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118 00 Praha 1, Czech Republic, and

Institute of Theoretical Computer Science
ETH Zurich, 8092 Zurich, Switzerland

January 1, 2013



Preface

The area of metric embeddings, or more precisely, approximate embeddings of
metric spaces, has been developing rapidly at least since the 1990s, when a new
strong motivation for it came from computer science. By now it has many deep
and beautiful results and numerous applications, most notably for approxima-
tion algorithms.

Yet, as far as I know, there is no introductory textbook and no comprehen-
sive monograph. One of the most widely cited general sources happens to be a
chapter in my 2002 book Lectures on Discrete Geometry. When I was invited
to teach a two-week intensive doctoral course in Barcelona in 2009, I decided to
do metric embeddings, and instead of just following the just mentioned chap-
ter, I ended up writing brand new lecture notes. Not only they contain more
material and newer results, but the presentation of much of the older material
has also been reworked considerably. These lecture notes were further polished
and extended during one-semester courses I taught in Prague and in Zurich; I
would like to thank all the teaching assistants and students involved for great
atmosphere and many constructive comments and corrections.

My earlier intention was to extend the notes by adding citations, remarks,
more results—in short, to make them into a reasonable textbook. While this
plan still exists in principle, up until now there have always been more pressing
things to do. After several years of zero progress, I thus decided to make the
present version publicly available, although generally I don’t like publishing
half-baked materials.

Thus, the current version includes almost no references, and many of the
key results in the area are not mentioned at all. Still I believe that the covered
material constitutes a reasonable foundation for further study of the subject,
with a couple of excursions to other areas.

If you want to cite some results treated in these notes, please invest some
effort to find the original sources. With the help of modern search technology,
plus the several available surveys (e.g., by Linial, by Naor, by Indyk and myself)
this should not be too difficult.
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1

On metrics and norms

1.1 Metrics, bacteria, pictures

The concept of distance is usually formalized by the mathematical notion of a
metric. First we recall the definition:

A metric space is a pair (X, dX ), where X is a set and dX :X ×X → R

is a metric satisfying the following axioms (x, y, z are arbitrary points of
X):

(M1) dX(x, y) ≥ 0,

(M2) dX(x, x) = 0,

(M3) dX(x, y) > 0 for x 6= y,

(M4) dX(y, x) = dX(x, y), and

(M5) dX(x, y) + dX(y, z) ≥ dX(x, z).

If dX satisfies all the axioms except for (M3), i.e. distinct points are allowed
to have zero distance, then it is called a pseudometric. The word distance
or distance function is usually used in a wider sense: Some practically impor-
tant distance functions fail to satisfy the triangle inequality (M5), or even the
symmetry (M4).

Graph metrics. Some mathematical structures are equipped with obvious
definitions of distance. For us, one of the most important examples is the
shortest-path metric of a graph.

Given a graph G (simple, undirected) with vertex set V , the distance of two
vertices u, v is defined as the length of a shortest path connecting u and v in
G, where the length of a path is the number of its edges. (We need to assume
G connected.)

As a very simple example, the complete graph Kn yields the n-point equi-
lateral space, where every two points have distance 1.

More generally, we can consider a weighted graph G, where each edge
e ∈ E(G) is assigned a positive real number w(e), and the length of a path is
measured as the sum of the weights of its edges. (The previous case, where
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there are no edge weights, is sometimes referred to as an unweighted graph, in
order to distinguish it from the weighted case.)

We will first consider graph metrics as a convenient and concise way of spec-
ifying a finite metric space. However, we should mention that several natural
classes of graphs give rise to interesting classes of metric spaces. For example,
the class of tree metrics consists of all metrics of weighted trees and all of their
(metric) subspaces; here by a tree we mean a finite connected acyclic graph).
Similarly one can consider planar-graph metrics and so on.

The relations between graph-theoretic properties of G and properties of the
corresponding metric space are often nontrivial and, in some cases, not yet
understood.

The importance of being metric. As we have seen in the case of graphs,
some mathematical structures are equipped with obvious definitions of distance
among their objects. In many other cases, mathematicians have invented clever
definitions of a metric in order to prove results about the considered structures.
A nice example is the application of Banach’s contraction principle for estab-
lishing the existence and uniqueness of solutions for differential equations.

Metric spaces also arise in abundance in many branches of science. When-
ever we have a collection of objects and each object has several numerical or
non-numerical attributes (age sex salary. . . think of the usual examples in intro-
duction to programming), we can come up with various methods for computing
the distance of two objects.

A teacher or literary historian may want to measure the distance of texts
in order to attribute authorship or to find plagiarisms. Border police of certain
countries need (?!?!) to measure the distance of fingerprints in order to match
your fingerprints to their database—even after your pet hamster bites your
finger.

My first encounter with metric embeddings occurred through bacteria in the
late 1980s. There are enormous number of bacterial species, forms, and muta-
tions, and only very few of them can be distinguished visually. Yet classifying
a bacterial strain is often crucial for curing a disease or stopping an epidemic.

Microbiologists measure the distance, or dissimilarity as it is more often
called, of bacterial strains using various sophisticated tests, such as the reaction
of the bacteria to various chemicals or sequencing portions of their DNA. The
raw result of such measurements may be a table, called a distance matrix,
specifying the distance for every two strains. For the following tiny example,
I’ve picked creatures perhaps more familiar than bacterial species; the price to
pay is that the numbers are completely artificial:

Dog Cat Cheetah Rat Capybara

Dog 0
Cat 0.50 0
Cheetah 0.42 0.27 0
Rat 0.69 0.69 0.65 0
Capybara 0.72 0.61 0.59 0.29 0

(the entries above the diagonal are omitted because of symmetry).
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It is hard to see any structure in this kind of a table. Of course, one should
better think of a very large table, with tens or perhaps hundreds of rows and
columns. (This is still tiny compared to some other data sets: For example, the
number of proteins with known structure ranges in the hundreds of thousand,
and there are billions of human fingerprints.)

Representing the distances in the plane? It would be very nice to
be able to represent such data visually: Assign a point in the plane to each
of the objects in such a way that the distance of two objects is equal to the
Euclidean distance of the corresponding dots. In such a picture, we may be able
to distinguish tight clusters, isolated points, and other phenomena of interest
at a glance:1

Cat

Cheetah

Dog

Capybara

Rat

Feliformia

Caniformia

Rodentia

Carnivora

Storing a distance matrix for n objects in computer memory requires storing
n2 real numbers, or rather

(n
2

)
real numbers if we omit the entries on the

diagonal and above it. On the other hand, if we succeeded in representing the
distances by Euclidean distances of suitable n points in the plane, it would be
enough to store 2n real numbers, namely, the coordinates of the points. For
n = 1000 the saving is already more than 200-fold. This is another, perhaps
less obvious advantage of such a planar representation.

Moreover, a point set in the plane can be processed by various efficient
geometric algorithms, which cannot work directly with a distance matrix. This
advantage may be the hardest to appreciate at first, but at present it can be
regarded as the main point of metric embeddings.

All of this sounds very good, and indeed it is too good to be (completely)
true.

1.2 Distortion

Impossibility of isometric embeddings. An exact representation of one
metric space in another is formalized by the notion of isometric embedding.
A mapping f : (X, dX ) → (Y, dY ) of one metric space into another is called
an isometric embedding or isometry if dY (f(x), f(y)) = dX(x, y) for all
x, y ∈ X.

1This particular drawing, in addition to being completely made up, bears some typical
features of pseudo-science, such as using Latin names just to impress the reader, but I hope
that it illustrates the point nevertheless.
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Two metric spaces are isometric if there exists a bijective isometry between
them.

It is easy to find examples of small metric spaces that admit no isometric
embedding into the plane R

2 with the Euclidean metric. One such example
is the 4-point equilateral space, with every two points at distance 1. Here an
isometric embedding fails to exist (which the reader is invited to check) for
“dimensional” reasons. Indeed, this example can be isometrically embedded in
Euclidean spaces of dimension 3 and higher.

Perhaps less obviously, there are 4-point metric spaces that cannot be iso-
metrically embedded in any Euclidean space, no matter how high the dimension.
Here are two examples, specified as the shortest-path metrics of the following
graphs:

It is quite instructive to prove the impossibility of isometric embedding for these
examples. Later on we will discuss a general method for doing that, but it’s
worth trying it now.

Approximate embeddings. For visualizing a metric space, we need not in-
sist on representing distances exactly—often we don’t even know them exactly.
We would be happy with an approximate embedding, where the distances are
not kept exactly but only with some margin of error. But we want to quantify,
and control, the error.

One way of measuring the error of an approximate embedding is by its
distortion.

Let (X, dX) and (Y, dY ) be metric spaces. An injective mapping
f : (X, dX) → (Y, dY ) is called a D-embedding, where D ≥ 1 is a real
number, if there is a number r > 0 such that for all x, y ∈ X,

r · dX(x, y) ≤ dY (f(x), f(y)) ≤ Dr · dX(x, y).

The infimum of the numbers D such that f is a D-embedding is called the
distortion of f .

Note that this definition permits scaling of all distances in the same ratio
r, in addition to the distortion of the individual distances by factors between 1
and D (and so every isometric embedding is a 1-embedding, but not vice versa).
If Y is a Euclidean space (or a normed space), we can re-scale the image at will,
and so we can choose the scaling factor r at our convenience.

The distortion is not the only possible or reasonable way of quantifying the
error of an approximate embedding of metric spaces, and a number of other
notions appear in the literature. But the distortion is the most widespread and
most fruitful of these notions so far.

Here is a piece of notation, which may sometimes be useful.
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For metric spaces (X, dX ) and (Y, dY ), let

c(Y,dY )(X, dX ) := inf{D : there exists a D-embedding (X, dX ) → (Y, dY )}

(various parts of this notation are often amputated, e.g., we write only
cY (X) if the metrics are understood).

Determining or estimating cY (X) for specific X and Y is often difficult and
this kind of problems will occupy us for a large part of the time.

Lipschitz and bi-Lipschitz maps. Another view of distortion comes
from analysis. Let us recall that a mapping f : (X, dX ) → (Y, dY ) is called
C-Lipschitz if dY (f(x), f(y)) ≤ CdX(x, y) for all x, y ∈ X. Let

‖f‖Lip := sup

{
dY (f(x), f(y))

dX(x, y)
: x, y ∈ X, x 6= y

}
,

the Lipschitz norm of f , be the smallest possible C such that f is C-Lipschitz.
Now if f is a bijective map, it is not hard to check that its distortion equals
‖f‖Lip · ‖f−1‖Lip. For this reason, maps with a finite distortion are sometimes
called bi-Lipschitz.

Go to higher dimension, young man. We have used the problem of
visualizing a metric space in the plane for motivating the notion of distortion.
However, while research on low-distortion embeddings can be declared highly
successful, this specific goal, low-distortion embeddings in R

2, is too ambitious.
First, it is easy to construct an n-point metric space, for all sufficiently large

n, whose embedding in R
2 requires distortion at least Ω(

√
n ),2 and a slightly

more sophisticated construction results in distortion at least Ω(n), much too
large for such embeddings to be useful.

Second, it is computationally intractable (in a rigorously defined sense) to
determine or approximate the smallest possible distortion of an embedding of
a given metric space in R

2.
We thus need to revise the goals—what kind of low-distortion embeddings

we want to consider.
The first key to success is to replace R2 by a more suitable target space. For

example, we may use a Euclidean space of sufficiently large dimension or some
other suitable normed space. By embedding a given finite metric space into
such a target space, we have “geometrized” the problem and we can now apply
geometric methods and algorithms. (This can be seen as a part of a current
broader trend of “geometrizing” combinatorics and computer science.)

Moreover, we also revise what we mean by “low distortion”. While for vi-
sualization distortion 1.2 can be considered reasonable and distortion 2 already
looks quite large, in other kinds of applications, mainly in approximation algo-
rithms for NP-hard problems, we will be grateful for embeddings with distortion
like O(log n), where n is the number of points of the considered metric space.

2A reminder of asymptotic notation: f(n) = O(g(n)) means that there are n0 and C such
that f(n) ≤ Cg(n) for all n ≥ n0; f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0; f(n) =
Ω(g(n)) is the same as g(n) = O(f(n)), and f(n) = Θ(g(n)) means that both f(n) = O(g(n))
and f(n) = Ω(g(n)).
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We will see later how these things work in concrete examples, and so we
stop this abstract discussion for now and proceed with recalling some basics on
norms.

1.3 Normed spaces

A metric can be defined on a completely arbitrary set, and it specifies distances
for pairs of points. A norm is defined only on a vector space, and for each point
it specifies its distance from the origin.

By definition, a norm on a real vector space Z is a mapping that assigns
a nonnegative real number ‖x‖ to each x ∈ Z so that ‖x‖ = 0 implies x = 0,
‖αx‖ = |α| · ‖x‖ for all α ∈ R, and the triangle inequality holds: ‖x + y‖ ≤
‖x‖+ ‖y‖.

Every norm ‖x‖ on Z defines a metric, in which the distance of points x,y
equals ‖x − y‖. However, by far not all metrics on a vector space come from
norms.

For studying a norm ‖.‖, it is usually good to look at its unit ball {x ∈ Z :
‖x‖ ≤ 1}. For a general norm in the plane it may look like this, for instance:

It is easy to check that the unit ball of any norm is a closed convex body K that
is symmetric about 0 and contains 0 in the interior. Conversely, any K ⊂ Z
with the listed properties is the unit ball of a (uniquely determined) norm, and
so norms and symmetric convex bodies can be regarded as two views of the
same class of mathematical objects.

The ℓp norms. Two norms will play main roles in our considerations: the
Euclidean norm and the ℓ1 norm. Both of them are (distinguished) members
of the noble family of ℓp norms.

For a point x = (x1, x2, . . . , xk) ∈ R
k and for p ∈ [1,∞), the ℓp norm is

defined as

‖x‖p :=

( k∑

i=1

|xi|p
)1/p

.

We denote by ℓkp the normed space (Rk, ‖.‖p).
The Euclidean norm is ‖.‖2, the ℓ2 norm. The ℓ∞ norm, or maximum norm,

is given by ‖x‖∞ = maxi |xi|. It is the limit of the ℓp norms as p → ∞.

To gain some feeling about ℓp norms, let us look at their unit balls in the
plane:
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p = 1

p = 2

p =
4

3

p =
5

3

p = 2

p =∞

p = 2.5

p = 3

p = 4

The left picture illustrates the range p ∈ [1, 2]. For p = 2 we have, of course,
the ordinary disk, and as p decreases towards 1, the unit ball shrinks towards
the tilted square. Only this square, the ℓ1 unit ball, has sharp corners—for all
p > 1 the ball’s boundary is differentiable everywhere. In the right picture, for
p ≥ 2, one can see the unit ball expanding towards the square as p → ∞. Sharp
corners appear again for the ℓ∞ norm.

The case p < 1. For p ∈ (0, 1), the formula ‖x‖p = (|x1|p + · · · + |xk|p)1/p
still makes sense, but it no longer defines a norm—the unit ball is not convex,
as the next picture illustrates for p = 2

3 .

However, dp(x,y) := |x1−y1|p+· · ·+|xk−yk|p does define a metric on R
k, which

may be of interest for some applications. The limit for p = 0 is the number
of coordinates in which x and y differ, a quite useful combinatorial quantity.
One can regard dp(x,y) for small p > 0 as an “analytic” approximation of this
quantity.

1.4 ℓp metrics

For finite metric spaces, the following notion is crucial.

A metric d on a finite set V is called an ℓp metric if there exists a natural
number k and an isometric embedding of (V, d) into the space ℓkp. For p = 2
we also speak of a Euclidean metric.

An ℓp pseudometric is defined similarly, but we consider isometric maps into
ℓkp that are not necessarily injective.

In the literature, one very often talks about ℓp metrics even when, strictly
speaking, the considered class should also include pseudometrics that are not
metrics. A similar situation prevails for the notions introduced next, such as
line metrics and cut metrics. We’ll gladly join this slight abuse of terminology.

In addition to ℓp metrics, we also introduce the following simpler classes:
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A line metric on a set V is a (pseudo)metric isometrically embeddable
in R with the usual metric. A cut metric is a line metric for which the
embedding in the line attains only the values 0 and 1.

Equivalently, δ is a cut metric on a set V if there exists a nonempty proper
subset S ⊂ V such that δ(x, y) = 1 if one of x, y lies in S and the other outside
S, and δ(x, y) = 0 otherwise. (So a cut metric is almost never a metric—a clear
example of the abuse of terminology alluded to above.)

As we will see, line metrics and cut metrics can be used as building blocks
for decomposing more complicated kinds of metrics.

Metrics as high-dimensional points. Let V be an n-point set. We can
represent a metric d on V as a point d ∈ R

N , where N :=
(n
2

)
and

d =
(
d(u, v) : {u, v} ∈

(V
2

))
.

Thus, the coordinates in R
N are indexed by unordered pairs of distinct points

of V (in some fixed order).3 Then a class of metrics, say all metrics on the set
V , can be regarded as a subset of RN , and we can think about it in geometric
terms, using notions such as convexity.

A much studied example is the metric cone

M := {d ∈ R
N : d is a pseudometric on V } ⊂ R

N

(here M depends on n, but this is not shown in the notation). It’s easy to see
that M is a convex cone in R

N , where a convex cone is a set C such that
x ∈ C implies λx ∈ C for every real λ ≥ 0, and x,y ∈ C implies x + y ∈ C.
The metric cone is a very interesting mathematical object with a complicated
structure.

For our purposes, we’ll need mainly the cone of ℓ1 metrics

L1 := {d ∈ R
N : d is an ℓ1 pseudometric on V }.

1.4.1 Proposition. The set L1 is a convex cone. Every d ∈ L1 is a sum of
line metrics, and also a nonnegative linear combination of cut metrics.

Proof. Clearly, if d ∈ L1, then λd ∈ L1 for all λ ≥ 0, and so it suffices to
verify that if d,d′ ∈ L1, then d + d′ ∈ L1. By definition, d ∈ L1 means that
there is a mapping f :V → R

k such that d(u, v) = ‖f(u)−f(v)‖1. Similarly, for
d′ we have a mapping f ′:V → R

k′ with d′(u, v) = ‖f ′(u)−f ′(v)‖1. We define a
new mapping g:V → R

k+k′ by concatenating the coordinates of f and f ′; that
is,

g(u) :=
(
f(u)1, . . . , f(u)k, f

′(u)1, . . . , f
′(u)k′

)
∈ R

k+k′.

3Alternatively, we can represent a metric by an n×n matrix. Then it lies in a vector space
of dimension n2, but since the matrices are symmetric and have zero diagonal, we’re again in
an N-dimensional subspace. Choosing between these two possibilities is a matter of taste.
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The point of L1 corresponding to g is d+ d′. Thus, L1 is a convex cone.

Next, we want to see that every d ∈ L1 is a sum of line metrics (regarded
as points in R

N , of course). But this is obvious; if d is represented by a
mapping f :V → ℓk1, then d is the sum of the k line metrics represented by the
k coordinates of f .

Finally, we want to prove that every d ∈ L1 is a nonnegative linear combi-
nation of cut metrics. We may assume that d is a a line metric; let (xv : v ∈ V )
be points on the real line representing d, i.e., d(u, v) = |xu − xv|.

We proceed by induction on the number of distinct values of the xv. For
two values, d is already a positive multiple of a cut metric.

Otherwise, let a = minv xv and let b be the second smallest value of the xv.
We set x′v := max(xv, b), v ∈ V , and let d′ be the line pseudometric represented
by the x′v. Then d = d′ + (b − a)δ, where δ is the cut metric corresponding
to the subset S := {v ∈ V : xv = a}, as is easy to check. This finishes the
inductive step, and the proposition is proved. �

Generalizing the definition of L1, for all p ∈ [1,∞) we define

Lp :=
{
(d(u, v)p : {u, v} ∈

(
V
2

)
) : d is an ℓp pseudometric on V

}
.

Thus, the elements of Lp are pth powers of ℓp metrics, rather than ℓp metrics
themselves.

It is immediate that every element of Lp is a nonnegative linear combi-
nation of pth powers of line metrics. By the same trick as in the proof of
Proposition 1.4.1, one can also check that Lp is a convex cone. (This is one of
the reasons why we prefer to work with the pth powers of ℓp metrics: There are
examples showing that the sum of two ℓp metrics need not be an ℓp metric, and
so the set of all ℓp metrics is not convex.)

Dimension of isometric embeddings. The definition of an ℓp metric
prompts a question: How high do we need to go with the dimension k in order
to represent all possible ℓp metrics on n points?

For p = 2, the answer is easy: k = n− 1 always suffices and it is sometimes
necessary. Indeed, given any n points in R

k, we can assume, after translation,
that one of the points is 0, and then the remaining points span a linear subspace
of dimension at most n− 1. Now the restriction of the Euclidean norm to any
linear subspace is again the Euclidean norm on that subspace; geometrically
speaking, a central slice of the Euclidean ball is a Euclidean ball. Thus, the
given n points can always be assumed to live in ℓn−1

2 . On the other hand, it
can be shown that the n-point equilateral set (every two points at distance 1)
cannot be isometrically embedded in a Euclidean space dimension smaller than
n− 1.

For p 6= 2 this kind of argument breaks down, since a central slice of the ℓp
ball is seldom an ℓp ball. The picture illustrates this for 2-dimensional slices of
3-dimensional unit balls, for the ℓ1 norm (the regular octahedron) and for the
ℓ∞ norm (the cube):
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In both of the depicted cases, the slice happens to be a regular hexagon.

A completely different method is needed to show the following weaker bound
on the dimension.

1.4.2 Proposition. Every n-point space with an ℓp metric is isometrically em-
beddable in ℓNp , where N :=

(
n
2

)
.

Proof. We use the geometry of the set Lp defined earlier. We know that
Lp is a convex cone in R

N . A version of Carathéodory’s theorem from convex
geometry tells us that if some point x is a nonnegative linear combination of
points of a set S ⊆ R

N , then x is a nonnegative linear combination of some
at most N points of S. (A perhaps more familiar version of Carathéodory’s
theorem asserts that if a point x ∈ R

N belongs to the convex hull of a set S,
then x lies in the convex hull of some at most N+1 points of S. This statement
also easily implies the “cone version” needed here.)

In our situation, this shows that the pth power of every ℓp metric on V is a
nonnegative linear combination of at most N pth powers of line pseudometrics,
and thus it embeds isometrically in ℓNp . �

1.4.3 Corollary. Let (V, dV ) be a finite metric space and suppose that for
every ε > 0 there is some k such that (V, dV ) admits a (1+ ε)-embedding in ℓkp.
Then dV is an ℓp metric.

Proof. Let ∆ := diam(V ) be the largest distance in (V, dV ). For every ε > 0
there is a (1 + ε)-embedding fε: (V, dV ) → ℓNp , N =

(|V |
2

)
by Proposition 1.4.2.

By translation we can make sure that the image always lies in the 2∆-ball
around 0 in ℓNp (assuming ε ≤ 1, say); here it is crucial that the dimension is
the same for all ε. By compactness there is a cluster point of these embeddings,
i.e., a mapping f :V → ℓNp such that for every η > 0 there is some fε with
‖f(v)− fε(v)‖p ≤ η for all v ∈ V . Then f is the desired isometry. �

Infinite dimensions. The ℓp norms have been investigated mainly in the the-
ory of Banach spaces, and the main interest in this area is in infinite-dimensional
spaces. With some simplification one can say that there are two main infinite-
dimensional spaces with the ℓp norm:
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• The “small” ℓp, consisting of of all infinite sequences x = (x1, x2, . . .) of

real numbers with ‖x‖p < ∞, where ‖x‖p = (
∑∞

i=1 |xi|p)
1/p.

• The “big” Lp = Lp(0, 1), consisting of all measurable functions f : [0, 1] →
R such that ‖f‖p := (

∫ 1
0 |f(x)|p dx)1/p is finite. (Well, the elements of Lp

are really equivalence classes of functions, with two functions equivalent
if they differ on a set of measure zero. . . but never mind.)

As introductory harmonic analysis teaches us, the spaces ℓ2 and L2 are isomor-
phic, and both of them are realizations of the countable Hilbert space. For all
p 6= 2, though, ℓp and Lp are substantially different objects.

For us, it is good to know that these infinite-dimensional spaces bring noth-
ing new compared to finite dimensions as far as finite subspaces are concerned.
Namely, an ℓp metric can be equivalently defined also by isometric embed-
dability into ℓp or by isometric embeddability into Lp. This follows from an
approximation argument and Corollary 1.4.3. It gives us additional freedom
in dealing with ℓp metrics: If desired, we can think of the points as infinite
sequences in ℓp or as functions in Lp.

1.5 Inclusions among the classes of ℓp metrics

From the formula ‖x‖p = (|x1|p + · · · + |xk|p)1/p it is probably not clear the
value of p should matter much for the properties of ℓp metrics, but one of the
main facts about ℓp metrics is that it matters a lot.

We will first summarize the main facts about the relations among the classes
of ℓp metrics for various p. Let us temporarily denote the class of all (finite!)
ℓp metrics by Lp.

(i) The ℓ∞ metrics are the richest: Every finite metric belongs to L∞.

(ii) The Euclidean metrics are the most restricted: We have L2 ⊂ Lp for every
p ∈ [1,∞).

(iii) For p ∈ [1, 2], the richness of ℓp metrics grows as p decreases. Namely,
Lp ⊂ Lq whenever 1 ≤ q < p ≤ 2. In particular, L1 is the richest in this
range.

(iv) The inclusions mentioned in (i)–(iii) exhaust all containment relations
among the classes Lp In particular, for p > 2, the classes Lp are great
individualists: None of them contains any other Lq except for L2, and
none of them is contained in any other Lq except for L∞.

What is more, the inclusion relations of these classes doesn’t change by
allowing a bounded distortion: Whenever p, q are such that Lp 6⊂ Lq

according to the above, then Lp contains metrics requiring arbitrarily
large distortions for embedding into ℓq.

Part (i) is the only one among these statements that has a simple proof,
and we will present it at the end of this section.
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Dvoretzky’s theorem and almost spherical slices. Part (ii) looks like
something that should have a very direct and simple proof, but it doesn’t.

It can be viewed as a special case of an amazing Ramsey-type result known
as Dvoretzky’s theorem. It can be stated as follows: For every k ≥ 1 and every
ε > 0 there exists n = n(k, ε) with the following property: Whenever (Rn, ‖.‖)
is an n-dimensional normed space with some arbitrary norm ‖.‖, there is a
linear embedding T : (Rk, ‖.‖2) → (Rn, ‖.‖) with distortion at most 1 + ε. That
is, we have ‖x‖2 ≤ ‖Tx‖ ≤ (1 + ε)‖x‖2 for all x ∈ R

k.

In particular, for every k and ε there is some n such that ℓk2 can be (1 + ε)-
embedded in ℓnp . It follows that for every ε > 0, every Euclidean metric (1+ ε)-
embeds into ℓnp for some n, and Corollary 1.4.3 tells us that every Euclidean
metric is an ℓp metric.

If we consider the unit ball of the norm ‖.‖ as in Dvoretzky’s theorem, we
arrive at the following geometric version of the theorem: For every k ≥ 1 and
every ε > 0 there exists n = n(k, ε) with the following property: Whenever K
is a closed n-dimensional convex body in R

n symmetric4 about 0, there exists
a k-dimensional linear subspace E of Rn such that the slice K ∩ E is (1 + ε)-
spherical; that is, for some r > 0 it contains the Euclidean ball of radius r and
is contained in the Euclidean ball of radius (1+ ε)r. Applying this view to ℓ∞
and ℓ1, we get that the n-dimensional unit cube and the n-dimensional unit ℓ1
ball (the “generalized octahedron”) have k-dimensional slices that are almost
perfect Euclidean balls—certainly a statement out of range of our 3-dimensional
geometric intuition.

In addition, it turns out that the cube has much less round slices than the
ℓ1 ball. Namely, given n and assuming ε fixed, say ε = 0.1, let us ask, what
is the largest dimension k of a (1 + ε)-spherical slice. It turns out that for
the cube, the largest k is of order log n, and this is also essentially the worst
case for Dvoretzky’s theorem—every n-dimensional symmetric convex body has
(1 + ε)-spherical slices about this big. On the other hand, for the ℓ1 ball (and,
for that matter, for all ℓp balls with p ∈ [1, 2]), the slice dimension k is actually
Ω(n) (with the constant depending on ε, of course). An intuitive reason why
the ℓ1 ball is much better than the cube is that it has many more facets: 2n, as
opposed to 2n for the cube.

Stated slightly differently, ℓk2 can be (1+ ε)-embedded, even linearly, in ℓCk
1

for a suitable C = C(ε). We will prove this later on, using probabilistic tools.
The problem of constructing such an embedding explicitly is open, fascinating,
related to many other explicit or pseudorandom constructions in combinatorics
and computational complexity, and subject of intensive research.

Euclidean metrics are ℓ1 metrics. What we can do right now is a proof
that every ℓ2 metric is also an ℓ1 metric. We actually embed all of ℓk2 isomet-
rically into the infinite-dimensional space L1(S

k−1). What is that? Similar to
L1 = L1(0, 1), the elements of L1(S

k−1) are (equivalence classes of) measurable
real functions, but the domain is the (k− 1)-dimensional unit Euclidean sphere
Sk−1. The distance of two functions f, g is ‖f − g‖1 =

∫
Sk−1 |f(u) − g(u)|du,

where we integrate according to the uniform (rotation-invariant) measure on

4The symmetry assumption can be dropped.
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Sk−1, scaled so that the whole of Sk−1 has measure 1.

The embedding F : ℓk2 → L1(S
k−1) is defined as F (x) := fx, where fx:S

k−1 →
R is the function given by fx(u) := 〈x,u〉.

Let us fix some v0 ∈ ℓk2 with ‖v0‖2 = 1, and set C := ‖F (v0)‖1 =∫
Sk−1 |〈v0,u〉|du. By rotational symmetry, and this is the beauty of this
proof, we have ‖F (v)‖1 = C for every unit v ∈ ℓk2, and hence in general
‖F (x)‖1 = C‖x‖2 for all x ∈ ℓk2 . Since F (x)−F (y) = F (x−y), we see that F
scales all distances by the same factor C, and so after re-scaling we obtain the
desired isometry.

This is all nice, but how do we know that all finite subspaces of L1(S
k−1)

are ℓ1 metrics? With some handwaving we can argue like this: If we choose a
“sufficiently uniformly distributed” finite set A ⊆ Sk−1, then integral of every
“reasonable” function f on Sk−1, such as our functions fx, over Sk−1 can be
approximated by the average of the function over A. In symbols, ‖f‖1 ≈
1
|A|
∑

u∈A |f(u)|. In this way, we can (1 + ε)-embed a given finite subset of

ℓk2 into the space of all real functions defined on A with the ℓ1 norm, and the

latter is isomorphic to ℓ
|A|
1 . As in one of the earlier arguments in this section,

Proposition 1.4.2 and compactness allow us to conclude that every ℓ2 metric is
also an ℓ1 metric.

The Fréchet embedding. We will prove that every n-point metric space
(X, dX ) embeds isometrically in ℓn∞. The proof, due to Fréchet, is very simple
but it brings us to a useful mode of thinking about embeddings.

Let us list the points ofX as x1, x2, . . . , xn. To specify a mapping f :X → ℓn∞
means to define n functions f1, . . . , fn:X → R, the coordinates of the embedded
points. Here we set

fi(xj) := dX(xi, xj).

One needs to check that this indeed defines an isometry. This we leave to the
reader—as the best way of understanding how the embedding works, which will
be useful later on.

Which p? That is, if we have a collection of objects with a large number
k (say 20 or more) attributes, such as a collection of bacterial strains in the
motivating example, how should we measure their distance? We assume that
the considered problem itself doesn’t suggest a particular distance function and
that we can reasonably think of the attributes as coordinates of points in R

k.

An obvious suggestion is the Euclidean metric, which is so ubiquitous and
mathematically beautiful. However, some theoretical and empirical studies in-
dicate that this may sometimes be a poor choice.

For example, let us suppose that the dimension k is not very small compared
to n, the number of points, and let us consider a random n-point set X ⊂ R

k,
where the points are drawn independently from the uniform distribution in the
unit ball or unit cube, say. It turns out that with the Euclidean metric, X
is typically going to look almost like an equilateral set, and thus metrically
uninteresting.

