
NEW COUNTEREXAMPLES TO KNASTER’S CONJECTURE

AICKE HINRICHS AND CHRISTIAN RICHTER

Abstract. Given a continuous map f : Sn−1 → Rm and n − m + 1 points
p1, . . . , pn−m+1 ∈ Sn−1, does there exist a rotation % ∈ SO(n) such that
f(%(p1)) = . . . = f(%(pn−m+1))? We give a negative answer to this question
for m = 1 if n ∈ {61, 63, 65} or n ≥ 67 and for m = 2 if n ≥ 5.

1. Introduction and notation

In 1947 B. Knaster posed the following question (see [9]): Given a continuous
function f mapping the (n− 1)-dimensional Euclidean sphere Sn−1 ⊆ Rn into Rm,
m ≤ n− 1, and k = n−m + 1 points p1, . . . , pk ∈ Sn−1, does there exist a rotation
% ∈ SO(n) such that f(%(p1)) = . . . = f(%(pk))? Knaster’s problem had been
motivated by a theorem of H. Hopf (see [6]), that answers the above question in
the affirmative for k = 2 thus generalizing the Borsuk-Ulam theorem on antipodal
points of spheres (see [2]).

In 1955 E.E. Floyd proved Knaster’s conjecture for n = 3, m = 1 (see [4]). All
affirmative answers for further (n, m) do not cover the full generality of Knaster’s
question, but rest on restrictions on the geometry of the set {p1, . . . , pk} or on the
nature of f (see e.g. [7, 11, 12, 13, 14, 15, 16, 17]). In particular, for the central case
of real-valued functions f , i.e. m = 1, k = n, H. Yamabe and Z. Yujobô confirmed
the conjecture if {p1, . . . , pn} is an orthonormal basis.

First counterexamples for m ≥ 3 were found by V.V. Makeev and I.K. Babenko,
S.A. Bogaty̆ı in the 1980s (see [10, 1]). In 1998 W. Chen added counterexamples
for the remaining dimensions n in the case m ≥ 3 and gave a first one for m = 2,
namely for n = 4 (see [3]). The recent paper [8] of B.S. Kashin and S.J. Szarek even
provides counterexamples for m = 1, but only for large dimensions n > 1012.

The aim of the present paper is to improve the case m = 1 by adding counterex-
amples for relatively small dimensions n, namely for n ∈ {61, 63, 65} and n ≥ 67,
and to complete the case m = 2 by providing counterexamples for all n ≥ 5. The
result for m = 2 confirms a conjecture of Chen. Table 1 summarizes the current
state of Knaster’s problem.

As in [8], our methods give asymptotic lower estimates for the smallest possible
dimension n = n(m, r) such that for every continuous function f from Sn−1 into
Rm and r arbitrary points p1, . . . , pr ∈ Sn−1 there exists a rotation % ∈ SO(n) such
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Table 1. Current state of Knaster’s problem (general case)

k = 2 k = 3 k ≥ 4

m = 1 true ([6]) true ([4])
open if 4 ≤ k ≤ 60 or k ∈ {62, 64, 66},

false for every other k ≥ 4 ([8], Theorem 5)

m = 2 true ([6]) false ([3]) false (Theorems 6 and 7)

m ≥ 3 true ([6]) false ([3]) false ([10, 1, 3])

that f(%(pj)) is constant, 1 ≤ j ≤ r. Since these estimates are up to the absolute
constants the same as the one obtained in [8], we do not state them explicitly .

We use the following notations. The cardinality of a set A is denoted by |A|.
Open, half-open, and closed intervals with endpoints α, β ∈ R are (α, β), (α, β],
[α, β), and [α, β], respectively. Moreover, dαe is defined by dαe = min{l ∈ Z : l ≥
α}. The i-th coordinate of a point x ∈ Rn is denoted by x[i], the Euclidean norm

of x by ‖x‖2 =
( ∑n

i=1 x[i]2
) 1

2 . The Euclidean unit ball of Rn is Bn
2 = {x ∈ Rn :

‖x‖2 ≤ 1}, the unit sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. The symbol absconv(M)
stands for the convex hull of M ∪ (−M), M being a subset of Rn.

