The reducts of the homogeneous C-relation, and tractable phylogeny problems

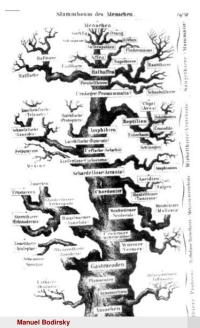
Manuel Bodirsky

CNRS / LIX, École Polytechnique

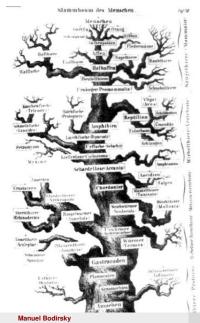
July 2012

- 1 Phylogeny problems
- 2 Homogeneous C-relations
- 3 Universal algebra and Ramsey theory
- 4 Generalizations for all ω -categorical structures?

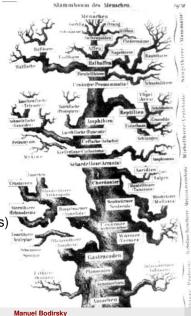
 Biological species evolved in history in a tree-like fashion



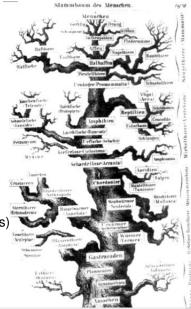
- Biological species evolved in history in a tree-like fashion
- There are about 100 million species presently living on earth.



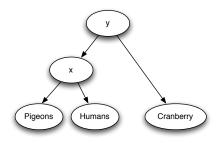
- Biological species evolved in history in a tree-like fashion
- There are about 100 million species presently living on earth.
- Goal of biologists: reconstruct this tree (from data about the still existing species)

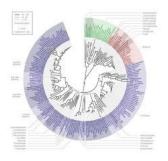


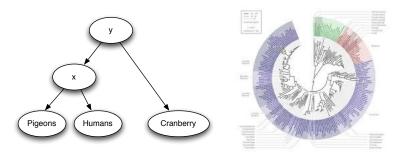
- Biological species evolved in history in a tree-like fashion
- There are about 100 million species presently living on earth.
- Goal of biologists: reconstruct this tree (from data about the still existing species)
- Computationally challenging
 - Large amounts of data
 - Conflicting information



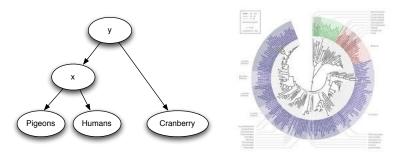
Manuel Bodirsky



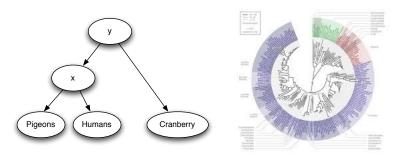




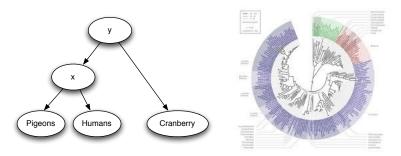
Assumptions: species-tree is rooted, binary



- Assumptions: species-tree is rooted, binary
- Notation: for set of species S, write yca(S) for youngest common ancestor of S



- Assumptions: species-tree is rooted, binary
- Notation: for set of species S, write yca(S) for youngest common ancestor of S
- Notation: for sets of species *S* and *T*, write *S*|*T* if yca(*S*) and yca(*T*) are incomparable



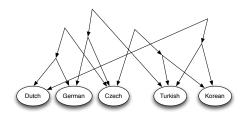
- Assumptions: species-tree is rooted, binary
- Notation: for set of species S, write yca(S) for youngest common ancestor of S
- Notation: for sets of species *S* and *T*, write *S*|*T* if yca(*S*) and yca(*T*) are incomparable
- Example: pigeons humans | cranberries

A fundamental computational problem studied in phylogenetic reconstruction.

A fundamental computational problem studied in phylogenetic reconstruction. Input: A set of variables *V*, a set of triples $T \subseteq V^3$

A fundamental computational problem studied in phylogenetic reconstruction. Input: A set of variables *V*, a set of triples $T \subseteq V^3$ Question: Is there a rooted binary tree with leaves *V* such that for all $(x, y, z) \in T$ we have xy|z.

A fundamental computational problem studied in phylogenetic reconstruction. Input: A set of variables *V*, a set of triples $T \subseteq V^3$ Question: Is there a rooted binary tree with leaves *V* such that for all $(x, y, z) \in T$ we have xy|z.

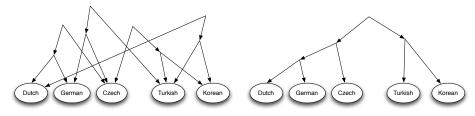


Example Instance:

Dutch German | Czech, German Czech | Turkish, Turkish Korean | Czech, Turkish Korean | Dutch

A fundamental computational problem studied in phylogenetic reconstruction. Input: A set of variables *V*, a set of triples $T \subseteq V^3$ Question: Is there a rooted binary tree with leaves *V* such that for all

 $(x, y, z) \in T$ we have xy|z.



Example Instance:

Dutch German | Czech, German Czech | Turkish, Turkish Korean | Czech, Turkish Korean | Dutch

Algorithms

First polynomial-time algorithm for rooted triple consistency:

Theorem (Aho, Sagiv, Szymanski, Ullman'81).

The rooted triple consistency problem can be solved in quadratic time.

First polynomial-time algorithm for rooted triple consistency:

Theorem (Aho, Sagiv, Szymanski, Ullman'81).

The rooted triple consistency problem can be solved in quadratic time.

Work of Aho, Sagiv, Szymanski, Ullman independently motivated in database theory

First polynomial-time algorithm for rooted triple consistency:

Theorem (Aho, Sagiv, Szymanski, Ullman'81).

The rooted triple consistency problem can be solved in quadratic time.

- Work of Aho, Sagiv, Szymanski, Ullman independently motivated in database theory
- Running time improved to $O(n^{3/2})$ by Henzinger+King+Warnow'95, and to $O(n \log^2 n)$ by Holm+deLichtenberg+Thorup'98.

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a binary *T* with leaves *V* s.t. for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z?

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a binary *T* with leaves *V* s.t. for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z? Complexity: NP-hard [Bryant'97]

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a binary *T* with leaves *V* s.t. for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z? Complexity: NP-hard [Bryant'97] **(Unrooted) Quartet Consistency** Input: A set of variables *V*, a set of quartets $Q \subseteq V^4$. Question: Is there a tree *T* with leaves *V* such that for each $(x, y, u, y) \in O$ the shortest path from *x* to *y* does not interse

 $(x, y, u, v) \in Q$ the shortest path from x to y does not intersect the shortest path from u to v?

