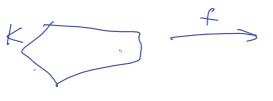

Mathematics++ (topology), lecture #3 (March 22, 2021)

Ida Kantor

Compactness II Last time:


Lemma: (iii)f: X -> Y ct. KSX cp => f(K) cp. (ii) X Hausdorff KEX cp => K is closed

Theorem (Continuous real-valued function on compact set attains its minimum)

 $\# K \text{ cp., } f: K \rightarrow \mathbb{R} \text{ is ct., then } \exists x_0 \in K \text{ s.t. inf} f(x) = f(x_0).$ Proof.

Set Y: = f(K) Yis cp., TR is Hausdorff

=> Y is closed.

Let m=inf Y

if m& 1:

R Y open => 3 8 70

m S.t. (m-E, m+E)

= R Y

Products of spaces Definition (X, O_X) , (Y, O_Y) topo spaces. Their product has infinite products: Let $(X_i, O_i)_{i \in I}$ might not even be countable their product has groundsed TX_i Remark and basis = { [] U; | U; & O; and moreover U; = X, topology" for all except a finite set } Also a topology, box topology.

f(x) = (f(x), f SPPS f: X -> TTX; is a function f(x) = (f_1(x), f_2(x), ---) with product topo, if \(\forall f \); is ct. => f is ct. (Prove that!) Let $X = \mathbb{R} = |X|$; $\forall i$, $f(x) = (x_1 x_1 - \cdots)$ $U_i = \left(-\frac{1}{2^i}, \frac{1}{2^r}\right), \quad u = T_i U_i \quad f^{-1}(u) = 303 \quad \text{not open!}$ Vi Xi= 2-pt discrete space (O), then .TTX; is homeom. to Cantor set. Exercise Productof Hausdorff spaces is Hausdorff.

Theorems of Tychonoff and de Bruijn—Erdős (about graph colorings) Theorem (Tychonoff) Product of arbitrary collection of cp spaces is cp. not necess countable Theorem (de Bruijn-Erdős): Let G be an infinite graph. If every finite subgraph of G is k-colorable, then G is k-colorable. Proof. For every vertex VEV, let XV be a copy of the discrete topo space let X = TT Xv: Xv are compact => X is cp (by Tychonoff) Assignment of colors to V (>> a point in X. For eEE, let Fe SX be those assignments where endpoints of e get different Want () Fe # Ø. We know: if EOSE finite, then OFe # Ø. (since every finite subgraph k-colorable) He: assignments s.t. endpts of a get the same color: [k]x[k]x...x[k] x \$13x ...x \$13 x [k] one of the basis rectangles e is open Fe } is open cover of X. => Flopen subcover a contradiction with

Compactness of subsets of \mathbb{R}^n Theorem ASR" is cp (=> A is closed Proof. " Is Housolorff => if not bounded actually: (5) 1] is compact Let U be open cover. Let 3:= sup { [o, 1] is covered by finite # of elts. in u} if 2 1: a is covered by open setllin u => 7 8>0 s.t. (9-8, 2+8) \(Ua \) find some a-8 \(b < 9 \) s.t. [0,b] is covered by finite subsillection. ... add Ua ... Vo uquag -.. y wit if not, find & ...

Homotopy: homotopic maps
In general, it is hard to decide whether two spaces are homeomorphic
actually, undecidable). Ne take a coarser equivalence homotopyeg. fill undecidable, but can use
Definition f,g: X -> Y are ct. maps. They are homotopic
if Jet H: Xx[0,1] -> Y homotopy between f and g
$s.t. H(\cdot, 0) = f + H(\cdot, 1) = g$
Example $f_{i,g}: S^{\perp} \rightarrow \mathbb{R}^{2}$
Exercise: Prove that every two maps X->B' not homotopic.
6: Given X, 4 being homotopic is eq. relation
[X,Y] Set of classes.
maps 51 -> R2 1903 in bijection with Z
✔ 다 가 나는 사람이 사용하다 하는 사람이 되었다. 그 나는 사람이 나는 사람이 사용하다 하는 사람이 되었다.

4 D > 4 D > 4 E > 4 E > 9 Q @

Homotopy: homotopy equivalence

Definition X and Y are homotopy equivalent if
$$\exists ct \ f: X \rightarrow Y \ \text{and} \ g: Y \rightarrow X \ \text{s.t.}$$

g.f: X-X is homotopic to idx

and fog: Y-rY is homotopic to idy.

$$X = \frac{3}{5}(x,y)$$
 $j = \sqrt{x^2 + y^2} \le 2$ $\frac{3}{5}$

$$Y = \{ (x,y); \ \sqrt{x^2 + y^2} = 1 \}$$

 $f: X \rightarrow Y \quad f(x) = \frac{x}{\|x\|}$

$$f \circ f : X \rightarrow X$$

$$H (x \mid t) = (1 - t) \cdot x + t \cdot \frac{x}{||x||}$$

$$f \circ g : Y \rightarrow Y \quad \text{is identity}$$

Homotopy: deformation retraction

To visualite, we use def-retraction:
Definition A deformation retraction is a ct. map
Definition A deformation retraction is a ct. may
$R: X \times [0,1] \longrightarrow X$ s.t.
• $R(x, 1) \in Y \forall x \in X$
· Yyey Ytelo,1] R(y,t)=y, If YSX and I a def. retraction X=Y=>Yisa def. retract
If YSX and I a def. retraction X => Y => Y is a def. retract
Fact X2Y => FZ s.t. both X and I are def.
Example Retracts of 2.
the state of the s