easily follows
from this that Aut;(R) is a group fori =1,2,3.

It is an exercise to show that

Aut(R) < Aut;(R) < Autz(R) < Autz(R) < Sym(R).



The generic bipartite graph

Another character in our story is the graph B obtained (almost
surely) by taking a countable vertex set partitioned into two
parts and choosing at random edges between the two parts.

B has properties resembling those of R. For example, it is the
unique countable homogeneous universal
graph-with-bipartition. [A bipartite graph cannot be
homogeneous unless it is either complete bipartite or null; for
otherwise a pair of vertices in the same bipartite block, and a
non-adjacent pair in different blocks, are not equivalent under
automorphisms of the graph.]



Recognizing B

The characteristic property of B is: if U and V are finite disjoint
sets of vertices in the same bipartite block, then there is a vertex z
in the other block joined to everything in U and nothing in V.
The subgroup of Aut(B) fixing a bipartite block acts highly
transitively on the points of that block. I will call this group
Aut™ (B) (but note that it is not a closed subgroup of the
symmetric group).



Three hypergraphs

Consider the following three hypergraphs:
N the vertex set is that of R; the edges are the
neighbourhoods N(v) = {x : x ~ v} of vertices v of R.

N*: the vertex set is that of R; the edges are the closed
neighbourhoods N(v) = {x : x = vor x ~ v} of vertices v
of R.

NT: the vertex set is one bipartite block of B; the edges are the
neighbourhoods of vertices in the other bipartite block.

Proposition
The three hypergraphs defined above are isomorphic.



Proof

We build two bipartite graphs from R as follows:

By: the vertex setis V(R) x {0,1}; (v,a) ~ (w,b) if and only if
v~ wanda #b.

By: the vertex setis V(R) x {0,1}; (v,a) ~ (w, b) if and only if
(either v = w or v ~ w) and a # b.

These are the Levi graphs of the hypergraphs A" and N*.

Then it is easy to show that B; = B, = B, by verifying that both

By and B; satisfy the characteristic property of B.



Two overgroups of Aut(R)

The groups Aut(N') and Aut(N*) are both highly transitive
subgroups of Sym(V(R)) containing Aut(R).

They are isomorphic (indeed, conjugate) but not equal.
Moreover, we see later that (Aut(N'), Aut(N*)) < Sym(V(R)).
In the talk, I wondered whether Aut(N) N Aut(N*) > Aut(R).
Afterwards, Michael Pinsker pointed out that these two groups
are equal. For a permutation preserving N and N* preserves
the pairs (A, B) withA € N, B € N*, A C Bwith |B\ A| =1,
and hence the graph structure.

The rest of the talk will involve looking at two types of closure
of these hypergraphs.



Filters

A filter on a set V' is a family F of subsets of V satisfying
» X,Y € FimpliesXNY € F;
» XeF YD XimpliesY € F.

A filter F on a set V is trivial if it consists of all subsets of V.
Given a family A of subsets of V, the filter generated by A is
the upward closure of the set of finite intersections of sets in A;
that is, the set

F={XCV:(3A,...,Ay € A)(A1N---NA,) C X}.



Neighbourhood filters

Let I be a graph on a countable vertex set V. The
neighbourhood filter of T" is the filter 7 (I') generated by
{T(v) : v € V}, where I'(v) denotes the neighbourhood of v in
I, the set of vertices adjacent to v.

Proposition

Suppose that T has the property that each vertex has a non-neighbour.
Then the filter generated by the closed neighbourhoods

['(v) =T'(v) U {v} is equal to F(T).

For, if w # v, then T(v) NT(w) C I'(v) C T'(v).



Neighbourhood filters of R

Proposition

The following three conditions on a graph I' are equivalent:
» F(T) is nontrivial;
» I contains R as a spanning subgraph;
» F(T') € F(R).

Proof.

A filter is trivial if and only if it contains the empty set. So F(T')
is non-trivial if and only if any finitely many neighbourhoods
have non-empty intersection. This is equivalent to the
statement that R is a spanning subgraph of I, as we saw. So (a)
and (b) are equivalent.

If T contains R as a spanning subgraph, then R(v) C I'(v) for all
v. So (b) implies (c). Conversely, Fr is non-trivial (by our proof
that (b) implies (a)), so (c) implies (a). O



A remark

So, in some sense, F (R) is the unique maximal neighbourhood
filter; but this is only up to isomorphism, since there are
countable chains of neighbourhood filters all isomorphic to
F(R).

Here is a simple example. Let T be the random 3-edge
colouring of the countable complete graph, with colours red,
green and blue. Let R; be the graph consisting of red edges,
and Ry the graph consisting of red and green edges, in T. Then
both R; and R; are isomorphic to R. Since R;(v) C Ra(v), we
have F(R;) C F(R1). Itis not hard to show that the inequality
is strict.



Another remark

We can now see why (Aut(N), Aut(N*)) < Sym(V). For the
automorphism groups of both the hypergraphs N and N'* are
contained in Aut(F(R)).

