

Roman Barták (Charles University in Prague, Czech Republic)

MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING

Two worlds

- planning vs. scheduling
 - planning is about finding activities to achieve given goal
 - scheduling is about allocating known activities to limited resources and time
- generic (AI) vs. specific (OR) approaches
 - flexible techniques but bad worst-case runtime (due to search)
 - guaranteed runtime and schedule quality, but inflexible techniques
- theory vs. practice

Talk outline

- Motivation
 - scheduling in practice and in academia
- Constraint programming
 - principles and application in scheduling
- Scheduling model
 - temporal network with alternatives
- System demo
 - FlowOpt project
- Concluding remarks

What you can hear in factory

"We are different..."

- means, what you know is useless here
- "Outsiders cannot understand it, it takes a lot of time..."
 - means, you have to listen to us or to spend part of your life here
- "Methods that suite others cannot implemented here..."
 - means, your experience and knowledge are impressive, but you have to start from scratch

Theory vs. practice

- Academy
 - the researcher's world consists of resources and their usage
 - "how can I use the resources to get max X and min Y..."
 - "how can I get, using objective metrics, a plan that for the long term, will improve the plant efficiency..."
- Factory planners
 - the planner's world consists of products and their flow
 - "how can I produce this product now, and this one and that one..."
 - * "how can I satisfy Mr. X from sales and Mr. Y from the plant and the customer at the same time, without getting into new troubles..."

Our approach

- Be close to the customer
 - use notions that factory planners are familiar with
- Translate the problem to solving formalism
 - use flexible modelling and solving approach
- Solve the problem to acceptable quality
 - combine heuristics and inference

support interactive changes of solutions

What is CP?

Constraint Programming is a technology for solving combinatorial optimization problems modeled as constraint satisfaction problems:

- a finite set of decision variables
- each variable has a finite set of possible values (domain)
- combinations of allowed values are restricted by constraints (relations between variables)

Solution to a CSP is a complete consistent instantiation of variables.

How does CP work?

How to find a solution to a CSP?

Mainstream solving approach combines

inference

- removing values violating constraints
- consistency techniques

with search

- trying combinations of values
- depth-first search

Constraint Inference

Example:

- D_a = {1,2}, D_b = {(2,3)
- a < b</pre>

♥ Value 1 can be safely removed from D_b.

- Constraints are used actively to remove inconsistencies from the problem.
 - inconsistency = a value that cannot be in any solution
- The most widely-used technique removes values that violate any constraint until a fixed point is reached (no value violates a single constraints).

Search / Labeling

Consistency techniques are (usually) incomplete.

♦ We need a search algorithm to resolve the rest!

Labeling

- depth-first search
 - assign a value to the variable
 - propagate = make the problem locally consistent
 - backtrack upon failure

□ $X \text{ in 1..5} \approx X=1 \lor X=2 \lor X=3 \lor X=4 \lor X=5$ (enumeration)

In general, search algorithm resolves remaining disjunctions!

X=1 ∨ X≠1 (step labeling)

X<3 ∨ X≥3 (domain splitting)</p>

X<Y ∨ X≥Y (problem splitting)</p>

How to use CP?

- Using Constraint Programming is less about solving algorithms and more about modeling (similarly to SAT or MIP)
 - constraint modeling = formulation of problem as a CSP
- Moreover, CP directly supports integration of ad-hoc solving techniques via global constraints and natural expression of search heuristics (differently from SAT and MIP).

ABC of CBS

Constraint-based scheduling

= Scheduling + Constraint Satisfaction

Variables

a position of activity in time and space

time allocation: start(A), p(A), end(A) resource allocation: resource(A)

Constraints

Temporal relations:

start(A)+p(A)=end(A)

precedences A«B: end(A) \leq start(B)

Resource relations:

unary resource A«B \vee B«A: end(A) \leq start(B) \vee end(B) \leq start(A)

Edge finding

resource inference

Can we restrict time windows more than using disjunctive constraints?

$$\begin{split} p(\Omega \cup \{A\}) &> \mathsf{lct}(\Omega \cup \{A\}) - \mathsf{est}(\Omega) \Longrightarrow \mathsf{A} @ \Omega \\ \mathsf{A} & @ \Omega \Longrightarrow \mathsf{end}(\mathsf{A}) \le \mathsf{min} \{ \mathsf{lct}(\Omega') - p(\Omega') \mid \Omega' \subseteq \Omega \} \end{split}$$

In practice:

- there are $O(n.2^n)$ pairs $(A_i\Omega)$ to consider (too many!)
- instead of Ω use so called **task intervals** [X,Y] $\{C \mid est(X) \le est(C) \land lct(C) \le lct(Y)\}$
 - \$\footnote{\text{time complexity O(n}^3), frequently used incremental algorithm
- there are also O(n²) and O(n.log n) algorithms

Our problem

- Real-life production scheduling with alternative process routes and earliness/tardiness cost.
- Involves planning (selection among alternative processes) and scheduling (time and resource allocation).

Conceptual Model

We model the workflow as a directed acyclic graph called Temporal network with alternatives (TNA): nodes = operations, arcs = precedence (temporal) relations logical dependencies between nodes – branching relations.