On the other hand, this “equalizing” effect is much weaker for ℓp norms with
p < 2, with p = 1 faring the best (the metrics dp with p ∈ (0, 1) are even better,
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but harder to work with). Of course, real data sets are seldom purely random,
but still this can be regarded as an interesting heuristic reason for favoring the
ℓ1 norm over the Euclidean one.

1.6 Exercises

1. (a) Show that every embedding of n-point equilateral space (every two
points have distance 1) into the plane R2 with the usual Euclidean metric
has distortion at least Ω(

√
n).

(b) Give an embedding with distortion O(
√
n).

2. Show that every embedding of the cycle of length n (with the graph
metric) into the line R

1 with the usual metric has distortion at least
Ω(n).

3. True or false? There is a function φ(n) with limn→∞
φ(n)
n = 0 such that

every n-vertex tree (shortest-path metric, unit-length edges) can be em-
bedded into R

1 with distortion at most φ(n).

4.∗ Show that every finite tree metric space can be embedded isometrically
into ℓ1. (Slightly less ambitiously, you can start with embedding all trees
with unit-length edges.)

5. (a)∗ Let T be a tree on n ≥ 3-vertices. Prove that there exist subtrees T1

and T2 of T that share a single vertex and no edges and together cover
T , such that max {|V (T1)|, |V (T2)|} ≤ 1 + 2

3n.

(b) Using (a), prove that every n-point tree can be isometrically embedded
into ℓk∞ with k = O(log n).

6. (a)∗∗ Show that every embedding of the graph K2,3 (with the shortest-
path metric) into ℓ1 has distortion at least 4/3.

(b)∗ Show that this bound is tight.

7. Describe an isometric embedding of ℓ21 into ℓ2∞.

8. Show that if the unit ball K of some finite-dimensional normed space
is a convex polytope with 2m facets, then that normed space embeds
isometrically into ℓm∞.

(Using results on approximation of convex bodies by polytopes, this yields
useful approximate embeddings of arbitrary norms into ℓk∞.)

9. (a) Let k ≥ 1. Give an isometric embedding of ℓk1 to ℓ2
k

∞.

(b) Devise an algorithm that, given a set X of n points in R
k, computes

the diameter ofX under the ℓ1 norm usingO(k2kn) arithmetic operations.

(c) Can you reduce the number of arithmetic operations to O(2kn) (or
even further)?
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10. (a) Determine the distortion of the identity mapping (Rk, ‖.‖2) → (Rk, ‖.‖1).
(b) Determine the distortion of the identity mapping (Rk, ‖.‖1) → (Rk, ‖.‖∞).

(c)∗∗ Find a mapping between the spaces as in (b) with a smaller distor-
tion. (How small can you make it?)

11.∗ Show that every n-vertex graph with unit-length edges can be embedded
into R

1 with distortion O(n). (You may want to try solving the problem
for trees first.)

12. (a)∗ Prove that for every four points x1,x2,x3,x4 in a Euclidean space of
an arbitrary dimension, we have

‖x1 − x3‖22 + ‖x2 − x4‖22 ≤ ‖x1 − x2‖22 + ‖x2 − x3‖22
+ ‖x3 − x4‖22 + ‖x4 − x1‖22.

(b) Using (a), find the minimum necessary distortion for embedding the
4-cycle into ℓ2 (i.e., into a Euclidean space of arbitrary dimension).

13.∗ Using a method similar to the one in Exercise 12, find the minimum nec-
essary distortion for embedding the 3-star (in other words, the complete
bipartite graph K1,3) in ℓ2.

14.∗∗Let S2 denote the 2-dimensional unit sphere in R
3. Let X ⊂ S2 be an

n-point set. Show that X with the Euclidean metric can be embedded
into the Euclidean plane with distortion at most O(

√
n).

15.∗∗ Show that the complete binary Bm tree of height m (with the graph
metric) can be embedded into ℓ2 with distortion O(

√
logm ).

16.∗ (Almost Euclidean subspaces) Prove that for every k and ε > 0 there
exists n = n(k, ε) such that every n-point metric space (X, dX ) contains a
k-point subspace that is (1+ε)-embeddable into ℓ2. Use Ramsey’s theorem
for graphs.
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Dimension reduction by random

projection

2.1 The lemma

The Johnson–Lindenstrauss lemma is the following surprising fact:1

2.1.1 Theorem. Let ε ∈ (0, 1) be a real number, and let P =
{p1,p2, . . . ,pn} be a set of n points in R

n. Let k be an integer with
k ≥ Cε−2 log n, where C is a sufficiently large absolute constant. Then
there exists a mapping f :Rn → R

k such that

(1− ε)‖pi − pj‖2 ≤ ‖f(pi)− f(pj)‖2 ≤ (1 + ε)‖pi − pj‖2

for all i, j = 1, 2, . . . , n.

In the language acquired in the previous chapter, every n-point Euclidean
metric space can be mapped in ℓk2 , k = O(Cε−2 log n), with distortion at most
1+ε
1−ε . In still other words, every n-point set in any Euclidean space can be
“flattened” to dimension only logarithmic in n, so that no distance is distorted
by more that a factor that, for small ε, is roughly 1 + 2ε.

In the formulation of the theorem we haven’t used the language of distortion,
but rather a slightly different notion, which we turn into a general definition:
Let us call a mapping f : (X, dX ) → (Y, dY ) of metric spaces an ε-almost
isometry if (1 − ε)dX (x, y) ≤ dY (f(x), f(y)) ≤ (1 + ε)dX (x, y). For ε small
this is not very different from saying that f is a (1 + 2ε)-embedding (at least if
the mapping goes into a normed space and we can re-scale the image at will),
but it will help us avoid some ugly fractions in the calculations.

It is known that the dependence of k on both ε and n in Theorem 2.1.1 is
almost optimal—there is a lower bound of Ω((log n)/(ε2 log 1

ε )). A lower-bound
example is the n-point equilateral set. A volume argument (see Section 3.1)
immediately gives that a 2-embedding of the equilateral set needs dimension at

1Traditionally this is called a lemma, since that’s what it was in the original paper of
Johnson and Lindenstrauss. But it arguably does deserve the status of a theorem.
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least Ω(log n), which shows that the dependence on n cannot be improved. On
the other hand, the argument for the dependence on ε is not that easy.

All known proofs of Theorem 2.1.1 are based on the following statement,
which we call, with some inaccuracy, the random projection lemma, and which
for the moment we formulate somewhat imprecisely:

2.1.2 Lemma (Random projection lemma—informal). Let
T :Rn → R

k be a “normalized random linear map” and let ε ∈ (0, 1).
Then for every vector x ∈ R

n we have

Prob
[
(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−cε2k,

where c > 0 is a constant (independent of n, k, ε).

The term “normalized random linear map” calls for explanation, but we
postpone the discussion. For now, it is sufficient to know that there is some
probability distribution on the set of linear maps Rn → Rk such that, if T is
randomly drawn from this distribution, then it satisfies the conclusion. (It is
also important to note what the random projection lemma doesn’t say: It defi-
nitely doesn’t claim that a random T is an ε-almost isometry—since, obviously,
for k < n, a linear map R

n → R
k can’t even be injective!)

Proof of Theorem 2.1.1 assuming Lemma 2.1.2. The value of k in
the Johnson–Lindenstrauss lemma is chosen so large that Lemma 2.1.2 yields
Prob[(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2] ≥ 1 − n−2 for every fixed x. We
apply this to the

(n
2

)
vectors pi − pj, 1 ≤ i < j ≤ n, and use the union bound.

We obtain that T restricted to our set P behaves as an ε-almost isometry with
probability at least 1

2 . In particular, a suitable T exists. �

So, how do we choose a “normalized random linear map”? As we will see,
there are many possibilities. For example:

(a) (The case of projection to a random subspace) As in the original Johnson–
Lindenstrauss paper, we can pick a random k-dimensional linear sub-
space2 of Rn and take T as the orthogonal projection on it, scaled by the
factor of

√
n/k. This applies only for k ≤ n, while later we’ll also need

to use the lemma for k > n.

(b) (The Gaussian case) We can define T by T (x) := 1√
k
Ax, where A is

a random k × n matrix with each entry chosen independently from the
standard normal distribution N(0, 1).

(c) (The ±1 case) We can choose T as in (b) except that the entries of A
independently attain values +1 and −1, each with probability 1

2 .

2We won’t define a random linear subspace formally; let it suffice to say that there is a
unique rotation-invariant probability distribution on k-dimensional subspaces.
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The plan is to first prove (b), where one can take some shortcuts in the proof,
and then a general result involving both (b) and (c). We omit the proof of (a)
here.

A random ±1 matrix is much easier to generate and more suitable for com-
putations than the matrix in the Gaussian case, and so the extra effort invested
in proving (c) has some payoff.

2.2 On the normal distribution and subgaussian tails

We will now spend some time by building probabilistic tools.
The standard normal (or Gaussian) distribution N(0, 1) is well known, yet

I first want to remind a beautiful computation related to it. The density of
N(0, 1) is proportional to e−x2/2, but what is the right normalizing constant?
In other words, what is the value of the integral I :=

∫∞
−∞ e−x2/2 dx? It is

known that the indefinite integral
∫
e−x2/2 dx is not expressible by elementary

functions.
The trick is to compute I2 as

I2 =

(∫ ∞

−∞
e−x2/2 dx

)(∫ ∞

−∞
e−y2/2 dy

)

=

∫

R2

e−x2/2e−y2/2 dxdy

=

∫

R2

e−(x2+y2)/2 dxdy

=

∫ ∞

0
e−r2/22πr dr.

To see the last equality, we consider the contribution of the infinitesimal annulus
with inner radius r and outer radius r + dr to

∫
R2 e

−(x2+y2)/2 dxdy; the area

of the annulus is 2πr dr and the value of the integrand there is e−r2/2 (plus
infinitesimal terms which can be neglected). The last integral,

∫∞
0 e−r2/22πr dr,

can already be evaluated in a standard way, by the substitution t = r2, and we
arrive at I2 = 2π. Thus, the density of the normal distribution is 1√

2π
e−x2/2.

-4 -2 2 4
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This computation also reminds us that if Z1, Z2, . . . , Zn are independent
standard normal variables, then the distribution of the vector Z = (Z1, Z2, . . . , Zn)
is spherically symmetric.3

3Which provides a good way of generating a random point on the high-dimensional Eu-
clidean sphere Sn−1: Take Z/‖Z‖2.
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We also recall that if Z is a standard normal random variable, then E[Z] = 0
(this is the 0 in N(0, 1)) and Var [Z] = E

[
(Z −E[Z])2

]
= E

[
Z2
]
= 1 (this is

the 1). The random variable aZ, a ∈ R, has the normal distribution N(0, a2)
with variance a2.

2-stability. We will need a fundamental property of the normal distribution
called 2-stability. It asserts that linear combinations of independent normal
random variables are again normally distributed. More precisely, if X,Y are
standard normal and independent, and a, b ∈ R, then aX + bY ∼ N(0, a2+ b2),
where ∼ means “has the same distribution as”. More generally, of course, if
Z1, . . . , Zn are independent standard normal and a = (a1, . . . , an) ∈ R

n, then
a1Z1 + a2Z2 + · · · + anZn ∼ ‖a‖2Z1, and this gives a hint why independent
normal random variables might be useful for embeddings that almost preserve
the Euclidean norm.

To prove the 2-stability, it suffices to prove that for X,Y independent stan-
dard normal and a, b ∈ R satisfying a2+b2 = 1, the random variable aX+bY is
standard normal. We fix an angle α with a = cosα and b = sinα. The random
vector (X,Y ) has the 2-dimensional normal distribution, which is spherically
symmetric and thus invariant under rotations around the origin. Let us rotate
the coordinate system by α; the new coordinates exressed in terms of the old
ones are (X cosα + Y sinα,−X sinα + Y cosα). The first coordinate is again
standard normal and it equals aX + bY .

Subgaussian tails. There is an extensive literature concerning concentra-
tion of random variables around their expectation, and because of phenomena
related to the Central Limit Theorem, tail bounds similar to the tail of the
standard normal distribution play a prominent role. We introduce the follow-
ing convenient terminology.

Let X be a real random variable with E[X] = 0. We say X has a sub-
gaussian upper tail if there exists a constant a > 0 such that for all λ > 0,

Prob[X > λ] ≤ e−aλ2

.

We say that X has a subgaussian upper tail up to λ0 if the previous bound
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holds for all λ ≤ λ0. We say that X has a subgaussian tail if both X and
−X have subgaussian upper tails.

If X1,X2, . . . ,Xn is a sequence of random variables, by saying that they
have a uniform subgaussian tail we mean that all of them have subgaussian
tails with the same constant a.

A standard normal random variable has a subgaussian tail (ironically, a little
proof is needed!), and the uniform ±1 random variable clearly has a subgaussian
tail.

The simplest version of the Chernoff (or rather, Bernstein) inequality pro-
vides another example of a random variable with a subgaussian tail. Namely, it
tells us that if X1, . . . ,Xn are independent uniform ±1 random variables, then
Y = Yn := n−1/2(X1 + X2 + · · · + Xn) has a uniform subgaussian tail (the
normalization by n−1/2 is chosen so that Var [Y ] = 1, and uniformity means
that the constant in the subgaussian tail is independent of n).

This inequality can be proved using the moment generating function of Y ,
which is the function that assigns to every nonnegative u the value E

[
euY

]
.

2.2.1 Lemma (Moment generating function and subgaussian tail). Let
X be a random variable with E[X] = 0. If E

[
euX

]
≤ eCu2

for some constant
C and for all u > 0, then X has a subgaussian upper tail, with a = 1

4C . If

E
[
euX

]
≤ eCu2

holds for all u ∈ (0, u0], then X has a subgaussian upper tail
up to 2Cu0.

Proof. For all u ∈ (0, u0] and all t ≥ 0 we have

Prob[X ≥ t] = Prob
[
euX ≥ eut

]

≤ e−utE
[
euX

]
(by the Markov inequality)

≤ e−ut+Cu2

.

For t ≤ 2Cu0 we can set u = t/2C, and we obtain Prob[X ≥ t] ≤ e−t2/4C . �

2.3 The Gaussian case of the random projection lemma

2.3.1 Lemma. (Random projection lemma with independent Gaus-
sian coefficients) Let n, k be natural numbers, let ε ∈ (0, 1), and let us define
a random linear map T :Rn → R

k by

T (x)i =
1√
k

n∑

j=1

Zijxj, i = 1, 2, . . . , k,

where the Zij are independent standard normal random variables. Then for
every vector x ∈ R

n we have

Prob
[
(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−cε2k,

where c > 0 is a constant.
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Proof. Writing Yi =
∑n

j=1 Zijxj, we have ‖T (x)‖22 = 1
k

∑k
i=1 Y

2
i . By the 2-

stability of the normal distribution, Yi ∼ N(0, ‖x‖22) for all i. We may assume,
for convenience, that ‖x‖2 = 1, and then the Yi are independent standard
normal random variables.

We have E
[
Y 2
i

]
= Var [Yi] = 1, and thus E

[
‖T (x)‖22

]
= 1. The expectation

is exactly right, and it remains to prove that ‖T (x)‖22 is concentrated around 1.
We have Var[‖T (x)‖22] = 1

k2
∑k

i=1Var[Y
2
i ] =

1
kVar[Y

2], Y standard normal.
Since Var[Y 2] is obviously some constant, Var[‖T (x)‖22] is of order 1

k . So it’s

natural to set W := k−1/2
∑k

i=1(Y
2
i − 1), so that E[W ] = 0 and Var [W ] is

a constant, and try to prove a subgaussian tail for W . It turns out that W
doesn’t have a subgaussian tail for arbitrarily large deviations, but only up to√
k, but this will be sufficient for our purposes.
The core of the proof is the next claim.

2.3.2 Claim. There exist constants C and u0 > 0 such that

E[eu(Y
2−1)] ≤ eCu2

and E[eu(1−Y 2)] ≤ eCu2

for all u ∈ (0, u0), where Y is standard normal.

Proof of the claim. We can directly calculate

E
[
eu(Y

2−1)
]

=
1√
2π

∫ ∞

−∞
eu(x

2−1)e−x2/2 dx (e.g., Maple. . . )

=
1

eu
√
1− 2u

= e−u− 1

2
ln(1−2u)

= eu
2+O(u3) (Taylor expansion in the exponent)

(the integral can actually be computed by hand, reducing it by
substitution to the known integral

∫∞
−∞ e−x2/2 dx). It is then clear

that the last expression is at most e2u
2

for all sufficiently small u (it
can be shown that u0 =

1
4 works).

This proves the first inequality, and for the second we proceed in

the same way: E
[
eu(1−Y 2)

]
= eu(1+2u)−1/2 = eu

2+O(u3) again. �

We can now finish the proof of the lemma. Using the claim for each Yi, with
ũ := u/

√
k instead of u, and by the independence of the Yi, we have

E
[
euW

]
=

k∏

i=1

E
[
eũ(Y

2
i −1)

]
≤
(
eCũ2

)k
= eCu2

,

where 0 ≤ u ≤ u0
√
k, and similarly forE

[
e−uW

]
. Then Lemma 2.2.1 shows that

W has a subgaussian tail up to
√
k (assuming 2Cu0 ≥ 1, which we may at the

price of possibly increasing C and getting a worse constant in the subgaussian
tail). That is,

Prob[ |W | ≥ t] ≤ 2e−ct2 , 0 ≤ t ≤
√
k. (2.1)
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Now ‖T (x)‖22−1 for unit x is distributed as k−1/2W , and so using (2.1) with
t = ε

√
k gives Prob[1− ε ≤ ‖T (x)‖2 ≤ 1 + ε] = Prob

[
(1− ε)2 ≤ ‖T (x)‖22 ≤ (1 + ε)2

]
≥

Prob
[
1− ε ≤ ‖T (x)‖22 ≤ 1 + ε

]
= Prob

[
|W | ≤ ε

√
k
]
≥ 1− 2e−cε2k. The proof

of the Gaussian version of the random projection lemma, and thus our first
proof of the Johnson–Lindenstrauss lemma, are finished. �

Let us remark that tail estimates for the random variable W = k−1/2(Y 2
1 +

· · · + Y 2
k − k), with the Yi standard normal, are well known in statistics, since

W has the important chi-square distribution. If we look up the density function
of that distribution and make suitable estimates, we get another proof of the
Gaussian case of the random projection lemma.

2.4 A more general random projection lemma

Replacing some of the concrete integrals in the previous lemma by general esti-
mates, we can prove the following more general version of the random projection
lemma, where the independent N(0, 1) variables Zij are replaced by indepen-
dent random variables Rij with subgaussian tails.

2.4.1 Lemma (Random projection lemma). Let n, k be natural numbers,
let ε ∈ (0, 12 ], and let us define a random linear map T :Rn → R

k by

T (x)i =
1√
k

n∑

j=1

Rijxj , i = 1, 2, . . . , k,

where the Rij are independent random variables with E[Rij] = 0, Var[Rij ] = 1,
and a uniform subgaussian tail. Then for every vector x ∈ R

n we have

Prob
[
(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−cε2k,

where c > 0 is a constant (depending on the constant a in the uniform sub-
gaussian tail of the Rij but independent of n, k, ε).

We want to imitate the proof for the Gaussian case. The difference is that
now we don’t explicitly know the distribution of Yi :=

∑n
j=1Rijxj . The plan

is to first prove that Yi has a subgaussian tail, and then use this to prove an
analog of Claim 2.3.2 bounding the moment generating function of Y 2

i − 1 and
of 1− Y 2

i .
Our approach doesn’t lead to the shortest available proof, but the advantage

(?) is that most of the proof is rather mechanical: It is clear what should be
calculated, and it is calculated in a pedestrian manner.

In order to start bounding the moment generating functions, we need the
following partial converse of Lemma 2.2.1:

2.4.2 Lemma. If X is a random variable with E[X] = 0 and Var [X] =
E[X2] = 1, and X has a subgaussian upper tail, then E

[
euX

]
≤ eCu2

for all
u > 0, where the constant C depends only on the constant a in the subgaussian
tail.
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We should stress that a bound of, say, 10eCu2

for E
[
euX

]
would not be

enough for our applications of the lemma. We need to use the lemma with
u arbitrarily small, and there we want E

[
euX

]
to be bounded by 1 + O(u2)

(which is equivalent to eO(u2) for u small). In contrast, for subgaussian tails, a
tail bound like 10e−at2 would be as good as e−at2 .

Proof of Lemma 2.4.2. Let F be the distribution function of X; that is,
F (t) = Prob[X < t]. We have E

[
euX

]
=
∫∞
−∞ eut dF (t). We split the integra-

tion interval into two subintervals, corresponding to ut ≤ 1 and ut ≥ 1.
In the first subinterval, we use the estimate

ex ≤ 1 + x+ x2,

which is valid for all x ≤ 1 (and, in particular, for all negative x). So
∫ 1/u

−∞
eut dF (t) ≤

∫ 1/u

−∞
1 + ut+ u2t2 dF (t) ≤

∫ ∞

−∞
1 + ut+ u2t2 dF (t)

= 1 + uE[X] + u2E[X2] = 1 + u2.

The second subinterval, ut ≥ 1, is where we use the subgaussian tail. (We
proceed by estimating the integral by a sum, but if the reader feels secure in
integrals, she may do integration by parts instead.)

∫ ∞

1/u
eut dF (t) ≤

∞∑

k=1

∫ (k+1)/u

k/u
ek+1 dF (t) ≤

∞∑

k=1

ek+1

∫ ∞

k/u
dF (t)

=
∞∑

k=1

ek+1Prob

[
X ≥ k

u

]

≤
∞∑

k=1

ek+1e−ak2/u2

(by the subgaussian tail)

≤
∞∑

k=1

e2k−ak2/u2

(2k is easier to work with than k + 1). As a function of a real variable k, the
exponent 2k−ak2/u2 is maximized for k = k0 := u2/a, and there are two cases
to distinguish, depending on whether this maximum is within the summation
range.

For u2 > a, we have k0 ≥ 1, and the terms near k0 dominate the sum,
while going away from k0 the terms decrease (at least) geometrically. Thus, the
whole sum is O(e2k0−ak20/u

2

) = O(eu
2/a) = eO(u2) (we recall that u2/a ≥ 1), and

altogether E
[
euX

]
= 1 + u2 + eO(u2) = eO(u2).

For u2 ≤ a the k = 1 term is the largest and the subsequent terms decrease
(at least) geometrically, so the sum is of order e−a/u2

, and, grossly overestimat-
ing, we have e−a/u2

= 1/ea/u
2 ≤ 1/(a/u2) = u2/a. So E

[
euX

]
≤ 1 + O(u2) ≤

eO(u2) as well. �

Now, by passing from subgaussian tails to bounds for the moment generating
functions and back, we can easily see that the Yi =

∑n
j=1Rijxj have uniform

subgaussian tails:
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2.4.3 Lemma. Let R1, . . . , Rn be independent random variables with E[Rj ] =
0, Var[Rj ] = 1, and a uniform subgaussian tail, and let x ∈ R

n satisfy ‖x‖2 = 1.
Then

Y := R1x1 + · · ·+Rnxn

has E[Y ] = 0, Var [Y ] = 1, and a subgaussian tail.

This lemma can be viewed as a generalization of the usual Chernoff–Hoeffding
bounds.

Proof. E[Y ] = 0 and Var [Y ] = 1 are immediate. As for the subgaussian tail,
we have E

[
euRj

]
≤ eCu2

by Lemma 2.4.2, and so

E
[
euY

]
=

n∏

j=1

E
[
euRjxj

]
≤ eCu2(x2

1
+···+x2

n) = eCu2

.

Thus, Y has a subgaussian tail by Lemma 2.2.1 (and by symmetry). �

Here is the result that replaces Claim 2.3.2 in the present more general
setting.

2.4.4 Claim. Let Y have E[Y ] = 0, Var [Y ] = 1, and a subgaussian tail. Then
there exist constants C and u0 > 0 such that

E[eu(Y
2−1)] ≤ eCu2

and E[eu(1−Y 2)] ≤ eCu2

for all u ∈ (0, u0).

Proof. We begin with the first inequality. First we note that E[Y 4] is finite
(a constant); this follows from the subgaussian tail of Y by direct calculation,
or in a simpler way, from Lemma 2.4.2 and from t4 = O(et + e−t) for all t.

Let F be the distribution function of Y 2; that is, F (t) = Prob
[
Y 2 < t

]
.

We again split the integral defining E[euY
2

] into two intervals, corresponding
to uY 2 ≤ 1 and uY 2 ≥ 1. That is,

E
[
euY

2
]
=

∫ 1/u

0
eut dF (t) +

∫ ∞

1/u
eut dF (t).

The first integral is estimated, again using ex ≤ 1 + x+ x2 for x ≤ 1, by

∫ 1/u

0
1 + ut+ u2t2 dF (t) ≤

∫ ∞

0
1 + ut+ u2t2 dF (t)

= 1 + uE[Y 2] + u2E[Y 4] = 1 + u+O(u2).

The second integral can be estimated by a sum:

∞∑

k=1

ek+1Prob
[
Y 2 ≥ k/u

]
≤ 2

∞∑

k=1

e2ke−ak/u.
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We may assume that u ≤ u0 := a/4; then k(2 − a/u) ≤ −ka/2u, and the sum
is of order e−Ω(1/u). Similar to the proof of Lemma 2.4.2 we can bound this by
O(u2), and for E[euY

2

] we thus get the estimate 1 + u+O(u2) ≤ eu+O(u2).
Then we calculate E[eu(Y

2−1)] = E[euY
2

]e−u ≤ eO(u2) as required.

The calculation for estimating E[e−uY 2

] is simpler, since our favorite in-
equality ex ≤ 1+x+x2, x ≤ 1, now gives e−ut ≤ 1−ut+u2t2 for all t > 0 and
u > 0. Then

E
[
e−uY 2

]
=

∫ ∞

0
e−utdF (t) ≤

∫ ∞

0
1− ut+ u2t2dF (t)

= 1− uE[Y 2] + u2E[Y 4] ≤ 1− u+O(u2) ≤ e−u+O(u2).

This yields E
[
eu(1−Y 2)

]
≤ eO(u2). �

Proof of Lemma 2.4.1. Lemmas 2.4.2 and 2.4.3 plus Claim 2.4.4 cover all
that is needed to upgrade the proof of the Gaussian case (Lemma 2.3.1). �

2.5 Embedding ℓn2 in ℓ
O(n)
1

We prove a theorem promised earlier.

2.5.1 Theorem. Given n and ε ∈ (0, 1), let k ≥ Cε−2(log 1
ε )n for a suit-

able constant C. Then there is a (linear) ε-almost isometry T : ℓn2 → ℓk1.

The first and main tool is yet another version of the random projection
lemma: this time the random projection goes from ℓn2 to ℓk1 .

2.5.2 Lemma (Random projection from ℓ2 to ℓ1). Let n, k be natural num-
bers, let ε ∈ (0, 1), and let us define a random linear map T :Rn → R

k by

T (x)i =
1

βk

n∑

j=1

Zijxj , i = 1, 2, . . . , k,

where the Zij are independent standard normal random variables, and β > 0
is a certain constant (

√
2/π if you must know). Then for every vector x ∈ R

n

we have

Prob
[
(1− ε)‖x‖2 ≤ ‖T (x)‖1 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−cε2k,

where c > 0 is a constant.

This looks almost exactly like the Gaussian version of the random projection
lemma we had earlier, only the normalizing factor of T is different and the ℓ1
norm is used in the target space. The proof is also very similar to the previous
ones.

Proof. This time ‖T (x)‖1 = 1
βk

∑k
i=1 |Yi|, where Yi =

∑n
j=1 Zijxj is standard

normal (assuming x unit). For a standard normal Y , it can easily be calculated
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that E[|Y |] =
√

2/π, and this is the mysterious β (but we don’t really need
its value, at least in some of the versions of the proof offered below). Then
E[‖T (x)‖1] = 1 and it remains to prove concentration, namely, that W :=
1

β
√
k

∑k
i=1(|Yi| − β) has a subgaussian tail up to

√
k. This follows in the usual

way from the next claim.

2.5.3 Claim. For Y standard normal we have

E[eu(|Y |−β)] ≤ eCu2

and E[eu(1−|Y |)] ≤ eCu2

with a suitable C and all u ≥ 0 (note that we don’t even need a restriction
u ≤ u0).

First proof. We can go through the explicit calculations, as we did for
Claim 2.3.2:

E
[
eu|Y |

]
=

1√
2π

∫ ∞

−∞
eu|x|−x2/2 dx =

2√
2π

∫ ∞

0
eux−x2/2 dx

=
2√
2π

eu
2/2

∫ ∞

0
e−(x−u)2/2 dx = 2eu

2/2 · 1√
2π

∫ ∞

−u
e−t2/2 dt

= 2eu
2/2

(
1

2
+

1√
2π

∫ u

0
e−t2/2 dt

)

≤ 2eu
2/2

(
1

2
+

u√
2π

)
= eu

2/2 (1 + βu) ≤ eβu+u2/2.

Thus E
[
eu(|Y |−β)

]
≤ eu

2/2. The second inequality follows analogously. �

Second proof. We can apply the technology developed in Section 2.4. The
random variable X := |Y | − β is easily seen to have a subgaussian tail, we
have E[X] = 0, and Var [X] is some constant. So we can use Lemma 2.4.2 for
X ′ := X/

√
Var [X] and the claim follows. �

Variations and extensions. One can also prove a version of the random
projection lemma where the mapping T goes from ℓn2 in ℓkp with 1 ≤ p ≤ 2.
The same method can be used, only the calculations in the proof of appropriate
claim are different. This leads to an analog of Theorem 2.5.1, i.e., a (1 + ε)-
embedding of ℓn2 into ℓkp, k = O(ε−2(log 1

ε )n). On the other hand, for p > 2, the

method can still be used to (1+ ε)-embed ℓn2 into ℓkp, but the calculation comes
out differently and the dimension k will no longer be linear, but a larger power
of n depending on p.

An interesting feature of Lemma 2.5.2 is what doesn’t work—namely, re-
placing the N(0, 1) variables by uniform ±1 variables, say, a generalization
analogous to Lemma 2.4.1. The concentration goes through just fine, but the
expectation doesn’t. Namely, if Yi :=

∑n
j=1Rijxj for a unit x and the Rij are no

longer Gaussian, then E[|Yi|], unlike E
[
Y 2
i

]
, may depend on x! For example, let

the Rij be uniform random ±1 and let us consider x = (1, 0) and y = ( 1√
2
, 1√

2
).

Then E[| ± x1 ± x2|] = E[| ± 1|] = 1, while E[| ± y1 ± y2|] = 1√
2
.
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However, it turns out that, in the case of ±1 random variables, the expec-
tation can vary at most between two absolute constants, independent of the
dimension n, as we will later prove (Lemma 2.7.1).

This is a special case of Khintchine’s inequality, claiming that for every
p ∈ (0,∞) there are constants Cp ≥ cp > 0 (the best values are known) with

cp‖x‖2 ≤ E

[ ∣∣∣∣
n∑

j=1

ǫjxj

∣∣∣∣
p]1/p

≤ Cp‖x‖2,

where the ǫj are independent uniform random ±1 variables. Using this fact, a
random linear mapping T with ±1 coefficients can be used to embed ℓn2 in ℓ1
(or ℓp) with distortion bounded by a constant, but not arbitrarily close to 1.

Dense sets in the sphere. Now we know that if T :Rn → R
k is a random

linear map as in Lemma 2.5.2, then it almost preserves the norm of any fixed x
with probability exponentially close to 1. The proof of Theorem 2.5.1 goes as
follows:

1. We choose a large finite setN ⊂ Sn−1, where Sn−1 = {x ∈ R
n : ‖x‖2 = 1}

is the Euclidean unit sphere, and we obtain T that is an ε-almost isometry
on all of N simultaneously.

2. Then we check that any linear T with this property is a 4ε-almost isometry
on the whole of ℓn2 .

Let us call a set N ⊆ Sn−1 δ-dense if every x ∈ Sn−1 has some point y ∈ N
at distance no larger than δ (the definition applies to an arbitrary metric space).
For step 2 we will need that N is ε-dense. Then, in order that step 1 works, N
must not be too large. We have the following (standard and generally useful)
lemma:

2.5.4 Lemma (Small δ-dense sets in the sphere). For each δ ∈ (0, 1], there
exists a δ-dense set N ⊆ Sn−1 with

|N | ≤
(
4

δ

)n

.