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a binary *T* with leaves *V* s.t. for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z? Complexity: NP-hard [Bryant'97] **(Unrooted) Quartet Consistency** Input: A set of variables *V*, a set of quartets $Q \subseteq V^4$. Question: Is there a tree *T* with leaves *V* such that for each $(x, y, u, v) \in Q$ the shortest path from *x* to *y* does not intersect the shortest path from *u* to *v*?

Complexity: NP-hard [Steel'92]

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a binary *T* with leaves *V* s.t. for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z?

Complexity: NP-hard [Bryant'97]

(Unrooted) Quartet Consistency

Input: A set of variables V, a set of quartets $Q \subseteq V^4$.

Question: Is there a tree T with leaves V such that for each

 $(x, y, u, v) \in Q$ the shortest path from x to y does not intersect the shortest path from u to v?

Complexity: NP-hard [Steel'92]

Tree Balance Constraints

Input: A set of variables V, a set of quartets $Q \subseteq V^4$.

Question: Is there a binary rooted tree *T* with leaves *V* such that for each $(x, y, u, v) \in Q$ we have xy|uv or xu|yv or xv|yu?

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a binary *T* with leaves *V* s.t. for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z?

Complexity: NP-hard [Bryant'97]

(Unrooted) Quartet Consistency

Input: A set of variables V, a set of quartets $Q \subseteq V^4$.

Question: Is there a tree T with leaves V such that for each

 $(x, y, u, v) \in Q$ the shortest path from x to y does not intersect the shortest path from u to v?

Complexity: NP-hard [Steel'92]

Tree Balance Constraints

Input: A set of variables V, a set of quartets $Q \subseteq V^4$.

Question: Is there a binary rooted tree *T* with leaves *V* such that for each $(x, y, u, v) \in Q$ we have xy|uv or xu|yv or xv|yu?

Complexity: Can be solved in polynomial time.

Part 2: Constraint Satisfaction Problems

Part 2: Constraint Satisfaction Problems

Let Γ be a structure with a finite relational signature τ . Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite τ -structure *A* homomorphically maps to Γ .

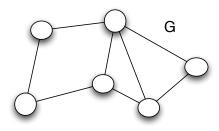
Part 2: Constraint Satisfaction Problems

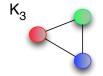
Let Γ be a structure with a finite relational signature τ . Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite τ -structure *A* homomorphically maps to Γ .

Example: 3-colorability is CSP(*K*₃)





Input: A set of triples of variables (x, y, z)

Question: Is there a 0/1-assignment to the variables such that in each clause exactly one variable is true?

Input: A set of triples of variables (x, y, z)

Question: Is there a 0/1-assignment to the variables such that in each clause exactly one variable is true?

Is a CSP: template is $(\{0, 1\}; \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\})$

Input: A set of triples of variables (x, y, z)

Question: Is there a 0/1-assignment to the variables such that in each clause exactly one variable is true?

Is a CSP: template is $(\{0, 1\}; \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\})$

Directed Graph Acyclicity

Input: A directed graph (V; E)Question: Is (V; E) acyclic?

Input: A set of triples of variables (x, y, z)

Question: Is there a 0/1-assignment to the variables such that in each clause exactly one variable is true?

Is a CSP: template is $(\{0, 1\}; \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\})$

Directed Graph Acyclicity

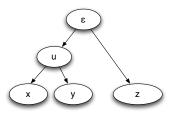
Input: A directed graph (V; E) Question: Is (V; E) acyclic? Is CSP: template is ($\mathbb{Q}; <$)

Template 1:

Template 1: For $u, v \in \{0, 1\}^*$, write $u \triangleleft v$ if u is prefix of v.

Template 1: For $u, v \in \{0, 1\}^*$, write $u \triangleleft v$ if u is prefix of v.

 $\Lambda = (\{0, 1\}^*; C)$ where $C = \{(x, y, z) \mid \text{ and } \exists u. \ u \triangleleft x \text{ and } u \triangleleft y \text{ and}$ $\neg (u \triangleleft z) \text{ and } \neg (z \triangleleft u) \}$



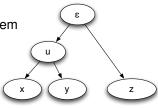
Template 1: For $u, v \in \{0, 1\}^*$, write $u \triangleleft v$ if u is prefix of v.

$$\Lambda = (\{0, 1\}^*; C)$$

where $C = \{(x, y, z) \mid \text{ and } \exists u. \ u \triangleleft x \text{ and } u \triangleleft y \text{ and}$
 $\neg (u \triangleleft z) \text{ and } \neg (z \triangleleft u)$

Facts.

■ CSP(Λ) is the rooted triple consistency problem (have C(x, y, z) iff xy|z)



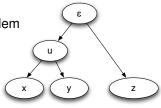
Template 1: For $u, v \in \{0, 1\}^*$, write $u \triangleleft v$ if u is prefix of v.

$$\Lambda = (\{0, 1\}^*; C)$$

where $C = \{(x, y, z) \mid \text{ and } \exists u. \ u \triangleleft x \text{ and } u \triangleleft y \text{ and}$
$$\neg (u \triangleleft z) \text{ and } \neg (z \triangleleft u)$$

Facts.

- CSP(Λ) is the rooted triple consistency problem (have C(x, y, z) iff xy|z)
- Structure ∧ not homogeneous



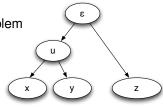
Template 1: For $u, v \in \{0, 1\}^*$, write $u \triangleleft v$ if u is prefix of v.

$$\Lambda = (\{0, 1\}^*; C)$$

where $C = \{(x, y, z) \mid \text{ and } \exists u. \ u \triangleleft x \text{ and } u \triangleleft y \text{ and}$
$$\neg (u \triangleleft z) \text{ and } \neg (z \triangleleft u)$$

Facts.

- CSP(Λ) is the rooted triple consistency problem (have C(x, y, z) iff xy|z)
- Structure ∧ not homogeneous



Template 2:

The age of Λ has the amalgamation property.

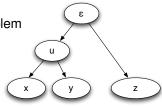
Template 1: For $u, v \in \{0, 1\}^*$, write $u \triangleleft v$ if u is prefix of v.

$$\Lambda = (\{0, 1\}^*; C)$$

where $C = \{(x, y, z) \mid \text{ and } \exists u. \ u \triangleleft x \text{ and } u \triangleleft y \text{ and}$
$$\neg (u \triangleleft z) \text{ and } \neg (z \triangleleft u)$$

Facts.

- CSP(Λ) is the rooted triple consistency problem (have C(x, y, z) iff xy|z)
- Structure ∧ not homogeneous



Template 2:

The age of Λ has the amalgamation property. Write $(\mathbb{L}; C)$ for its Fraïssé-limit.

Template 1: For $u, v \in \{0, 1\}^*$, write $u \triangleleft v$ if u is prefix of v.

$$\Lambda = (\{0, 1\}^*; C)$$

where $C = \{(x, y, z) \mid \text{ and } \exists u. \ u \triangleleft x \text{ and } u \triangleleft y \text{ and}$
$$\neg (u \triangleleft z) \text{ and } \neg (z \triangleleft u)$$

Facts.

