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Construction /reconstruction
by a voltage Cayley assignment (: A(X) - I =2 CT,
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Motivation in AGT: Studying symmetries of graphs

Lifting automorphisms along regular covering projections
| |7
X —£- X

If G < AutX lifts, then we call the projection G-admissible.

Applications

Construction of infinite families, compiling lists,
and classification of graphs with interesting symmetry properties.
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Biggs, Algebraic Graph Theory, 1972

Thm.
Let p: X — X be a regular covering given in terms of Cayley voltages,

C:AX) =T,

and let G < AutX. Suppose that the action of G on arcs is compatible
with the assignment of voltages, that is, for each g € G there exists an
automorphisms g# € Autl such that

a —% g(a)
| |¢
Ca £, Ce(a)-

where #: g — g is a homomorphism G — Autl'. Then G lifts along p
as a split extension

G%rN#G.

4/11



Biggs' compatibility condition, revised

5 /11



Biggs' compatibility condition, revised

Choose a base vertex b € X, and let g be the unique lift of g € AutX
that maps the vertex in fiby, labelled by 1 to a vertex labelled by 1. Set

G={z|geG}

5 /11



Biggs' compatibility condition, revised

Choose a base vertex b € X, and let g be the unique lift of g € AutX
that maps the vertex in fiby, labelled by 1 to a vertex labelled by 1. Set

G={z|geG}

Biggs' compatibility condition implies that G preserves all vertices in X
that are labelled by 1. So G is a group, in fact, a complement to CT,,
and

G=CT, xG.

5 /11



Biggs' compatibility condition, revised

Choose a base vertex b € X, and let g be the unique lift of g € AutX
that maps the vertex in fiby, labelled by 1 to a vertex labelled by 1. Set

G={z|geG}

Biggs' compatibility condition implies that G preserves all vertices in X
that are labelled by 1. So G is a group, in fact, a complement to CT,,
and

G=CT,xG.

Different complements may have different actions. Biggs' complement
may not exists even if the extension is split.

5 /11



Biggs' compatibility condition, revised

Choose a base vertex b € X, and let g be the unique lift of g € AutX
that maps the vertex in fiby, labelled by 1 to a vertex labelled by 1. Set

G={z|geG}

Biggs' compatibility condition implies that G preserves all vertices in X
that are labelled by 1. So G is a group, in fact, a complement to CT,,
and

G=CT,xG.

Different complements may have different actions. Biggs' complement
may not exists even if the extension is split.

Consider p: @3 — Ky

5 /11



Biggs' compatibility condition, revised

Choose a base vertex b € X, and let g be the unique lift of g € AutX
that maps the vertex in fiby, labelled by 1 to a vertex labelled by 1. Set

G={z|geG}

Biggs' compatibility condition implies that G preserves all vertices in X
that are labelled by 1. So G is a group, in fact, a complement to CT,,
and

G=CT,xG.

Different complements may have different actions. Biggs' complement
may not exists even if the extension is split.

Consider p: @3 — Ky
Ay lifts as Z, x As. No complement is transitive

5 /11



Biggs' compatibility condition, revised

Choose a base vertex b € X, and let g be the unique lift of g € AutX
that maps the vertex in fiby, labelled by 1 to a vertex labelled by 1. Set

G={z|geG}

Biggs' compatibility condition implies that G preserves all vertices in X
that are labelled by 1. So G is a group, in fact, a complement to CT,,
and

G=CT,xG.

Different complements may have different actions. Biggs' complement
may not exists even if the extension is split.

Consider p: @3 — Ky
Ay lifts as Z, x As. No complement is transitive
S4 lifts as Z, x S4. There are intransitive and transitive complements

5 /11



Biggs' compatibility condition, revised

Choose a base vertex b € X, and let g be the unique lift of g € AutX
that maps the vertex in fiby, labelled by 1 to a vertex labelled by 1. Set

G={z|geG}

Biggs' compatibility condition implies that G preserves all vertices in X
that are labelled by 1. So G is a group, in fact, a complement to CT),

and B _
G=CT, xG.

Different complements may have different actions. Biggs' complement
may not exists even if the extension is split.

Consider p: @3 — Ky
Ay lifts as Z, x As. No complement is transitive
S4 lifts as Z, x S4. There are intransitive and transitive complements

Consider p: Dodecahedron — Petersen
As lifts to Z, x As. The unique copy of As is transitive
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Split extensions with sectional complements over 2

Some complement G to CT, has an invariant section {
over a G-invariant subset Q C V/(X)

Special cases

Q=V(X)
Biggs, Algebraic Graph Theory, 1972

Q= {b}

Lifting the stabilizeNr Gp < AlitX
Always lifts as CT, x Gy, where b € fib,,
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Recognition in terms of voltages

consider p: Cg — C3
Z3 lifts as Z, x Z3

Thm. (M, Nedela, Skoviera, 2000)

G lifts along a regular covering projection p: X — X as a split extension
with a sectional complement over a G-invariant set Q if and only if one
of the two equivalent condition hold:

@ The covering can be reconstructed by Cayley voltages (: X — T
that are (1, G)-invariant on Q:

(w=1=Cw=1, forall W:Q—=Q.
@ There is an automorphism g : [ — T
gho: Cw = Cew, W:Q—Q
Note.

Finding the right voltage assignment is difficult ! However, for abelian

covers there is an efficient algorithm.
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Adapting the algorithm for finding an orbit

Thm.

@ A potential complement (g1, 8, ... g,) with an invariant section is
uniquely determined by initial parameters g;(b,0) = (g;b, t;).

@ At the induction step € is potentially a part of an invariant section,
and the ‘value’ of x in (v, x) € Q is computed in terms of unknown
variables constructed so far.

@ We obtain a system of equations for the parameters t;.

@ Solution gives the required complement.

Note.
Computations can be carried out over Z.
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Finding all covers with sectional complements over (2

Define
Conex(2) = X + *, where * adjacent to Q
view G acting as a stabilzer of x

Thm. Let G lift along p: Y — Conex(Q2). If Z = Y \ fib, is connected,
then G along pz: Z — X splits with an invariant section over €. Also,
any X — X s.t. G splits with an invariant section over Q arises in this
way.

Note.

We can explicitly find all Z,-elementary abelian regular coverings along
which G lifts in this manner. The problem is reduced to finding invariant
subspaces of matrix group linearly representing the action of G on the
first homology group Hi(X,Z,).
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Work of Akshay Venkatesh

Thm.

Let p: X — X be an abelian G-admissible regular covering projection. If

|CT,| is co-prime to the number of spanning trees in X, then G lifts as a
sectional split extension over V/(X).
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