Mathematics++ (topology), lecture #2 (March 15, 2021)

Ida Kantor

Separation axioms

Separability

Definition $D \subseteq X$ is dense if elD = X. X is separable if it has countable dense subset. Example. $\mathbb{Q}^2 \subseteq \mathbb{R}^2$ is countable deuse subset V subspace of R² also separable · Sorgenfrey plane ... is separable, has non-separable subspaces Theorem (Tieze extension theorem) $X \approx T_4$, $A \subseteq X$ closed SA - R continuous. Then I continuous extension A: X -> R s.t. $\sup_{x \in X} |f(x)| \leq \sup_{x \in X} |f(x)|_{x}$ Theorem (Urysohn metrization theorem) X is T3, X has countable base > X is metrizable. X Tz with countable bare => X is Ty Lemma X is T4 space w/ countable base => 3 a countable sequence (f_{1}, f_{2}, \dots) of ct. functions $X \longrightarrow [D_{1}, 1]$ s.E. HXEX YU OPEN, XEU => Ifi s.t. fi is 0 outside y 1 in X. U ▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で Lemma

X is a T_4 space with countable base $\Rightarrow \exists a_countable \ sequence \ f_1, f_2, \dots$ of continuous functions from X to [0,1] such that: whenever $x \in X$, and U open set with $x \in U$, there is f_i such that f_i is 0 outside U and 1 in x. Easy to show: Sx3 is closed, ExSU(XIU) closed Proof. Define $f = \begin{cases} 1 & \text{in } x & \text{use extension thm.} \\ 0 & \text{in } x \cdot y \\ \text{But this is not countable sequence, have to be smarter} \end{cases}$ For every pair of sets B', B ClB' EB take for ClB' (XIB) fly XO other This works: Fix X, U. Find Bst. XEBEY. XisT3 => find V, W open, disj. s.t. XEV, XIBSW. Also find BI in basis, xEB'SV. B'SXW XIW is closed => dB' S XIWSB SU. =>for given X, U, we found the appropriate function. These f are continuous: f is defined on union of closed sets:

Proof of Urysohn's metrization theorem

Theorem

X is T_3 , has countable base \Rightarrow X is metrizable. Proof. We will show that X is homeomorphic to a subspace of H... Hilbert cube $H := all infinite sequences (x_1, x_2, x_3, ...), where <math>\forall i \quad x_i \in \mathbb{C}_0, \frac{1}{2}$ with l_z metric, i.e. dist $(x_1y) = \sqrt{\sum (x_i - y_i)^2}$) Need: f continuous Define $\varphi: \times \longmapsto (f_1(x)), f_2(x), f_3(x), \dots$ f injective y iscont: $V_{\rm m}Y^{-1}(u)$ f continuous Let USH open, want q (4) open. Let xe q (4), let y = q(x). want: 3V gpen, xe V $\varphi(v) \leq U$. Let ε be s.t. $Bly(\varepsilon) \leq U$. Suffices to find V s.t. $\varphi(v) \leq B(y, \varepsilon)$. n_0 s.t. $2\frac{1}{r^2} < \frac{5}{r}$ For k<no, let $V_k := \frac{1}{2} \frac{1}{k} f_k(z) - y_k < \frac{1}{2 \cdot n_0} = \frac{1}{2} \frac{1}{k} \frac{1}{k}$ Then V:= NVK is also open, and for ZEV, we have $\leq \varepsilon^2$ $\| \varphi(z) - \varphi \|^2 = \sum (\frac{1}{k} f_k(z) - y_k)$ $+ \sum_{k} \left(\frac{1}{k} f_{k}(z) - \right)$ K<nn 7.10

$$\begin{array}{c} \varphi \text{ injective} & \ldots & clear \\ \varphi^{-1} \text{ is continuous} \\ (x, y) \\ (x$$

Compactness

Definition X is compact if whenever U is a collection of open sets whose union is all lof X, I finite Uo EU whose union is X'. " Every open cover has finite subcover " CEX is compact if C with subspace topo is compact. Lemma (i) × compact, A S × closed => A compact (ii) X Haurdorff, KSX compact => K closed (iii) f: X > Y'ct., K ≤ X compact => f(K) compact. Proof. (i) Let U open cover of A. For levery UCU 'I U open inX, U= UnA. Zu; UEU JUZXIAJ is an open cover of X => I finite subcover. Restrictions of these sets to A form open subcover of U. Take X & X K. Want an open set aroundx, (ii) Need to show: X K open. SXXK. Xis T2=> YyeK Jopenset Vy and Wy disjoint, yewy, xeVy. Sets Wy ... a cover of K. Take finite subcover Wy1, ..., Wyn. Let $V := \bigcap_{i=1}^{n} Vy_i$. This is open, disj. from K.

Compactness II

Theorem (Continued real-valued function on compact set attains its minimum)

Proof.

Products of spaces

Definition

Remark

Example

Exercise

Theorems of Tychonoff and de Bruijn—Erdős (about graph colorings) Theorem (Tychonoff)

Theorem (de Bruijn—Erdős)

Proof.