- CSP(Λ) is the rooted triple consistency problem (have *C*(*x*, *y*, *z*) iff *xy*|*z*)
- Structure ∧ not homogeneous

olem u x y z

Template 2:

The age of Λ has the amalgamation property. Write $(\mathbb{L}; C)$ for its Fraïssé-limit. $CSP((\mathbb{L}; C))$ is the rooted triple consistency problem.

The structure $(\mathbb{L}; C)$ has been studied in other contexts:

The structure $(\mathbb{L}; C)$ has been studied in other contexts:

■ 'Relations related to Betweenness' (Adeleke+Neumann):

The structure $(\mathbb{L}; C)$ has been studied in other contexts:

'Relations related to Betweenness' (Adeleke+Neumann):
 C-relations are ternary relations C satisfying the following axioms:

C1
$$\forall a, b, c. C(a; b, c) \Rightarrow C(a; c, b);$$

C2 $\forall a, b, c. C(a; b, c) \Rightarrow \neg C(b; a, c);$
C3 $\forall a, b, c, d. C(a; b, c) \Rightarrow C(a; d, c) \lor C(d; b, c);$
C4 $\forall a, b. a \neq b \Rightarrow \exists e (e \neq b \land C(a; b, e));$
C5 $\forall a, b. \exists e. C(e; a, b).$

■ Aut(L; C) is a Jordan permutation group

The structure $(\mathbb{L}; C)$ has been studied in other contexts:

'Relations related to Betweenness' (Adeleke+Neumann):
 C-relations are ternary relations C satisfying the following axioms:

C1
$$\forall a, b, c. C(a; b, c) \Rightarrow C(a; c, b);$$

C2 $\forall a, b, c. C(a; b, c) \Rightarrow \neg C(b; a, c);$
C3 $\forall a, b, c, d. C(a; b, c) \Rightarrow C(a; d, c) \lor C(d; b, c);$
C4 $\forall a, b. a \neq b \Rightarrow \exists e (e \neq b \land C(a; b, e));$
C5 $\forall a, b. \exists e. C(e; a, b).$

- Aut(\mathbb{L} ; *C*) is a Jordan permutation group
- Literature on C-minimal structures (in analogy to o-minimal structures, where the role of the order is played by a C-relation)

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a tree *T* with leaves *V* such that for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z?

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a tree *T* with leaves *V* such that for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z? Template: $(\mathbb{L}; \{(x, y, z) : x \neq y, y \neq z, x \neq z, xz|y \lor xy|z\})$

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a tree *T* with leaves *V* such that for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z? Template: $(\mathbb{L}; \{(x, y, z) : x \neq y, y \neq z, x \neq z, xz|y \lor xy|z\})$ **(Unrooted) Quartet Consistency** Input: A set of variables *V*, a set of quartets $Q \subseteq V^4$. Question: Is there a tree *T* with leaves *V* such that for each $(x, y, u, v) \in Q$ the shortest path from *x* to *y* does not intersect the shortest path from *u* to *v*?

Forbidden Triples

Input: A set of variables V, a set of triples $T \subset V^3$. Question: Is there a tree T with leaves V such that for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z?Template: $(\mathbb{L}; \{(x, y, z) : x \neq y, y \neq z, x \neq z, xz | y \lor xy | z\})$ (Unrooted) Quartet Consistency Input: A set of variables V, a set of guartets $Q \subseteq V^4$. Question: Is there a tree T with leaves V such that for each $(x, y, u, v) \in Q$ the shortest path from x to y does not intersect the shortest path from u to v? Template: $(\mathbb{L}; \{(x, y, u, v) : (xy|u \land xy|v) \lor (x|uv \land y|uv)\})$

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a tree *T* with leaves *V* such that for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z? Template: $(\mathbb{L}; \{(x, y, z) : x \neq y, y \neq z, x \neq z, xz|y \lor xy|z\})$ **(Unrooted) Quartet Consistency** Input: A set of variables *V*, a set of quartets $Q \subseteq V^4$. Question: Is there a tree *T* with leaves *V* such that for each $(x, y, u, v) \in Q$ the shortest path from *x* to *y* does not intersect the shortest path from *u* to *v*?

Template: $(\mathbb{L}; \{(x, y, u, v) : (xy|u \land xy|v) \lor (x|uv \land y|uv)\})$ **Tree Balance Constraints**

Input: A set of variables *V*, a set of quartets $Q \subseteq V^4$. Question: Is there a tree *T* such that for each $(x, y, u, v) \in Q$ we have $xy|uv \lor xu|yv \lor xv|yu$?

Forbidden Triples

Input: A set of variables *V*, a set of triples $T \subseteq V^3$. Question: Is there a tree *T* with leaves *V* such that for every $(x, y, z) \in T$ x, y, z are pairwise distinct, and we do not have xy|z? Template: $(\mathbb{L}; \{(x, y, z) : x \neq y, y \neq z, x \neq z, xz|y \lor xy|z\})$ **(Unrooted) Quartet Consistency** Input: A set of variables *V*, a set of quartets $Q \subseteq V^4$. Question: Is there a tree *T* with leaves *V* such that for each $(x, y, u, v) \in Q$ the shortest path from *x* to *y* does not intersect the shortest path from *u* to *v*?

Template: $(\mathbb{L}; \{(x, y, u, v) : (xy|u \land xy|v) \lor (x|uv \land y|uv)\})$ Tree Balance Constraints

Input: A set of variables *V*, a set of quartets $Q \subseteq V^4$. Question: Is there a tree *T* such that for each $(x, y, u, v) \in Q$ we have $xy|uv \lor xu|yv \lor xv|yu$?

Template: $(\mathbb{L}; \{(x, y, u, v) : xy | uv \lor xu | yv \lor xv | yu\})$

Definition

A relational structure Γ is called a reduct of Δ if Γ and Δ have the same domain, and every relation of Γ has a first-order definition in Δ .

Definition

A relational structure Γ is called a reduct of Δ if Γ and Δ have the same domain, and every relation of Γ has a first-order definition in Δ .

Question: let Γ be a reduct of $(\mathbb{L}; C)$ with finite signature. What is the complexity of $CSP(\Gamma)$?

Definition

A relational structure Γ is called a reduct of Δ if Γ and Δ have the same domain, and every relation of Γ has a first-order definition in Δ .

Question: let Γ be a reduct of $(\mathbb{L}; C)$ with finite signature. What is the complexity of $CSP(\Gamma)$?

Theorem (B., van Pham, Jonsson'12).

 $CSP(\Gamma)$ is either in P or NP-complete.

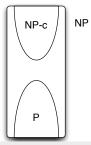
Definition

A relational structure Γ is called a reduct of Δ if Γ and Δ have the same domain, and every relation of Γ has a first-order definition in Δ .