The proof below is existential. It is hard to find explicit constructions of
reasonably small dense sets in the sphere.

Proof. In order to construct a small δ-dense set, we start with the empty set
and keep adding points one by one. The trick is that we do not worry about
δ-density along the way, but we always keep the current set δ-separated, which
means that every two points have distance at least δ. Clearly, if no more points
can be added, the resulting set N must be δ-dense.

For each x ∈ N , consider the ball of radius δ
2 centered at x. Since N is

δ-separated, these balls have disjoint interiors, and they are contained in the
ball B(0, 1 + δ/2) ⊆ B(0, 2).
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1

1 + δ/2

Therefore, vol(B(0, 2)) ≥ |N |vol(B(0, δ2)). If a convex body in R
n is scaled by a

factor of r, its volume is multiplied by rn. So vol(B(0, 2)) = (4/δ)nvol(B(0, δ2)),
and the lemma follows. �

For later use let us record that exactly the same proof works for δ-dense
sets in the unit sphere, or even unit ball, of an arbitrary n-dimensional normed
space (where the density is measured using the metric of that space).

For large n the bound in the lemma is essentially the best possible (up to
the value of the constant 4). For n small it may be important to know that the
“right” exponent is n − 1 and not n, but the argument providing n − 1 would
be technically more complicated.

For step 2 in the above outline of the proof of Theorem 2.5.1, we need the
next lemma, which is slightly less trivial than it may seem.

2.5.5 Lemma. Let N ⊂ Sn−1 be a δ-dense set for some δ ∈ (0, 12 ] and let
T :Rn → R

k be a linear map satisfying the ε-almost isometry condition 1− ε ≤
‖T (y)‖1 ≤ 1+ ε for all y ∈ N . Then T is an 2(ε+ δ)-almost isometry ℓn2 → ℓk1 .

Proof. Since T is linear, it suffices to prove the almost-isometry property for
all x ∈ Sn−1. So let us try to bound ‖T (x)‖1 from above. As expected, we find
y ∈ N with ‖x− y‖2 ≤ δ, and the triangle inequality gives

‖T (x)‖1 ≤ ‖T (y)‖1 + ‖T (x− y)‖1 ≤ 1 + ε+ ‖T (x− y)‖1.

Letting u := (x − y)/‖x − y‖2 and using the linearity of T and the scaling
property of ‖.‖1, we further obtain

‖T (x)‖1 ≤ 1 + ε+ ‖x− y‖2 · ‖T (u)‖1 ≤ 1 + ε+ δ‖T (u)‖1. (2.2)

But now we need to bound ‖T (u)‖1, and this is the same problem as bounding
‖T (x)‖1, only with a different vector.

To get around this, we first observe that the Euclidean unit sphere Sn−1

is a compact set, and the mapping x 7→ ‖T (x)‖1 is continuous on Sn−1, and
hence it attains a maximum. Let this maximum be M , and let it be attained
at a point x0. Now we apply (2.2) with x = x0, which gives

M = ‖T (x0)‖1 ≤ 1 + ε+ δM,
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since ‖T (u)‖1 ≤ M for all u ∈ Sn−1, by the choice of M . From this inequality
we then calculate

M ≤ 1 + ε

1− δ
.

A lower bound for ‖T (x)‖1 is now simple using the upper bound we already
have for all x: ‖T (x)‖1 ≥ ‖T (y)‖1 − ‖T (x − y)‖1 ≥ 1 − ε − δ 1+ε

1−δ . Estimates
of some ugly fractions brings both the upper and lower bounds to the desired
form 1± 2(ε + δ). �

Proof of Theorem 2.5.1. Let N be ε-dense in Sn−1 of size at most (4/ε)n.
For k = Cε−2(ln 1

ε )n the probability that a random T is not an ε-almost isom-

etry on N is at most |N | · 2e−cε2k ≤ 2e−cCn ln(1/ε)+n ln(4/ε) < 1 for C sufficiently
large.

If T is an ε-almost isometry on N , then it is a 4ε-almost isometry on all
of ℓn2 . �

The proof actually shows that a random T fails to be an ε-almost isometry
only with exponentially small probability (at most e−Ω(ε2k)).

Viewing the embedding as a numerical integration formula. In Sec-
tion 1.5 we defined the 1-embedding F : ℓn2 → L1(S

n−1) by F (x) := fx, where
fx(u) = 〈x,u〉. Similarly we can define an embedding G of ℓn2 in the space of
measurable functions on R

n with the L1 norm corresponding to the Gaussian
measure; i.e., ‖f‖1 :=

∫
Rn |f(z)|γ(z) dz, where γ(z) := (2π)−n/2e−‖z‖2

2
/2 is the

density of the standard normal distribution. We set G(x) := fx, where fx is
now regarded as a function on R

n (while for F , we used it as a function on
Sn−1). By the spherical symmetry of γ we see that for all x, ‖fx‖1 = c‖x‖2
for some normalizing constant c > 0, similar to the case of F , and so G is a
1-embedding as well.

The embedding ℓn2 → ℓ
O(n)
1 discussed in the present section can now be

viewed as a “discretization” of G. Namely, if a1,a2, . . . ,ak ∈ R
n are the rows

of the matrix defining the embedding T in Lemma 2.5.2, or in other words,
independent random points of Rn drawn according to the density function γ,
the results of this section show that, with high probability, the following holds
for every x ∈ R

n:

1

βk

k∑

i=1

|fx(ai)| ≈ε ‖x‖2 =
1

c

∫

Rn

|fx(z)|γ(z) dz

(≈ε means approximation up to a factor of at most 1± ε).

With this formulation, the proof of Theorem 2.5.1 thus shows that the
average over a random O(n)-point set approximates the integral over R

n for
each of the functions |fx| up to 1± ε.

By projecting R
n radially onto Sn−1, we get an analogous statement for

approximating
∫
Sn−1 |fx(u)|du by an average over a random set A in Sn−1. We

have thus obtained a strong quantitative version of the handwaving argument
from Section 1.5.
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2.6 Streaming and pseudorandom generators

Stream computation is a quickly developing area of computer science motivated
mainly by the gigantic amounts of data passing through the current networks.
A data stream is a sequence of elements (numbers, letters, points in the plane,
etc.), which is much larger than the available memory. The goal is to compute,
at least approximately, some function of the data using only one sequential pass
over the data stream.

For example, let us think of a network router, which receives packets of
data and sends them further towards their destinations. Say that packets are
classified into n = 264 types according to some of their header bits. At the end
of the day we would like to know, for instance, whether some concrete type of
packets has appeared in suspiciously large numbers.

This looks difficult, or perhaps impossible, since there are way too many
packets and packet types to store information about each of them. (The human
brain seems to be able to solve such tasks somehow, at least some people’s
brains—a cashier in a supermarket can’t remember all customers in a day, but
still she may notice if she serves someone several times.)

Let xi denote the number of packets of the ith type that passed through
the router since the morning, i = 1, 2, . . . , n. The computation starts with x =
(x1, . . . , xn) = 0, and the stream can be regarded as a sequence of instructions
like

increment x645212 by 1
increment x302256 by 1
increment x12457 by 1

...

For the method shown here, we will be able to accept even more general instruc-
tions, specified by an index i ∈ {1, 2, . . . , n} and an integer ∆ ∈ {±1,±2, . . . ,±n}
and meaning “add ∆ to xi”.

4 We assume that the total number of such in-
structions, i.e., the length of the stream, is bounded by n2 (or another fixed
polynomial in n).

The specific problem we will consider here is to estimate the ℓ2 norm ‖x‖2,
since the solution uses the tools we built in preceding sections. This may remind
one of the man looking for his keys not in the dark alley where he’s lost them
but under a street lamp where there’s enough light. But the square ‖x‖22 is an
important parameter of the stream: One can compute the standard deviation of
the xi from it, and use it for assessing how homogeneous or “random-like” the
stream is (the appropriate keywords in statistics areGini’s index of homogeneity
and surprise index ). Moreover, as we will mention at the end of this section, an
extension of the method can also solve the “heavy hitters” problem: after having
gone through the stream and storing some limited amount of information, we are
given an index i, and we want to test whether the component xi is exceptionally
large compared to most others.

4Choosing n both as the number of entries of x and as the allowed range of ∆ has no deep
meaning—it is just in order to reduce the number of parameters.
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Thus, we consider the following problem, the ℓ2 norm estimation: We’re
given an ε > 0, which we think of as a fixed small number, and we go through
the stream once, using memory space much smaller than n. At the end of
the stream we should report a number, the norm estimate, that lies between
(1− ε)‖x‖2 and (1 + ε)‖x‖2.

It can be shown that this problem is impossible to solve by a deterministic
algorithm using o(n) space.5 We describe a randomized solution, where the
algorithm makes some internal random decisions. For every possible input
stream, the output of the algorithm will be correct with probability at least
1 − δ, where the probability is with respect to the internal random choices
of the algorithm. (So we don’t assume any kind of randomness in the input
stream.) Here δ > 0 is a parameter of the algorithm, which will enter bounds
for the memory requirements.

A random projection algorithm? Let us start by observing that some
functions of x are easy to compute by a single pass through the stream, such
as
∑n

i=1 xi—we can just maintain the current sum. More generally, any fixed
linear function x 7→ 〈a,x〉 can be maintained exactly, using only a single word,
or O(log n) bits, of memory.

As we have seen, if A is a suitably normalized random k × n matrix, then
‖Ax‖2 is very likely to be a good approximation to ‖x‖2 even if k is very small
compared to n. Namely, we know that the probability that ‖Ax‖2 fails to be
within (1 ± ε)‖x‖2 is at most 2e−cε2k, and so with k := Cε−2 log 1

δ we obtain
the correct estimate with probability at least 1− δ. Moreover, maintaining Ax
means maintaining k linear functions of x, and we can do that using k words
of memory, which is even a number independent of n.

This looks like a very elegant solution to the norm estimation problem but
there is a serious gap. Namely, to obey an instruction “increment xi by ∆” in
the stream, we need to add ∆ai to the current Ax, where ai is the ith column
of A. The same i may come many times in the stream, and we always need
to use the same vector ai, otherwise the method breaks down. But A has kn
entries and we surely can’t afford to store it.

Pseudorandom numbers. To explain an ingenious way of overcoming this
obstacle, we start by recalling how random numbers are generated by computers
in practice.

The “random” numbers used in actual computations are not random but
pseudorandom. One starts with an integer r0 in range from 0 to m− 1, where
m is a large number, say 264. This r0 is called the seed and we usually may
think of it as truly random (for instance, it may be derived from the number

5Sketch of proof: Let us say that the algorithm uses at most n/100 bits of space. For
every x ∈ {−1, 0, 1}n let us fix a stream Sx of length n that produces x as the current vector
at the end. For each x ∈ {0, 1}n, run the algorithm on Sx ◦ S0, where ◦ means putting one
stream after another, and record the contents of its memory after the first n steps, i.e., at the
end of Sx; let this contents be M(x). Since there are at most 2n/100 possible values of M(x),
some calculation shows that there exist x,x′ ∈ {0, 1}n differing in at least n/100 components
with M(x) = M(x′). Finally, run the algorithm on Sx ◦ S−x and also on Sx′ ◦ S−x. Being
deterministic, the algorithm gives the same answer, but in the first case the norm is 0 and in
the second case it’s at least

√
n/10.
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of microseconds in the current time when the computer is switched on). Then
a sequence (r0, r1, r2, . . .) of pseudorandom numbers is computed as

rt+1 := f(rt),

where f is some deterministic function. Often f is of the form f(x) := (ax +
b)modm, where a, b,m are large integers, carefully chosen but fixed.

One then uses the rt as if they were independent random integers from
{0, 1, . . . ,m − 1}. Thus, each rt brings us, say, 64 new random bits. They are
not really independent at all, but empirically, and also with some theoretical
foundation, for most computations they work as if they were.

Let us now consider our matrix A, and suppose, as we may, that is a random
±1 matrix. If we want to generate it, say column by column, we can set the
first 64 entries in the first column according to r0, the next 64 entries according
to r1, and so on. Given i and j, we can easily find which bit of which rt is used
to generate the entry aij .

Thus, if we store the seed r0, we can re-compute the ith column of A when-
ever we need it, simply by starting the pseudorandom generator all over from r0
and computing the appropriate rt’s for the desired column. This, as described,
may be very slow, since we need to make about nk steps of the pseudorandom
generator for a typical column. But the main purpose has been achieved—we
need practically no extra memory.6

Although this method may very well work fine in practice, we can’t provide
a theoretical guarantee for all possible vectors x.

A pseudorandom generator with guarantees. Researchers in computa-
tional complexity have developed “theoretical” versions of pseudorandom gen-
erators that provably work: For certain well-defined classes of randomized com-
putations, and for all possible inputs, they can be used instead of truly random
bits without changing the distribution of the output in a noticeable manner.

Pseudorandom generators constitute an important area of computational
complexity, with many ingenious results and surprising connections to other
subjects.

Here we describe only a single specific pseudorandom generator G, for space-
bounded computations. Similar to the practically used pseudorandom generators
mentioned above, G accepts a seed σ, which is a short sequence of truly random
independent bits, and computes a much longer sequence G(σ) of pseudorandom
bits.

The particular G we will discuss, Nisan’s generator, needs a seed of 2ℓ2 + ℓ
truly random bits and outputs ℓ2ℓ pseudorandom bits, exponentially many
in the square root of the seed length. Formally we regard G as a mapping
{0, 1}2ℓ2+ℓ → {0, 1}ℓ2ℓ .

To define G, we interpret the seed σ as a (2ℓ+ 1)-tuple

(σ0, a1, b1, . . . , aℓ, bℓ),

6With a generator of the form rt+1 = (art + b)modm the computation can actually be
done much faster.
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where σ0 and the ai and bi have ℓ bits each and they are interpreted as elements
of the 2ℓ-element finite field GF(2ℓ).

Each pair ai, bi defines a hash function hi: GF(2ℓ) → GF(2ℓ) by hi(x) :=
aix + bi. Intuitively, the purpose of a hash function is to “mix” a given bit
string thoroughly, in a random-looking fashion. Technically, the properties of
the hi needed for the construction of G are the following:

• Succinctness: hi “mixes” 2ℓ numbers but it is specified by only 2ℓ bits.

• Efficiency: hi can be evaluated quickly and in small working space, O(ℓ)
bits.7

• Pairwise independence: If a, b ∈ GF(2ℓ) are chosen uniformly at random,
then the corresponding hash function h satisfies, for any two pairs x 6= y
and u 6= v of elements of GF(2ℓ)

Prob[h(x) = u and h(y) = v] = Prob[h(x) = u] · Prob[h(y) = v] = 2−2ℓ.

Any other ensemble of hash functions with these properties would do as well.8

Here is the definition of G(σ) by a picture.

level 0ℓ-bit σ0

σ0 h1(σ0) level 1

level 2

level ℓ

σ0 h2(σ0) h2(h1(σ0))h1(σ0)

. . . . . .σ0 hℓ(σ0)

...
...

...
...

hℓ(hℓ−1(. . . σ0 . . .)))

︸ ︷︷ ︸

G(σ)

We construct a complete binary tree starting with a single node at level 0 with
value σ0. For a node at level i with value x, we construct two nodes at level
i+1 with values x and hi(x). The string G(σ) of length ℓ2ℓ is the concatenation
of the values of the leaves of the tree, on level ℓ, from left to right.

As we have seen, for our application in ℓ2 norm estimation, we want a
“random access” to the pseudorandom bits, and the above construction indeed
provides it: Given σ and an index t of a position in G(σ), we can compute the
tth bit of G(σ) in space O(ℓ2) using O(ℓ) arithmetic operations, by taking the
appropriate root-to-leaf path in the binary tree.

7This assumes that we can perform addition and multiplication in GF(2ℓ) efficiently. For
this we need a concrete representation of GF(2ℓ), i.e., an irreducible polynomial of degree ℓ
over GF(2). Such a polynomial can be stored in ℓ bits, and it is known that it can be found
deterministically in time polynomial in ℓ.

8Here is another suitable family: A hash function h is defined by h(x) := a ∗ x+ b, where
a ∈ {0, 1}2ℓ−1, b ∈ {0, 1}ℓ, and “∗” stands for convolution, i.e., (a∗x)i =

∑n
j=1

ai+j−1xj , with
addition modulo 2. Thus, h is described by 3ℓ − 1 bits in this case. Here we need not worry
about the arithmetic in GF(2ℓ) as in the previous case.
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Fooling a space-bounded machine. We now describe in a semi-formal
manner the theoretical guarantees offered by G. The main result says that G
fools all randomized machines using space at most s, provided that ℓ ≥ Cs for
a sufficiently large constant C.

A machines M of the kind we’re considering can be thought of as follows.

s bits of memory PRESS

FOR NEXT

RANDOM BIT

⇐
M

It has s bits of working memory, i.e., 2s possible states. The computation begins
at the state where all memory bits of M are 0.

The state may change in each step of M . The machine can also use a source
of random bits: We can imagine that the source is a box with a button, and
whenever M presses the button, the box displays a new random bit. In each
step, M passes to a new state depending on its current state and on the random
bit currently displayed on the random source. The mapping assigning the new
state to the old state and to the current random bit is called the transition
function of M .

Computers normally accept some inputs, and so the reader can ask, where
is the input of M? Usually such computational models are presented as being
able to read some input tape. But for our very specific purposes, we can assume
that the input is hard-wired in the machine. Indeed, we put no limits at all
on the transition function of M , and so it can implicitly contain some kind of
input.

We assume that for every sequence ω = ω1ω2ω3 · · · of random bits produced
by the source M runs for at most 2s steps and then stops with three ear-
piercing beeps. After the beeps we read the current state of M , and this defines
a mapping, which we also denote by M , assigning the final state to every string
ω of random bits. We can assume that ω has length 2s, since M can’t use more
random bits anyway.

For every probability distribution on the set of all possible values of ω, the
machine M defines a probability distribution on its states. We will consider
two such distributions. First, for ω truly random, i.e., each string of length 2s

having probability 2−2s , the probability of a state q is

ptruly(q) =
|{ω ∈ {0, 1}2s : M(ω) = q}|

22
s .

Now let’s suppose that truly random bits are very expensive. We thus set
ℓ := Cs and buy only 2ℓ2 + ℓ truly random bits as the seed σ for the generator
G. Then we run the machine M on the much cheaper bits from G(σ). When σ
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is picked uniformly at random, this defines another probability distribution on
the states of M :

ppseudo(q) =
|{σ ∈ {0, 1}2ℓ2+ℓ : M(G(σ)) = q}|

22ℓ2+ℓ
.

The next theorem tells us that there is almost no difference; the cheap bits
work just fine.

2.6.1 Theorem (Nisan’s generator). Let s be a given natural number. If
the generator G is constructed as above with ℓ ≥ Cs, where C is a sufficiently
large constant, then for all machines M with at most s bits of memory, the
probability distributions ptruly(.) and ppseudo(.) are 2−ℓ/10-close. This means
that ∑

q

|ptruly(q)− ppseudo(q)| ≤ 2−ℓ/10,

where the sum extends over all states of M .

The proof is nice and not too hard; it is not so much about machines as
about random and pseudorandom walks in an acyclic graph. Here we omit it.

Now we’re ready to fix the random projection algorithm.

2.6.2 Theorem. There is a randomized algorithm for the ℓ2 norm estimation
problem that, given n, ε and δ and having read any given input stream, com-
putes a number that with probability at least 1 − δ lies within (1 ± ε)‖x‖2.
It uses O(ε−2 log n

εδ + (log n
εδ )

2) bits of memory, which for ε and δ constant is
O(log2 n).

Proof. We set s := C0 log
n
εδ for a suitable constant C0, and we generate and

store a random seed σ for Nisan’s generator of the appropriate length (about
s2).

Then, as was suggested earlier, with k := Cε−2 log 1
δ , we read the stream

and maintain Ax, where A is a k × n pseudorandom ±1 matrix. This needs
O(k log(nk)) bits of memory, since the largest integers encountered in the com-
putation are bounded by a polynomial in n and k.

Each entry of A is determined by the appropriate bit of G(σ), and so when
we need the ith column, we just generate the appropriate k bits of G(σ). (For
the proof to work, we need to assume that A is generated row by row; that
is, the first row of A is determined by the first n bits of G(σ), the second row
by the next n bits, etc. For the algorithm itself this is admittedly somewhat
unnatural, but it doesn’t cause any serious harm.) At the end of the stream we
output 1√

k
‖Ax‖2 as the norm estimate.

As we have said, if A is truly random, then 1√
k
‖Ax‖2 is a satisfactory

estimate for the norm. To see that it also works when A is the pseudorandom
matrix, we want to apply Theorem 2.6.1. An important point is that we don’t
apply it to the above algorithm (this wouldn’t work, since that algorithm doesn’t
use the random bits sequentially). Rather, we use the theorem for a hypothetical
machine M , which we now construct.
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Let x be fixed. The machine M has the value of x hard-wired in it, as well
as the value of ε. It reads random bits from its random source, makes them
into entries of A, and computes ‖Ax‖22. Since A is generated row-by-row, then
the entries of Ax are computed one by one, and M needs to remember only
two intermediate results, which needs O(log(nk)) bits. (The machine also has
to maintain a counter in range from 1 to nk in order to remember how far the
computation has progressed, but this is also only log(nk) bits.)

The machine then checks whether k−1/2‖Ax‖2 lies within (1± ε)‖x‖2. (No
square roots are needed since the squares can be compared.) If it does, M
finishes in a state called GOOD, and otherwise, in a state called BAD.

We know that if M is fed with truly random bits, then GOOD has proba-
bility at least 1 − δ. So by Theorem 2.6.1, if M runs on the pseudorandom
bits from Nisan’s generator, it finishes at GOOD with probability at least
1 − δ − 2−ℓ/10 ≥ 1 − 2δ. But this means that k−1/2‖Ax‖2 is in the desired
interval with probability at least 1 − 2δ, where the probability is with respect
to the random choice of the seed σ. This proves that the algorithm has the
claimed properties.

Let us stress that the machine M has no role in the algorithm. It was used
solely for the proof, to show that the distribution of ‖Ax‖2 is not changed much
by replacing random A by a pseudorandom one. �

We’ve ignored another important issue, the running time of the algorithm.
But a routine extension of the above analysis shows that the algorithm runs
quite fast. For δ and ε fixed it uses only O(log n) arithmetic operations on
O(log n)-bit numbers per instruction of the stream.

Heavy hitters. The above method allows us to estimate xi for a given i
with (absolute) error at most ε‖x‖2, for a prescribed ε. The space used by the
algorithm again depends on ε. Then we can detect whether xi is exceptionally
large, i.e. contributes at least 1% of the ℓ2 norm, say.

The idea is that xi = 〈x, ei〉, where ei is the ith unit vector in the standard
basis, and this scalar product can be computed, by the cosine theorem, from
‖x‖2, ‖ei‖2 = 1, and ‖x − ei‖2. We can approximate ‖x‖2 and ‖x − ei‖2
by the above method, and this yields an approximation of xi. We omit the
calculations.

2.7 Explicit embedding of ℓn2 in ℓ1

In Section 1.5 we showed that every ℓ2 metric embeds in ℓ1. We used an
isometric embedding ℓn2 → L1(S

n−1) defined by a simple formula but going into
an infinite-dimensional space. Later, in Section 2.5, we saw that a random Cn×
n matrix A with independent Gaussian entries defines, with high probability,
an almost-isometry T : ℓn2 → ℓCn

1 .

Can’t one just write down a specific matrix A for such an embedding? This
question has been puzzling mathematicians for at least 30 years and it has
proved surprisingly difficult.

The notion of explicit construction is seldom used in a precisely defined sense
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in classical mathematics; mathematicians usually believe they can recognize an
explicit construction when they see one.

Theoretical computer science does offer a formal definition of “explicit”: In
our case, for example, a k × n matrix A can be regarded as given explicitly if
there is an algorithm that, given n and k, outputs A in time polynomial in n+k.
(For some purposes, computer scientists prefer even “more explicit” construc-
tions, which have a very fast local algorithm; in our case, an algorithm that,
given n, k, i, j, computes the entry aij in time polynomial in log(n+ k).) Taken
seriously, this definition of “explicit” has led to very interesting and valuable
methods and results. But, quite often, the resulting explicit constructions are
very far from the intuitive idea of “something given by a formula” and when
classical mathematicians see them, the most likely reaction may be “this is not
what we meant!”.

In any case, so far nobody has managed to construct a polynomially com-

putable matrix A defining an ε-almost isometric embedding ℓn2 → ℓ
C(ε)n
1 . There

are several weaker results, in which either the distortion is not arbitrarily close
to 1, or the target dimension is not even polynomially bounded.

The current strongest results use too many tools to be presented here, but
we explain some weaker results, which can serve as an introduction to the more
advanced ones in the literature.

An explicit embedding in an exponential dimension. First we would
like to see an explicit O(1)-embedding of ℓn2 in ℓk1 for some k, possibly huge
but finite. We have indicated one possible route in Section 1.5, through a
“discretization” the function space L1(S

n−1). Now we take a different path.

Let k := 2n, let A be the k × n matrix whose rows are all the 2n possible
vectors of +1’s and −1’s, and let T :Rn → R

k be given by x 7→ 2−nAx. We
claim that T is an O(1)-embedding of ℓn2 in ℓk1.

For x fixed, ‖T (x)‖1 is the average of | ± x1 ±x2 ± · · · ± xn| over all choices
of signs. In probabilistic terms, if we set X :=

∑n
j=1 ǫjxj , where ǫ1, . . . , ǫn are

independent uniform ±1 random variables, then ‖T (x)‖1 = E[ |X| ]. Thus, the
fact that T is an O(1)-embedding follows from the next lemma.

2.7.1 Lemma (A special case of Khintchine’s inequality). Let ǫ1, ǫ2, . . . , ǫn
be independent random variables, each attaining values +1 and −1 with prob-
ability 1

2 each, let x ∈ R
n, and let X :=

∑n
j=1 ǫjxj . Then

1√
3
‖x‖2 ≤ E[ |X| ] ≤ ‖x‖2.

Proof. The following proof is quick but yields a suboptimal constant (the
optimal constant is 2−1/2). On the other hand, it contains a useful trick, and
later we’ll use some of its features.

We will need Hölder’s inequality, which is usually formulated for vectors
a,b ∈ R

n in basic courses: 〈a,b〉 ≤ ‖a‖p‖b‖q, where 1 ≤ p ≤ ∞ and 1
q = 1− 1

p
(p = q = 2 is the Cauchy–Schwarz inequality). We will use a formulation for

random variables A,B: E[AB] ≤ E[|A|p]1/p E[|B|q]1/q. For the case we need,
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where A and B attain finitely many values, this version immediately follows
from the one for vectors.

We may assume ‖x‖2 = 1. We know (or calculate easily) that E
[
X2
]
= 1.

The upper bound E[ |X| ] ≤ E
[
X2
]1/2

= 1 follows immediately from the
Cauchy–Schwarz inequality with A := |X| and B := 1 (a constant random
variable).

For the lower bound we first need to bound E
[
X4
]
from above by some

constant. Such a bound could be derived from the subgaussian tail of X
(Lemma 2.4.3), but we calculate directly, using linearity of expectation,

E
[
X4
]
=

n∑

i,j,k,ℓ=1

E[ǫiǫjǫkǫℓ]xixjxkxℓ.

Now if, say, i 6∈ {j, k, ℓ}, ǫi is independent of ǫj, ǫk, ǫℓ, and so E[ǫiǫjǫkǫℓ] =
E[ǫi]E[ǫjǫkǫℓ] = 0. Hence all such terms in the sum vanish.

The remaining terms are of the formE
[
ǫ4s
]
x4s = x4s for some s, orE

[
ǫ2sǫ

2
t

]
x2sx

2
t =

x2sx
2
t for some s 6= t. Given some values s < t, we have

(4
2

)
= 6 ways of choosing

two of the summation indices i, j, k, ℓ to have value s, and the other two indices
get t. Hence

E
[
X4
]

=

n∑

s=1

x4s +
∑

1≤s<t≤n

6x2sx
2
t

< 3

( n∑

s=1

x4s +
∑

1≤s<t≤n

2x2sx
2
t

)
= 3‖x‖42 = 3.

Now we want to use Hölder’s inequality so that E[ |X| ] shows up on the right-
hand (larger) side together with E[X4], while E[X2] stands on the left. A
simple calculation reveals that the right choices are p := 3

2 , q = 3, A := |X|2/3,
and B := |X|4/3, leading to

1 = E[X2] = E[AB] ≤ E[Ap]1/pE[Bq]1/q

= E[ |X| ]2/3 E
[
X4
]1/3 ≤ E[ |X| ]2/3 31/3,

and E[ |X| ] ≥ 3−1/2 follows. �

In the above we used a relation between E[X] and the embedding in ℓk1 .
Before we proceed with reducing the embedding dimension, let us formulate
this relation in a more general setting. The proof of the next observation is just
a comparison of definitions:

2.7.2 Observation. Let R1, R2, . . . , Rn be real random variables on a prob-
ability space that has k elements (elementary events) ω1, ω2, . . . , ωk, and let
A be the k × n matrix with aij := Prob[ωi]Rj(ωi). For x ∈ R

n let us set
X :=

∑n
j=1Rjxj . Then E[ |X| ] = ‖Ax‖1. �
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Reducing the dimension. This observation suggests that, in order to
reduce the dimension 2n in the previous embedding, we should look for suitable
random variables on a smaller probability space. By inspecting the proof of
Lemma 2.7.1, we can see that the following properties of the ǫj are sufficient:

(i) Every ǫj attains values +1 and −1, each with probability 1
2 .

(ii) Every 4 of the ǫj are independent.

Property (ii) is called 4-wise independence. In theoretical computer science,
t-wise independent random variables have been recognized as an important
tool, and in particular, there is an explicit construction, for every n, of random
variables ǫ1, . . . , ǫn with properties (i) and (ii) but on a probability space of size
only O(n2).9

In view of the above discussion, this implies the following explicit embed-
ding:

2.7.3 Proposition. There is an explicit
√
3-embedding ℓn2 → ℓ

O(n2)
1 . �

Getting distortions close to 1. We know that for X :=
∑n

j=1 Zjxj ,
with Z1, . . . , Zn independent standard normal, E[ |X| ] is exactly proportional
to ‖x‖2. We will now approximate the Zj by suitable discrete random variables
on a finite probability space, which will provide an embedding ℓn2 → ℓk1 with

9For someone not familiar with t-wise independence, the first thing to realize is probably
that 2-wise independence (every two of the variable independent) is not the same as n-wise
independence (all the variables independent). This can be seen on the example of 2-wise
independent random variables below.

Several constructions of t-wise independent random variables are based on the following
simple linear-algebraic lemma: Let A be an m×n matrix over the 2-element field GF(2) such
that every t columns of A are linearly independent. Let x ∈ GF(2)m be a random vector
(each of the 2m possible vectors having probability 2−m), and set ǫ = (ǫ1, . . . , ǫn) := Ax.
Then ǫ1, . . . , ǫn are t-wise independent random variables (on a probability space of size 2m).

For t = 2, we can set n := 2m − 1 and let the columns of A be all the nonzero vectors
in GF(2)m. Every two columns are distinct, and thus linearly independent, and we obtain n
pairwise independent random variables on a probability space of size n+ 1.

Here is a more sophisticated construction of (2r+1)-wise independent random variables on a
probability space of size 2(n+1)r (with r = 2 it can be used for the proof of Proposition 2.7.3).
Let n = 2q−1 and let α1, . . . , αn be an enumeration of all nonzero elements of the field GF(2q).
In a representation of GF(2q) using a degree-q irreducible polynomial over GF(2), each αi can
be regarded as a q-element column vector in GF(2)q. The matrix A, known as the parity check

matrix of a BCH code, is set up as follows:















1 1 . . . 1
α1 α2 . . . αn

α3
1 α3

2 . . . α3
n

...
...

...
...

α2r−1
1 α2r−1

2 . . . α2r−1
n















;

here, e.g., α1, α2, . . . , αn represents m rows of A, since each αi is interpreted a column vector
of q entries. Thus A has m = qr + 1 rows and n = 2q − 1 columns. If we used the larger
matrix with 2qr + 1 rows containing all the powers α1

i , α
2
i ,. . . , α

2r
i in the columns, the linear

independence of every 2r + 1 columns follows easily by the nonsingularity of a Vandermonde
matrix. An additional trick is needed to show that the even powers can be omitted.
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distortion very close to 1 but with k very large. But then we’ll be able to reduce
k considerably using Nisan’s pseudorandom generator from Theorem 2.6.1.