The counterexamples to be given for the case m = 1 rest on the function ‖x‖∞ =
max{|x[1]|, . . . , |x[n]|} on Rn. In the case m = 2 we shall use the maps

f(l,n−l)(x) = (f1(x), f2(x)) = (max1≤i≤l |x[i]|, maxl+1≤i≤n |x[i]|),

1 ≤ l ≤ n. Finally we repeat a notation from [8]: Given a set M ⊆ Sd−1 and a
continuous function f : Sn−1 → Rm, a linear Euclidean isometry % : Rd → Rn is
called a Knaster embedding of M with respect to f if there exists a constant c ∈ Rm

such that f(%(p)) = c for all p ∈ M .

2. Local properties of supremum norms

Following the principal idea from [8] we present counterexamples based on two
lemmas. Lemma 1, that generalizes Lemma 3 from [8], describes subsets of spheres
whose Knaster embeddings % necessarily have “large” constants c. In contrast with
that Lemma 3, which plays the role of Lemma 4 from [8], characterizes sets that
give rise to “small” constants. Suitable unions of sets of the first and of the second
kind then do not allow any Knaster embedding and thus serve as counterexamples
to Knaster’s conjecture.

Lemma 1. Let M ⊆ Sd−1 and assume that δ > 0 is such that δBd
2 ⊆ absconv(M).

Then any Knaster embedding % of M into Rn w.r.t. f = (f1, f2) = f(l,n−l) with
constant c = (c1, c2) satisfies

lc2
1 + (n− l)c2

2 ≥ δ2d.

Proof. Let s = 1, 2. Since fs is convex and symmetric, fs(%(p)) = cs for p ∈
M implies that fs(x) ≤ cs for x ∈ absconv(%(M)) = %(absconv(M)). Now the
assumption δBd

2 ⊆ absconv(M) and the homogeneity of fs imply that

fs(x) ≤ cs

δ for x ∈ %
(
Bd

2

)
.
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Let y1, . . . , yd be an orthonormal basis of %(Rd). Define y, x1, . . . , xn ∈ Rn by

y[i] =
( ∑d

j=1 yj [i]2
) 1

2 and xi = 1
y[i]

∑d
j=1 yj [i]yj .

Then xi[i] = y[i] implies fs(xi) ≥ y[i] for s = 1 if i ≤ l and for s = 2 if i > l,
respectively. We obtain

d =
∑d

j=1 ‖yi‖2
2 =

∑d
j=1

∑n
i=1 yj [i]2 =

∑n
i=1 y[i]2 ≤

∑l
i=1 f1(xi)2 +

∑n
i=l+1 f2(xi)2

and, since ‖xi‖2 = 1, finally

d ≤ l
c2
1

δ2 + (n− l) c2
2

δ2 .

�

In the extremal case l = n Lemma 1 yields the following.

Corollary 2. Let M ⊆ Sd−1 and let δ > 0 be such that δBd
2 ⊆ absconv(M). Then

any Knaster embedding of M into Rn w.r.t. f = ‖ · ‖∞ with constant c satisfies

nc2 ≥ δ2d.

Lemma 3. Let 0 < ε <
√

2 and let p1, . . . , pr ∈ S1 be mutually distinct points such
that ‖p1 − pj‖2 ≤ ε, 1 < j ≤ r. Then any Knaster embedding % of {p1, . . . , pr} into
Rn w.r.t. f = (f1, f2) = f(l,n−l) with constant c = (c1, c2) satisfies⌈

r
2

⌉
(c2

1 + c2
2 − 4ε) ≤ 1.