- The process can split into parallel branches, i.e., the nodes on parallel branches are processed in parallel (all must be included).
 - The process can select among **alternative branches**, i.e., nodes of exactly one branch are only processed (only one branch is included).
- The problem is to select a sub-graph satisfying logical, temporal, and resource constraints.

Problem hardness

 If all nodes are made invalid (removed from the graph) then we have a trivial solution satisfying all the constraints.

- Assume that some node must be valid, i.e., it is specified to be included in TNA.
 - for example, a demand must be fulfilled
- Is it hard to find if it is possible to select a sub-graph satisfying the branching constraints?
 - Is it possible to select a process satisfying the demand?
 - The problem is NP-complete!!! [FLAIRS 2007].

Real processes

 Real manufacturing process networks frequently have a specific structure.

- The process network is built by decomposing a "meta-processes" into more specific processes:
 - serial decomposition

parallel/alternative decomposition

[AIMSA 2008]

Nested graphs

graphs constructed from a single arc by the following decomposition operation:

Features:

- it is a temporal network with alternatives
- we can algorithmically recognize nested graphs
- the assignment problem is tractable

Logical constraints

 The path selection problem can be modeled as a constraint satisfaction problem.

- each **node** A is annotated by {0,1} variable V_A
- each arc (A,B) from a parallel
 branching defines the constraint
 V_A = V_B

 let arc (A,B1),..., (A,Bk) be all arcs from some alternative branching, then

$$V_A = \sum_{i=1,...,k} V_{Bi}$$

[RAC 2008]

Temporal constraints

- So far we assumed that an arc in the graph describes a precedence.
- We can annotate each arc (X,Y) by a **simple temporal constraint** [a,b] with the meaning $\mathbf{a} \leq \mathbf{Y} \cdot \mathbf{X} \leq \mathbf{b}$.
 - (Nested) Temporal Network with Alternatives
- Base constraint model:
 - each node A is annotated by a temporal variable T_A with a domain (o,MaxTime), where MaxTime is a constant given by the user.
 - Temporal relation [a,b] between nodes X and Y must hold if both nodes are valid!

$$V_X * V_Y * (T_X + a) \le T_Y \wedge V_X * V_Y * (T_Y - b) \le T_X.$$

Notes

- $V_X = 0 \lor V_Y = 0 \longrightarrow 0 \le T_Y \land 0 \le T_X$
- $V_X = V_Y = 1 \rightarrow (T_X + a) \le T_Y \land (T_Y b) \le T_X.$
- The above temporal constraint does not assume the type of branching!

Temporal hardness

- Is it possible to achieve global consistency of temporal relations in nested graphs?
- Unfortunately, the problem is **NP-complete** ⊗
 - Subset sum problem can be converted to temporal feasibility of nested graphs.
 - Let Z_i , i = 1,...,n be integers, is there a subset S of $\{1,...,n\}$ such that $\Sigma_{i \in S} Z_i = K$?

Resource constraints

- standard scheduling model
 - start time variable: T_A
 - duration variable: Dur_A

- unary (disjunctive) resource constraints
 - two operations allocated to the same resource do not overlap in time

$$V_x * V_y * (T_x + Dur_x) \le T_y \lor V_x * V_y * (T_y + Dur_y) \le T_x$$

- or, we can use existing global constraints modeling unary resource (edge-finding, not-first/not-last, etc. inference techniques) extended to optional operations
 - (in)valid operations: $Val_A = 1 \Leftrightarrow Dur_A > 0$

Branching Strategy

- 1. ordering of activities in resources (with activity selection)
 - select some activity (earliest start combined with other criteria)
 - make the activity valid
 - decide its position in the resource (from start)
- 2. decision of times

Demo

- FlowOpt tools build on top of enterprise optimisation system MAK€ for SMEs
 - build-to-order (engineer-to-order) production
 - on-time-in-full objective (earliness/tardiness)
- What will you see?
 - interactive graphical design of workflows
 - creating and scheduling custom orders
 - visualisation and modification of schedules
 - schedule analysis

Workflow editor

- top-down and bottom up approach to design nested workflows
- supports extra logical (mutual exclusion,...) and temporal (synchronization,...) constraints

Optimiser

- a fully **automated scheduler** that takes description of workflows for ordered products and generates a schedule
- implemented in ILOG CP Optimiser (OPL Studio)
- branch-and-bound optimisation (earliness and lateness
 - costs and cost for alternatives are assumed)

Gantt Viever

visualization and modification of schedules

Analyser

 analysis of problems in schedules (late deliveries) and suggestions for enterprise improvements (buying a new resource)

Some results

Summary

- Scheduling is not only mathematics but first of all a knowledge handling process.
 - how to capture real knowledge?
 - how to represent it formally so the user can verify it and update it?
 - how to exploit mathematical methods when real-life constraints are present?
- The art of real-life scheduling is to deliver a plan which is good enough and fast enough.
 - good enough the user cannot improve it in reasonable time
 - fast enough depends on the plant dynamics. One hour can be too late for one plant and very fast to another.