There are many possible ways of “discretizing” the standard normal random
variables. Here we use one for which Nisan’s generator is very easy to apply
and which relies on a generally useful theorem.

Namely, for an integer parameter b, we set Z ′
j := b−1/2

∑b
ℓ=1 ǫjℓ, where the

ǫjℓ are independent uniform ±1 random variables. So Z ′
j has a binomial dis-

tribution which, by the central limit theorem, approaches the standard normal
distribution as b → ∞. But we won’t use this directly. What we really need is
that for X ′ :=

∑n
j=1 Z

′
jxj with x unit, E[ |X ′| ] is close to E[ |Z| ] for Z standard

normal.
The Berry–Esséen theorem from probability theory quantifies how the dis-

tribution of a sum of n independent random variables approaches the standard
normal distribution; one can find numerous variants in the literature. We will
use the following Berry–Esséen-type result.

2.7.4 Theorem. Let ǫ1, . . . , ǫn be independent uniform ±1 random variables
and let α ∈ R

n satisfy ‖α‖2 = 1. Then for Y :=
∑n

j=1 ǫjαj

∣∣∣E[ |Y | ]− β
∣∣∣ ≤ C‖α‖∞ = Cmax |αj |,

where C is an absolute constant and β := E[ |Z| ] with Z standard normal.

This can be viewed as a strengthening of Khintchine’s inequality (e.g., of
Lemma 2.7.1)—it tells us that if none of the coefficients αj is too large, then
E[|∑n

j=1 ǫjαj|] is almost determined by ‖α‖2.

2.7.5 Corollary. Let the Z ′
j = b−1/2

∑b
ℓ=1 ǫjℓ and X ′ =

∑n
j=1Z

′
jxj be as

above, ‖x‖2 = 1. Then E[ |X ′| ] = β +O(b−1/2).

Proof. We use the theorem with

α := b−1/2(x1, x1, . . . , x1︸ ︷︷ ︸
b times

, x2, . . . , x2︸ ︷︷ ︸
b times

, . . . , xn, . . . , xn︸ ︷︷ ︸
b times

).

�

The corollary as is provides, via Observation 2.7.2, an explicit embedding
ℓn2 → ℓk1 with k = 2bn and with distortion 1 +O(b−1/2). The dimension can be
reduced considerably using Nisan’s generator:

2.7.6 Proposition. There is an explicit embedding ℓn2 → ℓk1 with k = nO(logn)

and with distortion 1 + O(n−c), where the constant c can be made as large as
desired.

Proof. We can think of each Z ′
j in Corollary 2.7.5 as determined by a block

of b of truly random bits. Instead, let us set s := ⌈C1 log2(nb)⌉ for a suitable
constant C1, let ℓ := Cs as in Theorem 2.6.1, and let σ be a string of 2ℓ2 + ℓ
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truly random bits. Let us define Z̃j using the appropriate block of b bits from
G(σ), and let X̃ :=

∑n
j=1 Z̃jxj . It suffices to set b := n2c and to show that

|E[ |X̃ | ]−E[ |X ′| ]| = O(b−1/2).

Let M be a hypothetical machine with working space s, of the kind consid-
ered in Theorem 2.6.1, that with a source of truly random bits approximates
X ′ with accuracy at most b−1/2. That is, the final state of M encodes a number
(random variable) Y ′ such that |X ′−Y ′| ≤ b−1/2. For such task, working space
s is sufficient.

If M is fed with the pseudorandom bits of G(σ) instead, its final state
specifies a random variable Ỹ with |X̃ − Ỹ | ≤ b−1/2. Theorem 2.6.1 guarantees
that ∑

y

∣∣∣Prob
[
Y ′ = y

]
− Prob[Ỹ = y]

∣∣∣ ≤ 2−ℓ/10.

Since Y ′ and Ỹ obviously cannot exceed 2n (a tighter bound is
√
n+O(b−1/2)

but we don’t care), we have

∣∣∣E[ |Y ′| ]−E[ |Ỹ | ]
∣∣∣ ≤

∑

y

|y| ·
∣∣∣Prob

[
Y ′ = y

]
− Prob

[
Ỹ = y

]∣∣∣

≤ 2n · 2−ℓ/10 ≤ b−1/2.

So E[ |X ′| ] and E[ |X̃ | ] indeed differ by at most O(b−1/2).

The random variable X̃ is defined from 2ℓ2 + ℓ = O(log2 n) random bits,
and thus we obtain an embedding in ℓk1 with k = exp(O(log2 n)) = nO(logn). �

Currently there are two mutually incomparable best results on explicit
embeddings ℓn2 → ℓk1 . One of them provides distortions close to 1, namely,
1+O( 1

logn), and a slightly superlinear dimension k = n2O((log logn)2). The other

has a sublinear distortion no(1) but the dimension is only k = (1 + o(1))n.

2.8 Error correction and compressed sensing

Error-correction over the reals. A cosmic probe wants to send the results
of its measurements, represented by a vector w ∈ R

m, back to Earth. Some
of the numbers may get corrupted during the transmission. We assume the
possibility of gross errors; that is, if the number 3.1415 is sent and it gets
corrupted, it can be received as 3.1425, or 2152.66, or any other real number.

We would like to convert (encode) w into another vector z, so that if no
more than 8%, say, of the components of z get corrupted, we can still recover
the original w exactly.

This problem belongs to the theory of error-correcting codes. In this area one
usually deals with encoding messages composed of letters of a finite alphabet,
while our “letters” are arbitrary real numbers.

In order to allow for error recovery, the encoding z has to be longer than
the original w. Let its length be n, while k := n−m is the “excess” added by
the coding.
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We will use a linear encoding, setting z := Gw for a suitable n×m matrix
G (analogous to the generator matrix for linear error-correcting codes).

Let z̃ be the received vector. Let r be the maximum number of errors that
the code should still be able to correct. That is, we assume that the error vector
x := z− z̃ has at most r nonzero components. We call such an x r-sparse, or
just sparse when r is understood.

How can we hope to recover the original message w from z̃? We concentrate
on finding the error vector x first, since then w can be computed by solving
a system of linear equations. Let us assume that the matrix G has the full
rank m, i.e., its columns span an m-dimensional linear subspace L of Rn.

Then the kernel Ker(GT ) = {x ∈ R
n : xTG = 0}, i.e., the orthogonal

complement of L, has dimension k = n − m. Let A be a k×n matrix whose
rows span Ker(GT ) (this is an analog of the parity check matrix for linear codes).
Then AG is the zero matrix, and we have Az̃ = A(Gw+x) = 0w+Ax. Hence
the unknown error vector x is a solution to Ax = b, where A and b := Az̃ are
known.

There are more unknowns than equations in this system, so it has infinitely
many solutions. But we’re not interested in all solutions—we’re looking for one
with at most r nonzero components.

Later in this section, we will show that if A is a random matrix as in the
random projection lemma, then a sparse solution of Ax = b can be efficiently
computed, provided that one exists, and this provides a solution to the decoding
problem.

Naturally, the encoding length n has to be sufficiently large in terms of the
message length m and the number r of allowed errors. It turns out that we will
need k, the “excess”, at least of order r log n

r . As a concrete numerical example,
it is known that when we require r = 0.08n, i.e., about 8% of the transmitted
data may be corrupted, we can take n = 1.33m, i.e., the encoding expands the
message by 33%.

Compressed sensing (or compressive sensing according to some authors)
is an ingenious idea, with great potential of practical applications, which also
leads to the problem of finding sparse solutions of systems of linear equations.
To explain the idea, we begin with a slightly different topic—encoding of digital
images.

A digital camera captures the image by means of a large number n of sensors;
these days one may have n around ten millions in more expensive cameras. The
outputs of these sensors can be regarded as a vector s ∈ R

n (the components
are known only approximately, of course, but let’s ignore that).

The picture is usually stored in a compressed format using a considerably
smaller amount of data, say a million of numbers (and this much is needed
only for large-format prints—hundreds of thousand numbers amply suffice for
a computer display or small prints).

The compression is done by complicated and mathematically beautiful meth-
ods, but for now, it suffices to say that the image is first expressed as a linear
combination of suitable basis vectors. If we think of the image s as a real func-
tion defined on a fine grid of n points in the unit square, then the basis vectors
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are usually obtained as restrictions of cleverly chosen continuous functions to
that grid. The usual JPEG standard uses products of cosine functions, and
the newer JPEG2000 standard uses the fancier Cohen–Daubechies–Feauveau
(or LeGall) wavelets.

But abstractly speaking, one writes s =
∑n

i=1 xibi, where b1, . . . ,bn is
the chosen basis. For an everyday picture s, most of the coefficients xi are
zero or very small. (Why? Because the basis functions have been chosen so
that they can express well typical features of digital images.) The very small
coefficients can be discarded, and only the larger xi, which contain almost all
of the information, are stored.

We thus gather information by 107 sensors and then we reduce it to, say, 106

numbers. Couldn’t we somehow acquire the 106 numbers right away, without
going through the much larger raw image?

Digital cameras apparently work quite well as they are, so there is no ur-
gency in improving them. But there are applications where the number of
sensors matters a lot. For example, in medical imaging, with fewer sensors
the patient is less exposed to harmful radiation and can spend less time in-
side various unpleasant machines. Compressed sensing provides a way of using
much fewer sensors. Similarly, in astronomy light and observation time of large
telescopes are scarce resources, and compressed sensing might help observers
gain the desired information faster. More generally, the idea may be applicable
whenever one wants to measure some signal and then extract information from
it by means of linear transforms.

We thus consider the expression s =
∑

i xibi. Each coefficient xi is a linear
combination of the entries of s (we’re passing from one basis of Rn to another).
It is indeed technically feasible to make sensors that acquire a given xi directly,
i.e., they measure a prescribed linear combination of light intensities from var-
ious points of the image.

However, a problem with this approach is that we don’t know in advance
which of the xi are going to be important for a given image, and thus which
linear combinations should be measured.

The research in compressed sensing has come up with a surprising solution:
Don’t measure any particular xi, but measure an appropriate number of random
linear combinations of the xi (each linear combination of the xi corresponds to
a uniquely determined combination of the si and so we assume that it can be
directly “sensed”).

Then, with very high probability, whenever we measure these random linear
combinations for an image whose corresponding x is r-sparse, we can exactly
reconstruct x from our measurements. More generally, this works even if x is
approximately sparse, i.e., all but at most r components are very small—then
we can reconstruct all the not-so-small components.

Mathematically speaking, the suggestion is to measure the vector b := Ax,
where A is a random k × n matrix, with k considerably smaller than n. The
problem of reconstructing a sparse x is precisely the problem of computing
a sparse solution of Ax = b. (Or an approximately sparse solution—but we
will leave the approximately sparse case aside, mentioning only that it can be
treated by extending the ideas discussed below.)
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Sparse solutions of linear equations. We are thus interested in matrices
A with n columns such that for every right-hand side b, we can compute an
r-sparse solution x of Ax = b, provided that one exists. Moreover, we want k,
the number of rows, small.

If every at most 2r columns of A are linearly independent, then the sparse
solution is guaranteed to be unique—showing this is an exercise in linear al-
gebra. Unfortunately, even if A satisfies this condition, computing the sparse
solution is computationally intractable (NP-hard) in general.

Fortunately, methods have been invented that find the sparse solution ef-
ficiently for a wide class of matrices. Roughly speaking, while the condition
above for uniqueness of a sparse solution requires every 2r columns of A to
be linearly independent, a sufficient condition for efficient computability of the
sparse solution is that every 3r columns of A are nearly orthogonal. In other
words, the linear mapping R

3r → R
k defined by these columns should be a

(Euclidean) ε0-almost isometry for a suitable small constant ε0.

Basis pursuit. As we will prove, for a matrix A satisfying the condition
just stated, a sparse solution x can be found as a solution to the following
minimization problem:

Minimize ‖x‖1 subject to x ∈ R
n and Ax = b. (BP)

That is, instead of looking for a solution x with the smallest number of nonzero
components, we look for a solution with the smallest ℓ1 norm. This method
of searching for sparse solutions is called the basis pursuit in the literature, for
reasons which we leave unexplained here.

Let us call the matrix A BP-exact (for sparsity r) if for all b ∈ R
m such

that Ax = b has an r-sparse solution x̃, the problem (BP) has x̃ as the
unique minimum.

The problem (BP) can be re-formulated as a linear program, i.e., as mini-
mizing a linear function over a region defined by a system of linear equations
and inequalities. Indeed, we can introduce n auxiliary variables u1, u2, . . . , un
and equivalently formulate (BP) as finding

min{u1 + u2 + · · ·+ un : u,x ∈ R
n, Ax = b,

−uj ≤ xj ≤ uj for j = 1, 2, . . . , n}.

Such linear programs can be solved quite efficiently.10

Geometric meaning of BP-exactness. The set of all r-sparse vectors in R
n

is a union of r-dimensional coordinate subspaces. We will consider only r-sparse
x̃ with ‖x̃‖1 = 1 (without loss of generality, since we can re-scale the right-
hand side b of the considered linear system). These vectors constitute exactly
the union of all (r − 1)-dimensional faces of the unit ℓ1 ball Bn

1 (generalized
octahedron), as the next picture illustrates for n = 3 and r = 1, 2.

10Recently, alternative and even faster methods have been developed for computing a sparse
solution of Ax = b, under similar conditions on A, although they find the sparse solution only
approximately.
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x1

x2

x3

1-sparse vectors

x1

x2

x3

2-sparse vectors

Let A be a k×n matrix of rank k and let L := KerA; then dimL = n−k =
m. A given r-sparse vector x̃ ∈ R

n satisfies the linear system Ax = bx̃, where
bx̃ := Ax̃, and the set of all solutions of this system is a translate of L, namely,
L+ x̃.

When is x̃ the unique point minimizing the ℓ1 norm among all points of
L+ x̃? Exactly when the affine subspace L+ x̃ just touches the ball Bn

1 at x̃;
here is an illustration for n = 3, dimL = 1, and r = 1:

x̃

L + x̃

x̃

L + x̃

Good x̃ Bad x̃

Let π be the orthogonal projection of Rn on the orthogonal complement of L.
Then L + x̃ touches Bn

1 only at x̃ exactly if π(x̃) has x̃ as the only preimage.
In particular, π(x̃) has to lie on the boundary of the projected ℓ1 ball.

good x̃ bad x̃

Thus, BP-exactness of A can be re-phrased as follows: Every point x̃ in each
(r − 1) face of the unit ℓ1 ball should project to the boundary of π(Bn

1 ), and
should have a unique preimage in the projection. (We note that this condition
depends only on the kernel of A.)

In the case n = 3, r = 1, dimL = 1, it is clear from the above pictures that if
the direction of L is chosen randomly, there is at least some positive probability
of all vertices projecting to the boundary, in which case BP-exactness holds.
The next theorem asserts that if the parameters are chosen appropriately and
sufficiently large, then BP-exactness occurs with overwhelming probability. We
won’t need the just explained geometric interpretation in the proof.11

11The geometric interpretation also explains why, when searching for a sparse solution, it
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2.8.1 Theorem (BP-exactness of random matrices). There are con-
stants C and c > 0 such that if n, k, r are integers with 1 ≤ r ≤ n/C
and k ≥ Cr log n

r and if A is a random k×n matrix, with independent
uniform ±1 entries (or, more generally, with independent entries as in
Lemma 2.4.1—the general version of the random projection lemma), then
A is BP-exact for sparsity r with probability at least 1− e−ck.

It is known that the theorem is asymptotically optimal in the following
sense: For k = o(r log n

r ), no k×n matrix at all can be BP-exact for sparsity r.
Let us say that a matrix A has the property of r-restricted Euclidean ε-

almost isometry12 if the corresponding linear mapping satisfies the condition
of ε-almost isometry with respect to the ℓ2 norm for every sparse x; that is, if

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2

for all r-sparse x ∈ R
n.

The next lemma is the main technical part of the proof of Theorem 2.8.1.

2.8.2 Lemma. There is a constant ε0 > 0 such that if a matrix A has the
property of 3r-restricted Euclidean ε0-almost isometry, then it is BP-exact for
sparsity r.

Let us remark that practically the same proof also works for restricted ℓ2/ℓ1
almost isometry (instead of Euclidean), i.e., assuming (1 − ε)‖x‖2 ≤ ‖Ax‖1 ≤
(1 + ε)‖x‖2 for all 3r-sparse x.

Proof of Theorem 2.8.1 assuming Lemma 2.8.2. Let B be a matrix
consisting of some 3r distinct columns of A. Proceeding as in the proof of
Theorem 2.5.1 with minor modifications, we get that the linear mapping ℓ3r2 →
ℓk2 given by B (and appropriately scaled) fails to be an ε0-almost isometry with
probability at most e−c1ε20k for some positive constant c1.

The number of possible choices of B is
(
n
3r

)
≤
(
en
3r

)3r ≤
(
n
r

)3r
= e3r ln(n/r),

using a well-known estimate of the binomial coefficient. Thus, A fails to have the
3r-restricted ε0-isometry property with probability at most e3r ln(n/r)e−c1ε20k ≤
e−ck for r, k, n as in the theorem. �

Proof of Lemma 2.8.2. Let us suppose that A has the property of 3r-
restricted Euclidean ε0-almost isometry, and that x̃ is an r-sparse solution of
Ax = b for some b.

For contradiction, we assume that x̃ is not the unique minimum of (BP),
and so there is another solution of Ax = b with smaller or equal ℓ1 norm. We
write this solution in the form x̃+∆; so

A∆ = 0, ‖x̃+∆‖1 ≤ ‖x̃‖1.
isn’t a good idea to minimize the Euclidean norm (although this task is also computationally
feasible). If L is a “generic” subspace of Rn and a translate of L touches the Euclidean ball
at a single point, then this point of contact typically has all coordinates nonzero.

12Sometimes abbreviated as 2-RIP (RIP=Restricted Isometry Property, the 2 referring to
the ℓ2-norm).
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We want to reach a contradiction assuming ∆ 6= 0.
Let us note that if A were an almost-isometry, then ∆ 6= 0 would imply

A∆ 6= 0 and we would have a contradiction immediately. Of course, we cannot
expect the whole of A to be an almost-isometry—we have control only over
small blocks of A.

First we set S := {i : xi 6= 0} and we observe that at least half of the ℓ1
norm of ∆ has to live on S; in symbols,

‖∆S‖1 ≥ ‖∆S‖1,
where ∆S denotes the vector consisting of the components of ∆ indexed by S,
and S = {1, 2, . . . , n}\S. Indeed, when ∆ is added to x̃, its components outside
S only increase the ℓ1 norm, and since ‖x̃+∆‖1 ≤ ‖x̃‖1, the components in S
must at least compensate for this increase.

Since the restricted isometry property of A concerns the Euclidean norm,
we will need to argue about the Euclidean norm of various pieces of ∆. For
simpler notation, let us assume ‖∆‖1 = 1 (as we will see, the argument is scale-
invariant). Then, as we have just shown, ‖∆S‖1 ≥ 1

2 and thus ‖∆S‖2 ≥ 1
2
√
r

by the Cauchy–Schwarz inequality.
The first idea would be to use the restricted almost-isometry property to

obtain ‖AS∆S‖2 ≥ 0.9 1
2
√
r
(we use ε0 = 0.1 for concreteness), and argue that

the rest of the product, AS∆S , is going to have smaller norm and thus A∆ =
AS∆S + AS∆S can’t be 0. This doesn’t quite work, because of the following
“worst-case” scenario:

r

︷ ︸︸ ︷

1

2r

1

2r

1

2r

. . .

S

∆ =
1

2
0 0 0. . .

Here ‖∆S‖2 is even much larger than ‖∆S‖2.
But this is not a problem: Since A has the 3r-restricted almost-isometry

property, as long as the bulk of the Euclidean norm is concentrated on at most
3r components, the argument will work.

So let B0 ⊂ S consist of the indices of the 2r largest components of ∆S ,
B1 are the indices of the next 2r largest components, and so on (the last block
may be smaller).

S

∆ =

B0 B1

. . .

. . .

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

We have ‖AS∪B0
∆S∪B0

‖2 ≥ 0.9‖∆S∪B0
‖2 ≥ 0.9‖∆S‖2 ≥ 0.9/2

√
r = 0.45/

√
r.

We want to show that ∑

j≥1

‖∆Bj‖2 ≤
0.4√
r
, (2.3)

since then we can calculate, using restricted almost-isometry on S ∪B0 and on
each of B1, B2, . . .,

‖A∆‖2 ≥ ‖AS∪B0
∆S∪B0

‖2 −
∑

j≥1

‖ABj∆Bj‖2 ≥
0.45√

r
− 1.1

0.4√
r
> 0,
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reaching the desired contradiction.
Proving (2.3) is a pure exercise in inequalities. We know that

∑
j≥0 ‖∆Bj‖1 =

‖∆S‖1 ≤ 1
2 . Moreover, by the choice of the blocks, the components belonging

to Bj are no larger than the average of those in Bj−1, and thus

‖∆Bj‖2 ≤
(
2r ·

(‖∆Bj−1
‖1

2r

)2
) 1

2

=
‖∆Bj‖1√

2r
.

Summing over j ≥ 1, we have

∑

j≥1

‖∆Bj‖2 ≤
1√
2r

∑

j≥0

‖∆Bj‖1 ≤
1

2
√
2r

<
0.4√
r
,

which gives (2.3) and finishes the proof. �

2.9 Nearest neighbors in high dimensions

The topic of this section is only loosely related to the Johnson–Lindenstrauss
lemma, but it can be regarded as an impressive instance of the “random pro-
jection” idea. It addresses an algorithmic problem very important in practice
and highly interesting in theory: the nearest neighbor problem.

In this problem, we are given a set P of n points in some metric space; we
will mostly consider the Euclidean space ℓk2 . Given a query point x, belonging
to the same metric space but typically not lying in P , we want to find a point
p ∈ P that is the closest to x.

A trivial solution is to compute the distance of x from every point of P and
find the minimum. But since the number of queries is large, we would like to do
better. To this end, we first preprocess the set P and store the results in a data
structure, and then we use this data structure to answer the queries faster.

There are several efficient algorithms known for the case of P ⊂ ℓk2 with k
small, say k = 2, 3, 4, but all of the known methods suffer from some kind of
exponential dependence on the dimension: As k gets bigger, either the storage
required for the data structure grows unrealistically large, or the improvement
in the query time over the trivial solution becomes negligible (or both). This
phenomenon is often called the curse of dimensionality and it is quite unpleas-
ant, since in many applications the dimension is large, say from ten to many
thousands.

Fortunately, it has been discovered that the curse of dimensionality can be
broken if we are satisfied with approximate answers to the queries, rather than
exact ones.

For a parameter C ≥ 1, a C-approximate algorithm for the nearest neighbor
problem is one that always returns a point p ∈ P at distance at most Crmin

from the query point x, where rmin is the distance of x to a true nearest
point.
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x

rmin

Crmin

A true nearest neighbor in P is here

. . . but this point

is also a valid answer.

This is very much in the spirit of approximate metric embeddings, with C
playing a role analogous to the distortion, and in some applications it even
makes good sense. For example, if we search for a fingerprint left by John Doe,
it seems reasonable to expect that John Doe’s record is going to be much closer
to the query than any other record in the database.

Several C-approximate nearest-neighbor algorithms have been proposed.
Here we present one of them, which is theoretically strong and elegant, and
which also fares quite well in practical implementations (provided that some
fine-tuning is applied, which is insignificant asymptotically but makes a big
difference in real-world performance).

The r-near neighbor problem. Instead of considering the nearest neigh-
bor problem directly, we describe an algorithm only for the following simpler
problem, called the C-approximate r-near neighbor problem. We assume that
together with the point set P , we are given a number r > 0 once and for all.
Given a query point x, the algorithm should return either a point p ∈ P at
distance at most Cr to x, or the answer NONE. However, NONE is a legal
answer only if the distance of x to all points of P exceeds r.

x

r

Cr

This query must return

a point in the larger disk.

x

This query may return

NONE or a point

in the larger disk.

It is known that an algorithm for the C-approximate r-near neighbor prob-
lem can be transformed to an algorithm for the 2C-approximate nearest neigh-
bor problem (where 2C can also be replaced by (1+ η)C for every fixed η > 0).

Such a transformation is very simple unless the ratio ∆ := dmax/dmin is
extremely large, where dmax and dmin denote the maximum and minimum dis-
tance among the points of P . The idea is to build several data structures for
the C-approximate r-near neighbor problem for suitably chosen values of r, and
to query all of them. For example, one can take dmin/2C as the smallest value
of r and then keep doubling it until it exceeds dmax. This incurs an extra factor
of at most O(log∆) both in the storage and query time (here C is considered
fixed). There are considerably more sophisticated methods avoiding the depen-
dence on ∆, but these are mainly of theoretical interest, since in practice, we
can almost always expect ∆ to be reasonably small.
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The probability of failure. The preprocessing phase of the algorithm is
going to be randomized (while query answering is deterministic). Moreover, the
algorithm is allowed to fail (i.e., say NONE even when it should really return
a point) with some small probability δ. The failure probability is taken with
respect to the internal random choices made during the preprocessing. That is,
if we fix P and a query point x, then the probability that the algorithm fails
for that particular query x is at most δ.

In the algorithm given below, we will bound the failure probability by 3
4 .

However, by building and querying t independent data structures instead of
one, the failure probability can be reduced to (34)

t, and thus we can make it as
small as desired, while paying a reasonable price in storage and query time.

Hashing. The algorithm we will consider is based on locality-sensitive hash-
ing. Before introducing that idea, we feel obliged to say a few words about
hashing in general. This fundamental concept comes from data structures but
it has also found many applications elsewhere.

Suppose that we want to store a dictionary of, say, 400,000 words in a
computer in such a way that a given word can be looked up quickly. For
solving this task by hashing, we allocate m buckets in the computer’s memory,
numbered 0 through m− 1, where each bucket can store a list of words.13 The
value of m can be taken as a number somewhat larger than the number of words
actually stored, say m = 500,00. Then we fix some hash function h, which is a
function mapping every word to an integer in range from 0 to m − 1, and we
store each word w in the bucket number h(w).

h(aardvark) = 2

h(addax) = 6

buckets

aardvark
addax
anteater
capybara
cat
cheetah
dog
rat
yak
zebra
zebu

1
0

2
3

m−1

aardvark

addax

anteater

capybara

cat
cheetah
dog

rat yak
zebra

zebu

4
5
6

Having stored all words of the dictionary in the appropriate buckets, it is
very simple to look up an unknown word w: We search through the words
stored in the bucket h(w), and either we find w there, or we can claim that it
doesn’t occur in the dictionary at all.

If every word were assigned into a randomly chosen bucket, independent
of the other words, then we would have less than one word per bucket on

13An actual implementation of such buckets is not a completely trivial task. For readers
interested in these matters, we sketch one of the possible solutions. We can represent the
m buckets by an array of m pointers. The pointer corresponding to the ith bucket points
to a linked list of the words belonging to that bucket. All of these linked lists are stored in
a common auxiliary array. Many other schemes have been proposed, and the details of the
implementation may make a large difference in practice.
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the average, and buckets containing more than ten words, say, would be very
rare. Thus, in this hypothetical situation, the search for an unknown word is
extremely fast in most cases.

However, it is not feasible to use a truly random hash function (how would
one store it?). Reasonable hash functions resemble a random function in some
respects, but they have a concise description and can be evaluated quickly.

Here is a concrete example. Let us represent words by 200-bit strings, say,
which we then interpret as integers in the set N = {0, 1, . . . , n − 1}, where
n = 2200. We fix a prime p ≥ m. The function h:N → {0, 1, . . . ,m − 1} is
defined using an integer parameter a ∈ {1, . . . , p−1}, which we pick at random
(and then keep fixed). For every word w, understood as an element of N , we
set h(w) := (aw (mod p)) (modm). A theoretical analysis shows that for every
fixed dictionary and a random, the words are very likely to be distributed quite
uniformly among the buckets.

This was just one particular example of a good class of hash functions. The
theory of hashing and hashing-based data structures is well developed, but we
will not discuss it any further.

Locality-sensitive hashing. Hashing can be used for storing any kind of
data items. In locality-sensitive hashing, we assume that the items are points in
a metric space, and we want that two close points are more likely to be hashed
to the same bucket than two faraway points. This requirement goes somewhat
against the spirit of hashing in general, since mapping the data items to the
buckets in a “random-like” fashion is what allows a hash function to do its job
properly. However, locality-sensitive hashing is used in a setting different from
the one for the ordinary hashing.

We now introduce a formal definition. Let (X, dX) be a metric space, whose
points we want to hash, and let J be a set, whose elements we regard as indices
of the buckets. In the algorithm below, we will have J = Z or J = Z

k for some
integer k. We consider a family H of hash functions h:X → J , together with a
probability distribution on H—in other words, we specify a way of choosing a
random h ∈ H.

Locality-sensitive hash family

A family H of hash functions from X to J is called (r, Cr, pclose, pfar)-
sensitive, where r > 0, C ≥ 1, and 0 ≤ pfar < pclose ≤ 1, if for every two
points x, y ∈ X we have

(i) If dX(x, y) ≤ r, then Prob[h(x) = h(y)] ≥ pclose.

(ii) If dX(x, y) > Cr, then Prob[h(x) = h(y)] ≤ pfar.

In both cases, the probability is with respect to a random choice of h ∈ H.

The algorithm. Now we present an algorithm for the C-approximate r-near
neighbor in a metric space (X, dX ), assuming that a (r, Cr, pclose, pfar)-sensitive
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hash family H is available for some constants pclose, pfar. A crucial quantity for
the algorithm’s performance is

α :=
ln pclose
ln pfar

(note that both the numerator and the denominator are negative); we will
achieve query time roughly O(nα) and storage roughly O(n1+α).

First we need to “amplify” the gap between pclose and pfar. We define a
new family G, consisting of all t-tuples of hash functions from H, where t is a
parameter to be set later. That is,

G =
{
g = (h1, . . . , ht):X → J t, h1, . . . , ht ∈ H

}
,

and for choosing g ∈ G at random, we pick h1, . . . , ht ∈ H randomly and
independently. Then, clearly, G is (r, Cr, ptclose, p

t
far)-sensitive.

In the preprocessing phase of the algorithm, we choose L random hash
functions g1, . . . , gL ∈ G, where L is another parameter to be determined in the
future. For each i = 1, 2, . . . , L, we construct a hash table storing all elements
of the point set P , where each p ∈ P is stored in the bucket gi(p) of the ith
hash table.

We note that the set J t indexing the buckets in the hash tables may be very
large or even infinite (in the instance of the algorithm for the Euclidean space
we will have J = Z). However, we can employ ordinary hashing, and further
hash the bucket indices into a compact table of size O(n). Thus, the total space
occupied by the hash tables is O(nL).14

To process a query x, we consider the points stored in the bucket gi(x) of
the ith hash table, i = 1, . . . , L, one by one, for each of them we compute the
distance to x, and we return the first point with distance at most Cr to x. If no
such point is found in these buckets, we return the answer NONE. Moreover,
if these L buckets together contain more than 3L points, we abort the search
after examining 3L points unsuccessfully, and also return NONE.

Thus, for processing a query, we need at most kL evaluations of hash func-
tions from the family H and at most 3L distance computations.

Here is a summary of the algorithm:

14We need not store the values gi(p) ∈ Jt explicitly; we can immediately hash them further
to the actual address in the compact hash table. The hash tables also don’t store the points
themselves, only indices. The theory of hashing guarantees that, when the compact hash
tables are implemented suitably, the access to the points in the bucket gi(x) takes only O(t)
extra time; we refer to the literature about hashing for ways of doing this.
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C-approximate r-near neighbor via locality-sensitive hashing

Preprocessing. For i = 1, . . . , L, choose gi = (hi,1, . . . , hi,t) ∈ G at
random and store the points of P in the ith hash table using the hash
function gi.

Query. Given x, search the points in the bucket gi(x) of the ith table,
i = 1, . . . , L. Stop as soon as a point at distance at most Cr is found,
or all points in the buckets have been exhausted, or 3L points have been
searched.