Proof. It suffices to show that

(1)
⌈

r
2

⌉
(c2

1 − 2ε) ≤
∑l

i=1 %(p1)[i]2

and, analogously,
⌈

r
2

⌉
(c2

2 − 2ε) ≤
∑n

i=l+1 %(p1)[i]2, because then the claim follows
by ⌈

r
2

⌉
(c2

1 + c2
2 − 4ε) ≤

∑n
i=1 %(p1)[i]2 = ‖%(p1)‖2

2 = 1.

We can assume that c1 > 0, since otherwise the estimate (1) is trivial. Let
{q1, q2} be an orthonormal basis of %(R2). Then %(S1) = {q(ϕ) : 0 ≤ ϕ < 2π}
where q(ϕ) = cos(ϕ)q1 + sin(ϕ)q2. There exist angles ϕj ∈ [0, 2π), 1 ≤ j ≤ r, such
that %(pj) = q(ϕj). Clearly, for every 1 ≤ i ≤ n there are ai, bi ∈ R such that

(2) q(ϕ)[i] = ai cos(ϕ + bi).

Let
A = {i ∈ {1, . . . , l} : |q(ϕj)[i]| = c1 for some j ∈ {1, . . . , r}}.

For every i ∈ A there is j ∈ {1, . . . , r} such that |%(pj)[i]| = |q(ϕj)[i]| = c1. It
follows from∣∣|%(p1)[i]| − c1

∣∣ =
∣∣|%(p1)[i]| − |%(pj)[i]|

∣∣ ≤ ‖%(p1) − %(pj)‖2 ≤ ε

that |%(p1)[i]| ∈ [c1 − ε, c1 + ε] and %(p1)[i]2 ≥ (max{c1 − ε, 0})2. Since c1 ≤ 1
implies (max{c1 − ε, 0})2 ≥ c2

1 − 2ε, we conclude that

c2
1 − 2ε ≤ %(p1)[i]2 for i ∈ A.

For every j ∈ {1, . . . , r} there exists i ∈ A such that |q(ϕj)[i]| = c1, because
max{|q(ϕj)[i]| : 1 ≤ i ≤ l} = f1(%(pj)) = c1. However, the representation (2)
shows that a function |q(·)[i]| attains the value c1 > 0 for at most four angles ϕ in
the interval [0, 2π) and, since {p1, . . . , pr} and so also {q(ϕ1), . . . , q(ϕr)} does not
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contain a pair of antipodal points, for at most two angles from {ϕ1, . . . , ϕr}. This
yields r ≤ 2|A| and

⌈
r
2

⌉
≤ |A|. Now we obtain (1) by estimating⌈

r
2

⌉
(c2

1 − 2ε) ≤
∑

i∈A %(p1)[i]2 ≤
∑l

i=1 %(p1)[i]2.

�

An analogous proof yields the following for the case m = 1.

Corollary 4. Let 0 < ε <
√

2 and let p1, . . . , pr ∈ S1 be mutually distinct points
such that ‖p1 − pj‖2 ≤ ε, 1 < j ≤ r. Then any Knaster embedding of {p1, . . . , pr}
into Rn w.r.t. f = ‖ · ‖∞ with constant c satisfies⌈

r
2

⌉
(c2 − 2ε) ≤ 1.

Theorem 5. Knaster’s conjecture fails for m = 1 if n ∈ {61, 63, 65} or n ≥ 67.

Proof. In the sphere S2 there exists a symmetric net N = −N ⊆ S2 of 22 points
such that the spherical caps of angular radius α = 27.82 degrees around the points
of N cover S2 (see [5], the covering property of the net claimed on the web page
has been confirmed by independent calculations of the authors).

We consider the function f = ‖ · ‖∞ on Sn−1. For fixed 0 < ε <
√

2 we
choose k = n points p1, . . . , pn on spheres S1 ⊆ S2 ⊆ Sn−1 as follows. We pick
p1, . . . , pn−10 ∈ S1 and pn−9, . . . , pn ∈ S2 such that ‖p1 − pj‖2 ≤ ε, 1 < j ≤ n− 10,
and {pn−10, . . . , pn} ∪ {−pn−10, . . . ,−pn} = N .

