Roman Bartak (Charles University in Prague, Czech Republic)

MODELLING AND SOLVING
SCHEDULING PROBLEMS USING
CONSTRAINT PROGRAMMING

Two worlds

= planning vs. scheduling

planning is about finding activities to achieve given
goal

scheduling is about allocating known activities to
limited resources and time

= generic (Al) vs. specific (OR) approaches
flexible techniques but bad worst-case runtime (due to
search)

guaranteed runtime and schedule quality, but inflexible
techniques

= theory vs. practice

Talk outline

Motivation

scheduling in practice and in academia
Constraint programming

principles and application in scheduling
Scheduling model

temporal network with alternatives
System demo

FlowOpt project
Concluding remarks

What you can hear in factory

“We are different...”
means, what you know is useless here i S 2
“Outsiders cannot understand it, it takes a lot of
time...”
means, you have to listen to us or to spend part of
your life here
“*Methods that suite others cannot implemented
here...”

means, your experience and knowledge are
impressive, but you have to start from scratch

Theory vs. practice

= Academy

the researcher's world consists of resources and their
usage
“how can | use the resources to get max X and minY...”

“how can | get, using objective metrics, a plan that for the long
term, will improve the plant efficiency...”

= Factory planners

the planner’s world consists of products and their flow
“how can | produce this product now, and this one and that

"

one...

“*how can | satisfy Mr. X from sales and Mr.Y from the plant and
the customer at the same time, without getting into new
troubles...”

Our approach

Be close to the customer
use notions that factory planners are familiar with

Translate the problem to solving formalism

use flexible modelling and solving approach

Solve the problem to acceptable quality
combine heuristics and inference

Allow customers to modify the solution
support interactive changes of solutions

What is CP?

Constraint Programming is a technology for
solving combinatorial optimization problems
modeled as constraint satisfaction problems:

a finite set of decision variables

each variable has a finite set of possible values
(domain)

combinations of allowed values are restricted by
constraints (relations between variables)

Solution to a CSP is a complete consistent
instantiation of variables.

How does CP work?

How to find a solution to a CSP?

Mainstream solving approach combines

inference
removing values violating constraints
consistency techniques

with search
trying combinations of values
depth-first search

Constraint Inference

Example:
D,=1{1,2}, D, ={1,2,3}
a<b
% Value 1 can be safely removed from D,

= Constraints are used actively to remove
inconsistencies from the problem.

inconsistency = a value that cannot be in any solution
» The most widely-used technique removes values

that violate any constraint until a fixed point is
reached (no value violates a single constraints).

Search / Labeling

Consistency techniques are (usually) incomplete.
% We need a search algorithm to resolve the rest!

Labeling \

depth-first search
assign a value to the variable
propagate = make the problem

locally consistent /\ /\ /\ /\
backtrack upon failure ‘ . . ‘ ‘ . ' ‘

Xin1..5 = X=1vX=2VvX=3vVvX=4V X=5 (enumeration)

In general, search algorithm resolves remaining disjunctions!
X=1v X#1 (step labeling)
X<3 v X>3 (domain splitting)
X<Y v X>Y (problem splitting)

How to use CP?

= Using Constraint Programming is less about
solving algorithms and more about modeling
(similarly to SAT or MIP)

constraint modeling = formulation of problem as a
CSP
= Moreover, CP directly supports integration
of ad-hoc solving techniques via global
constraints and natural expression of search
heuristics (differently from SAT and MIP).

ABC of CBS

Constraint-based scheduling
= Scheduling + Constraint Satisfaction

Variables
a position of activity in time and space
time allocation: start(A), p(A), end(A)

resource allocation: resource(A)
Constraints A J
Temporal relations: J
start(A)+p(A)=end(A)
precedences A«B: end(A) < start(B)

Resource relations:
unary resource A«B v B«A: end(A) < start(B) v end(B) < start(A)

Edge finding

resource inference

= (Can we restrict time windows more than using disjunctive
constraints?

£ : [A@ |

E— C)

p(Q U {A}) > Ict(Q U {A}) - est(QQ) = A«Q
A«Q = end(A) <min{lct(Q") - p(Q) | Q'cO}

In practice:
there are O(n.2") pairs (A,Q) to consider (too many!)

instead of Q use so called task intervals [X,Y]

{C | est(X) < est(C) A Ict(C) <lct(Y)}

% time complexity O(n3), frequently used incremental algorithm
there are also O(n?) and O(n.log n) algorithms

{:‘-::"s ManOP
(4

Enterprise Performance Optimisation

Our problem

Real-life production scheduling with alternative process
routes and earliness/tardiness cost.

Involves planning (selection among alternative processes)
and scheduling (time and resource allocation).

alternative resources
are just special cases of
alternative process

Conceptual Model

= We model the workflow as a directed acyclic graph called

Temporal network with alternatives (TNA):
nodes = operations, arcs = precedence (temporal) relations
logical dependencies between nodes — branching relations.

The process can split into parallel
branches, i.e., the nodes on parallel
branches are processed in parallel (all must
be included).

The process can select among alternative
branches, i.e., nodes of exactly one branch
are only processed (only one branch is
included).

