Math++ Problems

Problem set 2 - Fourier analysis
hints after 15.4.2020, solutions due 22.4. 2020
Definition: We say that $y \in \mathbb{Z}_{p}$ is a quadratic residue in \mathbb{Z}_{p}, if there is $x \in \mathbb{Z}_{p}$ such that $y=x^{2}$.

1. Prove that characters are eigenvectors for the convolution operator (with respect to a fixed function). That is, given a finite Abelian group G, a map $f \in \mathbb{C}^{G}$ and a character χ show that $f * \chi=\lambda \cdot \chi$. What is the value of the eigenvalue λ ?
2. Let G be a finite Abelian group and H a subgroup of G. Let $f \in \mathbb{C}^{G}$ and $a \in G$. Prove that

$$
\begin{equation*}
\frac{1}{|H|} \sum_{x \in H} f(x+a)=\sum_{y \in H^{\perp}} \widehat{f}(y) \chi_{y}(a) . \tag{2}
\end{equation*}
$$

Let us recall that $H^{\perp}=\left\{a \in G: \chi_{a}(x)=1, \forall x \in H\right\}$.
3. A function $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is non-increasing, if $f(x) \leq f(y)$ for every $x, y \in\{0,1\}^{n}$ such that $x_{i} \geq y_{i}$ for every i.
(a) Show that if $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is non-increasing, then $\operatorname{Inf}_{i}(f)=\widehat{f}\left(e_{i}\right)$. Here we identify $\{0,1\}^{n}$ with \mathbb{Z}_{2}^{n} and e_{i} is the i th vector of the standard basis of \mathbb{Z}_{2}^{n}. The influence $\operatorname{Inf}_{i}(f)$ is defined similarly as in the previous problem set: $\operatorname{Inf}_{i}(f):=\operatorname{Pr}\left[f(x) \neq f\left(x_{1}, \ldots, x_{i-1}, 1-x_{i}, x_{i+1}, \ldots, x_{n}\right)\right]$ where the addition is considered in \mathbb{Z}_{2}^{n}.
(b) Show that if n is odd, then $f(x)=\operatorname{sgn}\left(n / 2-\sum_{i} x_{i}\right)$ maximizes the total influence among all non-increasing functions of n variables from $\{0,1\}^{n}$ to $\{-1,1\}^{n}$. By the total influence, we mean the value $\operatorname{Inf}(f)=\sum_{i=1}^{n} \operatorname{Inf}_{i}(f)$.
4. Let p be a prime number and $r \in \mathbb{Z}_{p}$. Let us define $\operatorname{Gau}(r):=\sum_{x \in \mathbb{Z}_{p}} e\left(r x^{2} / p\right)$ (the Gauss summation). Prove that:
(a) $\operatorname{Gau}\left(r s^{2}\right)=\operatorname{Gau}(r)$ for $s \in \mathbb{Z}_{p} \backslash\{0\}$;
(b) if -1 is not a quadratic residue in \mathbb{Z}_{p}, then $\operatorname{Gau}(-r)=-\operatorname{Gau}(r)$;
(c) $\operatorname{Gau}(1)^{2}= \pm p$ for an odd prime number p.
5. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a 1-periodic function with continuous derivative.
(a) Show that $\widehat{f}(n)=2 \pi i n \cdot \widehat{f}(n)$. (A formula for $\widehat{f}(n)$ and integration per partes may be helpful.)
(b) Show that if $g, h: \mathbb{R} \rightarrow \mathbb{C}$ are arbitrary two continuous 1-periodic functions satisfying $\widehat{g}(n)=\widehat{h}(n)$ for every $n \in \mathbb{T}$, then $g=h$. (Fejér's theorem may be helpful.)
(c) Find all 1-periodic functions $g: \mathbb{R} \rightarrow \mathbb{C}$, with continuous second derivative which satisfy

$$
\begin{equation*}
g^{\prime \prime}(x)+2 g^{\prime}(x)+g(x)=f(x) . \tag{1}
\end{equation*}
$$