Now we assume that there is % ∈ SO(n) such that f(%(p1)) = . . . = f(%(pn)) = c.
We apply Corollary 2 to M = {pn−10, . . . , pn}. Since (cos α)B3

2 ⊆ absconv(N) =
absconv(M), we obtain

nc2 ≥ 3 cos2 α.

Application of Corollary 4 to {p1, . . . , pn−10} yields⌈
n−10

2

⌉
(c2 − 2ε) ≤ 1.

Consequently,
ε ≥ 1

2

(
3 cos2 α

n −
⌈

n−10
2

⌉−1
)
.

However, the right-hand side is strictly positive for n ∈ {61, 63, 65} and n ≥ 67.
Thus we can obtain a contradiction by choosing ε sufficiently small. �

Theorem 6. Knaster’s conjecture fails for m = 2 if n ≥ 8.

Proof. We consider the function f = f(dn
2 e,n−d

n
2 e). Let 0 < ε <

√
2.

First let n be an even number. We choose the points p1, . . . , pk, k = n−m+1 =
n − 1, on a great circle S1 ⊆ Sn−1 as follows. p1, . . . , pn−3 are selected such that
‖p1 − pj‖2 ≤ ε for 1 < j ≤ n− 3. The remaining two points pn−2, pn−1 are chosen
such that {pn−3, pn−2, pn−1} ∪ {−pn−3,−pn−2,−pn−1} form a regular hexagon.

Let us assume that there exists a rotation % ∈ SO(n) such that f(%(pj)) =
c = (c1, c2) is constant for 1 ≤ j ≤ n − 1. The set M = {pn−3, pn−2, pn−1}
satisfies

√
3

2 B2
2 ⊆ absconv(M), since M ∪ (−M) is a regular hexagon. Lemma 1

with l =
⌈

n
2

⌉
= n

2 yields
n
2 (c2

1 + c2
2) ≥ 3

2 .

By applying Lemma 3 to p1, . . . , pn−3 we obtain
n−2

2 (c2
1 + c2

2 − 4ε) ≤ 1,
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because
⌈

n−3
2

⌉
= n−2

2 . Combining the two inequalities we arrive at ε ≥ n−6
4n(n−2) > 0.

Thus we obtain a contradiction if we choose the initial configuration such that
ε < n−6

4n(n−2) .

Now let n ≥ 9 be odd. We pick p1, . . . , pn−4 ∈ S1 such that ‖p1 − pj‖2 ≤ ε for
1 < j ≤ n− 4 and pn−3, pn−2, pn−1 ∈ S1 such that M ∪ (−M) is a regular octagon
where M = {pn−4, . . . , pn−1}.

Again we suppose that there is a rotation % ∈ SO(n) such that f(%(pj)) = c =
(c1, c2) is constant for 1 ≤ j ≤ n−1. In the present case we have δB2

2 ⊆ absconv(M)
with δ2 = 2+

√
2

4 . Lemma 1 with l =
⌈

n
2

⌉
= n+1

2 shows that n+1
2 c2

1 + n−1
2 c2

2 ≥ 2+
√

2
2

and thus
n+1

2 (c2
1 + c2

2) ≥ 2+
√

2
2 .

Application of Lemma 3 to p1, . . . , pn−4 yields
n−3

2 (c2
1 + c2

2 − 4ε) ≤ 1,

since
⌈

n−4
2

⌉
= n−3

2 . Now we obtain ε ≥
√

2n−8−3
√

2
4(n+1)(n−3) > 0, again a contradiction if ε

is sufficiently small. �

3. Another family of counterexamples for m = 2

In the case m = 2 we already have counterexamples for the dimensions n = 4
(see [3]) and n ≥ 8 (Theorem 6). In the following we cover the gap between 4
and 8 by a class of counterexamples for all n ≥ 5. Though this class rests on point
configurations similar to that from Theorem 6, the arguments become slightly more
technical.