Estimating the failure probability. The algorithm fails if it answers
NONE even though there is a point p0 ∈ P with dX(x, p0) ≤ r. This may have
two reasons:

(A) In none of the L hash tables, x was hashed to the same bucket as p0.

(B) The L buckets searched by the algorithm contain more than 3L “far”
points, i.e. points p with dX(x, p) > Cr.

We want to set the parameters t and L so that the failure probability is
bounded by a constant δ < 1.

For points p0 and x with dX(x, p0) ≤ r we have Prob[g(x) = g(p0)] ≥ ptclose,
and so the probability of type (A) failure is at most (1− ptclose)

L.

As for the type (B) failure, the probability that a far point q goes to the
same bucket as x is at most ptfar, and so the expected number of far points in
the L searched buckets is no more than nLptfar. By Markov’s inequality, the
probability that we have more than 3L far points there is at most nptfar/3.

First we set t so that nptfar/3 ≤ 1
3 ; this needs t = (ln n)/ ln(1/pfar) (ignoring

integrality issues). Then, using (1 − ptclose)
L ≤ e−pt

close
L, we see that for L =

p−t
close, the probability of type (A) failure is at most e−1, and the total failure

probability doesn’t exceed 1
3 + e−1 < 3

4 . For the value of L this gives, again
pretending that all numbers are integers,

L = p−t
close = eln(pclose)(lnn)/ ln(pfar) = nα

as claimed.

This finishes the analysis of the algorithm in the general setting. It remains
to construct good locality-sensitive families of hash functions for metric spaces
of interest.

Locality-sensitive hashing in Euclidean spaces. Now our metric space
is ℓk2 . We may assume that r = 1, which saves us one parameter in the compu-
tations.

Let Z = (Z1, . . . , Zk) ∈ R
k be a normalized k-dimensional Gaussian random

vector, and let U ∈ [0, 1) be a uniformly distributed random variable (indepen-
dent of Z). Further let w > 0 be a real parameter. We define a family HGauss

of hash functions ℓk2 → Z:
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A random function h ∈ HGauss is given by

h(x) :=

⌊〈Z,x〉
w

+ U

⌋
.

2.9.1 Lemma. For every C > 1 and every ε > 0 there exists w such that
the family HGauss as above is (1, C, pclose, pfar)-sensitive and α ≤ 1

C + ε, where

α = ln(1/pclose)
ln(1/pfar)

is as above.

Proof. We will choose w = w(C, ε) large, and then the probabilities pclose
and pfar will be both close to 1. Thus, it is more convenient to estimate their
complements.

In general, let x,y ∈ ℓk2 be points with distance s, where we consider s as a
constant, and let

f(s) := Prob[h(x) 6= h(y)]

for h random. First we observe that for arbitrary real numbers a, b we have

Prob
[
⌊a+ U⌋ 6= ⌊b+ U⌋

]
= min(1, |a − b|).

Thus, for Z fixed to some z, we have Prob[h(x) 6= h(y) |Z = z] = min(1, | 〈z,x−y〉
w |).

To compute f(s), we need to average this over a random choice of Z. By the
2-stability of the normal distribution, the difference 〈Z,x〉− 〈Z,y〉 = 〈Z,x−y〉
is distributed as sZ, where Z is (one-dimensional) standard normal. Hence

f(s) = (2π)−1/2

∫ ∞

−∞
min(1, | s

w
t|)e−t2/2 dt

= Prob
[
|Z| ≥ w

s

]
+

s

w
(2π)−1/2

∫ w/s

−w/s
|t|e−t2/2 dt

= Prob
[
|Z| ≥ w

s

]
+

s

w
E[ |Z| ]− 2 · s

w
(2π)−1/2

∫ ∞

w/s
te−t2/2 dt.

Both the first and third terms in the last expression decrease (faster than)
exponentially as w → ∞, and as we know from Section 2.5, E[ |Z| ] =

√
2/π.

Hence

f(s) =
√

2
π · s

w
+ o( 1

w ).

Then, using ln(1− t) = −t+ o(t), we obtain

α =
ln(1− f(1))

ln(1− f(C))
=

(1 + o(1))f(1)

(1 + o(1))f(C)
=

1

C
+ o(1)

for C fixed and w → ∞. Hence we can fix w so large that α ≤ 1
C + ε, which

concludes the proof. �

With this lemma, we get that the general algorithm above can be used
with α arbitrarily close to 1/C. We need space O(n1+α) for storing the hash
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tables, O(kn) space for the points themselves, and O(ktL) = O(kn) space for
representing the hash functions g1, . . . , gL, so O(kn+ n1+α) in total.

The cost of distance computation is O(k), and evaluating a hash function
gi needs O(tk) = O(k log n) time. The total query time is O(knα log n).

Remarks. If k is large, one may consider reducing the dimension by a
random projection as in the Johnson–Lindenstrauss lemma. This increases the
approximation factor C, but it allows us to replace k by O(log n). Of course,
each query point has to be projected using the same matrix as for the original
set P , and only then the nearest neighbor algorithm can be applied. Moreover,
with some small probability, the random projection may distort the distance of
the query point to the points of P by a large amount, and then the algorithm
is likely to give a wrong answer.

In the proof of the last lemma, we have estimated the probabilities pclose
and pfar asymptotically, using a large w. In practice, too a large w is not good,
since then the parameter t in the algorithm also becomes large, which in turn
makes the storage and query time worse. However, for a given C, one can find
the value of w giving the best α numerically. It turns out that, first, the best
w is not very large (below 5 for C ≤ 5, for example), and second, that the
corresponding α is actually strictly smaller than 1/C.

A more recent work even showed that the exponent α can be reduced further,
arbitrarily close to 1/C2. We only sketch the idea.

The hash functions in HGauss described above can be geometrically inter-
preted as follows: To obtain h(x), we randomly project x to R1, using inde-
pendent N(0, 1) coefficients, then we translate the image by a random amount,
and finally we round the result to the nearest integer. In the improved hashing
strategy, we take a random Gaussian projection into R

d for a suitable d = d(C),
we translate it by a random vector, and finally, we round it to the nearest point
in G, where G is a suitable discrete set in R

d. Roughly speaking, we want G to
be the set of centers of balls of a suitable radius w that form a “thin” covering
of Rd. We won’t present any details here.

On the other hand, it is known that no locality-sensitive hashing family can
achieve α below 0.462/C2.

The case of ℓ1. Good locality-sensitive hash families are also known for
several other important classes of metric spaces. Perhaps most significantly, for
point sets in ℓk1, the exponent α can be pushed as close to 1/C as desired (and,
unlike in the Euclidean case, no further improvement is known).

The above analysis of the familyHGauss relies mainly on the 2-stability of the
normal distribution. Probably the conceptually simplest locality-sensitive hash
family for ℓk1 uses a 1-stable distribution, namely, the Cauchy distribution
with the density function

1

π
· 1

1 + x2
.

The 1-stability means that if K = (K1, . . . ,Kk) is a vector of independent
random variables with the Cauchy distribution, then for every x ∈ R

k, we
have 〈K,x〉 ∼ ‖x‖1K, where K again has the Cauchy distribution. Defining a

random hash function h(x) := ⌊ 〈K,x〉
w +U⌋, one obtains a hash family HCauchy,
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and an analysis similar to the proof of Lemma 2.9.1 shows that the resulting
exponent α tends to 1

C as w → ∞.

It is also interesting to note that while the Cauchy distribution is good
enough for locality-sensitive hashing, it cannot be used for a “flattening lemma”
in ℓ1 (indeed, as we will see later, there is no flattening lemma possible for ℓ1
even remotely comparable to the Johnson–Lindenstrauss lemma). The reason
is that the Cauchy distribution is “heavy-tailed”; i.e., the probability of large
deviations is quite significant, while for approximate preservation of many dis-
tances in the flattening lemma we would need a strong concentration.

2.10 Exercises

1. (Ball volume via the Gaussian distribution)

(a) Calculate In :=
∫
Rn e

−‖x‖22 dx. (See Section 2.2.)

(b)∗ Express In using Vn = Vol(Bn) and a suitable one-dimensional inte-
gral, where Bn denotes the n-dimensional Euclidean unit ball (consider
the contribution to In of a very thin spherical shell). Compute the integral
(set up a recurrence) and calculate Vn.

2.∗ Let x, y ∈ Sn−1 be two points chosen independently and uniformly at
random. Estimate their expected (Euclidean) distance, assuming that n
is large.

3.∗ Let L ⊆ R
n be a fixed k-dimensional linear subspace and let x be a random

point of Sn−1. Estimate the expected distance of x from L, assuming that
n is large.

4. (Lower bound for the flattening lemma)

(a) Consider the n+1 points 0, e1, e2, . . . , en ∈ R
n (where the ei are the

vectors of the standard orthonormal basis). Check that if these points
with their Euclidean distances are (1+ε)-embedded into ℓk2 , then there
exist unit vectors v1,v2, . . . ,vn ∈ R

k with |〈vi,vj〉| ≤ 100ε for all i 6= j
(the constant can be improved).

(b)∗∗ Let A be an n×n symmetric real matrix with aii = 1 for all i and
|aij | ≤ n−1/2 for all j, j, i 6= j. Prove that A has rank at least n

2 .

(c)∗∗ Let A be an n×n real matrix of rank d, let k be a positive integer,
and let B be the n×n matrix with bij = akij . Prove that the rank of B is

at most
(k+d

k

)
.

(d)∗ Using (a)–(c), prove that if the set as in (a) is (1+ε)-embedded into
ℓk2 , where 100n−1/2 ≤ ε ≤ 1

2 , then

k = Ω

(
1

ε2 log 1
ε

log n

)
.
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5. Design a streaming algorithm that uses space O(log n) and solves the
following problem. Let A be a set contining n− 1 distinct numbers from
{1, . . . , n}. The algorithm reads a stream containing A in an arbitrary
order and outputs the missing number x ∈ {1, . . . , n} \ A.

6.∗ Extend the streaming algorithm for the ℓ2 norm estimation from Sec-
tion 2.6 to solve the heavy hitters problem in the following sense: After
reading the stream, given an index j ∈ {1, 2, . . . , n}, the algorithm out-
puts a number x∗j such that with high probability, x∗j = xj ± α · ‖x‖2,
where x is the current vector at the end of the stream. Here α > 0 is a
prescribed constant. A hint is given at the end of Section 2.6.
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Lower bounds on the distortion

In this chapter we will consider lower bounds on the distortion, i.e., methods
for showing that some metric space doesn’t D-embed into another. We focus
on embeddings of finite metric spaces into the spaces ℓkp.

3.1 A volume argument and the Assouad dimension

The following problem is not hard, but solving it can help in getting used to
the notion of distortion:

3.1.1 Problem. Show that every embedding of the n-point equilateral space
Kn (every two points have distance 1) into the Euclidean plane ℓ22 has distortion
at least Ω(

√
n ).

The usual solution is via a volume argument, very similar to the one for
the existence of small δ-dense sets (Lemma 2.5.4). Assuming that f :Kn → ℓ22
is non-contracting and doesn’t expand any distance by more than D, we fix
an arbitrary point x0 ∈ Kn and observe that the open 1

2 -balls centered at the
images f(x), x ∈ Kn, are all disjoint and contained in the ball of radius D + 1

2
around f(x0). Comparing the areas gives n(12)

2 ≤ (D + 1
2)

2, and D = Ω(
√
n )

follows.

The same argument shows that Kn requires distortion Ω(n1/k) for embed-
ding into ℓk2 (or any k-dimensional normed space, for that matter). For the
equilateral space this is tight up to the multiplicative constant (right?), but
there are worse n-point spaces, as we will see shortly. Before getting to that,
let us phrase the “volume argument” in a slightly different way, in which we
encounter useful notions.

Dimensions defined by ball coverings. An important quantity for a
metric space is, how many small balls are needed to cover a large ball.

A metric space M is said to have doubling dimension at most k if,
for every r > 0, every 2r-ball in M can be covered by at most 2k balls
of radius r. A doubling metric space is one with a finite doubling
dimension.
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The notion of doubling dimension is good for rough calculations, where the
precise value of the dimension doesn’t matter. A slightly unaesthetic feature
of it is that the doubling dimension of ℓk2 is hard to determine and certainly it
doesn’t equal k. Here is a more sophisticated notion:

A metric space M is said to have Assouad dimension at most k if there
exists C > 0 such that for every r,R with 0 < r < R, every R-ball in M
can be covered by at most C(R/r)k balls of radius r.

In other words, a metric space having Assouad dimension1 at most k means
that every R-ball has an r-dense subset of size O((R/r)k).

It is easily seen that ℓk2 has Assouad dimension k (one of the inequalities
relies on Lemma 2.5.4, or rather, a variant of it for balls), and moreover, a
metric space has a finite Assouad dimension iff it is doubling. On the other
hand, Assouad dimension makes a good sense only for infinite spaces, because
for a finite space the constant C swallows all information.

Now we re-phrase the argument for Problem 3.1.1 so that it avoids volume
and works for embeddings of the equilateral space into any metric space M
of Assouad dimension at most k. Indeed, suppose that Kn embeds into M
with distortion at most D. Then the image forms, for some r > 0, an n-
point r-separated set2 S contained in a Dr-ball. This ball can be covered by
O((3D)k) balls of radius r/3, each of them contains at most one point of S, and
so D = Ω(n1/k).

Along similar lines, one can show that an embedding with a finite distortion
cannot decrease the Assouad dimension.

3.2 A topological argument and Lipschitz extensions

We have seen that the n-point equilateral space needs Ω(
√
n ) distortion for

embedding in the plane. Now we exhibit an n-point space requiring distor-
tion Ω(n).

3.2.1 Proposition. For all n there exists an n-point metric space (X, dX ) that
doesn’t cn-embed into the Euclidean plane ℓ22, where c > 0 is a suitable constant.

This result is asymptotically optimal, since it is known that every n-point
metric space can beO(n)-embedded even in the real line (which we won’t prove).

Proof. We begin by fixing a nonplanar graph G; for definiteness, let G be
the complete graph K5. Let G be the (infinite) metric space obtained from
G by “filling” the edges; for each edge e ∈ E(G), G contains a subspace se

1In the original source, Assouad called this the metric dimension, and this notion is
also sometimes used in the literature (sometimes synonymously to the doubling dimension,
though). But in graph theory the term “metric dimension” appears with a completely different
meaning. Moreover, this Assouad dimension shouldn’t be confused with the Nagata–Assouad

dimension, which means something else.
2We recall that r-separated means that every two distinct points of the set have distance

at least r.
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isometric to the interval [0, 1], and these subspaces are glued together at the
endpoints. The metric dG on G is still the shortest-path metric. For example,
for the points x and y in the picture,

x
y

dG(x, y) = 1.75, assuming that x lies in the middle of its edge and y in a quarter
(the drawing is a little misleading, since the intersection of the two edges drawn
as arcs corresponds to two points lying quite far apart in G).

Let us now choose X as a δ-dense subset of G, with δ = O(1/n). For
example, we may assume that n = 10(m − 1) + 5 for a natural number m, we
put the vertices of the graph G into X, and on each of the 10 edges we choose
m− 1 equidistant points (so the spacing is 1/m), as the drawing illustrates for
m = 4:

We consider a mapping f :X → ℓ22 with distortion D, and we want to bound
D from below. We may assume that f is noncontracting and D-Lipschitz. We
extend it to a mapping f̄ :G → ℓ22, by interpolating linearly on each of the
short segments between two neighboring points in X. Then the image of f̄ is a
piecewise-linear drawing of the graph G = K5, as in the next picture.

f̄(a) = f̄(b)

The core of the proof is the following claim.

3.2.2 Claim. If f̄ :G → R
2 is a piecewise-linear map as above, then there exist

points a, b ∈ G whose distance in G is at least a positive constant, say 1
2 , and

such that f̄(a) = f̄(b).

Proof of the claim. One possibility is to use the Hanani–Tutte
theorem from graph theory, which asserts that in every drawing of
a nonplanar graph G in the plane, there are two non-adjacent edges
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(i.e. edges not sharing a vertex in G) that cross an odd number of
times. In particular, there exists a crossing of non-adjacent edges,
and such a crossing yields the desired a and b, since non-adjacent
edges have distance at least 1 in G.

The Hanani–Tutte theorem is not an easy result, so we also
sketch a more pedestrian proof, relying only on the nonplanarity
of K5. We proceed by contradiction: We assume that whenever
f̄(a) = f̄(b), we have dG(a, b) < 1

2 . This means that in the corre-
sponding piecewise-linear drawing of K5, only edges sharing a ver-
tex may cross. These (finitely many) crossings can be removed by
transformations of the following kind:

−→

Then we arrive at a planar drawing of K5, which is a contradiction
proving the claim.

We note that if we have an arbitrary (piecewise-linear) drawing
of K5 in which only adjacent edges may cross, it is not straight-
forward to remove the crossings by the above transformation. For
example, in the following situation, trying to remove the circled
crossing makes two non-adjacent edges cross:

−→

However, such cases cannot occur in our setting, since by the as-
sumption, if we follow an edge e = {u, v} in the drawing from u
to v, we first encounter all crossings with edges incident to u, and
only then crossings with edges incident to v (this is where we use
the assumption dG(a, b) <

1
2 ).

Now the proof of Proposition 3.2.1 is finished quickly. Given a, b ∈ G as in
the claim, we find x, y ∈ X with dG(x, a) ≤ δ and dG(y, b) ≤ δ, δ = O(1/n).
Since f is D-Lipschitz, the extension f̄ is D-Lipschitz as well (right?), and so

‖f(x)− f(y)‖2 ≤ ‖f̄(x)− f̄(a)‖2 + ‖f̄(y)− f̄(b)‖2
≤ D(dG(x, a) + dG(y, b)) = O(D/n).

On the other hand, since f is noncontracting, ‖f(x) − f(y)‖2 ≥ dG(x, y) ≥
dG(a, b) −O(1/n) ≥ 1

2 −O(1/n), and thus D = Ω(n) as claimed. �

Lipschitz extendability. We will generalize the previous proof in order to
exhibit, for every fixed k, n-point metric spaces badly embeddable in ℓk2.

First we want to generalize the step where we extended the mapping f
defined on X to a map f̄ defined on the larger space G; the important thing is
to preserve the Lipschitz constant, or at least not to make it much worse.
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Extendability of Lipschitz maps constitutes an extensive area with many
results and techniques, and here we have a good occasion to mention two basic
and generally useful results.

In a general setting, we consider two metric spaces (Y, dY ) and (Z, dZ )
(the latter is usually taken as a normed space) and a subset X ⊆ Y , and we
ask, what is the smallest C such that every 1-Lipschitz map X → Z can be
extended to a C-Lipschitz map Y → Z. (We mention in passing that the
Johnson–Lindenstrauss lemma was discovered in connection with a problem of
this type.3)

We begin with a very simple example illustrating the nontriviality of the
general problem. We consider the “tripod” graph with the shortest-path metric,
and we map the leaves to the vertices of an equilateral triangle with side 2 in
the Euclidean plane:

???

This is a 1-Lipschitz map, but there is no way of extending it to the central
vertex while keeping it 1-Lipschitz.

However, if the target space has the ℓ∞ norm, then all Lipschitz maps can
be extended with no loss in the constant:

3.2.3 Proposition (Lipschitz extendability into ℓ∞). Let (Y, dY ) be
a metric space, let X ⊆ Y be an arbitrary subset, and let f :X → ℓk∞ be a
1-Lipschitz map. Then there is a 1-Lipschitz map f̄ :Y → ℓk∞ extending f ,
i.e., with f̄(x) = f(x) for all x ∈ X.

Proof. First we observe that it suffices to deal with maps into the real line,
since a map into ℓk∞ is 1-Lipschitz if and only if each of its coordinates fi is
1-Lipschitz.

Next, we note that it is enough if we can extend the domain by a single
point; in other words, to deal with the case Y = X ∪ {a}. The general case
then follows by Zorn’s lemma.4

So the remaining task is, given a 1-Lipschitz (i.e. nonexpanding) f :X → R,
find a suitable image b ∈ R for a so that the resulting extension f̄ is 1-Lipschitz.

The 1-Lipschitz condition reads |b − f(x)| ≤ dY (a, x) for all x ∈ X, which
we rewrite to

b ∈ Ix := [f(x)− dY (a, x), f(x) + dY (a, x)].

3They proved that if Y is any metric space and X ⊆ Y has n points, then every 1-
Lipschitz f :X → ℓ2 can be extended to an O(

√
log n )-Lipschitz f̄ :Y → ℓ2. With the

Johnson–Lindenstrauss lemma, Proposition 3.2.3 below, and the Kirszbraun theorem men-
tioned thereafter in our toolkit, the proof becomes a nice exercise.

4Readers who don’t know Zorn’s lemma or don’t like it may want to consider only separable
metric spaces, i.e., assume that there is a countable set S = {a0, a1, a2 . . .} ⊆ Y whose closure
is Y . We first extend on X ∪S by induction, and then we extend to the closure in the obvious
way, noticing that the Lipschitz constant is preserved.
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A system of nonempty, closed and bounded intervals in the real line has a
nonempty intersection if and only if every two of the intervals intersect (this,
in addition to being easy to see, is the one-dimensional Helly theorem). So it
suffices to check that Ix∩Iy 6= ∅ for every x, y ∈ X, and this is immediate using
the triangle inequality:

f(x)
f(y)

Ix Iy

dY (x, a)

dY (a, y)

︸ ︷︷ ︸

|f(x)− f(y)| ≤ dY (x, y) ≤ dY (x, a) + dY (a, y)

The proposition is proved. �

For the case where both the domain and the range are Euclidean (or Hilbert)
spaces, one can use the following neat result:

3.2.4 Theorem (Kirszbraun’s (or Kirszbraun–Valentine) theorem). If
Y is a Euclidean (or Hilbert) space, X ⊆ Y is an arbitrary subset, and Z is also
a Euclidean (or Hilbert) space, then every 1-Lipschitz map X → Z extends to
a 1-Lipschitz map Y → Z.

The general scheme of the proof is the same as that for Proposition 3.2.3,
but one needs a nontrivial lemma about intersections of balls in a Hilbert space,
which we omit here.

With a little help from topology. Now we need a space analogous to the
“K5 with filled edges” G in Proposition 3.2.1. It should be non-embeddable in
R
k (and moreover, every attempted embedding should fail by identifying two

faraway points), and at the same time, it should be “low-dimensional”, in the
sense of possessing small δ-dense sets.

The best what topology has to offer here are k-dimensional spaces non-
embeddable in R

2m (while every “sufficiently reasonable” m-dimensional space
is known to embed in R

2m+1). Using such spaces, we will prove the following
analog of the claim in the proof of Proposition 3.2.1.

3.2.5 Lemma. For every integer m ≥ 1 there exists a metric space (Y, dY )
with the following properties. For some constants R,C0, β > 0 we have:

(i) (Bounded and “m-dimensional”) The diameter of (Y, dY ) is at most R,
and for every δ > 0 there exists a δ-dense subset X ⊆ Y with |X| ≤
C0δ

−m.

(ii) (Every continuous map in R
2m identifies two distant points) For every

continuous map f :Y → R
2m, there exist points a, b ∈ Y with dY (a, b) ≥ β

and f(a) = f(b).

Assuming this lemma, the following generalization of Proposition 3.2.1 is
easy.
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3.2.6 Theorem. For every k ≥ 1 there exists ck > 0 such that for every n, one
can construct an n-point metric space requiring distortion at least ckn

1/⌈k/2⌉

for embedding in ℓk2.

Proof. It suffices to consider k = 2m. We fix (Y, dY ) as in Lemma 3.2.5 and
we choose an n-point δ-dense set X ⊆ Y , δ = O(1/n1/m).

Since we have prepared Lipschitz extendability for maps into ℓk∞, it will be
more convenient to work with ℓk∞ as the target space. Since the Euclidean and
ℓ∞ norm differ by a factor of at most

√
k (i.e., ‖x‖∞ ≤ ‖x‖2 ≤

√
k‖x‖∞ for all

x ∈ R
k), this influences only the constant factor ck.

So we consider a noncontracting and D-Lipschitz map f :X → ℓk∞, and
we extend it to a D-Lipschitz map f̄ defined on all of Y . By part (ii) of
Lemma 3.2.5, there are points a, b ∈ Y with distance at least β and such that
f̄(a) = f̄(b). The rest of the proof follows the argument for Proposition 3.2.1
almost literally and we omit it. �

Interestingly, the theorem is tight for k ≤ 2 (as we have already mentioned)
and tight up to a logarithmic factor for all even k, since every n-point metric
space can be embedded in ℓk2 with distortion O(n2/k(log n)3/2).5

On the other hand, for k = 3, 5, 7, . . . there is a more significant gap; e.g., for
k = 3 the lower bound is Ω(n1/2), while the upper bound is only roughly n2/3.

The Van Kampen–Flores complexes. First we describe a “standard”
example of spaces for Lemma 3.2.5. For this we need the vocabulary of simplicial
complexes (readers not familiar with it may skip this part or look up the relevant
terms).

In the 1930s Van Kampen and Flores constructed, for every m ≥ 1, an
m-dimensional finite simplicial complex that doesn’t embed in R

2m, namely,
the m-skeleton of the (2m + 2)-dimensional simplex. For m = 1, this is the
1-skeleton of the 4-dimensional simplex, which is exactly the “K5 with filled
edges”.

Metrically, we can consider the Van Kampen–Flores complex as a metric
subspace Y of the regular (2m+2)-dimensional Euclidean simplex. Then prop-
erty (i) in Lemma 3.2.5 is almost obvious, since the regular m-dimensional Eu-
clidean simplex has δ-dense subsets of size O(δ−m) (arguing as in Lemma 2.5.4),
and so has a finite union of such simplices.

The nonembeddability in part (ii) of Lemma 3.2.5 follows from a slightly
stronger form of the Van Kampen–Flores result: For every continuous mapping
f :Y → R

2m, there are points a, b belonging to disjoint faces of Y with f(a) =
f(b) (this is what the proofs actually give). For example, for the case m = 1,
this asserts that in any drawing of K5 in the plane, some two non-adjacent edges
cross, which was the consequence of the Hanani–Tutte theorem we needed in
Proposition 3.2.1.

5Sketch of proof: For embedding an n-point ℓ2 metric in ℓk2 , one uses a random projection as
in the Johnson–Lindenstrauss lemma—only the calculation is somewhat different; the resulting
distortion is O(n2/k

√
log n). An arbitrary n-point metric space is first embedded in ℓ2 with

distortion at most O(log n), which relies on a theorem of Bourgain, to be discussed later.
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The proof of this result (for all m) is not exactly hard, but it requires some
topological apparatus, and we won’t treat it here.

A geometric proof from the Borsuk–Ulam theorem. We describe an
alternative approach to Lemma 3.2.5, where all that is needed from topology is
encapsulated in the following famous result.

3.2.7 Theorem (Borsuk–Ulam theorem). For every continuous map
f :Sn → R

n, where Sn = {x ∈ R
n+1 : ‖x‖2 = 1} denotes the unit sphere

in R
n+1, there exists a point x ∈ Sn with f(x) = f(−x).

First we construct a weaker example than needed for Lemma 3.2.5; namely,
with the target dimension 2m in part (ii) replaced by 2m− 1. Let I2 = [−1, 1]2

be the unit square in the (Euclidean) plane, and let T be the “tripod” as in the
picture:

T
I
2

The weaker example is the space K := Tm ⊂ R
2m, the Cartesian product

of m copies of T . Since K is a union of finitely many (namely, 3m) cubes, it is
clear that it admits δ-dense subsets of size O(δ−m), so it remains to deal with
the non-embeddability as in part (ii) of Lemma 3.2.5.

3.2.8 Lemma. For every continuous map f :Tm → R
2m−1 there are points

a,b ∈ Tm with f(a) = f(b) and such that ‖a − b‖2 ≥ β, where β > 0 is a
universal constant.

Proof. We plan to use the Borsuk–Ulam theorem but with Sn replaced with
∂In+1, the boundary of the (n+1)-dimensional cube. Using the central projec-
tion Sn → ∂In+1, it is clear that also for every continuous map g: ∂In+1 → R

n

there is an x ∈ ∂In+1 with g(x) = g(−x).

To apply this result, we first we introduce a (piecewise-linear) mapping
π: I2 → T that “squashes” the square onto the tripod, as indicated in the
picture:
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Besides the continuity of π, we will use the following easily verified property:
Whenever x ∈ ∂I2 is a point on the perimeter of the square, we have ‖π(x) −
π(−x)‖2 ≥ β, for a suitable positive constant β.

Given a map f :Tm → R
2m−1 as in the lemma, we want to define a map

g: ∂I2m → R
2m−1. To this end, we represent a point x ∈ I2m as an m-tuple

x = (x1, . . . ,xm), x1, . . . ,xm ∈ I2, and we note that x ∈ ∂I2m exactly if
xi ∈ ∂I2 for at least one i (since both of these are equivalent to x having at
least one ±1 coordinate).

Now we set g := f ◦ πm; in other words, a point x = (x1, . . . ,xm) is first
mapped to πm(x) = (π(x1), . . . , π(xm)) ∈ Tm, and then to f(πm(x)) ∈ R

2m−1.
The Borsuk–Ulam theorem gives us an x ∈ ∂I2m with g(x) = g(−x); we claim
that a := πm(x) and b := πm(−x) are the desired points. But this is obvious,
since there is some i with xi ∈ ∂I2, and then ‖a−b‖2 ≥ ‖π(xi)−π(−xi)‖2 ≥ β.

�

The cone trick. Let us recall that for a set B ⊆ R
k and a point p ∈ R

k,
the cone over B with apex p is defined as the union of all segments xp with
x ∈ B.

To finally prove Lemma 3.2.5, we define an m-dimensional subspace Y ⊂
K = Tm+1 as Y := Tm+1 ∩ ∂I2m+2. In other words, Y consists of all points
(x1, . . . ,xm+1) ∈ Tm+1 where at least one of the xi is on the boundary of the
square, i.e., is one of the “tips” of T . (A diligent reader may check that for
m = 1, Y is homeomorphic to the complete bipartite graph K3,3 with filled
edges.)

It is easy to check that K is the cone over Y with the apex 0, and moreover,
every x ∈ K \ {0} is contained in a unique segment y0 with y ∈ Y . (This
is because T is such a cone, and this property is preserved under Cartesian
products.)

Let us consider a continuous map f :Y → R
2m. We define a map f̃ :K →

R
2m+1 in the natural way: A point y of the base Y is sent to (f(y), 0) (we

append 0 as the last coordinate), the apex 0 is mapped to (0, 0, . . . , 0, 1), and
for an arbitrary x ∈ K we interpolate linearly. Explicitly, we write x = ty +
(1 − t)0 = ty for y ∈ Y , and we set f̃(x) := (tf(y), 1 − t) (this map is clearly
continuous).

By Lemma 3.2.8, there are points ã, b̃ ∈ K with f̃(ã) = f̃(b̃) and ‖ã−b̃‖2 ≥
β. We have ã = t1a and b̃ = t2b, and f̃(ã) = f̃(b̃) means that t1 = t2 and
f(a) = f(b) (note that neither t1 nor t2 can be 0, and so a,b are determined
uniquely). Then β ≤ ‖ã− b̃‖2 = t1‖a− b‖2, and Lemma 3.2.5 is proved. �

3.3 Distortion versus dimension: A counting argument

We know that every n-point metric space embeds isometrically in ℓn∞. Can
the dimension n be reduced substantially, especially if we allow for embeddings
with some small distortion D?

The answer depends on the precise value of D in a surprising way, and it
connects metric embeddings with a tantalizing problem in graph theory. Here



71 3. Lower bounds on the distortion

we consider a lower bound, i.e., showing that the dimension can’t be too small
for a given D.

The counting argument for the lower bound goes roughly as follows. Sup-
pose that all n-point metric spaces can be D-embedded in some k-dimensional
normed space Z (where Z = ℓk∞ is our main example, but the same argument
works for every Z). We will exhibit a class M of many “essentially different” n-
point metric spaces, and we will argue that Z doesn’t allow for sufficiently many
“essentially different” placements of n points corresponding to D-embeddings
of all the spaces from M.

First let us see a concrete instance of this argument, showing that it is
not possible to embed all n-point metric spaces into a fixed normed space of a
sublinear dimension with distortion below 3.

3.3.1 Proposition. For every D < 3 there exists cD > 0 such that if Z is
a k-dimensional normed space in which all n-point metric spaces embed with
distortion at most D, then k ≥ cDn.