The problem is to select a sub-graph
satisfying logical, temporal, and resource
constraints.

Problem hardness

= |f all nodes are made invalid (removed from the graph)
then we have a trivial solution satisfying all the
constraints.

Assume that some node must be
valid, i.e., it is specified to be
included in TNA.

for example, a demand must be fulfilled

s it hard to find if it is possible to
select a sub-graph satisfying the
branching constraints?

s it possible to select a process satisfying
the demand?

The problem is NP-complete!!!
[FLAIRS 2007].

Real processes

= Real manufacturing process networks frequently
have a specific structure.
The process network is built by

decomposing a ,meta-processes"
into more specific processes:

serial decomposition

— Iy —

parallel/alternative
decomposition

— - <>

Nested graphs

= graphs constructed from a single arc by the
following decomposition operation:

= Features:
it is a temporal network with alternatives
we can algorithmically recognize nested graphs
the assignment problem is tractable

Logical constraints

» The path selection problem can be modeled as a
constraint satisfaction problem.

1 each node A is annotated by {o,1}
oA .
variableV,
°
each arc (A,B) from a parallel
branching defines the constraint

Va=Vg

let arc (A,B1),..., (A,Bk) be all arcs
from some alternative
branching, then

Va= 2i=1,...,kVBi

Temporal constraints

So far we assumed that an arc in the graph describes a
precedence.

We can annotate each arc (X,Y) by a simple temporal constraint
[a,b] with the meaninga <Y-X<b.
(Nested) Temporal Network with Alternatives

Base constraint model:

each node A is annotated by a temporal variable T, with a domain
(0,MaxTime), where MaxTime is a constant given by the user.

Tempcla_zja'l relation [a,b] between nodes X andY must hold if both nodes
are valid!

Notes:
Vy=ovVy=0—>0<Ty A0<Ty
The above temporal constraint does not assume the type of branching!

Temporal hardness

= |sit possible to achieve global consistency of
temporal relations in nested graphs?
= Unfortunately, the problem is NP-complete ®

Subset sum problem can be converted to temporal
feasibility of nested graphs.

LetZ,i=1,...,n beintegers, is there a subset S of {1,...,n}
suchthatX,_Z =K?

[0,0]

Resource constraints

» standard scheduling model
start time variable: T,

duration variable: Dur, A

<
-t

Dur,

= ynary (disjunctive) resource constraints

two operations allocated to the same resource do not
overlap in time

Vy *Vy * (Ty + Dury) <T, vV, *V, * (T, + Dury) <Ty

or, we can use existing global constraints modeling

unary resource (edge-finding, not-first/not-last, etc.

inference techniques) extended to optional operations
(in)valid operations: Val, =1<> Dur, >0

Branching Strategy

1. ordering of activities in resources (with activity selection)
select some activity (earliest start combined with other criteria)
make the activity valid
decide its position in the resource (from start)

2. decision of times
valid A

A«B B«A, valid B
AC C«A, valid C AcC SeA, valid C

A«D/ \ D«A A«D/ \ D<A A«D/ \ D«A A«D/ \ D«A .
valid D valid D valid D valid D

BA{C,D} {B,C}AD

AB.CD} pags oy “MP Plic pyar {B.DJAC {B,C,D}A

Demo

* FlowOpt tools build on top of enterprise
optimisation system MAKE€ for SMEs
build-to-order (engineer-to-order) production
on-time-in-full objective (earliness/tardiness)

= What will you see?
interactive graphical design of workflows
creating and scheduling custom orders
visualisation and modification of schedules
schedule analysis

Workflow editor

= top-down and bottom up approach to design nested workflows

= supports extra logical (mutual exclusion,...) and temporal
(synchronization,...) constraints

Optimiser

a fully automated scheduler that takes
description of workflows for ordered products
and generates a schedule

implemented in ILOG CP Optimiser (OPL
Studio)

branch-and-bound optimisation

(earliness and lateness

costs and cost for
alternatives are assumed) [FEEEEIN.

The scheduler managed to find a better solution.

Scheduling in Progress

Stop Scheduing

Gantt Viever

= visualization and modification of schedules

Analyser

= analysis of problems in schedules (late deliveries)
and suggestions for enterprise improvements
(buying a new resource)

Some results

“ Number of activity types
= Number of items
Number of orders

- Total ordered quantity

34

991

294

45

88.5 tons (88 485 kg)

1 week (10 080 minutes)

AN | DN OO Y00 M | O O O 1 U 1
s [N N OO DT T T
v [O N AT A T AT T ()

Schedule period

5946
Number of precedences 9325
= Runtime 53 mins (Pentium 4/1700 MHz)

Summary

= Scheduling is not only mathematics but first of
all a knowledge handling process.

how to capture real knowledge?

how to represent it formally so the user can verify it
and update it?

how to exploit mathematical methods when real-life
constraints are present?

= The art of real-life scheduling is to deliver a plan
which is good enough and fast enough.
good enough —the user cannot improve it in reasonable
time
fast enough — depends on the plant dynamics. One hour
can be too late for one plant and very fast to another.

