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Consider a network of pipes with a biological contaminant (e.g.
water pipes that have algae or zebra mussels contamination)
that

is mobile so that contamination can spread from one area
to another,
grows back over time if removed.
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Definition (Cleaning algorithm)

Initially, every edge and vertex of a graph is dirty and a
fixed number of brushes start on a set of vertices.

At each step, a vertex v and all its incident edges which
are dirty may be cleaned if there are at least as many
brushes on v as there are incident dirty edges.

When a vertex is cleaned, every incident dirty edge is
traversed (i.e. cleaned) by one and only one brush.

Brushes cannot traverse a clean edge.
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We can get two different final configurations but the final set of
dirty vertices is determined.

Theorem (Messinger, Nowakowski, Pralat)

Given a graph G and the initial configuration of brushes
ω0 : V → N ∪ {0}, the cleaning algorithm returns a unique final
set of dirty vertices.
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Thus, the following definition is natural.

Definition (brush number)

A graph G = (V , E) can be cleaned by the initial configuration
of brushes ω0 if the cleaning process returns an empty final set
of dirty vertices.
Let the brush number, b(G), be the minimum number of
brushes needed to clean G, that is,

b(G) = min
ω0:V→N∪{0}

{

∑

v∈V

ω0(v) : G can be cleaned by ω0

}

.

Similarly, bα(G) is defined as the minimum number of brushes
needed to clean G using the cleaning sequence α.
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In general, it is difficult to find b(G)...

Theorem (Gaspers, Messinger, Nowakowski, Pralat)

The problem is NP-complete and remains NP-complete for
bipartite graphs of maximum degree 6, planar graphs of
maximum degree 4, and 5-regular graphs.

...but bα(G) can be easily computed.
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...but bα(G) can be easily computed.

Let D(v) be the number of dirty neighbours of v at the time
when v is cleaned.

The number of brushes arriving at a vertex before it is
cleaned equals deg(v) − D(v)

The total number of brushes needed is D(v)

ω0(v) = max{2D(v) − deg(v), 0}, for v ∈ V .
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b(G) = 3
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b(Cn) = 2, n ≥ 3

Pawel Pralat Cleaning random d -regular graphs with brushes and Brooms



Introduction and Definitions Exact Values Lower Bound Upper Bound Other Directions

b(Pn) = 1, n ≥ 2
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b(Kn) =

{

n2

4 if n is even
n2−1

4 if n is odd.
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Theorem (Messinger, Nowakowski, Pralat)

The Reversibility Theorem
Given the initial configuration ω0, suppose G can be cleaned
yielding final configuration ωn, n = |V (G)|. Then, given the
initial configuration τ0 = ωn, G can be cleaned yielding the final
configuration τn = ω0.
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The cleaning process is a combination of both

the edge-searching problem:
modeling sequential computation,
assuring privacy when using bugged channels,
VLSI circuit design,
security in the web graph.

the chip firing game:
the Tutte polynomial and group theory,
algebraic potential theory (social science).

There is also a relationship between the Cleaning problem and
the Balanced Vertex-Ordering problem (this has consequences
for both problems).
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S.R. Kotler, E.C. Mallen, K.M. Tammus, Robotic Removal of Zebra
Mussel Accumulations in a Nuclear Power Plant Screenhouse,
Proceedings of The Fifth International Zebra Mussel and Other
Aquatic Nuisance Organisms Conference, Toronto, Canada, February
1995
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Our results refer to the probability space of random d -regular
graphs with uniform probability distribution. This space is
denoted Gn,d .

Asymptotics (such as “asymptotically almost surely”, which we
abbreviate to a.a.s.) are for n → ∞ with d ≥ 2 fixed, and n even
if d is odd.

For example, random 4-regular graph is connected a.a.s.;
that is,

lim
n→∞

# of connected 4-regular graphs on n vertices
# of 4-regular graphs on n vertices

= 1 .
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Pairing model: n = 6, d = 3
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Pairing model:

The probability of a random pairing corresponding to a given
simple graph G is independent of the graph, hence the
restriction of the probability space of random pairings to simple
graphs is precisely Gn,d .

Moreover, a random pairing generates a simple graph with
probability asymptotic to e(1−d2)/4 depending on d .

Therefore, any event holding a.a.s. over the probability space of
random pairings also holds a.a.s. over the corresponding space
Gn,d .
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2-regular graphs

Let Yn be the total number of cycles in a random 2-regular
graph on n vertices. Since exactly two brushes are needed to
clean one cycle, we need 2Yn brushes in order to clean a
2-regular graph.

It can be shown that the total number of cycles Yn is sharply
concentrated near (1/2) log n.

