Math++ Problems

Problem set 2 – Fourier analysis

hints after 15.4.2020, solutions due 22.4.2020

Definition: We say that $y \in \mathbb{Z}_p$ is a *quadratic residue* in \mathbb{Z}_p , if there is $x \in \mathbb{Z}_p$ such that $y = x^2$.

- 1. Prove that characters are eigenvectors for the convolution operator (with respect to a fixed function). That is, given a finite Abelian group G, a map $f \in \mathbb{C}^G$ and a character χ show that $f * \chi = \lambda \cdot \chi$. What is the value of the eigenvalue λ ? [1]
- 2. Let G be a finite Abelian group and H a subgroup of G. Let $f \in \mathbb{C}^G$ and $a \in G$. Prove that

$$\frac{1}{|H|} \sum_{x \in H} f(x+a) = \sum_{y \in H^{\perp}} \widehat{f}(y) \chi_y(a).$$

[2]

Let us recall that $H^{\perp} = \{a \in G \colon \chi_a(x) = 1, \forall x \in H\}.$

- 3. A function $f: \{0,1\}^n \to \{-1,1\}$ is non-increasing, if $f(x) \leq f(y)$ for every $x, y \in \{0,1\}^n$ such that $x_i \geq y_i$ for every *i*.
 - (a) Show that if $f: \{0,1\}^n \to \{-1,1\}$ is non-increasing, then $\operatorname{Inf}_i(f) = \widehat{f}(e_i)$. Here we identify $\{0,1\}^n$ with \mathbb{Z}_2^n and e_i is the *i*th vector of the standard basis of \mathbb{Z}_2^n . The influence $\operatorname{Inf}_i(f)$ is defined similarly as in the previous problem set: $\operatorname{Inf}_i(f) := \Pr[f(x) \neq f(x_1, \ldots, x_{i-1}, 1 - x_i, x_{i+1}, \ldots, x_n)]$ where the addition is considered in \mathbb{Z}_2^n . [2]
 - (b) Show that if n is odd, then $f(x) = \operatorname{sgn}(n/2 \sum_i x_i)$ maximizes the total influence among all non-increasing functions of n variables from $\{0, 1\}^n$ to $\{-1, 1\}^n$. By the total influence, we mean the value $\operatorname{Inf}(f) = \sum_{i=1}^n \operatorname{Inf}_i(f)$. [2]
- 4. Let p be a prime number and $r \in \mathbb{Z}_p$. Let us define $\operatorname{Gau}(r) := \sum_{x \in \mathbb{Z}_p} e(rx^2/p)$ (the Gauss summation). Prove that:
 - (a) $\operatorname{Gau}(rs^2) = \operatorname{Gau}(r)$ for $s \in \mathbb{Z}_p \setminus \{0\};$ [1]
 - (b) if -1 is not a quadratic residue in \mathbb{Z}_p , then $\operatorname{Gau}(-r) = -\operatorname{Gau}(r);$ [2]
 - (c) $\operatorname{Gau}(1)^2 = \pm p$ for an odd prime number p. [2]
- 5. Let $f : \mathbb{R} \to \mathbb{C}$ be a 1-periodic function with continuous derivative.
 - (a) Show that $\hat{f}'(n) = 2\pi i n \cdot \hat{f}(n)$. (A formula for $\hat{f}(n)$ and integration per partes may be helpful.) [1]
 - (b) Show that if $g, h: \mathbb{R} \to \mathbb{C}$ are arbitrary two continuous 1-periodic functions satisfying $\widehat{g}(n) = \widehat{h}(n)$ for every $n \in \mathbb{T}$, then g = h. (Fejér's theorem may be helpful.) [1]
 - (c) Find all 1-periodic functions $g \colon \mathbb{R} \to \mathbb{C}$, with continuous second derivative which satisfy

$$g''(x) + 2g'(x) + g(x) = f(x).$$
 [1]