Question: let Γ be a reduct of $(\mathbb{L}; C)$ with finite signature. What is the complexity of $CSP(\Gamma)$?

Theorem (B., van Pham, Jonsson'12).

 $CSP(\Gamma)$ is either in P or NP-complete.



Two reducts Γ , Δ of $(\mathbb{L}; C)$ are called first-order interdefinable if Γ is first-order definable in Δ and vice versa.

Two reducts Γ , Δ of $(\mathbb{L}; C)$ are called first-order interdefinable if Γ is first-order definable in Δ and vice versa. **Fact:** Two reducts Γ and Δ of $(\mathbb{L}; C)$ are first-order interdefinable if and only if

Fact: Two reducts 1 and Δ of (\mathbb{L} ; C) are first-order interdefinable if and only if Γ and Δ have the same automorphisms.

Two reducts Γ , Δ of $(\mathbb{L}; C)$ are called first-order interdefinable if Γ is first-order definable in Δ and vice versa.

Fact: Two reducts Γ and Δ of $(\mathbb{L}; C)$ are first-order interdefinable if and only if Γ and Δ have the same automorphisms.

Theorem.

Let Γ be a reduct of $(\mathbb{L}; C)$. Then Γ is first-order interdefinable with $(\mathbb{L}; C)$, $(\mathbb{L}; \{(x, y, u, v) \mid (xy|u \land xy|v) \lor (x|uv \land y|uv)\})$, or $(\mathbb{L}; =)$.

Two reducts Γ , Δ of $(\mathbb{L}; C)$ are called first-order interdefinable if Γ is first-order definable in Δ and vice versa.

Fact: Two reducts Γ and Δ of $(\mathbb{L}; C)$ are first-order interdefinable if and only if Γ and Δ have the same automorphisms.

Theorem.

Let Γ be a reduct of $(\mathbb{L}; C)$. Then Γ is first-order interdefinable with $(\mathbb{L}; C)$, $(\mathbb{L}; \{(x, y, u, v) \mid (xy|u \land xy|v) \lor (x|uv \land y|uv)\})$, or $(\mathbb{L}; =)$.

Two proofs:

Two reducts Γ , Δ of $(\mathbb{L}; C)$ are called first-order interdefinable if Γ is first-order definable in Δ and vice versa.

Fact: Two reducts Γ and Δ of $(\mathbb{L}; C)$ are first-order interdefinable if and only if Γ and Δ have the same automorphisms.

Theorem.

Let Γ be a reduct of $(\mathbb{L}; C)$. Then Γ is first-order interdefinable with $(\mathbb{L}; C)$, $(\mathbb{L}; \{(x, y, u, v) \mid (xy|u \land xy|v) \lor (x|uv \land y|uv)\})$, or $(\mathbb{L}; =)$.

Two proofs:

 Using known results about Jordan permutation groups (Adeleke+Macpherson'94)

Two reducts Γ , Δ of $(\mathbb{L}; C)$ are called first-order interdefinable if Γ is first-order definable in Δ and vice versa.

Fact: Two reducts Γ and Δ of $(\mathbb{L}; C)$ are first-order interdefinable if and only if Γ and Δ have the same automorphisms.

Theorem.

Let Γ be a reduct of $(\mathbb{L}; C)$. Then Γ is first-order interdefinable with $(\mathbb{L}; C)$, $(\mathbb{L}; \{(x, y, u, v) \mid (xy|u \land xy|v) \lor (x|uv \land y|uv)\})$, or $(\mathbb{L}; =)$.

Two proofs:

- Using known results about Jordan permutation groups (Adeleke+Macpherson'94)
- Using the Ramsey techniques that will be presented in this talk.

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson'12).

Let Γ be a reduct of $(\mathbb{L}; C)$ that contains the relation *C*. Then exactly one of the following applies.

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson'12).

Let Γ be a reduct of $(\mathbb{L}; C)$ that contains the relation *C*. Then exactly one of the following applies.

Pol(Γ) has a continuous clone homomorphism to **1**.

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson'12).

Let Γ be a reduct of $(\mathbb{L}; C)$ that contains the relation *C*. Then exactly one of the following applies.

Pol(Γ) has a continuous clone homomorphism to 1.
 I.e., all finite structures have a primitive positive interpretation in Γ.

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson'12).

Let Γ be a reduct of $(\mathbb{L}; C)$ that contains the relation *C*. Then exactly one of the following applies.

Pol(Γ) has a continuous clone homomorphism to 1.
 I.e., all finite structures have a primitive positive interpretation in Γ.
 In this case, CSP(Γ) is NP-hard.

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson'12).

Let Γ be a reduct of $(\mathbb{L}; C)$ that contains the relation *C*. Then exactly one of the following applies.

- Pol(Γ) has a continuous clone homomorphism to 1.
 I.e., all finite structures have a primitive positive interpretation in Γ.
 In this case, CSP(Γ) is NP-hard.
- Γ has a polymorphism f and an endomorphism e satisfying

$$\forall x, y. f(x, y) = e(f(y, x)).$$

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson'12).

Let Γ be a reduct of $(\mathbb{L}; C)$ that contains the relation *C*. Then exactly one of the following applies.

- Pol(Γ) has a continuous clone homomorphism to 1.
 I.e., all finite structures have a primitive positive interpretation in Γ.
 In this case, CSP(Γ) is NP-hard.
- Γ has a polymorphism f and an endomorphism e satisfying

$$\forall x, y. f(x, y) = e(f(y, x)).$$

In this case, $CSP(\Gamma)$ is in P.

Tractability Boarder

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson'12).

Let Γ be a reduct of $(\mathbb{L}; C)$. Then Γ is homomorphically equivalent to a structure Δ such that exactly one of the following applies.

- Pol(Δ) has a continuous clone homomorphism to 1.
 I.e., all finite structures have a primitive positive interpretation in Γ.
 In this case, CSP(Γ) is NP-hard.
- Δ has a polymorphism f and an endomorphism e satisfying

$$\forall x, y. f(x, y) = e(f(y, x)).$$

In this case, $CSP(\Gamma)$ is in P.

Tractability Boarder

Write $Pol(\Gamma)$ for clone formed by the set of all polymorphisms of Γ , i.e., homomorphisms from Γ^k to Γ for some finite *k*.

Write 1 for the clone all of whose operations are projections.

Theorem (B., van Pham, Jonsson'12).

Let Γ be a reduct of $(\mathbb{L}; C)$. Then Γ is homomorphically equivalent to a structure Δ such that exactly one of the following applies.

- Pol(Δ) has a continuous clone homomorphism to 1.
 I.e., all finite structures have a primitive positive interpretation in Γ.
 In this case, CSP(Γ) is NP-hard.
- Δ has a polymorphism f and an endomorphism e satisfying

$$\forall x, y. f(x, y) = e(f(y, x)).$$

In this case, $CSP(\Gamma)$ is in P.