Given 0 < ε < π
2 , an ε-set on the sphere Sn−1 is meant to be a set of r ≥ 2 points

p1, . . . , pr on a great circle of Sn−1, consecutively ordered following an orientation
of the circle, such that the angular distance between p1 and pj is π

2 if j = r and at
most ε for 2 ≤ j ≤ r − 1.

Theorem 7. Let n = 4s+ t with integers s ≥ 1 and t ∈ {1, 2, 3, 4} and consider the
function f = (f1, f2) = f(dn

2 e,n−d
n
2 e) on Sn−1. If {p1, . . . , pr} ⊆ Sn−1 is an ε-set

such that

r =
{

2s + t + 1 for t 6= 4,
2s + t for t = 4 and ε ≤ 1

16n4 ,

then (f1, f2) is not constant on {p1, . . . , pr}.

The following lemma is to be used in the proof of Theorem 7.

Lemma 8. Let {p1, . . . , pr} ⊆ Sn−1 be an ε-set, 4 ≤ r ≤ n, and consider the
function f(x) = max{|x[1]|, . . . , |x[l]|}, l ≤ n, on Sn−1. If f(pj) = c is constant for
1 ≤ j ≤ r, then the set

A = {i ∈ {1, . . . , l} : |pj [i]| = c for some j ∈ {1, . . . , r − 1}}
and the subset

B = {i ∈ {1, . . . , l} : |pj [i]| = c for some j ∈ {2, . . . , r − 2}}
satisfy the following conditions.

(a) |A| ≥
⌈

r−1
2

⌉
and |p1[i]| ≥

(
1 −

√
2ε

)
c for all i ∈ A.

(b) |B| ≥
⌈

r−3
2

⌉
and |pr[i]| ≤

√
2εc for all i ∈ B.

(c) If |A| = r−1
2 then A = B.
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Proof. If c = 0 then pj [i] = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ r and the assertions are
trivial. In the following we assume that c > 0.

Since p1 and pr are perpendicular, the great circle containing {p1, . . . , pr} is the
set {p(ϕ) : 0 ≤ ϕ < 2π} where p(ϕ) = cos(ϕ)p1 + sin(ϕ)p2. Clearly, pj = p(ϕj),
1 ≤ j ≤ r, where 0 = ϕ1 < ϕ2 < . . . < ϕr−1 ≤ ε < ϕr = π

2 .
For every 1 ≤ i ≤ l the function |p(·)[i]| is of the form

(3) |p(ϕ)[i]| = |ai cos(ϕ + bi)|.

|p(·)[i]| is a π-periodic |ai|-Lipschitz function. If it is not constant, |p(·)[i]| attains
its maximum |ai| for exactly one argument ηi in the interval [0, π) and its minimum
0 for the corresponding angle ηi − π

2 or ηi + π
2 in [0, π). Since |p(0)[i]| = |p1[i]| ≤ c

and
∣∣p(

π
2

)
[i]

∣∣ = |pr[i]| ≤ c, one obtains |ai| ≤
√

2c and

(4)
∣∣|p(ϕ)[i]| − |p(η)[i]|

∣∣ ≤ √
2c|ϕ− η|

for arbitrary angles ϕ, η.
For proving |A| ≥

⌈
r−1
2

⌉
we first note that, according to f(p1) = . . . = f(pr−1) =

c, for every j ∈ {1, . . . , r − 1} there exists i ∈ A such that |p(ϕj)[i]| = |pj [i]| = c.
However, the representation (3) shows that a function |p(·)[i]| attains the value c at
most two times in the interval [0, π). Hence 2 |A| ≥ r− 1. This yields |A| ≥

⌈
r−1
2

⌉
.