Problem
Is it true that (Aut(N), Aut(N*)) < Aut(F(R))?



Relations

Claude Laflamme said more about the relations between these
groups (and some others) in his talk. Here is one simple fact.
Proposition

Auty(R) < Aut(F(R)), but Autz(R) and Aut(Fg) are
incomparable.

Problem
Is it true that Auty(R) < Autz(R) N Aut(Fgr)?



Topologies

A topology is a family of sets which is closed under finite
intersections and arbitrary unions.

Given a family A of sets, the topology generated by A consists
of all unions of finite intersections of the sets in .A.

If F is a filter, then 7 = F U {@} is a topology, having the same
automorphism group as F.



Topologies from R

There are two rather more interesting topologies associated
with R.

In the first topology 7, a sub-basis for the open sets consists of
the neighbourhoods of vertices. Thus the open sets are all
unions of sets which are finite intersections of neighbourhoods.
The topology 7 is not Hausdorff: in fact, any two open sets
have non-empty intersection. However, this topology does
satisfy the T1 separation condition.

What about using closed neighbourhoods?



Other constructions

Consider the three topologies 7, 7* and 7 generated by the
three families of sets N, N* and N'* defined earlier.

Proposition

> The three topologies defined above are all homeomorphic.

» The homeomorphism groups of these topologies are highly
transitive.

This follows from the isomorphism of the corresponding
neighbourhood hypergraphs.



A remark

Note that 7 and 7 are not identical: the identity map is a
continuous bijection from 7 * to 7 but is not a
homeomorphism.

Problem
Is it true that Aut(TT) > Aut(NT)?

The right-hand group is the group of permutations induced on
a bipartite block by its stabiliser in Aut(B).

Problem
What is the relationship between the automorphism group of F(R)
and the homeomorphism group of T ?

They cannot be equal since then Aut(7") would contain
Aut(T*).



Another topology

The second topology U is obtained by symmetrising this one
with respect to the graph R and its complement R¢; in other
words, we also take closed neighbourhoods in R¢ to be open
sets. So a basis for the open sets consists of all sets of the form

Z(U,V)={zeVR): Vuel)(z~u)N(Vo e V)(z£v)}

for finite disjoint sets U and V: that is, the sets of witnesses for
the characteristic property of R.

Again it holds that all the non-empty open sets are infinite.
This time the topology is totally disconnected. For given u # v,
there is a point z € Z({u}, {v}); then the open neighbourhood
of z is open and closed in the topology and contains u but not v.
By Sierpiniski’s Theorem, this topology is homeomorphic to Q.
So R as a countable topological space is homeomorphic to Q.



k-neighbourhood graphs

Given a connected graph X, let X;(v) denote the set of vertices
at distance i from v, and let X;(v) denote the set of vertices at
distance at most k from v (called the k-neighbourhood of v in
the graph X).

Problem

What can be said about graphs X for which the k-neighbourhoods
generate a non-trivial filter? In particular, which graphs are
“maximal” with this property (in the sense that R is when k = 1)?

Clearly a graph with non-trivial k-neighbourhood filter has
diameter at most 2k (else there are two vertices whose
k-neighbourhoods are disjoint) and at least k + 1 (else every
k-neighbourhood is the entire vertex set).



Integral metric spaces

A metric space is integral if all distances are integers.

There is a unique countable homogeneous universal integral
metric space M. Moreover, for any m > 1, there is a unique
countable homogeneous universal integal metric space of
diameter m, say M,,. These spaces arise from the path metrics
in certain interesting graphs R, and R;,. Here R, is the random
graph R.

Proposition

An integral metric space is isometric to My, if and only if, for any
finite set A of vertices, and any Katétov function on A, that is, any
function f from A to {0,1, ..., m} which satisfies

[f(a) —f(b)| < d(a,b) < f(a) +f(D)

foralla,b € A, there exists a point z satisfying d(z,a) = f(a) for all
aeA.



k-neighbourhoods

Proposition

Suppose that k +1 < m < 2k. Form a graph on My, by joining two
points if their distance is at most k. Then the resulting graph is
isomorphic to R.

Proof.

Let U and V be finite disjoint sets in M. Define f on U U V to
take the value k on U and k + 1 on V. The inequality m < 2k
shows that f is a Katétov function. So there exists a point z with
d(z,a) = f(a) foralla € UU V. Then z is joined to all vertices in
U and to none in V, in the distance-< k graph defined in the
Proposition. 0



And finally ...

Here are two problems which arose in the talk. The first was a
question of Jarik Nesetfil; the second is a refinement of a
question of Greg Cherlin.

Problem

> We saw that the topology U constructed from R in a natural way
is homeomorphic to Q. Make this explicit; that is, find an
explicit bijection between the vertex set of R (in your favourite
description) and Q which is a homeomorphism.

> Let G be a highly-transitive permutation group of countable
degree which contains no non-trivial finitary permutations.
Does G contain a subgroup H such that the closure of H (in the
topology of pointwise convergence) is isomorphic to Aut(R) (as
permutation group)?