Key ingredient in proof: Ramsey theory

Write $\binom{G}{H}$ for the set of all induced substructures of G that are isomorphic to H.

Definition

For structures G, H, P, write $G \to (H)_k^P$ if for all $\chi: {G \choose P} \to [k]$ there exists $H' \in {G \choose H}$ such that χ is constant on ${H' \choose P}$.

Write $\binom{G}{H}$ for the set of all induced substructures of G that are isomorphic to H.

Definition

```
For structures G, H, P, write

G \to (H)_k^P

if for all \chi: {G \choose P} \to [k] there exists H' \in {G \choose H} such that \chi is constant on {H' \choose P}.
```

Definition

A class \mathcal{R} of finite τ -structures is called a Ramsey class if for all $H, P \in \mathcal{R}$ and $k \in \mathbb{N}$ there exists a $G \in \mathcal{R}$ such that

$$G \to (H)_k^P$$
.

Write $\binom{G}{H}$ for the set of all induced substructures of G that are isomorphic to H.

Definition

```
For structures G, H, P, write

G \to (H)_k^P

if for all \chi: \begin{pmatrix} G \\ P \end{pmatrix} \to [k] there exists H' \in \begin{pmatrix} G \\ H \end{pmatrix} such that \chi is constant on \begin{pmatrix} H' \\ P \end{pmatrix}.
```

Definition

A class \mathcal{R} of finite τ -structures is called a Ramsey class if for all $H, P \in \mathcal{R}$ and $k \in \mathbb{N}$ there exists a $G \in \mathcal{R}$ such that

$$G \to (H)_k^P$$
.

Example: The class of all finite linear orders. (Ramsey's theorem)

Write $\binom{G}{H}$ for the set of all induced substructures of G that are isomorphic to H.

Definition

```
For structures G, H, P, write

G \to (H)_k^P

if for all \chi: {G \choose P} \to [k] there exists H' \in {G \choose H} such that \chi is constant on {H' \choose P}.
```

Definition

A class \mathcal{R} of finite τ -structures is called a Ramsey class if for all $H, P \in \mathcal{R}$ and $k \in \mathbb{N}$ there exists a $G \in \mathcal{R}$ such that

$$G \to (H)_k^P$$
.

Example: The class of all finite linear orders. (Ramsey's theorem) **Non-example:** The class of all finite graphs.

Write $\binom{G}{H}$ for the set of all induced substructures of G that are isomorphic to H.

Definition

```
For structures G, H, P, write

G \to (H)_k^P

if for all \chi: \begin{pmatrix} G \\ P \end{pmatrix} \to [k] there exists H' \in \begin{pmatrix} G \\ H \end{pmatrix} such that \chi is constant on \binom{H'}{P}.
```

Definition

A class \mathcal{R} of finite τ -structures is called a Ramsey class if for all $H, P \in \mathcal{R}$ and $k \in \mathbb{N}$ there exists a $G \in \mathcal{R}$ such that

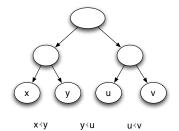
$$G \to (H)_k^P$$
.

Example: The class of all finite linear orders. (Ramsey's theorem) **Non-example:** The class of all finite graphs. **Example:** The class of all finite linearly ordered graphs. (Nešetřil-Rödl)

A Consequence of Miliken's Theorem

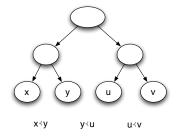
A Consequence of Miliken's Theorem

Let \prec be a linear order of \mathbb{L} such that $xy|z \Rightarrow (x \prec z \land y \prec z) \lor (z \prec x \land z \prec y)$



A Consequence of Miliken's Theorem

Let \prec be a linear order of \mathbb{L} such that $xy|z \Rightarrow (x \prec z \land y \prec z) \lor (z \prec x \land z \prec y)$



Theorem (consequence of Miliken'79).

The class of all finite structures that embed into $(\mathbb{L}; C, \prec)$ is a Ramsey class.

- A consequence of Miliken'79, generalizing earlier results of Deuber.
- See B.+Piguet'09 for a direct proof.

Let Δ_1, Δ_2 be homogeneous structures.

Let Δ_1, Δ_2 be homogeneous structures.

Definition (Canonical Functions)

A function $f: \Delta_1 \to \Delta_2$ is canonical iff for all finite tuples t over Δ_1 , the type of f(t) in Δ_2 only depends on the type of t in Δ_1 .

Let Δ_1, Δ_2 be homogeneous structures.

Definition (Canonical Functions)

A function $f: \Delta_1 \to \Delta_2$ is canonical iff for all finite tuples t over Δ_1 , the type of f(t) in Δ_2 only depends on the type of t in Δ_1 .

Example:

There are three types of canonical functions from $(\mathbb{Q}; <)$ to $(\mathbb{Q}; <)$:

Let Δ_1, Δ_2 be homogeneous structures.

Definition (Canonical Functions)

A function $f: \Delta_1 \to \Delta_2$ is canonical iff for all finite tuples t over Δ_1 , the type of f(t) in Δ_2 only depends on the type of t in Δ_1 .

Example:

There are three types of canonical functions from $(\mathbb{Q}; <)$ to $(\mathbb{Q}; <)$:

• the function $x \mapsto -x$

Let Δ_1, Δ_2 be homogeneous structures.

Definition (Canonical Functions)

A function $f: \Delta_1 \to \Delta_2$ is canonical iff for all finite tuples t over Δ_1 , the type of f(t) in Δ_2 only depends on the type of t in Δ_1 .

Example:

There are three types of canonical functions from $(\mathbb{Q}; <)$ to $(\mathbb{Q}; <)$:

- the function $x \mapsto -x$
- the constant function

Let Δ_1, Δ_2 be homogeneous structures.

Definition (Canonical Functions)

A function $f: \Delta_1 \to \Delta_2$ is canonical iff for all finite tuples t over Δ_1 , the type of f(t) in Δ_2 only depends on the type of t in Δ_1 .

Example:

There are three types of canonical functions from $(\mathbb{Q}; <)$ to $(\mathbb{Q}; <)$:

- the function $x \mapsto -x$
- the constant function
- the identity

Let Δ_1, Δ_2 be homogeneous structures.

Definition (Canonical Functions)

A function $f: \Delta_1 \to \Delta_2$ is canonical iff for all finite tuples t over Δ_1 , the type of f(t) in Δ_2 only depends on the type of t in Δ_1 .

Example:

There are three types of canonical functions from $(\mathbb{Q}; <)$ to $(\mathbb{Q}; <)$:

- the function $x \mapsto -x$
- the constant function
- the identity

Remarks.

Let Δ_1, Δ_2 be homogeneous structures.

Definition (Canonical Functions)

A function $f: \Delta_1 \to \Delta_2$ is canonical iff for all finite tuples t over Δ_1 , the type of f(t) in Δ_2 only depends on the type of t in Δ_1 .