In the same way one obtains |B| ≥
⌈

r−3
2

⌉
.

For the proof of the second part of (a) let i ∈ A be fixed. We find j ∈ {1, . . . , r−1}
such that |pj [i]| = c. By (4), we obtain

|p1[i]| ≥ |pj [i]|−
∣∣|pj [i]|−|p1[i]|

∣∣ = c−
∣∣|p(ϕj)[i]|−|p(0)[i]|

∣∣ ≥ c−
√

2cϕj ≥ (1−
√

2ε)c,

which is our claim.
Now we fix i ∈ B for verifying the second part of (b). We choose j ∈ {2, . . . , r−2}

such that |pj [i]| = c. Since |pj−1[i]| ≤ f(pj−1) = c and |pj+1[i]| ≤ f(pj+1) = c, the
function |p(·)[i]| attains its maximum for an angle ηi ∈ (ϕj−1, ϕj+1). In particular,
0 ≤ ηi ≤ ε. Then

∣∣p(
ηi + π

2

)
[i]

∣∣ = 0 and, by (4),

(5) |pr[i]| =
∣∣ ∣∣p(

π
2 )[i]

∣∣− ∣∣p(
ηi + π

2

)
[i]

∣∣ ∣∣ ≤ √
2cηi ≤

√
2cε,

as asserted.
For proving (c) we suppose that |A| = r−1

2 . Let us assume that A 6= B. Then
there exists i0 ∈ A\B, that is, |p(ϕ1)[i0]| = c or |p(ϕr−1)[i0]| = c, but |p(ϕj)[i0]| 6= c
for 2 ≤ j ≤ r−2. Since 2 |A| = r−1, the above argument showing that |A| ≥

⌈
r−1
2

⌉
now implies that, for every i ∈ A, the function |p(·)[i]| necessarily attains the value c
for two of the angles ϕ1, . . . , ϕr−1. For i = i0 this yields |p(ϕ1)[i0]| = |p(ϕr−1)[i0]| =
c. The representation (3) then yields |p(ϕ2)[i0]| > c or |p(ϕr)[i0]| > c, because
0 = ϕ1 < ϕ2 < ϕr−1 < ϕr = π

2 . However, |p(ϕ2)[i0]| ≤ f(p2) = c and |p(ϕr)[i0]| ≤
f(pr) = c. This contradiction proves A = B. �

Proof of Theorem 7. We assume that (f1, f2)(pj) = (c1, c2) is constant for 1 ≤ j ≤
r. Then

(6) 1√
n
≤ max{c1, c2} ≤ 1,

for max{c1, c2} = ‖pj‖∞ and ‖pj‖2 = 1.
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We put C1 =
{

1, . . . ,
⌈

n
2

⌉}
, C2 =

{⌈
n
2

⌉
+ 1, . . . , n

}
and

Aq = {i ∈ Cq : |pj [i]| = cq for some j ∈ {1, . . . , r − 1}},
Bq = {i ∈ Cq : |pj [i]| = cq for some j ∈ {2, . . . , r − 2}}

for q = 1, 2.
Let i′ ∈ C1\A1. We estimate 1 = ‖p1‖2

2 =
∑n

i=1 p1[i]2 ≥ p1[i′]2+
∑

i∈A1∪A2
p1[i]2.

Lemma 8 (a) yields p1[i]2 ≥ (1 −
√

2ε)2c2
q ≥ (1 − 2

√
2ε)c2

q for i ∈ Aq. Hence

1 ≥ p1[i′]2 + |A1|c2
1 + |A2|c2

2 − 2
√

2ε(|A1|c2
1 + |A2|c2

2).

By (6), we obtain 2
√

2ε(|A1|c2
1 + |A2|c2

2) ≤ 3
16n4 (|A1| + |A2|) ≤ 3

16n3 and

(7) 1 ≥ p1[i′]2 + |A1|c2
1 + |A2|c2

2 − 3
16n3 for i′ ∈ C1 \A1.