The assumption D < 3 turns out to be sharp: As we will see later, all
n-point metric spaces can be 3-embedded in ℓk∞ with k only about

√
n.

Proof. Let us consider n even, and let G = Kn/2,n/2 be the complete bipartite
graph on the vertex set V := {1, 2, . . . , n}. Let m = |E(G)| = (n/2)2 be the
number of edges of G.

Let H be the set of all graphs H of the form (V,E′) with E′ ⊆ E(G), i.e.,
subgraphs of G with the same vertex set as G. We have |H| = 2m.

For every H ∈ H, let dH denote the shortest-path metric of H. We define
a new metric dH by truncating dH ; namely, for u, v ∈ V we set

dH(u, v) := min(dH(u, v), 3).

It is easily seen that this is indeed a metric. (Strictly speaking, dH need not
always be a metric, sinceH may be disconnected and then some pairs of vertices
have infinite distance, but the truncation takes care of this.)

These dH define the “large” class M of metric spaces, namely, M :=
{(V, dH) : H ∈ H}. We note that every two spaces in M are “essentially
different” in the following sense:

Claim. For every two distinct H1,H2 ∈ H there exists u, v ∈ V such that
either dH1

(u, v) = 1 and dH2
(u, v) = 3, or dH2

(u, v) = 1 and dH1
(u, v) = 3.

Proof of the claim. Since E(H1) 6= E(H2), there is a edge {u, v} ∈
E(G) belonging to one of H1,H2 but not to the other. Let us say
that {u, v} ∈ E(H1). Then dH1

(u, v) = 1. Since {u, v} 6∈ E(H2),
dH2

(u, v) can’t be 1. It can’t be 2 either, since the path of length 2
connecting u and v in H2 together with the edge {u, v} would form
a triangle in G = Kn/2,n/2, but G is bipartite and thus it has no
triangles.
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u

v

in H1

u

v

in H2

no path of length 2

�

To prove Proposition 3.3.1, we suppose that for every H ∈ H there exists a
D-embedding fH : (V, dH) → Z. By rescaling, we make sure that 1

D dH(u, v) ≤
‖fH(u) − fH(v)‖Z ≤ dH(u, v) for all u, v ∈ V (where ‖.‖Z denotes the norm
in Z). We may also assume that the image of fH is contained in the ball
BZ(0, 3) = {x ∈ Z : ‖x‖Z ≤ 3}.

We will now “discretize” the mappings fH . Let us choose a small δ-dense set
N in BZ(0, 3), where δ will be fixed soon. As we know (Lemma 2.5.4), we may
assume |N | ≤ (4δ )

k. For every H ∈ H, we define a new mapping gH :V → N by
letting gH(v) be the nearest point of N to fH(v) (ties resolved arbitrarily).

B(0, 3)

u

v

fH(u)

gH(u)

fH(v)

gH(v)

Next, we want to prove that two different subgraphs H1,H2 ∈ H give rise
to different maps gH1

and gH2
. Let u, v be two vertices, as in the claim above,

on which dH1
and dH2

differ; say dH1
(u, v) = 1 and dH2

(u, v) = 3.
We have, on the one hand,

‖gH1
(u)− gH1

(v)‖Z ≤ ‖fH1
(u)− fH1

(v)‖Z + 2δ ≤ dH1
(u, v) + 2δ = 1 + 2δ,

and on the other hand,

‖gH2
(u)− gH2

(v)‖Z ≥ ‖fH2
(u)− fH2

(v)‖Z − 2δ ≥ 1

D
dH2

(u, v) − 2δ =
3

D
− 2δ.

So for δ < 1
4 (

3
D − 1), we arrive at ‖gH1

(u)− gH1
(v)‖Z < ‖gH2

(u)− gH2
(v)‖Z .

This shows that gH1
6= gH2

. Hence the number of distinct mappings g:V →
N cannot be smaller than the number of spaces in M. This gives the inequality

|N |n ≥ |M|.
Using |N | ≤ (4/δ)k , with δ > 0 depending only on D, and |M| = 2m, m =
|E(G)| = (n/2)2, we obtain k ≥ cDn as claimed. As a function of D, the
quantity cD is of order

1

log 1
3−D

.

�

Graphs without short cycles. The important properties of the graph
G = Kn/2,n/2 in the previous proof were that
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• it has a large number of edges, and

• it contains no cycles of length 3.

If we start with a graph G containing no cycles of length at most ℓ, the same
kind of calculations leads to the following result.

3.3.2 Proposition. Let G be a graph with n vertices and m edges that con-
tains no cycles of length at most ℓ. Then for every D < ℓ any normed space Z
that admits a D-embedding of all n-point metric spaces, we have

dimZ ≥ cm

n
, (3.1)

where c = c(D, ℓ) > 0 depends only on D and ℓ and it can be taken as
1/ log2(16ℓ/(1 − D

ℓ )). �

But what is the largest number m = m(ℓ, n) of edges in a graph with n
vertices and no cycle of length at most ℓ? This is the tantalizing graph-theoretic
problem mentioned at the beginning of the section, and here is a short overview
of what is known.

First, we note that it’s easy to get rid of odd cycles. This is because every
graph G has a bipartite subgraph H that contains at least half of the edges of
G,6 and so m(2t+1, n) ≥ 1

2m(2t, n). Thus, neglecting a factor of at most 2, we
can consider m(ℓ, n) only for odd integers ℓ.

Essentially the best known upper bound is

m(ℓ, n) ≤ n1+1/⌊ℓ/2⌋ + n. (3.2)

We won’t use it; we mention it only for completing the picture, and so we omit
the proof, although it’s quite simple.

This upper bound is known to be asymptotically tight in some cases, but
only for several values of ℓ; namely, for ℓ = 3, 5, 7, 11 (and thus also for ℓ =
2, 4, 6, 10, but as we said above, it suffices to consider odd ℓ).

We have already considered the case ℓ = 3; the graph witnessing m(3, n) =
Ω(n2) is very simple, namely, Kn/2,n/2. The construction for the next case

ℓ = 5, where m(5, n) is of order n3/2 is based on finite projective planes:7 The
appropriate graph has the points and the lines of a finite projective plane as
vertices, and edges correspond to membership, i.e., each line is connected to

6To see this, divide the vertices of G into two classes A and B arbitrarily, and while there
is a vertex in one of the classes having more neighbors in its class than in the other class,
move such a vertex to the other class; the number of edges between A and B increases in each
step. For another proof, assign each vertex randomly to A or B and check that the expected
number of edges between A and B is 1

2
|E(G)|.

7We recall that a finite projective plane is a pair (X,L), where X is a set, whose elements
are called points, and L is a family of subsets of X, whose sets are called lines. Every
two points x, y ∈ X are contained in exactly one common line, every two lines intersect in
exactly one point, and for some integer q, called the order of the projective plane, we have
|X| = |L| = q2 + q+1, and |L| = q+1 for every L ∈ L. For every prime power q, a projective
plane of order q can be constructed algebraically from the q-element finite field.
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all of its points. This is a bipartite graph, and it has no 4-cycle, because a
4-cycle would correspond to two distinct lines having two distinct points in
common. If we start with a projective plane of order q, the resulting graph has
n = 2(q2 + q + 1) vertices and (q2 + q + 1)(q + 1) edges, which is of order n3/2.

The constructions for ℓ = 7 and ℓ = 11 are algebraic as well but more
complicated. As an illustration, we present a construction for ℓ = 7, but we
won’t verify that it actually works. The vertices are again points and lines, and
edges correspond to membership, but this time we consider lines and points in
the 4-dimensional projective space (over a finite field GF(q)), and moreover,
only the points and lines contained in the quadratic surface

Q = {(x0 : x1 : x2 : x3 : x4) : x20 + x1x2 + x3x4 = 0}

(here (x0 : · · · : x4) denotes a point of the projective 4-space, i.e., an equivalence
class consisting of all 5-tuples (λx0, λx1, . . . , λx4), λ ∈ GF(q), λ 6= 0). There
are no 4-cycles for the same reason as in the previous construction, and the
absence of 6-cycles corresponds to the nonexistence of three lines spanning a
triangle in the quadric surface.

Together with ℓ = 11, we have exhausted all known cases where m(ℓ, n) is
of order n1+1/⌊ℓ/2⌋ as in the upper bound (3.2). For ℓ large, the best known
constructions give about n1+3/4ℓ. A simple probabilistic construction (take a
random graph with an appropriate edge probability and delete all edges in short
cycles) gives a still weaker boundm(ℓ, n) ≥ c0n

1+1/(ℓ−2) for all odd ℓ, with some
constant c0 > 0 independent of ℓ.

Together with Proposition 3.3.2, the constructions for ℓ = 3, 5, 7, 11 men-
tioned above yield the following: If Z is a normed space in which all n-point
metric spaces embed with distortion at most D, then

• dimZ = Ω(n) for D < 3,

• dimZ = Ω(n1/2) for D < 5,

• dimZ = Ω(n1/3) for D < 7, and

• dimZ = Ω(n1/5) for D < 11

(here D is considered fixed and the implicit constant in Ω(.) depends on it).
We also obtain the following lower bound for embedding into Euclidean

spaces, without any restriction on dimension.

3.3.3 Proposition (Lower bound on embedding in ℓ2). For all n, there
exist n-point metric spaces whose embedding into ℓ2 (i.e., into any Euclidean
space) requires distortion at least Ω(log n/ log log n).

Proof. If an n-point metric space is D-embedded into ℓn2 , then by the
Johnson–Lindenstrauss lemma it can be (2D)-embedded into ℓk2 with k ≤
C log n for some specific constant C. But a calculation using Proposition 3.3.2
shows that this dimension is too low unless the distortion is as large as claimed.

In more detail, let us set ℓ = ⌊4D⌋. Then, as was mentioned above, we
have m(ℓ, n) ≥ c0n

1+1/(ℓ−2) ≥ c0n
1+1/4D, and (3.1) gives k ≥ c2D,ℓm(ℓ, n)/n =
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Ω(n1/4D/ logD). The resulting inequality n1/4D/ logD = O(log n) then yields
D = Ω(log n/ log log n). �

3.4 Nonembeddability of the ℓ1 cube in ℓ2

We will start proving lower bounds for the distortion using inequalities valid
in the target space. In this section we demonstrate the approach in a simple
case, concerning embeddings in Euclidean spaces. The method also applies
to embeddings in other ℓp spaces and even in more general classes of normed
spaces.

The 4-cycle. We begin with a rather small example, with only four points,
where the metric is the graph metric of the 4-cycle:

v1 v2

v3v4

3.4.1 Proposition. The metric of the 4-cycle can be embedded in ℓ2 with
distortion

√
2, but not smaller.

An embedding attaining distortion
√
2 is the obvious one, which goes into

the Euclidean plane and is given by v1 7→ (0, 0), v2 7→ (1, 0), v3 7→ (1, 1),
and v4 7→ (0, 1). (We note that if the image is considered with the ℓ1 metric,
rather than with the Euclidean one, then we have an isometric embedding of
the four-cycle into ℓ21.)

It remains to show that
√
2 is the smallest possible distortion. As we will

see, any embedding that doesn’t expand the length of the edges has to shorten
at least one of the diagonals by at least

√
2.

Let us consider arbitrary four points x1,x2,x3,x4 in some Euclidean space;
we think of xi as the image of vi under some mapping of the vertices of the 4-
cycle. Let us call the pairs {x1,x2}, {x2,x3}, {x3,x4}, {x4,x1} the edges of the
considered 4-point configuration, while {x1,x3} and {x2,x4} are the diagonals
(we note that the configuration x1,x2,x3,x4 need not form a quadrilateral—the
points need not lie in a common plane, for example).

The next lemma claims that for any 4-point Euclidean configuration, the
sum of the squared lengths of the diagonals is never larger than the sum of the
squared lengths of the edges:

3.4.2 Lemma (Short diagonals lemma). For every choice of points x1,
x2, x3, x4 in a Euclidean space, we have

‖x1 − x3‖22 + ‖x2 − x4‖22 ≤ ‖x1 − x2‖22 + ‖x2 − x3‖22
+ ‖x3 − x4‖22 + ‖x4 − x1‖22.
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The lemma immediately implies Proposition 3.4.1, since for the metric of
the 4-cycle, the sum of the squared lengths of the diagonals is 8, twice larger
than the sum of the squared edges, and so any noncontracting embedding in a
Euclidean space has to contract a diagonal by at least

√
2.

The use of squared lengths in the lemma is a key trick for proving Propo-
sition 3.4.1, and it is an instance of a general rule of thumb, which we already
met in the proof of Proposition 1.4.2: For dealing with ℓp metrics, it is usually
easiest to work with pth powers of the distances.

First proof of Lemma 3.4.2. First we observe that it suffices to prove the
lemma for points x1, x2, x3, x4 on the real line. Indeed, for the xi in some Rk we
can write the 1-dimensional inequality for each coordinate and then add these
inequalities together.

If the xi are real numbers, we calculate

(x1 − x2)
2 + (x2 − x3)

2 + (x3 − x4)
2 + (x4 − x1)

2

− (x1 − x3)
2 − (x2 − x4)

2
(3.3)

= (x1 − x2 + x3 − x4)
2 ≥ 0,

and this is the desired inequality. �

Second proof of Lemma 3.4.2. Here is a more systematic approach us-
ing basic linear algebra. It is perhaps too a great hammer for this particular
problem, but it will be useful for more complicated questions.

As in the first proof, it suffices to show that the quadratic form (3.3) is
nonnegative for all x1, . . . , x4 ∈ R. The quadratic form can be rewritten in a
matrix notation as xTCx, where x = (x1, x2, x3, x4) (understood as a column
vector) and C is the symmetric matrix




1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1


 .

(Note that we first reduced the original problem, dealing with points in a Eu-
clidean space, to a problem about points in R, and then we represented a 4-tuple
on these one-dimensional points as a 4-dimensional vector.)

So we need to show that C is positive semidefinite, and linear algebra offers
several methods for that. For example, one can check that the eigenvalues are
0, 0, 0, 4—all nonnegative. �

The cube. Let Qm denote the space {0, 1}m with the ℓ1 metric. In other
words, the points are all m-term sequences of 0s and 1s, and the distance of
two such sequences is the number of places where they differ (this is also called
the Hamming distance).

We can also regard Qm as the vertex set V := {0, 1}m the “graph-theoretical
cube” with the shortest-path metric, where the edge set is

E := {{u,v} : u,v ∈ {0, 1}m, ‖u− v‖1 = 1}
Thus, for m = 2 we recover the 4-cycle.
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3.4.3 Theorem. Let m ≥ 2 and n = 2m. Then there is no D-embedding
of the cube Qm into ℓ2 with D <

√
m =

√
log2 n. That is, the natural

embedding, where we regard {0, 1}m as a subspace of ℓm2 , is optimal.

Historically, this is the first result showing that some metric spaces require
an arbitrarily large distortion for embedding in ℓ2. It also remains one of the
simplest and nicest such examples, although the distortion is only

√
log n, while

order log n can be achieved with different n-point examples.

However, it is generally believed that the cube is the worst among all n-
point ℓ1 metrics. This hasn’t been proved, but it is known that every n-point
ℓ1 metric embeds in ℓ2 with distortion O(

√
log n log log n) (with a complicated

proof beyond the scope of this text).

Proof of Theorem 3.4.3. We generalize the first proof above for the 4-cycle.

Let E be the edge set of Qm, and let F be the set of the long diagonals,
which are pairs of points at distance m. In other words,

F = {{u,u} : u ∈ {0, 1}m} ,

where u = 1− u (with 1 = (1, 1, . . . , 1)).

We have |F | = 2m−1 and |E| = m2m−1. Each edge has length 1, while the
long diagonals have length m. Thus the sum of the squared lengths of all long
diagonals equals m22m−1, while the sum of the squared lengths of the edges is
m2m−1, which is m-times smaller.

Next, let us consider an arbitrary mapping f : {0, 1}m → ℓ2. We will show
that

∑

{u,v}∈F
‖f(u)− f(v)‖22 ≤

∑

{u,v}∈E
‖f(u)− f(v)‖22; (3.4)

in words, for any configuration of 2m points in a Euclidean space, the sum of
squared lengths of the long diagonals is at most the sum of the squared lengths
of the edges. This obviously implies the theorem, and it remains to prove (3.4).

We proceed by induction on m; the base case m = 2 is Lemma 3.4.2.

For m > 2, we divide the vertex set V into two parts V0 and V1, where V0

are the vectors with the last component 0, i.e., of the form u0, u ∈ {0, 1}m−1.
The set V0 induces an (m−1)-dimensional subcube. Let E0 be its edge set, let
F0 = {{u0,u0} : u ∈ {0, 1}m−1} be the set of its long diagonals, and similarly
for E1 and F1. Let E01 = E \ (E0∪E1) be the edges of the m-dimensional cube
connecting the two subcubes.

By induction, we have
∑

F0
≤∑E0

and
∑

F1
≤∑E1

, where, e.g.,
∑

F0

is a shorthand for
∑

{u,v}∈F0
‖f(u)− f(v)‖22.

For each u ∈ {0, 1}m−1, we consider the quadrilateral with vertices u0, u0,
u1, u1; for u = (0, 0), it is indicated in the picture:
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The sides of this quadrilateral are two edges of E01, one diagonal from F0 and
one from F1, and its diagonals are from F . Each edge from E01 ∪ F0 ∪ F1 ∪ F
is contained in exactly one such quadrilateral.

Let us write the inequality of Lemma 3.4.2 for this quadrilateral and sum
over all such quadrilaterals (their number is 2m−2, since u and u yield the same
quadrilateral). This yields

∑
F ≤∑E01

+
∑

F0
+
∑

F1
≤∑E01

+
∑

E0
+
∑

E1
=
∑

E ,

the last inequality relying on the inductive assumption for the two subcubes.
The inequality (3.4) is proved, and so is Theorem 3.4.3. �

A sketch of another proof of (3.4). The inequality can also be proved
in the spirit of the second proof of Lemma 3.4.2. This proof is perhaps best
regarded in the context of harmonic analysis on the Boolean cube, which we
will mention later.

But an interested reader can work the proof out right now, in the language
of matrices. It suffices to establish positive semidefiniteness of an appropriate
symmetric matrix C, whose rows and columns are indexed by {0, 1}m. It turns
out that C = (m− 1)I2m −A+ P , where

• A is the usual adjacency matrix of the cube, i.e., auv = 1 if {u,v} ∈ E
and auv = 0 otherwise;

• P is the adjacency matrix corresponding similarly to the edge set F ; and

• I2m is the identity matrix.

Luckily, the eigenvectors of A are well known (and easily verified): They are ex-
actly the vectors of the Hadamard–Walsh orthogonal system (hv : v ∈ {0, 1}m),
where (hv)u, i.e., the component of hv indexed by u ∈ {0, 1}m, equals (−1)〈u,v〉.
These hv happen to be eigenvectors of C as well. So one can check that the
eigenvalues are all nonnegative—we omit the computations.

The inequality (3.4) and “similar” ones are sometimes called Poincaré in-
equalities in the literature. The term Poincaré inequality is commonly used
in the theory of Sobolev spaces (and it bounds the Lp norm of a differentiable
function using the Lp norm of its gradient). The inequalities considered in the
theory discussed here can be regarded, in a vague sense, as a discrete analog.
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3.5 Nonembeddability of expanders in ℓ2

In Proposition 3.3.3, we proved the existence of an n-point metric space re-
quiring distortion Ω(log n/ log log n) for embedding in ℓ2. Here we prove the
slightly stronger, and asymptotically tight, lower bound of Ω(log n) for an ex-
plicit example—by the method introduced in the previous section. As we’ll see
in the next section, the same lower bound actually holds for embeddings in ℓ1
as well. The example is the vertex set of a constant-degree expander G (with
the shortest-path metric).

Roughly speaking, expanders are graphs that are sparse but well connected.
If a physical model of an expander is made with little balls representing ver-
tices and thin strings representing edges, it is difficult to tear off any subset
of vertices, and the more vertices we want to tear off, the larger effort that is
needed.

For technical reasons, we will consider only regular expanders; we recall that
a graph G is regular if the degrees of all vertices are the same, equal to some
number r (then we also speak of an r-regular graph).

There are two definitions of constant-degree expanders, combinatorial and
algebraic.

For the combinatorial definition, let G be a given graph with vertex set V
and edge set E. Let us call a partition of V into two subsets S and V \S, with
both S and V \S nonempty, a cut, and let E(S, V \S) stand for the set of all
edges in G connecting a vertex of S to a vertex of V \S. We define the Cheeger
constant of G (also known as the edge expansion or conductance of G in
the literature) as

h(G) := min

{ |E(S, V \ S)|
|S| : S ⊆ V, 1 ≤ |S| ≤ |V |/2

}
.

Intuitively, if we want to cut off some vertices of G, but not more than half,
and we pay one unit for cutting an edge, then h(G) is the minimum price per
vertex of the cut part.

An infinite sequence (G1, G2, . . .) of r-regular graphs with |V (Gi)| → ∞ as
i → ∞ is a family of constant-degree expanders if h(Gi) ≥ β for all i,
where β > 0 is a constant independent of i.

(Since we want to bound h(G) from below by some constant, but we don’t want
to specify which constant, it doesn’t make much sense that a given single graph
is an expander—indeed, every connected regular graph belongs to a family of
constant-degree expanders.)

For the algebraic definition of expanders, we need to recall a few things
about graph eigenvalues. We have already mentioned in passing the adjacency
matrix A = AG of a graph G. For G with n vertices, A is an n × n matrix,
with both rows and columns indexed by the vertices of G, given by

auv =

{
1 if u 6= v and {u, v} ∈ E(G), and
0 otherwise.
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Since A is a symmetric real matrix, it has n real eigenvalues, which we write in
a non-increasing order as λ1 ≥ λ2 ≥ · · · ≥ λn. We can also fix corresponding
eigenvectors v1,v2, . . . ,vn (i.e., Avi = λivi) that form an orthogonal basis of
R
n (all of this is basic linear algebra and can be found in many textbooks).
If G is r-regular, then we have λ1 = r and v1 = 1 (the vector of all 1s), as is

easy to check. So the largest eigenvalue is kind of boring, but the second largest
eigenvalue λ2 is a key parameter of G. More precisely, the important quantity
is the difference r − λ2, which we denote by gap(G) and call the eigenvalue
gap of G.

An infinite sequence (G1, G2, . . .) of r-regular graphs with |V (Gi)| → ∞ as
i → ∞ is a family of constant-degree expanders if gap(Gi) ≥ γ for all
i, where γ > 0 is a constant independent of i.

It turns out that the combinatorial definition and the algebraic one yield the
same notion. This is based on the following (nontrivial) quantitative result: For
every graph G, we have

h(G)2

2r
≤ gap(G) ≤ 2h(G)

(proof omitted). Both of the inequalities are essentially tight; that is, there are
graphs with gap(G) ≈ h(G), as well as graphs with gap(G) ≈ h(G)2/r.

We will need the existence of families of constant-degree expanders, but we
won’t prove it here. There is a reasonably straightforward probabilistic proof,
as well as several explicit constructions. Some of the constructions are quite
simple to state. For example, a family (G1, G2, . . .) of 8-regular expanders can
be constructed as follows: Gm has vertex set Zm ×Zm (where Zm = Z/mZ are
the integers modulo m), and the neighbors of the vertex (x, y) are (x + y, y),
(x − y, y), (x, y + x), (x, y − x), (x + y + 1, y), (x − y + 1, y), (x, y + x + 1),
and (x, y − x+ 1) (addition and subtraction modulo m, and Gi has loops and
multiple edges). However, the proof that we indeed get a family of expanders
is quite sophisticated, and the proofs for other constructions are of comparable
difficulty or even much harder.

Nonembeddability in ℓ2 via the eigenvalue gap. We’ll use the algebraic
definition to show that constant-degree expanders require Ω(log n) distortion
for embedding in ℓ2.

The next lemma characterizes the eigenvalue gap of an arbitrary graph in
terms of ℓ2 embeddings of its vertex set.

3.5.1 Lemma. Let G = (V,E) be an arbitrary r-regular graph on n vertices,
and let F :=

(V
2

)
be the set of edges of the complete graph on V . Let α be the

largest real number such that the inequality

α ·
∑

{u,v}∈F
‖f(u)− f(v)‖22 ≤

∑

{u,v}∈E
‖f(u)− f(v)‖22;

holds for all mappings f :V → ℓ2. Then

α =
gap(G)

n
.
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Proof. We follow the method of the second proof for the 4-cycle (Lemma 3.4.2).
That is, we need to understand for what values of α is an appropriate n × n
matrix C positive semidefinite. We calculate

C = rIn −A− α(n − 1)In + α(Jn − In) = (r − αn)In −A+ αJn,

where A = AG is the adjacency matrix of G, In is the identity matrix, and Jn
is the all 1s matrix (thus, Jn − In = AKn).

We recall that v1 = 1,v2, . . . ,vn are mutually orthogonal eigenvectors of A,
with eigenvalues λ1 = r ≥ λ2 ≥ · · · ≥ λn. Because of the very simple structure
of the set F , the vi are also eigenvectors of C. Indeed,

C1 = (r − αn)1− r1+ αJn1 = 0,

so the eigenvalue of C belonging to v1 is 0. For i ≥ 2,

Cvi = (r − αn)vi − λivi − αJnvi = (r − αn − λi)vi

since each vi, i ≥ 2, is orthogonal to 1 and thus Jnvi = 0.

So the eigenvalues of C are 0 and r − αn − λi, i = 2, 3, . . . , n, and they are
nonnegative exactly if α ≤ (r − λ2)/n = gap(G)/n. �

3.5.2 Lemma. For every integer r there exists cr > 0 such that the following
holds. Let G be a graph of on n vertices of maximum degree r. Then for every
vertex u ∈ V (G) there are at least n

2 vertices with distance at least cr log n
from u.

Proof. For any given vertex u, there are at most r vertices at distance 1 from
u, at most r(r − 1) vertices at distance 2,. . . , at most r(r − 1)k−1 vertices at
distance k. Let us choose k as the largest integer with 1 + r + r(r − 1) + · · ·+
r(r − 1)k−1 ≤ n

2 ; a simple calculation shows that k ≥ cr log n. Then at least n
2

vertices have distance larger than k from u. �

Now we’re ready for the main nonembeddability result in this section.

3.5.3 Theorem. Let G be an r-regular graph on n vertices with gap(G) ≥
γ > 0. Then an embedding of the shortest-path metric of G in ℓ2 re-
quires distortion at least c log n, for a suitable positive c = c(r, γ). Using
the existence of families of constant-degree expanders, we thus get that,
for infinitely many n, there are n-point metric spaces requiring distortion
Ω(log n) for embedding in ℓ2.

Proof. For a graph G = (V,E) as in the theorem and for every mapping
f :V → ℓ2 we have

∑

{u,v}∈F
‖f(u)− f(v)‖22 ≤

n

γ
·
∑

{u,v}∈E
‖f(u)− f(v)‖22 (3.5)
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by Lemma 3.5.1. On the other hand, letting dG denote the shortest-path metric
of G and using Lemma 3.5.2, we calculate that

∑

{u,v}∈F
dG(u, v)

2 ≥ Ω(n log2 n) ·
∑

{u,v}∈E
dG(u, v)

2. (3.6)

The theorem follows by comparing these two inequalities. �

3.6 Nonembeddability of expanders in ℓ1

In this section we’ll show that the metric of constant-degree expanders requires
distortion Ω(log n) for embedding in ℓ1 as well.

3.6.1 Theorem. Let G be an r-regular graph on n vertices with h(G) ≥
β > 0. Then an embedding of the shortest-path metric of G in ℓ1 requires
distortion at least c log n, for a suitable positive c = c(r, β). Using the
existence of families of constant-degree expanders, we get that, for infinitely
many n, there are n-point metric spaces requiring distortion Ω(log n) for
embedding in ℓ1.

This result is strictly stronger than the ℓ2 lower bound proved in the previous
section, since every ℓ2 metric is also an ℓ1 metric. However, we’ve presented
the ℓ2 result separately, since the proof is of independent interest.

We now offer two proofs of the ℓ1 lower bound. The first one follows by
an extension of the ℓ2 proof and by an interesting isometric embedding. The
second one is analogous to the ℓ2 proof but it doesn’t use it; rather, it is based
on the combinatorial definition of expanders. Thus, if one wants to obtain
both the ℓ1 result and the ℓ2 result quickly, the second proof in this section is
probably the method of choice.

Metrics of negative type. For the first proof, we introduce a class of metrics,
which has played a key role in several recent results on metric embeddings.

A metric d on a (finite) set V is called a metric of negative type, or
alternatively, a squared ℓ2 metric, if there exists a mapping f :V → ℓ2
such that

d(u, v) = ‖f(u)− f(v)‖22
for all u, v ∈ V .

So a metric of negative type is a metric that can be represented by squared
Euclidean distances of some points in some R

k. There is a subtlety in this
definition: If we take arbitrary points x1, . . . ,xn ∈ R

k and define d(xi,xj) :=
‖xi − xj‖22, we need not obtain a metric of negative type, because we need not
obtain a metric at all.8 Indeed, for three distinct collinear points x1,x2,x3 the

8Thus, the term “squared ℓ2 metric” is potentially misleading, since one may be tempted
to parse it as “squared (ℓ2 metric)”, as opposed to the correct “(squared ℓ2) metric”. Thus,
the less explanatory but also less confusing traditional term “metric of negative type” seems
preferable.
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triangle inequality for this d fails! So only rather special configurations of points
in R

k give rise to squared ℓ2 metrics. More precisely, the squared Euclidean
distances in a set X ⊂ R

k form a metric exactly if no three points of X form a
triangle with a (strictly) obtuse angle, as is not difficult to show.

In analogy to the metric cone M and the cone Lp introduced in Section 1.4,
we let N ⊂ R

N , N =
(
n
2

)
, be the set of points representing metrics of negative

type on an n-point set. By definition, we have N = L2∩M (a metric of negative
type is a square of a Euclidean metric and a metric), and so N is also a convex
cone.

3.6.2 Lemma. Every ℓ1 metric is also a metric of negative type.

First proof. Since every ℓ1 metric is a nonnegative linear combination
of cut metrics (Proposition 1.4.1), and N is closed under nonnegative linear
combinations, it suffices to show that every cut metric is of negative type. But
this is obvious. �

Second proof. We give a proof via function spaces, which is simple and
natural. It could also be made “finite-dimensional” in the spirit of the discussion
in Sections 1.5 and 2.5.

Given an ℓ1 metric d on {1, 2, . . . , n}, let’s represent it by nonnegative real
functions f1, f2, . . . , fn ∈ L1(0, 1); that is, d(i, j) = ‖fi − fj‖1. Then we let
gi: [0, 1] × R → R be the characteristic function of the planar region between
the x-axis and the graph of fi; formally

gi(x, y) :=

{
1 if fi(x) ∈ [0, y]
0 otherwise.

Then ‖gi − gj‖22 =
∫ 1
0

∫∞
−∞(gi(x, y) − gj(x, y))

2 dy dx is the area of the set

{(x, y) ∈ [0, 1] × R : gi(x, y) 6= gj(x, y)}, which in turn equals
∫ 1
0 |fi(x) −

fj(x)|dx = ‖fi − fj‖1:

x1

y

0

y = fi(x)

gi(x, y) = 1

x1

y

0

gi(x, y) 6= gj(x, y)

fi

fj

So the ℓ1 distances of the fi equal the squared ℓ2 distances of the gi. Since
L2([0, 1] × R) is a countable Hilbert space and thus isometric to ℓ2, we indeed
get a representation by a square of an ℓ2 metric. �

First proof of Theorem 3.6.1. It suffices to observe that a minor modifi-
cation of the proof in the previous section actually shows that constant-degree
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expanders also require Ω(log n) distortion for embedding in any metric of neg-
ative type. Indeed, instead of the inequality (3.6) for the sum of squares of the
expander metric, we derive from Lemma 3.5.2 the inequality

∑

{u,v}∈F
dG(u, v) ≥ Ω(n log n) ·

∑

{u,v}∈E
dG(u, v).

Comparing it with the inequality (3.5) for the squared Euclidean distances
gives the claimed Ω(log n) lower bound. This implies the same lower bound for
embedding in ℓ1 by Lemma 3.6.2. �

Nonembeddability in ℓ1 via combinatorial expansion. Theorem 3.6.1
can also be proved directly, without a detour through the metrics of negative
type.