Example:

There are three types of canonical functions from $(\mathbb{Q}; <)$ to $(\mathbb{Q}; <)$:

- the function $x \mapsto -x$
- the constant function
- the identity

Remarks.

Can be generalized to higher-ary functions

Let Δ_1, Δ_2 be homogeneous structures.

Definition (Canonical Functions)

A function $f: \Delta_1 \to \Delta_2$ is canonical iff for all finite tuples *t* over Δ_1 , the type of f(t) in Δ_2 only depends on the type of *t* in Δ_1 .

Example:

There are three types of canonical functions from $(\mathbb{Q}; <)$ to $(\mathbb{Q}; <)$:

- the function $x \mapsto -x$
- the constant function
- the identity

Remarks.

- Can be generalized to higher-ary functions
- If Δ_1 and Δ_2 have finite relational signature, then there are finitely many canonical behaviors.

Let Γ be ω -categorical, and let *R* be a *k*-ary relation.

Let Γ be ω -categorical, and let *R* be a *k*-ary relation.

 R has a existential definition in Γ iff R is preserved by Emb(Γ) (Engeler, Svenonius, Ryll-Nardzewski and Los-Tarski)

Let Γ be ω -categorical, and let *R* be a *k*-ary relation.

- *R* has a existential definition in Γ iff *R* is preserved by Emb(Γ) (Engeler, Svenonius, Ryll-Nardzewski and Los-Tarski)
- R has a primitive positive definition in Γ iff R is preserved by Pol(Γ) (B.+Nesetril'03)

Let Γ be ω -categorical, and let *R* be a *k*-ary relation.

- *R* has a existential definition in Γ iff *R* is preserved by Emb(Γ) (Engeler, Svenonius, Ryll-Nardzewski and Los-Tarski)
- R has a primitive positive definition in Γ iff R is preserved by Pol(Γ) (B.+Nesetril'03)

Theorem (B,Pinsker,Tsankov'11).

Let Γ be a reduct of a homogeneous Ramsey structure Δ with finite relational signature.

Let Γ be ω -categorical, and let *R* be a *k*-ary relation.

- *R* has a existential definition in Γ iff *R* is preserved by Emb(Γ) (Engeler, Svenonius, Ryll-Nardzewski and Los-Tarski)
- R has a primitive positive definition in Γ iff R is preserved by Pol(Γ) (B.+Nesetril'03)

Theorem (B,Pinsker,Tsankov'11).

Let Γ be a reduct of a homogeneous Ramsey structure Δ with finite relational signature. Then a relation *R* has an existential definition in Γ if and only if

Let Γ be ω -categorical, and let *R* be a *k*-ary relation.

- *R* has a existential definition in Γ iff *R* is preserved by Emb(Γ) (Engeler, Svenonius, Ryll-Nardzewski and Los-Tarski)
- R has a primitive positive definition in Γ iff R is preserved by Pol(Γ) (B.+Nesetril'03)

Theorem (B,Pinsker,Tsankov'11).

Let Γ be a reduct of a homogeneous Ramsey structure Δ with finite relational signature. Then a relation *R* has an existential definition in Γ if and only if Γ has a self-embedding *e* and elements c_1, \ldots, c_k such that

$$(c_1,\ldots,c_k)\in R$$

$$\blacksquare (e(c_1),\ldots,e(c_k)) \notin R$$

• *f* is canonical as a function from $(\Delta, c_1, \ldots, c_k)$ to Δ .

Let Γ be ω -categorical, and let *R* be a *k*-ary relation.

- *R* has a existential definition in Γ iff *R* is preserved by Emb(Γ) (Engeler, Svenonius, Ryll-Nardzewski and Los-Tarski)
- R has a primitive positive definition in Γ iff R is preserved by Pol(Γ) (B.+Nesetril'03)

Theorem (B,Pinsker,Tsankov'11).

Let Γ be a reduct of a homogeneous Ramsey structure Δ with finite relational signature. Then a relation *R* has an existential definition in Γ if and only if Γ has a self-embedding *e* and elements c_1, \ldots, c_k such that

$$(c_1,\ldots,c_k)\in R$$

$$\blacksquare (e(c_1),\ldots,e(c_k)) \notin R$$

• *f* is canonical as a function from $(\Delta, c_1, \ldots, c_k)$ to Δ .

In the same way we can characterize primitive positive definability by replacing with (canonical) polymorphisms.

Say that a homogeneous relational structure Δ is Ramsey iff the class of all finite substructures that embed into Δ is Ramsey.

Say that a homogeneous relational structure Δ is Ramsey iff the class of all finite substructures that embed into Δ is Ramsey.

Theorem (Kechris+Pestov+Todorcevic'05).

An ordered homogeneous structure Γ is Ramsey if and only if Aut(Γ) is extremely amenable, i.e., if every continuous action of Aut(Γ) on a compact Hausdorff space has a fixed point.

Say that a homogeneous relational structure Δ is Ramsey iff the class of all finite substructures that embed into Δ is Ramsey.

Theorem (Kechris+Pestov+Todorcevic'05).

An ordered homogeneous structure Γ is Ramsey if and only if Aut(Γ) is extremely amenable, i.e., if every continuous action of Aut(Γ) on a compact Hausdorff space has a fixed point.

Fact 1 [Kechris+Pestov+Todorcevic'05]: if a topological group *G* is extremely amenable, then so is G^k (corresponds to product Ramsey theorem in combinatorics)

Say that a homogeneous relational structure Δ is Ramsey iff the class of all finite substructures that embed into Δ is Ramsey.

Theorem (Kechris+Pestov+Todorcevic'05).

An ordered homogeneous structure Γ is Ramsey if and only if Aut(Γ) is extremely amenable, i.e., if every continuous action of Aut(Γ) on a compact Hausdorff space has a fixed point.

Fact 1 [Kechris+Pestov+Todorcevic'05]: if a topological group *G* is extremely amenable, then so is G^k (corresponds to product Ramsey theorem in combinatorics)

Fact 2 [B+Pinsker+Tsankov'11]:

open subgroups of extremely amenable groups are extremely amenable (combinatorial counterpart: expansions of homogeneous structures by finitely many constants preserve the Ramsey property)

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature.

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ .

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$.

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ lpha m{e}eta \mid lpha, eta \in \mathsf{Aut}(\Delta)_{(m{c}_1,...,m{c}_k)}
ight\}$$

contains a canonical function.

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ lpha m{e}eta \mid m{lpha},m{eta} \in \mathsf{Aut}(\Delta)_{(m{c}_1,...,m{c}_k)}
ight\}$$

contains a canonical function.

Proof. Let t_1, t_2, \ldots enumerate Δ .

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ lpha m{e}eta \mid lpha, eta \in \mathsf{Aut}(\Delta)_{(c_1,...,c_k)}
ight\}$$

contains a canonical function.

Proof. Let t_1, t_2, \ldots enumerate Δ .