In particular

(8) 1 ≥ |A1|c2
1 + |A2|c2

2 − 3
16n3 ,

even if A1 = C1.
Now let i′ ∈ C1 \B1. The coordinates of pr satisfy |pr[i]| ≤ fq(pr) = cq if i ∈ Cq

and |pr[i]| ≤
√

2εcq for i ∈ Bq by Lemma 8 (b). Thus

1 = ‖pr‖2
2 ≤ 2ε2(|B1|c2

1 + |B2|c2
2) + pr[i′]2 + (|C1| − |B1| − 1)c2

1 + (|C2| − |B2|)c2
2.

Estimate (6) yields 2ε2(|B1|c2
1 + |B2|c2

2) ≤ ε(|B1| + |B2|) ≤ 1
16n3 and

(9) 1 ≤ pr[i′]2 +
(⌈

n
2

⌉
−|B1|−1

)
c2
1 +

(
n−

⌈
n
2

⌉
−|B2|

)
c2
2 + 1

16n3 for i′ ∈ C1\B1.

Since |pr[i′]| ≤ c1, we have in particular

(10) 1 ≤
(⌈

n
2

⌉
− |B1|

)
c2
1 +

(
n−

⌈
n
2

⌉
− |B2|

)
c2
2 + 1

16n3 .

If B1 = C1 formula (10) can be directly deduced in analogy with (9).
Combining (8) and (10) we arrive at

(11)
(
|A1| + |B1| −

⌈
n
2

⌉)
c2
1 +

(
|A2| + |B2| − n +

⌈
n
2

⌉)
c2
2 ≤ 1

4n3 .

Case 1: t = 1. The definition of n and r and Lemma 8 (a) and (b) yield

(12)
⌈

n
2

⌉
= 2s + 1, n−

⌈
n
2

⌉
= 2s, |Aq| ≥

⌈
r−1
2

⌉
= s + 1, |Bq| ≥

⌈
r−3
2

⌉
= s

for q = 1, 2.

Case 1.1: |A1|+|B1| > 2s+1. Then |A1|+|B1|−
⌈

n
2

⌉
≥ 1, |A2|+|B2|−n+

⌈
n
2

⌉
≥

1 and (11) yields c2
1 + c2

2 ≤ 1
4n3 , a contradiction with (6).

Case 1.2: |A1| + |B1| ≤ 2s + 1. Then, by (12),

(13) |A1| = s + 1 and |B1| = s.

Now (12) yields |A1| + |B1| −
⌈

n
2

⌉
= 0, |A2| + |B2| − n +

⌈
n
2

⌉
≥ 1, and, by (11),

c2
2 ≤ 1

4n3 . Then (6) gives 1√
n
≤ c1. Thus

(14) 1
n ≤ c2

1 and c2
2 ≤ 1

2nc2
1.

In the present case C1 \ A1 6= ∅, because |C1| =
⌈

n
2

⌉
= 2s + 1 > s + 1 = |A1|.

For i′ ∈ C1 \A1 inequalities (7) and (10) show that

p1[i′]2 ≤
(⌈

n
2

⌉
− |A1| − |B1|

)
c2
1 +

(
n−

⌈
n
2

⌉
− |A2| − |B2|

)
c2
2 + 1

4n3 .
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By (12), we have
⌈

n
2

⌉
− |A1| − |B1| ≤ 0 and n−

⌈
n
2

⌉
− |A2| − |B2| < 0. Therefore,

with (14),

(15) p1[i′]2 ≤ 1
4n3 ≤ 1

4n2 c2
1 for i′ ∈ C1 \A1.

If i′ ∈ C1 \B1 estimates (8) and (9) yield

pr[i′]2 ≥
(
|A1| + |B1| + 1 −

⌈
n
2

⌉)
c2
1 +

(
|A2| + |B2| − n +

⌈
n
2

⌉)
c2
2 − 1

4n3 .