In order to formulate an analog of Lemma 3.5.1, we introduce another pa-
rameter of the graph G, similar to the Cheeger constant h(G). Namely, for a
cut S in G we define the density

φ(G,S) :=
|E(S, V \ S)|
|S| · |V \ S|

(this is the ratio of the number of edges connecting S and V \ S in G and in
the complete graph on V ), and φ(G) is the smallest density of a cut in G. It’s
easy to see that h(G) ≤ nφ(G) ≤ 2h(G) for all G, and so φ(G) is essentially
h(G) with a different scaling.

3.6.3 Lemma. Let G = (V,E) be an arbitrary graph on n vertices, and let
F :=

(
V
2

)
be the set of edges of the complete graph on V . Let β be the largest

real number such that the inequality

β ·
∑

{u,v}∈F
‖f(u)− f(v)‖1 ≤

∑

{u,v}∈E
‖f(u)− f(v)‖1;

holds for all mappings f :V → ℓ1. Then

β = φ(G).

Assuming this lemma, the second proof of Theorem 3.6.1 is completely anal-
ogous to the derivation of the ℓ2 result, Theorem 3.5.3 from Lemma 3.5.1, and
so we omit it. It remains to prove the lemma, and for this we can again offer
two ways.

First proof of Lemma 3.6.3. As in the ℓ2 case, we may assume that the
values of f are real numbers. So we can write

β = inf {Q(x) : x ∈ R
n,x nonconstant} , (3.7)

with

Q(x) :=

∑
{u,v}∈E |xu − xv|∑
{u,v}∈F |xu − xv|
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(we call x nonconstant if there are u, v with xu 6= xv; the restriction to noncon-
stant x is needed to have the denominator nonzero).

We observe that the minimum of Q(x) over all nonconstant x ∈ {0, 1}n
is exactly φ(G) (right?). So it remains to show that the infimum in (3.7) is
attained for x ∈ {0, 1}n.

For a nonconstant x ∈ Rn, let k(x) ≥ 2 denote the number of distinct values
attained by the components of x. Given an x with k(x) ≥ 3, we’ll find x′ ∈ K
with k(x′) < k(x) and Q(x′) ≤ Q(x).

Suppose that r < s < t are three consecutive values attained by the com-
ponents of x. We let s vary in the interval [r, t] and keep everything else fixed.
More precisely, for s′ ∈ [r, t], we define x′(s′) by setting those components that
equal s in x to s′, and letting all the other components agree with x.

The key observation is that both the numerator and the denominator of
Q(x′(s′)) are linear functions of s′ (this is because the function x 7→ |a − x| is
linear on each interval not containing a in the interior). Moreover, the denomi-
nator remains nonzero for all s′ ∈ [r, t]. Then it’s easily seen that Q(x′(s′)) at-
tains minimum for s′ = r or s′ = t. The corresponding x′ satisfies k(x′) < k(x)
because the value s has been eliminated.

Thus, the infimum in (3.7) can be taken only over the x with k(x) = 2.
By scaling, we can even restrict ourselves to nonconstant x ∈ {0, 1}n, which
concludes the proof. �

Second proof of Lemma 3.6.3. This proof is, in a way, simpler, but it needs
more machinery. We use L1, the cone of ℓ1 metrics introduced in Section 1.4,
and the fact that every ℓ1 metric is a nonnegative linear combination of cut
metrics (Proposition 1.4.1).

We can re-formulate the definition of β as

β = inf
d∈L1\{0}

R(d), (3.8)

where

R(d) =

∑
{u,v}∈E d(u, v)

∑
{u,v}∈F d(u, v)

.

We claim that for every d ∈ L1, there is a cut metric d∗ with R(d∗) ≤ R(d).
Indeed, we know that d can be written as

∑k
i=1 λidi, with the λi positive reals

and the di cut metrics. Then R(d) ≥ mini R(di), using the inequality

a1 + a2 + · · · + an
b1 + b2 + · · ·+ bn

≥ min

{
a1
b1

,
a2
b2

, . . . ,
an
bn

}

valid for all positive reals a1, . . . , an, b1, . . . , bn (a quick proof: if ai ≥ αbi for all
i, then

∑
i ai ≥ α

∑
i bi).

Thus, the infimum in (3.8) is attained for some cut metric, and it remains
to observe (as in the first proof) that the minimum of R over (nonzero) cut
metrics is exactly φ(G).

Essentially the same proof can also be expressed more geometrically. Let P
be the convex polytope obtained as the intersection of L1 with the hyperplane
{d ∈ R

N :
∑

{u,v}∈F d(u, v) = 1} (it’s easily seen that P is bounded). We have
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β = infP R(d). Now R is a linear function on P, and thus it attains its infimum
at a vertex d0 of P. The vertices are multiples of cut metrics, and we conclude
as above. �

3.7 Computing the smallest distortion for embedding in ℓ2

As a rule of thumb, the D-embeddability question, considered as a computa-
tional problem, is usually hard. For example, it is known that the question
“Given an n-point metric space, does it 1-embed in ℓ1?” is NP-hard, and there
are several other results of this kind (although not all interesting cases have
been settled).

The result of this section is an exception to this rule: When the target space
is ℓ2, a Euclidean space of unlimited dimension, then the minimum distortion
D required for embedding a given n-point metric space can be computed in
polynomial time (more precisely, it can be approximated to any desired accu-
racy).

3.7.1 Proposition. The smallest distortion D required to embed a given
finite metric space (V, dV ) in ℓ2 can be approximated with any given accu-
racy ε > 0 in time polynomial in the number of bits needed to represent
dV and in log 1

ε .

The proof has two ingredients, both of independent interest. The first one
is a characterization of Euclidean metrics in terms of positive semidefinite ma-
trices. Here it is convenient to index the points starting from 0, rather than by
{1, . . . , n} as usual.

3.7.2 Theorem. Let V = {0, 1, . . . , n}, and let z = (zij : {i, j} ∈
(V
2

)
) be

a given vector of real numbers. Then z ∈ L2 (in other words, there exists a
Euclidean metric dV on V such that zij = dV (i, j)

2 for all i, j) if and only
the n× n matrix G given by

gij :=
1
2 (z0i + z0j − zij) , i, j = 1, 2, . . . , n

(where zij = zji for all i, j, and zii = 0 for all i), is positive semidefinite.

Proof. We need a standard linear-algebraic fact: An n×nmatrix A is positive
semidefinite if and only if it can be expressed as A = BTB for some n× n real
matrix B.

First we check necessity of the condition in the theorem; that is, if p0, . . . ,pn ∈
ℓn2 are given points and zij := ‖pi − pj‖22, then G is positive semidefinite. For
this, we need the cosine theorem, which tells us that ‖a−b‖22 = ‖a‖22 + ‖b‖22 −
2〈a,b〉 for every two vectors a,b ∈ R

n. Thus, if we define vi := pi − p0,
i = 1, 2, . . . , n, we get that 〈vi,vj〉 = 1

2(‖vi‖2+ ‖vj‖2−‖vi−vj‖2) = gij . So G
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is the Gram matrix of the vectors vi, we can write G = BTB for the matrix
B having vi as the ith column, and hence G is positive semidefinite.

Conversely, let’s assume that G as in the theorem is positive semidefinite;
thus, it can be factored as G = BTB for some n × n matrix B. Then we let
pi ∈ R

n be the ith column of B for i = 1, 2, . . . , n, while p0 := 0. Reversing the
above calculation, we arrive at ‖pi − pj‖22 = zij , and the proof is finished. �

Proof of Proposition 3.7.1. Given a metric dV on the set V = {0, 1, . . . , n},
we can use Theorem 3.7.2 to express the smallest D for which (V, dV ) can be
D-embedded in ℓ2 as the minimum of the following optimization problem.

Minimize D

subject to dV (i, j)
2 ≤ zij ≤ D2dV (i, j)

2 for all {i, j} ∈
(V
2

)
,

gij =
1
2 (z0i + z0j − zij) i, j = 1, 2, . . . , n,

the matrix G = (gij)
n
i,j=1 is positive semidefinite.

The variables in this problem are D, zij for {i, j} ∈
(V
2

)
(where zij refers to the

same variable as zji, and zii is interpreted as 0), and gij , i, j = 1, 2, . . . , n.
This optimization problem is an instance of a semidefinite program. A

semidefinite program in general is the problem of minimizing or maximizing a
given linear function of some k real variables over a set S ⊆ R

k, called the set
of feasible solutions. The set S is specified by a system of linear inequalities
and equations for the variables and by the requirement that an n × n matrix
X is (symmetric and) positive semidefinite, where each entry of X is one of the
k variables. The input size of a semidefinite program is, speaking somewhat
informally, the total number of bits needed to write down all the coefficients (in
the optimized linear function and in the equations and inequalities).

Semidefinite programming, the second main ingredient in the proof of
Proposition 3.7.1, is a research area concerned with properties of semidefinite
programs and efficient algorithms for solving them, and it constitutes one of the
most powerful tools in optimization. A key fact is that, roughly speaking, an
optimal solution of a given semidefinite program can be approximated in poly-
nomial time with any prescribed accuracy. Unfortunately, the last statement is
not literally true; what is really known is the following:

3.7.3 Fact. Suppose that a given semidefinite program has at least one feasible
solution, and that every component in every feasible solution is bounded in
absolute value by an explicitly given number R. Then, given ε > 0, it is possible
to compute an optimal solution of the semidefinite program with accuracy ε in
time polynomial in the input size and in log(R/ε).

This fact can be proved by the ellipsoid method ; conceptually it is simple,
but there are many nontrivial technical details.

For our specific semidefinite program above, it is easy to come up with
some apriori upper bound for the minimum distortion, which holds for every
possible input metric dV . For example, D ≤ n2 is easy to show, and Bourgain’s
theorem, to be discussed later, even shows D ≤ C log n for a suitable constant
C. We can thus add an extra constraint D ≤ n2, say, and then the set of all
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feasible solutions is clearly nonempty and bounded. Then Proposition 3.7.1
follows from Fact 3.7.3. �

3.8 “Universality” of the method with inequalities

In the previous sections, we have been proving lower bounds for the distortion
of embeddings in ℓp by the approach with inequalities, which can in general
be cast as follows. Given a metric dV on the set V = {1, 2, . . . , n}, we set
up an inequality saying that the sum of the pth powers of the distances with
some coefficients is never larger than the sum of the pth powers with some
other coefficients. Then we show that this inequality is valid for all ℓp metrics,
while for the original metric dV it is violated at least with a multiplicative
factor of Dp. That is, for some choice of nonnegative coefficients auv and buv,
{u, v} ∈ F :=

(V
2

)
, we prove that, on the one hand, for every mapping f :V → ℓp

we have

∑

{u,v}∈F
auv‖f(u)− f(v)‖pp ≤

∑

{u,v}∈F
buv‖f(u)− f(v)‖pp, (3.9)

and on the other hand, for the original metric dV ,

∑

{u,v}∈F
auvdV (u, v)

p ≥ Dp
∑

{u,v}∈F
buvdV (u, v)

p. (3.10)

How strong is this method? As we will show next, using a simple argument
about separation of convex sets, it is universal in the following sense.

3.8.1 Proposition. Let (V, dV ) be a metric space on the set {1, 2, . . . , n}, and
let’s suppose that it has no D-embedding in ℓp for some p ∈ [1,∞). Then there
are nonnegative coefficients auv and buv, {u, v} ∈ F , such that (3.9) and (3.10)
hold, and thus the method of inequalities always “proves” that (V, dV ) is not
D-embeddable in ℓp.

One should not get over-enthusiastic about this result: It tells us that the
right coefficients always exist, but it doesn’t tell us how to find them, and
moreover, even if we knew the coefficients, it’s not clear in general how (3.9)
can be verified for all ℓp metrics.

Proof of Proposition 3.8.1. We consider the following two convex sets in
R
N , N = |F | =

(n
2

)
: the cone of pth powers of ℓp metrics

Lp =
{
(‖f(u)− f(v)‖pp){u,v}∈F : f :V → ℓp

}
,

and the set

Kp = Kp(dV ) = {z ∈ R
N : dV (u, v)

p ≤ zuv ≤ DpdV (u, v)
p

for all {u, v} ∈ F}.
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ThisKp includes all pth powers of metrics arising by noncontractingD-embeddings
of (V, dV ). But not all elements of Kp are necessarily of this form, since the
triangle inequality may be violated.

Both of Kp and Lp are convex (for Kp this is obvious, and for Lp we saw
it in the proof of Proposition 1.4.2). The assumption that (V, dV ) has no D-
embedding in ℓp means that Kp ∩ Lp = ∅.

Therefore, Kp and Lp can be separated by a hyperplane; that is, there exist
c ∈ R

N and b ∈ R such that 〈c, z〉 ≥ b for all z ∈ Kp, while 〈c, z〉 ≤ b for all
z ∈ Lp.

Next, we check that we may assume b = 0. Since 0 ∈ Lp, we must have
b ≥ 0, and thus

〈c, z〉 ≥ 0 for all z ∈ Kp.

Since Lp is a cone (i.e., z ∈ Lp implies tz ∈ Lp for all t ≥ 0), every z ∈ Lp

satisfies 〈c, z〉 ≤ 1
t b for all t > 0, and therefore,

〈c, z〉 ≤ 0 for all z ∈ Lp.

Now we define

auv := c+uv, buv := c−uv,

where we use the notation t+ = max(t, 0), t− = max(−t, 0).
To check the inequality (3.10), we employ 〈c, z〉 ≥ 0 for the following z ∈ Kp:

zuv =

{
dV (u, v)

p if cuv ≥ 0,
DpdV (u, v)

p if cuv < 0.

Then 〈c, z〉 ≥ 0 boils down to (3.10).
To verify (3.9) for a given f :V → ℓp, we simply use 〈c, z〉 ≤ 0 for the z ∈ Lp

given by xuv = ‖f(u)− f(v)‖pp. �

3.9 Nonembeddability of the edit distance in ℓ1

Here we present a nonembeddability result where a successful application of
the method with inequalities relies on a sophisticated device—a result from
harmonic (or Fourier) analysis on the discrete cube.

Generally speaking, harmonic analysis belongs among the most powerful
tools in all mathematics, and in the last approximately twenty years it has also
been used in theoretical computer science and in discrete mathematics, with
great success.

There are several other applications of harmonic analysis in the theory of
metric embeddings, besides the one presented here. The result we will cover is
very clever but simple, it gives us an opportunity to encounter yet another very
important metric, and the use of harmonic analysis in it is well encapsulated in
a single (and famous) theorem.

The metric: edit distance. Edit distance is a way of quantifying the
amount of difference between two strings of characters—for example, between
two words, or two books, or two DNA sequences. It is also called the Levenshtein
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distance, after the author of a 1965 paper, on error-correcting codes, where it
was introduced.

Let u = u1u2 . . . un and v = v1v2 . . . vm be two strings. Their edit dis-
tance, denoted by ed(u,v), is the minimum number of edit operations
required to transform u into v, where an edit operation is the insertion of a
character, the deletion of a character, and the replacement of one character
by another.

For example, the strings BIGINIG and BEGINNING have edit distance 3:
it is easy to find a sequence of three edit operations transforming one to the
other, and slightly less easy to check that one or two operations won’t do.

In many practical problems, we need to solve the nearest neighbor problem
discussed in Section 2.9 with respect to the edit distance. That is, we have a
large collection (database) of strings, and when a query string comes, we would
like to find a nearest string in the database. Obvious applications include
spelling check, detecting plagiarism, or matching fragments of DNA against
known genomes.

A straightforward approach to this problem can be computationally very
demanding. First, computing the edit distance of long strings is expensive: for
strings of length a and b the best known exact algorithm runs in time roughly
proportional to ab. Second, if we just try to match the query string against
each of the strings in the database, we must compute the edit distance very
many times.

Now consider how much easier things would be if we had a nice embedding
of strings in ℓ1. By this we mean an embedding of the metric space of all strings
over the given alphabet, up to some suitable length, in ℓ1, that

◦ has a small distortion,

◦ is quickly computable (i.e., given a string u, its image in ℓ1 can be found
reasonably fast), and

◦ the dimension of the target space is not too high.

Then we could use some (approximate) nearest neighbor algorithm in ℓ1, such
as the one presented in Section 2.9. We note that in at least some of the
applications, it is reasonable to expect that one of the strings in the database
is much closer to the query string than all others, and then approximate search
is sufficient.

This program has been pursued with some success. An embedding has been
found of the space of all strings of length n (over an alphabet of a constant size)
in ℓ1 with distortion at most

2O(
√

(logn)(log logn) ).

This grows with n but more slowly than any fixed power nε, although much
faster than log n, say. (Note that, for a two-letter alphabet, the considered
metric space has N = 2n points, and so Bourgain’s theorem gives distortion
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only O(n), which is fairly useless.) The embedding is also reasonable, although
not entirely satisfactory, with respect to the computational efficiency and the
dimension of the target space.9

However, the following theorem sets a limit on how small the distortion can
be.

3.9.1 Theorem. Let us consider the set {0, 1}n of all strings of length n
over the two-letter alphabet {0, 1}, equipped with the edit distance ed(., .).
Then every embedding of the resulting metric space in ℓ1 has distortion at
least Ω(log n).

Let us stress that the lower bound concerns embedding of all the 2n strings
simultaneously. A database of strings, say a dictionary, is probably going to
contain only a small fraction of all possible strings, and so it might still be that
such a smaller set of strings can be embedded with much smaller distortion.
But that embedding can’t be oblivious, i.e., it has to depend on the particular
database.

Let us remark that, while the work on embedding of the edit distance in ℓ1
certainly provided valuable insights, the current best result on fast approxima-
tion of edit distance use a different, although somewhat related, strategy. At
the time of writing, the best, and brand new, randomized algorithm can approx-
imate the edit distance of two strings of length n up to a factor of (log n)O(1/ε)

in time O(n1+ε), where ε > 0 is a constant which can be chosen at will.

Boolean functions. In the proof of Theorem 3.9.1, we will need to consider
properties of Boolean functions on the Hamming cube, i.e., functions
f : {0, 1}n → {0, 1}.10

It may perhaps be useful for intuition to think about such a Boolean func-
tion f as a voting scheme. For example, let us imagine that a department of
mathematics needs to take an important decision between two possible alterna-
tives, labeled 0 and 1—namely, whether the coffee machine should be supplied
with good but expensive coffee beans or with not so good but cheap ones. There
are n members of the department, the ith member submits a vote ui ∈ {0, 1},
and the decision taken by the department is given by f(u1, . . . , un). Here are
some examples.

• A familiar voting scheme is the majority function, denoted by Maj(.).
Assuming, for simplicity, n odd, we have Maj(u1, . . . , un) = 1 if there are
more 1s that 0s among u1, . . . , un, and Maj(u1, . . . , un) = 0 otherwise.

9A very interesting related result concerns the edit distance metric modified to allow block

operations (i.e., swapping two arbitrarily large contiguous blocks as a single operation). The
resulting block edit metric can be embedded into ℓ1 with distortion O(log n log∗ n). Here
log∗ n is the number of times we need to iterate the (binary) logarithm function to reduce n
to a number not exceeding 1.

10In the literature dealing with harmonic analysis of Boolean functions, one often considers
functions {−1, 1}n → {−1, 1} instead of {0, 1}n → {0, 1}. This is only a notational change,
which has nothing to do with the essence, but some formulas and statements come out simpler
in this setting (some others may look less natural, though). We will stick to the 0/1 universe,
mainly for compatibility with the rest of this text.
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• The function Dictk(u1, . . . , un) := uk is the dictatorship function,
where the decision is made solely by the kth member.

• The parity function Parity(u1, . . . , un) := u1 + u2 + · · · + un (addition
modulo 2) is an example of a very erratic dependence of the decision on
the votes (and it’s hard to imagine a situation in which it would provide
a reasonable voting scheme).

The theory of social choice is concerned, among others, with various prop-
erties of voting schemes and with designing “good” voting schemes.11 (After
all, while a good voting system in a country doesn’t yet guarantee a good gov-
ernment, a bad voting system can bring a country to breakdown.)

Influences and the KKL theorem. Now we will introduce several param-
eters of a Boolean function. One of them is

µ = µ(f) :=
1

2n

∑

u∈{0,1}n
f(u),

the arithmetic average of all values. (We stress that the numbers f(u) on the
right-hand side are added as real numbers—we consider the range {0, 1} of f
as a subset of R.)

A very useful point of view for interpreting µ and the other parameters
mentioned next is to consider u to be chosen from {0, 1}n uniformly at random.
Then f(u) becomes a random variable, and we can see that

µ = E[f ] ,

the expectation of f . (This point of view is also often used in the theory of
social choice; if one doesn’t know much about the preferences of the voters, it
seems reasonable to study the behavior of a voting scheme for voters behaving
randomly.) With this point of view in mind, we call f unbiased if µ = 1

2 .

11Some of the results are rather pessimistic. For example, suppose that the society wants
to rank three possible alternatives A,B,C from the least suitable to the best. To this end,
three binary decisions are taken, using three possibly different voting schemes f, g, h. The
first decision is whether A is better than B, with the two possible outcomes A > B or A < B.
The second decision is whether B is better than C, and the third one is whether A is better
than C.

The Concordet paradox is the observation that if these three decisions are taken according to
the majority, f = g = h = Maj, it can happen that the outcome is irrational in the sense that
the majority prefers A to B, B to C, and C to A (or some other cyclic arrangement)—even
though every voter’s decisions are rational (i.e., based on some consistent ranking).

A natural question is, can some voting schemes f, g, h guarantee that an such an irrational
outcome never occurs? Arrow’s impossibility theorem asserts that the only voting schemes
with this property are f = g = h = Dictk for some k, i.e., all decisions taken solely by a single
(rational) dictator. (More precisely, for this result to hold, one needs to assume that f, g, h
have the unanimity property, meaning that f(0, 0, . . . , 0) = 0 and f(1, 1, . . . , 1) = 1.)

A more recent result in this direction, obtained with the help of Fourier analysis, tells us that
the Concordet paradox is, in a sense, robust: if the ranking of each voter is chosen at random,
then for any voting schemes that are “sufficiently different” from the dictator function, the
probability of an irrational outcome is bounded from below by a positive (and non-negligible)
constant.
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Knowing the expectation E[f ] = µ, it is natural to ask about the variance
Var [f ] = E

[
f2
]
− E[f ]2, which measures the “how much nonconstant” f is.

It turns out that, since the values of f are only 0s and 1s, the variance is
determined by the expectation, and we easily calculate that

Var [f ] = µ(1− µ).

Next, we introduce a quantity measuring how much the decision of the
kth voter influences the outcome of the vote, provided that all others vote at
random.

The influence of the kth variable for a function f : {0, 1}n → {0, 1} is
defined as

Ik(f) := Prob[f(u+ ek) 6= f(u)] = 2−n
∑

u∈{0,1}n
|f(u+ ek)− f(u)|.

Here the probability is with respect to a random choice of u, and u+ek simply
means u with the kth coordinate flipped (the addition in u + ek is meant
modulo 2, and ek stands for the vector with 1 at the kth position and 0s
elsewhere, as usual).

We also note that f(u + ek) − f(u) always equals 0, 1, or −1, and so the
sum in the definition above indeed counts the number of u’s where f(u + ek)
differs from f(u), i.e., where the decision of the kth voter is a “swing vote”.

The total influencea of f is the sum of the influences of all variables:

I(f) :=
n∑

k=1

Ik(f).

aThis notion is apparently very natural, and it has several alternative names in the
literature: the energy, the average sensitivity, the normalized edge boundary, etc.

Here are several examples, where the reader is invited to work out the
calculations.

• For the dictator function we have, of course, Ik(Dictk) = 1 and Ii(Dictk) =
0 for i 6= k.

• Ik(Parity) = 1 for all k.

• For majority, Ik(Maj) is of order n−1/2 (and independent of k, of course).

• We introduce yet another function, called the tribes function. In terms
of a voting scheme, the n voters are partitioned into groups, referred to
as tribes, each of size s, where s is a suitable parameter, to be determined
later. (More precisely, if n is not divisible by s, then some tribes may



3.9 Nonembeddability of the edit distance in ℓ1 94

have size s and some size s − 1.) First a decision is taken in each tribe
separately: the outcome in a tribe is 1 exactly if everyone in the tribe
votes 1, and the final outcome is 1 if at least one of the tribes decides
for 1.

The defining logical formula is thus (for n divisible by s and t := n/s)

Tribes(u1, . . . , un) = (u1 ∧ u2 ∧ · · · ∧ us) ∨ (us+1 ∧ · · · ∧ u2s) ∨ · · ·
∨ (u(t−1)s+1 ∧ · · · ∧ un).

The tribe size s is determined so that Tribes is approximately unbiased,
i.e., so that µ(Tribes) is as close to 1

2 as possible. Calculation shows that
s is about log2 n− log2 log2 n, and then we obtain

Ik(Tribes) = Θ

(
log n

n

)
.

A possible way of postulating that f should be “far” from a dictator function
is to require that none of the influences Ik(f) be too large. From this point
of view, it is natural to ask, how small can the maximum influence be (for an
unbiased function).

The somewhat surprising answer is given by the following fundamental the-
orem, which implies that the tribes function has the asymptotically smallest
possible maximum influence.

3.9.2 Theorem (The KKL theorem; Kahn, Kalai, and Linial).
For every unbiased Boolean function f on {0, 1}n we have

max
k

Ik(f) = Ω

(
log n

n

)
.

More generally, for an arbitrary, possibly biased, f we have

max
k

Ik(f) ≥ cµ(1− µ)
log n

n
,

with a suitable constant c > 0.

This is a very important result: historically, it introduced Fourier-analytic
methods into theoretical computer science, and it has a number of interesting
applications.

As we will see in the course of the proof, the total influence I(f) is bounded
from below by 4µ(1−µ) (and this is a much easier fact than the KKL theorem).
Thus, the average of the Ik(f) is at least of order µ(1 − µ) 1n . The point of
the KKL theorem is in the extra log n factor for the maximum influence: for
example, the log n lower bound for embedding the edit distance (Theorem 3.9.1)
“comes from” exactly this log n in the KKL theorem.

The KKL theorem can usefully be viewed as a “local/global” result. Namely,
the influence Ik(f) measures the average “speed of local change” of f in the
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direction of the kth coordinate (and it can be regarded a discrete analog of a
norm of the partial derivative ∂f/∂uk for functions on R

n), On the other hand,
µ(1 − µ) = Var [f ] measures the “amount of change” of f globally, and the
theorem gives a bound on the “global change” Var [f ] in terms of the “local
changes” Ik(f). In this sense, the KKL theorem belongs to a huge family of
local/global theorems in analysis with a similar philosophy.

We will present a proof of the KKL theorem in Appendix A. Actually, we
will prove the following, slightly more general (and more technical) statement,
which is what we need for the edit distance lower bound.

3.9.3 Theorem. Let f : {0, 1}n → {0, 1} be a Boolean function, and let δ :=
maxk Ik(f). Then the total influence of f satisfies

I(f) ≥ cµ(1− µ) log
1

δ

(assuming δ > 0, of course, which is the same as assuming f nonconstant).

The lower bound for edit distance: proof of Theorem 3.9.1. Let
V := {0, 1}n be the point set of the considered metric space. The general
approach is “as usual” in the method of inequalities: we compare the sum of
distances over all pairs of points with the sum over suitably selected set of pairs,
we get an inequality for the original space (V, ed) and an inequality in opposite
direction in ℓ1, and comparing them yields the distortion bound.

The proof relies only on the following three properties of the edit distance:

(P1) (Replacement is cheap) Strings at Hamming distance 1 also have edit
distance 1; i.e., ed(u,u+ ek) = 1.

(P2) (Cyclic shift is cheap) We have ed(u, σ(u)) ≤ 2, where σ(u) denotes the
left cyclic shift of u, i.e., σ(u1u2 · · · un) = u2u3 · · · unu1.

(P3) (Large typical distance) For every u ∈ V , no more than half of the strings
v ∈ V satisfy ed(u,v) ≤ αn, where α is some positive constant.

The proof of (P3) is left as a slightly challenging exercise. One needs to
estimate the number of different strings that can be obtained from u by a
sequence of at most r edit operations. The main observation is that it is enough
to consider suitable “canonical” sequences; for example, we may assume that
all deletions precede all insertions.

Let F := V × V be the set of all pairs (note that we chose to work with
ordered pairs, unlike in some of the previous sections—this has slight formal
advantages here). Then (P3) implies that the average edit distance in F is
Ω(n).

Next, we will choose a suitable collection of “selected pairs”, which will
reflect properties (P1) and (P2): first, the (directed) edges of the Hamming
cube

EHamm :=
{
(u,u+ ek) : u ∈ V, k = 1, 2, . . . , n

}
,
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and second, the shift edges

Eshift :=
{
(u, σ(u)) : u ∈ V

}
.

We have |EHamm| = n2n and |Eshift| = 2n.
A fine point of the proof is that the shift edges need to be counted with

weight n-times larger than the Hamming edges. Using (P3) for the sum over F ,
and (P1) and (P2) for the sums over EHamm and Eshift, respectively, we obtain
the inequality (with some constant c0 > 0)

1

22n

∑

F

ed(u,v) ≥ c0

[
1

2n

∑

EHamm

ed(u,v) +
n

2n

∑

Eshift

ed(u,v)

]
.

To prove Theorem 3.9.1, it thus suffices to establish the counterpart in ℓ1,
i.e., the following “Poincaré inequality” for every mapping f :V → ℓ1 and some
constant C:

1

22n

∑

F

‖f(u)− f(v)‖1 ≤ C

log n

[
1

2n

∑

EHamm

‖f(u)− f(v)‖1 (3.11)

+
n

2n

∑

Eshift

‖f(u)− f(v)‖1
]
.

Now by the standard consideration as in Section 3.6, using the fact that every
ℓ1 metric is a nonnegative linear combination of cut metrics, it suffices to prove
a linear inequality such as this one for functions V → {0, 1}. So we are back to
the realm of Boolean functions, the home of the KKL theorem.

For a Boolean f , two of the three sums in (3.11) can be interpreted using
familiar parameters. First,

∑
F |f(u)− f(v)| counts the number of pairs (u,v)

with f(u) = 0 and f(v) = 1 or vice versa, and so we obtain

2−2n
∑

F

|f(u)− f(v)| = 2µ(1 − µ), µ = E[f ] .

The average over the Hamming edges is identified as the total influence:

2−n
∑

EHamm

|f(u)− f(v)| = I(f).

Finally, since we don’t recognize the sum over the shift edges as something
familiar, we at least assign it a symbol, setting

SSh(f) := 2−n
∑

Eshift

|f(u)− f(v)| = 2−n
∑

u

|f(u)− f(σ(u))|.

With this new notation, we want to prove that

µ(1− µ) ≤ O((log n)−1)[ I(f) + n · SSh(f)].

For contradiction, let us assume that this fails. Then both I(f) and SSh(f)
have to be small; quantitatively
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(C1) I(f) < c1µ(1− µ) log n, with c1 a constant as small as we wish, and

(C2) SSh(f) < c1µ(1− µ) lognn ≤ logn
n .

The inequality (C1) may hold for some functions f , since the smallest pos-
sible I(f) is of order µ(1−µ). But then the KKL theorem tells us that at least
some of the influences Ik(f) must be quite large. We will use (C2), the lower
bound on SSh(f), to infer that many of the Ik(f) must be large, and this will
show that the total influence does violate (C1) after all—a contradiction. The
tool for doing this is the next lemma.

3.9.4 Lemma (Smoothness of the influences). For every Boolean function
f and every k, we have

|Ik+1(f)− Ik(f)| ≤ 2 SSh(f).

Assuming this lemma for a moment, we finish the proof of (3.11) as follows.
Let us set δ := n−1/3. If the constant c1 in (C1) is sufficiently small, we have
I(f) < cµ(1−µ) log 1

δ , and so by Theorem 3.9.3, there is some k with Ik(f) > δ.

Now using Lemma 3.9.4 and (C2), we get that for all i with |i| ≤ n1/2, we
have

Ik+i(f) ≥ δ − 2|i| · SSh(f) ≥ n−1/3 − 2n1/2 · log n
n

≥ 1
2n

−1/3

for n sufficiently large. (Here k+ i is to be interpreted with wrapping around.)
But then

I(f) ≥
∑

−n1/2≤i≤n1/2

Ik+i(f) ≥ n1/2 · n−1/3 = n1/6,

which contradicts (C1) and finishes the proof of Theorem 3.9.1.