Define a pseudo-metric *d* on $S := \{g \in \mathsf{Emb}(\Gamma) : g|_{\{c_1,...,c_k\}} = e|_{\{c_1,...,c_k\}}\}$:

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ lpha \boldsymbol{e} eta \mid lpha, eta \in \operatorname{\mathsf{Aut}}(\Delta)_{(\boldsymbol{c}_1,...,\boldsymbol{c}_k)}
ight\}$$

contains a canonical function.

Proof. Let t_1, t_2, \ldots enumerate Δ . Define a pseudo-metric d on $S := \{g \in \text{Emb}(\Gamma) : g|_{\{c_1,\ldots,c_k\}} = e|_{\{c_1,\ldots,c_k\}}\}$: Set $d(g,g') := 1/2^{1+m}$ for $m \in \mathbb{N}$ smallest such that $(g(t_1),\ldots,g(t_m))$ has a different type in Δ than $(g'(t_1),\ldots,g'(t_m))$.

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ lpha oldsymbol{e}eta \mid lpha,eta \in \mathsf{Aut}(\Delta)_{(c_1,...,c_k)}
ight\}$$

contains a canonical function.

Proof. Let t_1, t_2, \ldots enumerate Δ . Define a pseudo-metric d on $S := \{g \in \text{Emb}(\Gamma) : g|_{\{c_1,\ldots,c_k\}} = e|_{\{c_1,\ldots,c_k\}}\}$: Set $d(g,g') := 1/2^{1+m}$ for $m \in \mathbb{N}$ smallest such that $(g(t_1),\ldots,g(t_m))$ has a different type in Δ than $(g'(t_1),\ldots,g'(t_m))$. S/\sim , where $x \sim y$ iff d(x, y) = 0, is compact.

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ lpha oldsymbol{e} eta \mid lpha, eta \in \operatorname{Aut}(\Delta)_{(c_1,...,c_k)}
ight\}$$

contains a canonical function.

Proof. Let t_1, t_2, \ldots enumerate Δ . Define a pseudo-metric d on $S := \{g \in \text{Emb}(\Gamma) : g|_{\{c_1,\ldots,c_k\}} = e|_{\{c_1,\ldots,c_k\}}\}$: Set $d(g,g') := 1/2^{1+m}$ for $m \in \mathbb{N}$ smallest such that $(g(t_1),\ldots,g(t_m))$ has a different type in Δ than $(g'(t_1),\ldots,g'(t_m))$. S/\sim , where $x \sim y$ iff d(x, y) = 0, is compact. Aut (Δ, c_1,\ldots,c_k) is extremely amenable;

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ \alpha \boldsymbol{e} \beta \mid \alpha, \beta \in \operatorname{Aut}(\Delta)_{(\boldsymbol{c}_1,...,\boldsymbol{c}_k)} \right\}$$

contains a canonical function.

Proof. Let t_1, t_2, \ldots enumerate Δ . Define a pseudo-metric d on $S := \{g \in \text{Emb}(\Gamma) : g|_{\{c_1,\ldots,c_k\}} = e|_{\{c_1,\ldots,c_k\}}\}$: Set $d(g,g') := 1/2^{1+m}$ for $m \in \mathbb{N}$ smallest such that $(g(t_1),\ldots,g(t_m))$ has a different type in Δ than $(g'(t_1),\ldots,g'(t_m))$. S/\sim , where $x \sim y$ iff d(x,y) = 0, is compact. Aut (Δ, c_1,\ldots,c_k) is extremely amenable; let it act on S/\sim by

$$\alpha\big([g(x)]\big) := [g\big(\alpha^{-1}(x)\big)]$$

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ lpha e eta \mid lpha, eta \in \mathsf{Aut}(\Delta)_{(c_1,...,c_k)}
ight\}$$

contains a canonical function.

Proof. Let t_1, t_2, \ldots enumerate Δ . Define a pseudo-metric d on $S := \{g \in \text{Emb}(\Gamma) : g|_{\{c_1,\ldots,c_k\}} = e|_{\{c_1,\ldots,c_k\}}\}$: Set $d(g,g') := 1/2^{1+m}$ for $m \in \mathbb{N}$ smallest such that $(g(t_1),\ldots,g(t_m))$ has a different type in Δ than $(g'(t_1),\ldots,g'(t_m))$. S/\sim , where $x \sim y$ iff d(x,y) = 0, is compact. Aut (Δ, c_1,\ldots,c_k) is extremely amenable; let it act on S/\sim by

$$\alpha\bigl([g(x)]\bigr) := [g\bigl(\alpha^{-1}(x)\bigr)]$$

This action is continuous, therefore has a fixed point FP,

Let Γ be a reduct of a homogeneous ordered Ramsey structure Δ with finite relational signature. Suppose *R* is not existentially definable in Γ . That is, there is $e \in \text{Emb}(\Gamma)$ and $(c_1, \ldots, c_k) \in R$ such that $(e(c_1), \ldots, e(c_k)) \notin R$. Suffices to show:

$$\left\{ lpha oldsymbol{e} eta \mid lpha, eta \in \operatorname{Aut}(\Delta)_{(c_1,...,c_k)}
ight\}$$

contains a canonical function.

Proof. Let t_1, t_2, \ldots enumerate Δ . Define a pseudo-metric d on $S := \{g \in \text{Emb}(\Gamma) : g|_{\{c_1,\ldots,c_k\}} = e|_{\{c_1,\ldots,c_k\}}\}$: Set $d(g,g') := 1/2^{1+m}$ for $m \in \mathbb{N}$ smallest such that $(g(t_1),\ldots,g(t_m))$ has a different type in Δ than $(g'(t_1),\ldots,g'(t_m))$. S/\sim , where $x \sim y$ iff d(x,y) = 0, is compact. Aut (Δ, c_1,\ldots,c_k) is extremely amenable; let it act on S/\sim by

$$\alpha\big([g(x)]\big) := [g\big(\alpha^{-1}(x)\big)]$$

This action is continuous, therefore has a fixed point *FP*, and every $h \in FP$ is canonical as a function from $(\Delta, c_1, \ldots, c_k)$ to Δ .

Combinatorial core:

For all reducts Γ of $(\mathbb{L}; C)$ that contain the relation C either

Combinatorial core:

For all reducts Γ of $(\mathbb{L}; C)$ that contain the relation C either

• $xy|z \lor x|yz$ has a primitive positive definition in Γ , or

Combinatorial core:

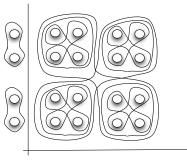
For all reducts Γ of $(\mathbb{L}; C)$ that contain the relation C either

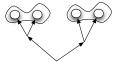
- $xy|z \lor x|yz$ has a primitive positive definition in Γ , or
- Γ is preserved by the (binary) affine tree polymorphism.