By (12), |A1|+ |B1|+ 1−
⌈

n
2

⌉
≥ 1 and |A2|+ |B2| − n +

⌈
n
2

⌉
> 0. Thus, with (14),

(16) pr[i′]2 ≥ c2
1 − 1

4n3 ≥ c2
1 − 1

4n2 c2
1 ≥ 1

2c2
1 for i′ ∈ C1 \B1.

According to (13) there exists a unique i0 such that A1 \B1 = {i0}. We use this
for an estimate of the scalar product of the perpendicular vectors p1 and pr.

(17) 0 = |〈p1, pr〉| ≥ |p1[i0]pr[i0]| −
∑

i∈{1,...,n}\{i0} |p1[i]pr[i]|.

We have

|p1[i]|


≥ (1 −

√
2ε)c1 ≥ 1√

2
c1 for i = i0 ∈ A1 \B1 = {i0} (Lemma 8 (a)),

≤ c1 for i ∈ B1,

≤ 1
2nc1 for i ∈ C1 \A1 (by (15)),

≤ c2 ≤ 1√
2n

c1 for i ∈ C2 (by (14))

and

|pr[i]|


≥ 1√

2
c1 for i = i0 ∈ A1 \B1 = {i0} (by (16)),

≤
√

2εc1 ≤ 1
2nc1 for i ∈ B1 (Lemma 8 (b)),

≤ c1 for i ∈ C1 \A1,

≤ c2 ≤ 1√
2n

c1 for i ∈ C2 (by (14)).

Therefore (17) can be continued to

0 ≥ 1
2c2

1 − (n− 1) 1
2nc2

1 = 1
2nc2

1 > 0.

This contradiction completes the consideration of Case 1.

Case 2: t = 2. In this case

(18)
⌈

n
2

⌉
= n−

⌈
n
2

⌉
= 2s + 1, |Aq| ≥

⌈
r−1
2

⌉
= s + 1, |Bq| ≥

⌈
r−3
2

⌉
= s.

This yields in particular |A2| + |B2| − n +
⌈

n
2

⌉
≥ 0. Hence (11) implies that

(19)
(
|A1| + |B1| −

⌈
n
2

⌉)
c2
1 ≤ 1

4n3 .

Since the roles of f1 and f2 can be exchanged by a permutation of the coordinates,
we can assume that c1 = max{c1, c2} without loss of generality. Therefore

(20) c2
1 ≥ 1

n

by (6).

Case 2.1: |A1| > s+1. Then, by (18), |A1|+|B1|−
⌈

n
2

⌉
≥ (s+2)+s−(2s+1) = 1

and (19) gives c2
1 ≤ 1

4n3 in contradiction with (20).

Case 2.2: |A1| ≤ s + 1. This yields necessarily |A1| = s + 1 = r−1
2 . Now

Lemma 8 (c) shows that A1 = B1. Therefore |A1| + |B1| −
⌈

n
2

⌉
= 2|A1| −

⌈
n
2

⌉
= 1

and, by (19), c2
1 ≤ 1

4n3 . This contradiction with (20) finishes Case 2.
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Case 3: t = 3. Then⌈
n
2

⌉
= 2s + 2, n−

⌈
n
2

⌉
= 2s + 1, |Aq| ≥

⌈
r−1
2

⌉
= s + 2, |Bq| ≥

⌈
r−3
2

⌉
= s + 1.

Accordingly, inequality (11) yields c2
1 + 2c2

2 ≤ 1
4n3 , a contradiction with (6).

Case 4: t = 4. In this case⌈
n
2

⌉
= n−

⌈
n
2

⌉
= 2s + 2, |Aq| ≥

⌈
r−1
2

⌉
= s + 2, |Bq| ≥

⌈
r−3
2

⌉
= s + 1.

Now (11) gives c2
1 + c2

2 ≤ 1
4n3 , again a contradiction with (6). �
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