Theorem (Alon, Pralat, Wormald)

Let G be a random 2-regular graph on n vertices. Then, a.a.s.

b(G) = (1 + o(1)) log n .
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3-regular graphs

The first vertex cleaned must start three brush paths, the last
one terminates three brush paths, and all other vertices must
start or finish at least one brush path, so the number of brush
paths is at least n/2 + 2.
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It is known that a random 3-regular graph a.a.s. has a Hamilton
cycle. The edges not in a Hamilton cycle must form a perfect
matching. Such a graph can be cleaned by starting with three
brushes at one vertex, and moving along the Hamilton cycle
with one brush, introducing one new brush for each edge of the
perfect matching.

Theorem (Alon, Pralat, Wormald)

Let G be a random 3-regular graph on n vertices. Then, a.a.s.

b(G) = n/2 + 2 .
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b(G) ≥ max
j

min
S⊆V ,|S|=j

|E(S, V \ S)| .

(The proof is simply to observe that the minimum is a lower
bound on the number of edges going from the first j vertices
cleaned to elsewhere in the graph.)

Suppose that x = x(n) and y = y(n) are chosen so that the
expected number S(x , y) of sets S of xn vertices in G ∈ Gn,d

with yn edges to the complement V (G) \ S is tending to zero
with n.

Then this, together with the first moment principle, gives that
the brush number is a.a.s. at least yn.
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In order to find an optimal values of x and y we use the pairing
model. It is clear that

S(x , y) =

(

n
xn

)(

xdn
yn

)

M(xdn − yn)

(

(1 − x)dn
yn

)

(yn)!

×M((1 − x)dn − yn)/M(dn)

where M(i) is the number of perfect matchings on i vertices,
that is,

M(i) =
i!

(i/2)!2i/2
.
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After simplification and using Stirling’s formula we get that
S(x , y) < O(n−1)ef (x,y ,d) where

f (x , y , d) = x(d − 1) ln x + (1 − x)(d − 1) ln(1 − x)

+0.5d ln d − y ln y

−0.5(xd − y) ln(xd − y)

−0.5((1 − x)d − y) ln((1 − x)d − y) .

Thus, if f (x , y , d) = 0, then S(x , y) tends to zero with n and the
brush number is at least yn a.a.s.
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Not surprisingly, the strongest bound is obtained for x = 1/2, in
which case f (x , y , d) becomes

(d − 1) ln(1/2) + (d/2) ln d − y ln y − (d/2 − y) ln(d/2 − y)

= −d
4

((1 + z) ln(1 + z) + (1 − z) ln(1 − z)) + ln 2

where y = (d/4)(1 − z).

It is straightforward to see that this function is decreasing in z
for z ≥ 0. Let ld/n denote the value of y for which it first
reaches 0.

Since the Taylor expansion of (1 + z) ln(1 + z)+ (1− z) ln(1− z)
is z2 + z4/6 + . . ., ld/n ≥ (d/4)(1 − 2

√
ln 2/

√
d).
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Theorem (Alon, Pralat, Wormald)

Let G be a random d-regular graph on n vertices. Then, a.a.s.

b(G) ≥ dn
4

(

1 − 2
√

ln 2√
d

)

.
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We study an algorithm that cleans random vertices of minimum
degree in the graph induced by a set of dirty vertices.

In the k th phase a mixture of vertices of degree d − k and
d − k − 1 are cleaned. There are two possible endings.

1 the vertices of degree d − k are becoming so common that
the vertices of degree d − k − 1 start to explode (in which
case we move to the next phase),

2 the vertices of degree d − k + 1 are getting so rare that
those of degree d − k disappear (in which case the
process goes “backwards”).

With various initial conditions, either one could occur.

This degree-greedy algorithm can be analyzed using the
differential equations method.
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Cleaning a random 5-regular graph
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A graph of ud/dn and ld/dn versus d (from 3 to 100).

Does limd→∞ b(G)/dn exist?
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The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of a graph are the
eigenvalues of its adjacency matrix.

The value of λ = max(|λ2|, |λn|) for a random d -regular graphs
has been studied extensively. It is known that for every ε > 0
and G ∈ Gn,d ,

P(λ(G) ≤ 2
√

d − 1 + ε) = 1 − o(1) .
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Lemma (Expander Mixing Lemma; Alon, Chung, 1988)

Let G be a d-regular graph with n vertices and set λ = λ(G).
Then for all S, T ⊆ V

∣

∣

∣

∣

|E(S, T )| − d |S||T |
n

∣

∣

∣

∣

≤ λ
√

|S||T | .

(Note that S ∩ T does not have to be empty; |E(S, T )| is
defined to be the number of edges between S \ T to T plus
twice the number of edges that contain only vertices of S ∩ T .)
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Theorem (Alon, Pralat, Wormald)

Let G be a random d-regular graph on n vertices. Then, a.a.s.

dn
4

(

1 − 2
√

ln 2√
d

)

≤ b(G) ≤ dn
4

(

1 +
O(1)√

d

)

.

Moreover, limd→∞ ud/dn = 1/4.

Note that the differential equation method gives a better upper
bound.
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Theorem (Alon, Pralat, Wormald)

Let G be a d-regular graph on n vertices. Then,

b(G) ≤
{

n
4

(

d + 1 − 1
d+1

)

if d is even;
n
4(d + 1) if d is odd.