Combinatorial core:

For all reducts Γ of $(\mathbb{L}; C)$ that contain the relation C either

- $xy|z \lor x|yz$ has a primitive positive definition in Γ , or
- Γ is preserved by the (binary) affine tree polymorphism.

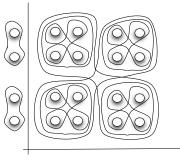


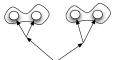


Combinatorial core:

For all reducts Γ of $(\mathbb{L}; C)$ that contain the relation C either

- $xy|z \lor x|yz$ has a primitive positive definition in Γ , or
- Γ is preserved by the (binary) affine tree polymorphism.





Example: the tree balance relation B(x, y, u, v) defined by $xy|uv \lor xu|yv \lor xv|yu$ is preserved by the affine tree polymorphism.

Illustration: Algorithm for CSP((\mathbb{L} ; B)), where $B = \{(x, y, u, v) \mid xy \mid uv \lor xu \mid yv \lor xv \mid yu\}$.

Illustration: Algorithm for CSP((\mathbb{L} ; *B*)), where $B = \{(x, y, u, v) \mid xy \mid uv \lor xu \mid yv \lor xv \mid yu\}$.

Input: finite structure (V; B). If $B = \emptyset$ then **accept**

Illustration: Algorithm for CSP((\mathbb{L} ; B)), where $B = \{(x, y, u, v) \mid xy \mid uv \lor xu \mid yv \lor xv \mid yu\}$.

```
Input: finite structure (V; B).
If B = \emptyset then accept
else
```

Solve the following linear equation system with variables *V*: $\{x + y + u + v = 0 \mod 2 \mid (x, y, u, v) \in B\}.$

```
Illustration: Algorithm for CSP((\mathbb{L}; B)), where B = \{(x, y, u, v) \mid xy \mid uv \lor xu \mid yv \lor xv \mid yu\}.
```

```
Input: finite structure (V; B).
If B = \emptyset then accept
else
```

Solve the following linear equation system with variables *V*: $\{x + y + u + v = 0 \mod 2 \mid (x, y, u, v) \in B\}$. If the only solution is constant 0 then **reject**

```
Illustration: Algorithm for CSP((\mathbb{L}; B)), where B = \{(x, y, u, v) \mid xy \mid uv \lor xu \mid yv \lor xv \mid yu\}.
```

```
Input: finite structure (V; B).
If B = \emptyset then accept
else
    Solve the following linear equation system with variables V:
    \{x + y + u + v = 0 \mod 2 \mid (x, y, u, v) \in B\}.
    If the only solution is constant 0 then reject
    else
       let s be a non-constant solution
       recurse on sub-instance induced by \{x \in V \mid s(x) = 0\}
       recurse on sub-instance induced by \{x \in V \mid s(x) = 1\}
       If one of these calls reject, then reject else accept
    end if
end if
```

Conjecture 1.

Conjecture 1.

Every ω -categorical structure Γ is homomorphically equivalent to a structure Δ such that either

all finite structures have a primitive positive interpretation in Δ with parameters, or

Conjecture 1.

- all finite structures have a primitive positive interpretation in Δ with parameters, or
- Δ has a polymorphism *f* of arity $n \ge 2$ and an endomorphism *e* such that

$$\forall x_1,\ldots,x_n. \quad f(x_1,\ldots,x_n) = e(f(x_2,\ldots,x_n,x_1))$$

Conjecture 1.

Every ω -categorical structure Γ is homomorphically equivalent to a structure Δ such that either

- all finite structures have a primitive positive interpretation in Δ with parameters, or
- Δ has a polymorphism *f* of arity $n \ge 2$ and an endomorphism *e* such that

$$\forall x_1,\ldots,x_n. \quad f(x_1,\ldots,x_n) = e(f(x_2,\ldots,x_n,x_1))$$

 True for finite structures Γ (Taylor'77,Hobby+MacKenzie'88,Barto+Kozik'10)

Conjecture 1.

- all finite structures have a primitive positive interpretation in Δ with parameters, or
- Δ has a polymorphism *f* of arity $n \ge 2$ and an endomorphism *e* such that

$$\forall x_1,\ldots,x_n. \quad f(x_1,\ldots,x_n) = e(f(x_2,\ldots,x_n,x_1))$$

- True for finite structures Γ (Taylor'77,Hobby+MacKenzie'88,Barto+Kozik'10)
- True for all reducts of (Q; <) (B.+Kara'08)

Conjecture 1.

- all finite structures have a primitive positive interpretation in Δ with parameters, or
- Δ has a polymorphism *f* of arity $n \ge 2$ and an endomorphism *e* such that

$$\forall x_1,\ldots,x_n. \quad f(x_1,\ldots,x_n) = e(f(x_2,\ldots,x_n,x_1))$$

- True for finite structures Γ (Taylor'77,Hobby+MacKenzie'88,Barto+Kozik'10)
- True for all reducts of (ℚ;<) (B.+Kara'08)
- True for all reducts of the Random Graph (B.+Pinsker'11)

Conjecture 1.

- all finite structures have a primitive positive interpretation in Δ with parameters, or
- Δ has a polymorphism *f* of arity $n \ge 2$ and an endomorphism *e* such that

$$\forall x_1,\ldots,x_n. \quad f(x_1,\ldots,x_n) = e(f(x_2,\ldots,x_n,x_1))$$

- True for finite structures Γ (Taylor'77,Hobby+MacKenzie'88,Barto+Kozik'10)
- True for all reducts of (Q; <) (B.+Kara'08)
- True for all reducts of the Random Graph (B.+Pinsker'11)
- True for all reducts of the equivalence relation with infinitely many infinite classes (B.+Wrona'12)

Conjecture 1.

Every ω -categorical structure Γ is homomorphically equivalent to a structure Δ such that either

- all finite structures have a primitive positive interpretation in Δ with parameters, or
- Δ has a polymorphism *f* of arity $n \ge 2$ and an endomorphism *e* such that

$$\forall x_1,\ldots,x_n. \quad f(x_1,\ldots,x_n) = e(f(x_2,\ldots,x_n,x_1))$$

- True for finite structures Γ (Taylor'77,Hobby+MacKenzie'88,Barto+Kozik'10)
- True for all reducts of (ℚ;<) (B.+Kara'08)
- True for all reducts of the Random Graph (B.+Pinsker'11)
- True for all reducts of the equivalence relation with infinitely many infinite classes (B.+Wrona'12)

In all those cases, dichotomy coincides with a complexity dichotomy NPc/P

Let Γ be homogeneous with finite relational structure. Can we always add finitely many relations to Γ so that the expansion is still homogeneous, and has the Ramsey property?

- Let Γ be homogeneous with finite relational structure. Can we always add finitely many relations to Γ so that the expansion is still homogeneous, and has the Ramsey property?
- Let *G* be an oligomorphic permutation group. Does *G* always have an extremely amenable oligomorphic subgroup?