1. In the SCHEDULING ON UNRELATED PARALLEL MACHINES problem, we are given n jobs and m machines. We want to assign every job to some machine. The time of running job j on machine i is given by $p_{i,j}$. The goal is to minimize the maximum total processing time required by a machine.

Show that this problem cannot be $(3/2 - \varepsilon)$ -approximated.

Hint. Reduce from 3-DIMENSIONAL MATCHING, which is an NP-hard problem. In this problem, we are given sets $A, B, C \subseteq [n]$ and a family of sets $\mathcal{F} \subseteq A \times B \times C$. The goal is to find a subset $\mathcal{F}' \subseteq \mathcal{F}$ such that every element of A, B, and C is contained in *exactly* one of the sets of \mathcal{F}' .

- 2. Show that INDEPENDENT SET cannot be $(7/8 + \varepsilon)$ approximated. Hint. Standard reduction from 3SAT suffices. What kind of *L*-reduction is this?
- 3. The Cook-Levin theorem states that 3SAT is NP-hard. We want to show that its standard proof does not show inapproximability of MAX3SAT.

The proof defines for every NP language a reduction f such that

$$x \in L \Leftrightarrow f(x) \in 3$$
SAT.

Prove that there exists $x \notin L$ such that f(x) is a formula with m clauses and a assignment satisfying more than (1 - o(1))m of them.

Hint. What does the reduction *encode*? Do not worry about specific numbers, this is enough to get the idea.