This holds for any d -regular graph. Proof is nonconstructive
(does not reveal how to construct an initial configuration of
brushes).

For a random d -regular graph G one can improve the result
confirming the conjecture that b(G) ≤ dn/4 a.a.s. (proof uses
martingales, cleaning along the Hamilton cycle).
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Theorem (Alon, Pralat, Wormald)

Let G be a d-regular graph on n vertices. Then,

b(G) ≤
{

n
4

(

d + 1 − 1
d+1

)

if d is even;
n
4(d + 1) if d is odd.

Theorem (Alon, Pralat, Wormald)

Let G be a random d-regular graph on n vertices. Then, a.a.s.

b(G) ≤
{

n
4

(

d − 1 − 1
d−1

)

(1 + o(1)) if d is even;
n
4(d − 1)(1 + o(1)) if d is odd.
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Nonconstructive proof:

Let G be any d -regular graph. Let π be a random permutation
of the vertices of G taken with uniform distribution. We clean G
according to this permutation.

We have to assign to vertex v exactly

X (v) = max{0, 2N+(v) − deg(v)}

brushes in the initial configuration, where N+(v) is the number
of neighbors of v that follow it in the permutation.

The random variable N+(v) attains each of the values
0, 1, . . . , d with probability 1/(d + 1).
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Therefore the expected value of X (v), for even d , is

d + (d − 2) + · · · + 2
d + 1

=
d + 1

4
− 1

4(d + 1)
,

and for odd d it is

d + (d − 2) + · · · + 1
d + 1

=
d + 1

4
.

Thus, by linearity of expectation,

Ebπ(G) = E

(

∑

v∈V

X (v)

)

=
∑

v∈V

EX (v)

=

{

n
4

(

d + 1 − 1
d+1

)

if d is even;
n
4(d + 1) if d is odd,

which means that there is a permutation π0 such that
b(G) ≤ bπ0(G) ≤ Ebπ(G).
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Other research directions in graph cleaning:

Parallel cleaning,

Cleaning with Brooms,

Cleaning binomial random graphs,

Generalized cleaning (for example, send at most k
brushes),

Combinatorial game,

Cleaning the web graph.
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Parallel cleaning
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Parallel cleaning
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Parallel cleaning

The process is not reversible! We wish to determine the
minimum number of brushes, cpb(G), needed to ensure a
graph G can be parallel cleaned continually.
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Parallel cleaning

Theorem (Gaspers, Messinger, Nowakowski, Pralat)

For any tree T , cpb(T ) = b(T ) = do(T )/2.

Theorem (Gaspers, Messinger, Nowakowski, Pralat)

For any complete bipartite graph Km,n,

cpb(Km,n) = b(Km,n) = ⌈mn/2⌉.

Conjecture

cpb(G) = b(G) for any bipartite graph G.

true if |V (G)| ≤ 11

there is one graph on 12 vertcies for which cpb(G) 6= b(G)
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Theorem (Gaspers, Messinger, Nowakowski, Pralat)

For any complete graph Kn

5/16n2 + O(n) ≤ cpb(Kn) ≤ 4/9n2 + O(n).

Conjecture

lim
n→∞

b(Kn)/cpb(Kn) = (1/4)/(4/9) = 9/16.
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Cleaning with Brooms

The brush number: b(G) = minα bα(G).

The Broom number: B(G) = maxα bα(G).

Theorem (Pralat)

For G ∈ Gn,2, a.a.s.

B(G) = n − (1/4 + o(1)) log n .
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Cleaning with Brooms – upper bound

Theorem (Pralat)

Let G ∈ Gn,d , where d ≥ 3. Then, for every sufficiently small but
fixed ε > 0 a.a.s.

B(G) ≤ dn
4

(1 + z + ε) ≤ dn
4

(

1 +
2
√

ln 2√
d

)

,

where z is the solution of

d((1 + z) ln(1 + z) + (1 − z) ln(1 − z)) = 4 ln 2.
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Cleaning with Brooms – lower bound

Theorem (Pralat (non-constructive proof))

Let G = (V , E) be a d-regular graph on n vertices. If d is even,
then

B(G) ≥ n
4

(

d + 1 − 1
d + 1

)

,

and if d is odd, then

B(G) ≥ n
4

(d + 1).
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Cleaning with Brooms – lower bound

Theorem (Pralat (cleaning along the Hamilton cycle))

Let G ∈ Gn,d , where d ≥ 3. Then, a.a.s., if d is even

B(G) ≥ n
4

(

d + 3 +
3

d − 1
− 2−d+4

(

d − 2
d/2 − 1

))

(1 + o(1))

and if d is odd then

B(G) ≥ n
4

(

d + 3 +
4

d − 1
− 2−d+3 d

d − 1

(

d − 1
(d − 1)/2

))

(1+o(1)).

Degree-greedy algorithm yields the best lower bound
(numerical).
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