Proof of Lemma 3.9.4. This is a straightforward application of the triangle
inequality.

Ik(f) = 2−n
∑

u

|f(u+ ek)− f(u)|

= 2−n
∑

v

|f(σ(v + ek+1))− f(σ(v))|

≤ 2−n
∑

v

(
|f(σ(v + ek+1))− f(v+ ek+1)|

+ |f(v+ ek+1)− f(v)| + |f(v) − f(σ(v))|
)

= SSh(f) + Ik+1(f) + SSh(f).

�

3.10 Impossibility of flattening in ℓ1

Every n-point Euclidean metric space can be embedded in ℓ
O(logn)
2 with distor-

tion close to 1 according to the Johnson–Lindenstrauss lemma, and this fact is
extremely useful for dealing with Euclidean metrics.



3.10 Impossibility of flattening in ℓ1 98

We already know, by a counting argument, that no analogous statement
holds for embedding metrics in ℓ∞. For instance, there are n-point metrics that
can’t be embedded in ℓcn∞, for a suitable constant c > 0, with distortion smaller
than 2.9.

The following theorem excludes an analog of the Johnson–Lindenstrauss
lemma for ℓ1 metrics as well. Or rather, it shows that if there is any analog at
all, it can be only quite weak.

3.10.1 Theorem. For all sufficiently large n there exists an n-point ℓ1 metric
space M such that whenever M can be D-embedded in ℓk1 for some D > 1, we
have k ≥ n0.02/D2

.

Two particular cases are worth mentioning. First, for every fixed dis-
tortion D, the required dimension is at least a small but fixed power of n.
Second, if we want dimension O(log n), the required distortion is at least
Ω(
√

log n/ log log n ). Interestingly, the latter bound is almost tight: It is known
that one can embed every n-point ℓ1 metric in ℓ2 with distortion O(

√
log n log log n)

(this is a difficult result), then we can apply the Johnson–Lindenstrauss lemma

to the image of this embedding, and finally embed ℓ
O(logn)
2 back in ℓ

O(logn)
1 with

a negligible distortion.
The lower bound for the dimension for embeddings in ℓ∞ was proved by

counting—showing that there are more essentially different n-point spaces that
essentially different n-point subsets of ℓk∞. This kind of approach can’t work for
the ℓ1 case, since it is known that if d is an ℓ1 metric, then

√
d is an ℓ2 metric.

Thus, if we had many ℓ1 metrics on a given n-point set, every two differing by
a factor of at least D on some pair of points, then there are the same number of
Euclidean metrics on these points, every two differing by at least

√
D on some

pair—but we know that ℓ2 metrics can be flattened.
Here is an outline of the forthcoming proof. We want to construct a space

that embeds in ℓ1 but needs a large distortion to embed in ℓk1 .

• We choose p a little larger than 1, namely, p := 1 + 1
ln k , and we observe

that the “low-dimensional spaces” ℓk1 and ℓkp are almost the same—the
identity map is an O(1)-embedding (Lemma 3.10.2 below).

• Then we show that the “high-dimensional” spaces ℓ1 and ℓp differ substan-
tially. Namely, we exhibit a space X that embeds well in ℓ1 (for technical
reasons, we won’t insist on an isometric embedding, but we’ll be satisfied
with distortion 2; see Lemma 3.10.3), but requires large distortion for
embedding in ℓp (Lemma 3.10.4).

It follows that such an X doesn’t embed well in ℓk1 , for if it did, it would also
embed well in ℓkp.

Let us remark that more recently a different, and in some respect simpler,
proof was found by O. Regev [Entropy-based bounds on dimension reduction
in L1, arXiv:1108.1283; to appear in Isr. J. Math.].

3.10.2 Lemma. For k > 1 and p := 1 + 1
ln k , the identity map ℓk1 → ℓkp has

distortion at most 3.
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Proof. This is a very standard calculation with a slightly nonstandard choice
of parameters. First, for p1 ≤ p2, we have ‖x‖p1 ≥ ‖x‖p2 , and thus the identity
map as in the lemma is nonexpanding. For the contraction Hölder’s inequality
yields

‖x‖1 =

k∑

i=1

1 · |xi| ≤ k1−1/p‖x‖p

= e(ln k)(p−1)/p‖x‖p = e(ln k)/(1+ln k)‖x‖p ≤ 3‖x‖p.

�

The recursive diamond graph. The space X in the above outline is a
generally interesting example, which was invented for different purposes. It is
given by the shortest-path metric on a graph Gm, where G0, G1, G2, . . . is the
following recursively constructed sequence:

G0 G1 G2 G3

Starting with G0 a single edge, Gi+1 is obtained from Gi by replacing each edge
{u, v} by a 4-cycle u, a, v, b, where a and b are new vertices. The pair {a, b} is
called the anti-edge corresponding to the edge {u, v}. Let us set Ei := E(Gi),
and let Ai+1 be the set of the anti-edges corresponding to the edges of Ei,
i = 0, 1, . . ..

Since the vertex sets of the Gi form an increasing sequence, V (G0) ⊂
V (G1) ⊂ · · ·, we can regard E0, E1, . . . , Em and A1, . . . , Am as sets of pairs
of vertices of Gm. For example, the next picture shows E1 and A1 in G2:

In Gm, the pairs in Ei and in Ai+1 have distance 2m−i.

3.10.3 Lemma. Every Gm embeds in ℓ1 with distortion at most 2.

Sketch of proof. The embedding is very simple to describe. Each vertex of
Gm is assigned a point x ∈ {0, 1}2m . We start with assigning 0 and 1 to the
two vertices of G0, and when Gi+1 is constructed from Gi, the embedding for
Gi+1 is obtained as follows:

x y

 
xx yy

xy

yx
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(xy denotes the concatenation of x and y).
It is easily checked by induction that this embedding preserves the distance

for all pairs in E0 ∪ E1 ∪ · · · and in A1 ∪ A2 ∪ · · · exactly. Consequently, the
embedding is nonexpanding. However, some distances do get contracted; e.g.,
the two circled vertices in G2

0000 1111

0101

1010

0001

0100

0010

1000

0111

1101

1110

1011

have distance 4 but their points distance only 2.
We thus need to argue that this contraction is never larger than 2. Given

vertices u and v, we find a pair {u′, v′} in some Ei or Ai with u′ close to u and
v′ close to v and we use the triangle inequality. This is the part which we leave
to the reader. �

Let us mention that the embedding in the above lemma is not optimal—
another embedding is known with distortion only 4

3 .

Finally, here is the promised nonembeddability in ℓp.

3.10.4 Lemma. Any embedding of Gm in ℓp, 1 < p ≤ 2, has distortion at least√
1 + (p − 1)m.

Proof. First we present the proof for the case p = 2, where it becomes an
exercise for the method with inequalities we have seen for the Hamming cube
and for expander graphs.

Let E := Em = E(Gm) and F := E0∪A1∪A2∪· · ·∪Am. With dGm denoting
the shortest-path metric of Gm, we have

∑
E dGm(u, v)

2 = |Em| = 4m and∑
F dGm(u, v)

2 = 4m+
∑m

i=1 |Ai|4m−i+1 = 4m+
∑m

i=1 4
i−14m−i+1 = (m+1)4m.

So the ratio of the sums over F and over E is m+ 1.
Next, let us consider an arbitrary map f :V (Gm) → ℓ2, and let SE :=∑

E ‖f(u) − f(v)‖22. Applying the short-diagonals lemma to each of the small
quadrilaterals in Gm, we get that SE ≥ ∑

Am∪Em−1
‖f(u) − f(v)‖22. Next, we

keep the sum over Am and we bound the sum over Em−1 from below using the
short-diagonals lemma, and so on, as in the picture:

Σ ≥ ≥ +Σ Σ Σ

In this way, we arrive at
∑

F ‖f(u) − f(v)‖22 ≤ ∑
E ‖f(u) − f(v)‖22, and so f

has distortion at least
√
m+ 1.

For the case of an arbitrary p ∈ (1, 2] the calculation remains very similar,
but we need the following result as a replacement for the Euclidean short-
diagonals lemma.
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3.10.5 Lemma (Short-diagonals lemma for ℓp). For every four points x1,
x2, x3, x4 ∈ ℓp we have

‖x1 − x3‖2p + (p− 1)‖x2 − x4‖2p
≤ ‖x1 − x2‖2p + ‖x2 − x3‖2p + ‖x3 − x4‖2p + ‖x4 − x1‖2p.

This lemma is a subtle statement, optimal in quite a strong sense, and we
defer the proof to Appendix B. Here we just note that, unlike the inequalities
used earlier, the norm doesn’t appear with pth powers but rather with squares.
Hence it is not enough to prove the lemma for the 1-dimensional case.

Given this short-diagonals lemma, we consider an arbitrary mapping f :V (Gm) →
ℓp and derive the inequality

‖f(s)− f(t)‖2p + (p− 1)
∑

A1∪A2∪···∪Am

‖f(u)− f(v)‖2p ≤
∑

E

‖f(u)− f(v)‖2p,

where s and t are the vertices of the single pair in E0. We note that the left-hand
side is a sum of squared distances over F but a weighted sum, where the pair in
E0 has weight 1 and the rest weight p− 1. Comparing with the corresponding
weighted sums for the distances in Gm, Lemma 3.10.4 follows. �

Proof of Theorem 3.10.1. We follow the outline. Let f :V (Gm) → ℓ1
be a 2-embedding and let X := f(V (Gm)). Assuming that (X, ‖.‖1) can be
D-embedded in ℓk1 , we have the following chain of embeddings:

Gm
2−→ X

D−→ ℓk1
3−→ ℓkp.

The composition of these embedding is a 6D-embedding of Gm in ℓp, and so
6D ≥

√
1 + (p− 1)m with p = 1+ 1

lnk . It remains to note that n = |V (Gm)| ≤
4m for all m ≥ 1. The theorem then follows by a direct calculation. �

3.11 Exercises

1. Show that there exists an n-point set X ⊂ S2 such that every embedding
of (X, ‖.‖2) into (R2, ‖.‖2) has distortion Ω(

√
n ). Use the Borsuk–Ulam

theorem.

2.∗∗Let Pn be the metric space {0, 1, . . . , n} with the metric inherited from
R (in other words, a path of length n). Prove the following Ramsey-type
result: For every D > 1 and every ε > 0 there exists an n = n(D, ε) such
that whenever f :Pn → (Z, dZ) is a D-embedding of Pn into some metric
space, there are a < b < c, b = a+c

2 , such that f restricted to the subspace
{a, b, c} of Pn is a (1 + ε)-embedding.

In other words, if a sufficiently long path is D-embedded, then it contains
a scaled copy of a path of length 2 embeded with distortion close to 1.

3. (Lower bound for embedding trees into ℓ2.)
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(a)∗ Show that for every ε > 0 there exists δ > 0 with the following
property. Let x0,x1,x2,x

′
2 ∈ ℓ2 be points such that ‖x0 − x1‖2, ‖x1 −

x2‖2, ‖x1 − x′
2‖2 ∈ [1, 1 + δ] and ‖x0 − x2‖2, ‖x0 − x′

2‖2 ∈ [2, 2 + δ] (so
all the distances are almost like the graph distances in the following tree,
except possibly for the one marked by a dotted line).

x0 x1

x2

x
′

2

Then ‖x2 − x′2‖ ≤ ε; that is, the remaining distance must be very short.

(b)∗ Let Tk,m denote the complete k-ary tree of height m; the following
picture shows T3,2:

Show that for every r there exists k such that whenever the leaves of Tk,m

are colored by r colors, there is a subtree of Tk,m isomorphic to T2,m with
all leaves having the same color.

(c)∗∗ Use (a), (b), and Exercise 2 to prove that for every D > 1 there
exist m and k such that the tree Tk,m considered as a metric space with
the shortest-path metric cannot be D-embedded into ℓ2.

4.∗ Show that for every r and ℓ there exists an r-regular graph G(r, ℓ) of girth
at least ℓ (give an explicit inductive construction).

5. (a) Prove that if G is a graph whose average vertex degree is d, then G
contains a subgraph with minimum vertex degree at least d/2.

(b) Show that every graph G has a bipartite subgraph H that contains
at least half the edges of G.

(c)∗ Use (a) and (b) to prove that if G = (V,E) is an n-vertex graph that
contains no cycle of length ℓ or less, then |E| = O(n1+1/⌊ℓ/2⌋).

6. (a) Show that the squared Euclidean distances between the points of a
set X ⊂ R

k form a metric of negative type if and only if no triple in X
forms an obtuse angle.

(b) Show that every finite path (as a graph metric) is a metric of negative
type, by giving an explicit embedding.

7.∗ Calculate the asymptotics of the influence Ik(Maj) of the kth variable in
the majority function of n variables, for n → ∞.

8. Consider the Boolean function Tribes(.) of n variables, with tribes of
size s.

(a)∗ Estimate the value of s = s(n) that makes the function as balanced
as possible.

(b) For that value of s, estimate Ik(Tribes) asymptotically as n → ∞.
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9.∗ Given a string u ∈ {0, 1}n, prove that at most half of the strings v ∈
{0, 1}n are at edit distance at most cn from u, for a suitable constant
c > 0.

10.∗∗The block edit distance of two strings u,v ∈ {0, 1}n is defined in a way
similar to the edit distance, but in addition to the usual edit operations,
also block operations are allowed: one can swap two arbitrarily large con-
tiguous blocks as a single operation.

The goal is to prove that that two randomly chosen strings u,v ∈ {0, 1}n
have block edit distance only O(n/ log n) with probability close to 1.

(a) Split both strings into blocks of length k := c log n for a small constant
c > 0, and regard each block as a “supercharacter” in an alphabet of
size 2k. Let nu(a) be the number of occurrences of a supercharacter
a in u, and similarly for v. Prove that, with probability close to 1,∑

a∈{0,1}k |nu(a)− nv(a)| is quite small compared to n.

(b) Prove the main claim, i.e., that random u and v block edit distance
only O(n/ log n) with probability close to 1.

11. Verify that the embedding of the recursive diamond graphs Gm in ℓ1, as
described in the proof of Lemma 3.10.3, has distortion at most 2.
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Constructing embeddings

In this chapter we present techniques for constructing low-distortion embed-
dings. The highlight is Bourgain’s theorem, stating that every n-point metric
space O(log n)-embeds in ℓ2.

Several embedding methods are known, with many variants and additional
tricks. While the main ideas are reasonably simple, the strongest and most
interesting embedding results are often rather complicated. So we’ll illustrate
some of the ideas only on toy examples.

4.1 Bounding the dimension for a given distortion

In this section we prove an upper bound almost matching the lower bounds from
Section 3.3. We also obtain a weaker version of Bourgain’s theorem, showing
that every n-point metric space embeds in ℓ2 with distortion O(log2 n) (the
tight bound is O(log n)). The proof can also be taken as an introduction to the
proof of Bourgain’s theorem itself, since it exhibits the main ingredients in a
simpler form.

Our concrete goal here is the following.

4.1.1 Theorem. Let D = 2q−1 ≥ 3 be an odd integer and let (V, dV ) be an
n-point metric space. Then there is a D-embedding of V into ℓk∞ with

k = O(qn1/q lnn).

For example, every n-point metric space can be 3-embedded in ℓk∞ with
k = O(

√
n log n), while Proposition 3.3.1 tells us that there are spaces whose

3-embedding in ℓk∞ requires k = Ω(
√
n ) (and for distortion D < 3, the required

dimension is Ω(n)). Similarly matching results are also known for D = 5, 7, 11.

For q = ⌊log n⌋, the theorem implies that n-point metric spaces can be
O(log n)-embedded in ℓk∞ with k = O(log2 n). Since the latter space O(log n)-
embeds in ℓk2 (by the identity mapping), we obtain the promised weaker version
of Bourgain’s theorem:

4.1.2 Corollary. Every n-point metric space O(log2 n)-embeds in ℓ2. �
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Fréchet embeddings. We begin with a somewhat informal introduction to
the proof. To specify a mapping f of a metric space (V, dV ) into ℓkp is the same
as defining k functions f1, . . . , fk:V → R, the coordinates of the embedded
points.

Let us call an embedding f :V → ℓkp a Fréchet embedding if each of the
coordinates fi is the distance from some set Ai ⊆ V ; that is, if

fi(v) = dV (v,Ai) for all v ∈ V

(more generally, fi(v) might also be αidV (v,Ai) for some numeric factor αi).
We saw a particularly simple Fréchet embedding in Section 1.5. There we

had one coordinate for every point of V , and Ai consisted of the ith point of V .
In the forthcoming proof, the Ai are going to be a suitable random subsets of V .

A pleasant property of a Fréchet embedding is that each fi is automatically
nonexpanding (since |fi(u)− fi(v)| = |dV (u,Ai)− dV (v,Ai)| ≤ dV (u, v)).

From now on, we focus on Fréchet embeddings in the target space ℓk∞.
Then, since each fi is nonexpanding, f is nonexpanding as well. If f should
have distortion at most D, then we need that for every pair {u, v} of points of
V , there is a coordinate i = i(u, v) that “takes care” of the pair, i.e., such that
|fi(u) − fi(v)| ≥ 1

DdV (u, v). So we “only” need to choose a suitable collection
of the Ai that take care of all pairs {u, v}.

Let us consider two points u, v ∈ V . What are the sets A such that
|dV (u,A) − dV (v,A)| ≥ ∆, for a given real ∆ > 0? For some r ≥ 0, such
an A must intersect the closed r-ball around u and avoid the open (r+∆)-ball
around v, or conversely (with the roles of u and v interchanged):

not empty

r

r + ∆

empty

not empty

r

r + ∆

empty

u v u v
or

If it so happens that the closed r-ball around u doesn’t contain many fewer
points of V than the open (r+∆)-ball around v, then a random A with a
suitable density has a reasonable chance to satisfy |dV (u,A)− dV (v,A)| ≥ ∆.

Generally we have no control over the distribution of points around u and
around v, but by considering several suitable balls simultaneously, we will be
able to find a good pair of balls. We also do not know the right density needed
for the sample to work, but since we have many coordinates, we will be able to
take samples of essentially all possible densities.

Now we can begin with the formal proof.

Proof of Theorem 4.1.1. We define an auxiliary parameter p := n−1/q, and
for j = 1, 2, . . . , q, we introduce the probabilities pj := min(12 , p

j). Further,

let m := ⌈24n1/q lnn⌉, and let k := mq. We construct a Fréchet embedding
f :V → ℓk∞.
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It is convenient to divide the coordinates of ℓk∞ into q blocks by m coor-
dinates. Thus, the coordinates, and the sets defining the Fréchet embedding,
have double indices: i = 1, 2, . . . ,m and j = 1, 2, . . . , q.

Each set Aij ⊆ V is a random sample with density pj: Each point v ∈ V
has probability pj of being included into Aij , and these events are mutually
independent. The choices of the Aij , too, are independent for distinct indices i
and j. Here is a schematic illustration of the sampling:

i = 1

i = m

j = 1 j = 2 j = q

V

V

V

V

Then the Fréchet embedding f :V → ℓk∞ is given as above, by

fij(v) = dV (v,Aij), i = 1, 2, . . . ,m, j = 1, 2, . . . , q.

We claim that with a positive probability, f is a D-embedding. We have
already noted that it is nonexpanding, and so it suffices to show that, with
a positive probability, for every pair {u, v} there is a good set Aij , where we
define Aij to be good for {u, v} if |dV (u,Aij)− dV (v,Aij)| ≥ 1

D dV (u, v).

4.1.3 Lemma. Let u, v be two distinct points of V . Then there exists an index
j ∈ {1, 2, . . . , q} such that if the set Aij is chosen randomly as above, then it is
good for {u, v} with probability at least p

12 .

First, assuming this lemma, we finish the proof of the theorem. Let us
consider a fixed pair {u, v} and select the appropriate index j as in the lemma.
Then the probability that none of the sets A1j , A2j , . . . , Amj is good for {u, v}
is at most (1 − p

12)
m ≤ e−pm/12 ≤ n−2. Since there are

(n
2

)
< n2 pairs {u, v},

the probability that we fail to choose a good set for any of the pairs is smaller
than 1. �

Proof of Lemma 4.1.3. Let us set ∆ := 1
D dV (u, v). Let B0 = {u}, let B1

be the (closed) ∆-ball around v, let B2 be the (closed) 2∆-ball around u,. . . ,
finishing with Bq, which is a q∆-ball around u (if q is even) or around v (if q
is odd). The parameters are chosen so that the radii of Bq−1 and Bq add to
dV (u, v); that is, the last two balls just touch (recall that D = 2q−1):
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u v

2∆

4∆

3∆

∆

We want to find balls Bt and Bt+1 such that Bt+1 doesn’t have too many more
points than Bt. More precisely, letting nt := |Bt| be the number of points in
Bt, we want to select indices j and t such that

nt ≥ n(j−1)/q and nt+1 ≤ nj/q. (4.1)

If there exists t with nt ≥ nt+1, we can use that t (and the appropriate
j). Otherwise, we have n0 = 1 < n1 < · · · < nq. We consider the q intervals
I1, I2, . . . , Iq, where Ij =

[
n(j−1)/q, nj/q

]
. By the pigeonhole principle, there

exists t such that nt and nt+1 lie in the same interval Ij , and then (4.1) holds
for this j and t. In this way, we have selected the index j whose existence is
claimed in the lemma, and the corresponding index t.

Let E1 be the event “Aij ∩ Bt 6= ∅” and E2 the event “Aij ∩ B◦
t+1 = ∅”,

where B◦
t+1 denotes the interior of Bt+1. If both E1 and E2 occur, then Aij is

good for {u, v}.
Since Bt ∩B◦

t+1 = ∅ the events E1 and E2 are independent. We estimate

Prob[E1] = 1− Prob[Aij ∩Bt = ∅] = 1− (1− pj)
nt ≥ 1− e−pjnt .

Using (4.1), we have pjnt ≥ pjn
(j−1)/q = pjp

−j+1 = min(12 , p
j)p−j+1 ≥ min(12 , p).

For p ≥ 1
2 , we get Prob[E1] ≥ 1 − e−1/2 > 1

3 ≥ p
3 , while for p < 1

2 , we have
Prob[E1] ≥ 1−e−p, and a bit of calculus verifies that the last expression is well
above p

3 for all p ∈ [0, 12).

Further,

Prob[E2] ≥ (1− pj)
nt+1 ≥ (1− pj)

nj/q ≥ (1− pj)
1/pj ≥ 1

4

(since pj ≤ 1
2). Thus Prob[E1 ∩ E2] ≥ p

12 , which proves the lemma. �

4.2 Bourgain’s theorem

By a method similar to the one shown in the previous section, one can also
prove a tight upper bound on Euclidean embeddings; the method was actually
invented for this problem.

4.2.1 Theorem (Bourgain’s theorem). Every n-point metric space
(V, dV ) can be embedded in ℓ2 with distortion at most O(log n).
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The overall strategy of the embedding is similar to the embedding into
ℓk∞ in the proof of Theorem 4.1.1. We again construct a Fréchet embedding:
The coordinates in ℓk2 are given by distances to suitable random subsets. The
situation is slightly more complicated than in the previous section, since for
embedding into ℓk∞, it was enough to exhibit one coordinate “taking care”
of each pair, whereas for the Euclidean embedding, many of the coordinates
will contribute significantly to every pair. Here is the appropriate analogue of
Lemma 4.1.3.

4.2.2 Lemma. Let u, v ∈ V be two distinct points. Then there exist real
numbers ∆1,∆2, . . . ,∆q ≥ 0 with ∆1 + · · · + ∆q = dV (u, v)/2, where q :=
⌊log2 n⌋+1, and such that the following holds for each j = 1, 2, . . . , q: If Aj ⊆
V is a randomly chosen subset of V , with each point of V included in Aj

independently with probability 2−j , then the probability Pj of the event

|dV (u,Aj)− dV (v,Aj)| ≥ ∆j

satisfies Pj ≥ 1
12 .

Proof. We fix u and v. As in the proof of Lemma 4.1.3, we will build a system
of balls around u and around v. But now the construction will be driven by the
number of points in the balls, and the radii will be set accordingly.

We think of two balls B(u, r) and B(v, r) of the same radius r, and we
let r grow from r0 := 0 to dV (u, v)/2. During this growth, we record the
moments r1, r2, . . ., where rj is the smallest r for which both |B(u, r)| ≥ 2j and
|B(v, r)| ≥ 2j . Here is an example:

r1 r1

r3 r3

r4 = · · · = rq r4 = · · · = rq

u vr2 r2

The growth stops at the radius dV (u, v)/2, where the balls just touch. For those
j such that one or both of these touching balls have fewer than 2j points, we
set rj := dV (u, v)/2.

We are going to show that the claim of the lemma holds with ∆j := rj−rj−1.
If ∆j = 0, then the claim holds automatically, so we assume ∆j > 0, and

thus rj−1 < rj. Then both |B(u, rj−1)| ≥ 2j−1 and |B(v, rj−1)| ≥ 2j−1.
Let Aj ⊆ V be a random sample with point probability 2−j. By the defini-

tion of rj , we have |B◦(u, rj)| < 2j or |B◦(v, rj)| < 2j , where B◦(x, r) = {y ∈
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V : dV (x, y) < r} denotes the open ball (this holds for j = q, too, because
|V | ≤ 2q).

We choose the notation u, v so that |B◦(u, rj)| < 2j . If Aj intersects
B(v, rj−1) and misses B◦(u, rj), then it has the desired property |dV (u,Aj) −
dV (v,Aj)| ≥ ∆j. As was already mentioned, we have |B◦(u, rj)| < 2j and
|B(v, rj−1)| ≥ 2j−1. Thus, we can estimate the probability that both Aj ∩
B(v, rj−1) 6= ∅ and Aj ∩ B◦(u, rj) = ∅ by exactly the same calculation as in
the proof of Lemma 4.1.3 (with p = 1

2), and we get that this probability is at
least 1

12 . �

Proof of Theorem 4.2.1. We set m := ⌊C log2 n⌋ for a sufficiently large
constant C, q = ⌊log2 n⌋+1 is as in Lemma 4.2.2, and k := mq. For i =
1, 2, . . . ,m and j = 1, 2, . . . , q we sample the sets Aij independently, where each
point of V is included in Aij independently with probability 2−j . Then we
define f :V → ℓk2 as the Fréchet embedding with fij(v) = dV (v,Aij). So far this
is almost exactly as in the proof of Theorem 4.1.1.

Since each fij is nonexpanding and there are k = O(log2 n) coordinates,
the mapping f doesn’t expand any distance by more than

√
k = O(log n).

It remains to show that, with a positive probability, f doesn’t contract any
distance by more than a constant factor.

Let us call an index i good for u, v and j if |dV (u,Aij) − dV (v,Aij)| ≥ ∆j ,
where ∆1, . . . ,∆q are the numbers as in Lemma 4.2.2 (depending on u and v).

4.2.3 Claim. For the Aij chosen randomly as above, the following holds with
a positive probability:

For every pair {u, v} of points of V and for every j = 1, 2, . . . , q, there are
at least m

24 good indices i.

Proof of the claim. For u, v and j fixed, the probability that a
particular i is good is at least 1

12 . So, still with u, v, j fixed, the
probability that there are fewer than m

24 good indices i is at most
the probability that in m independent Bernoulli trials, each with
success probability 1

12 , we get fewer than m
24 successes.

This probability is at most e−cm for a suitable positive constant
c > 0. This follows from standard Chernoff-type estimates (see,
e.g., Corollary A.1.14 in the Alon–Spencer book The Probabilistic
Method), or it can also be calculated by elementary estimates of
binomial coefficients.

Thus, the probability that the condition in the claim fails for
some u, v and j is at most

(n
2

)
qe−cm ≤ O(n2 log n)e−cC logn < 1 for

C sufficiently large compared to c. The claim is proved. �

To finish the proof of Theorem 4.2.1, we fix a choice of the Aij so that the
condition in Claim 4.2.3 holds. Then, for the corresponding f and each pair
{u, v} we have

‖f(u)− f(v)‖22 =

q∑

j=1

m∑

i=1

|fij(u)− fij(v)|2
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≥
q∑

j=1

∑

i good for u, v, j

∆2
j ≥

m

24

q∑

j=1

∆2
j

≥ m

24
· 1
q

( q∑

j=1

∆j

)2

=
m

24q
· dV (u, v)

2

4

(the last inequality is Cauchy–Schwarz). Hence ‖f(u) − f(v)‖2 = Ω(dV (u, v))
as needed, and Theorem 4.2.1 is proved. �

Remark. Since every ℓ2 metric is also an ℓp metric for every p, Theorem 4.2.1
immediately implies that every n-point metric space O(log n) embeds in ℓp.

However, it is nice to know that the same embedding f as in the above proof
(satisfying the condition in Claim 4.2.3), regarded as an embedding in ℓkp, also
has distortion O(log n) (the implicit constant can be shown to behave as p−1 as
p → ∞). Indeed, only the final calculation needs to be modified, using Hölder’s
inequality in place of Cauchy–Schwarz.

An advantage of this “direct” embedding in ℓp is that the dimension k of
the target space is only O(log2 n). With additional ideas and more complicated
proof, this has been improved to k = O(log n), still with O(log n) distortion
(which is tight in the worst case).

4.3 Approximating the sparsest cut

We present one of the earliest and still most impressive algorithmic applications
of low-distortion embeddings.

Let G = (V,E) be a given graph. We would like to compute the quantity
φ(G) as in Section 3.5, i.e., the minimum, over all sets S ⊆ V , ∅ 6= S 6= V , of
the density

φ(G,S) :=
|E(S, V \ S)|
|S| · |V \ S| .

That is, we want to assess, how good an expander G is.

The problem of computing φ(G) is known to be NP-hard, and assuming a
famous and plausible-looking general conjecture, the Unique Games Conjecture,
it is even hard to approximate φ(G) within any constant factor.1

As we’ll explain, the tools we have covered, most notably Bourgain’s theo-
rem, yield a polynomial-time O(log n)-approximation algorithm.

4.3.1 Proposition. There is a randomized algorithm that, given a graph
G = (V,E) on n vertices, computes in (expected) polynomial time a set
S ⊂ V with φ(G,S) ≤ O(log n) · φ(G).

1This means that, assuming the Unique Games Conjecture, there are no constant C and
polynomial-time algorithm A that computes, for every graph G, a number A(G) such that
φ(G) ≤ A(G) ≤ Cφ(G).
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Proof. First we need Lemma 3.6.3, which we re-state as follows. Let F :=
(
V
2

)
,

N := |F | =
(
n
2

)
, and for a nonzero vector z = (zuv : {u, v} ∈ F ) ∈ R

N , let

R(z) :=

∑
{u,v}∈E zuv∑
{u,v}∈F zuv

.

Then Lemma 3.6.3 shows that

φ(G) = min{R(d) : d ∈ L1 \ {0}},
where, as usual, L1 ⊂ R

N is the cone of all ℓ1 metrics on V .
Both of the proofs of Lemma 3.6.3 shown in Section 3.6 actually yield a

polynomial-time algorithm that, given an ℓ1 metric d on V represented by a
mapping f :V → ℓk1 (i.e., d(u, v) = ‖f(u) − f(v)‖1), finds an S such that
φ(G,S) ≤ R(d). (Checking this may need revisiting the proofs and some
thought.) Thus, finding a sparsest cut is equivalent to minimizing R over all
nonzero ℓ1 metrics (and so, in particular, the latter problem is also NP-hard).

The next step is the observation that we can efficiently minimize R over all
nonzero (pseudo)metrics, ℓ1 or not. To this end, we set up the following linear
program2:

Minimize
∑

{u,v}∈E zuv
subject to

∑
{u,v}∈F zuv = 1,

zuv ≥ 0 for all {u, v} ∈ F,
zuv + zvw ≥ zuw for all u, v, w ∈ V distinct.

There are N variables zuv, {u, v} ∈ F . Note the trick how we have got rid
of the nonlinearity of R: Using homogeneity, we can assume that the denom-
inator is fixed to 1 (this is the first constraint of the linear program), and we
minimize the numerator. The remaining constraints express the nonnegativity
of z and the triangle inequality, and thus they make sure that all feasible z are
pseudometrics.

As is well known, the linear program can be solved in polynomial time, and
thus we find a (pseudo)metric d0 minimizing R. Since we minimized over a
set including all ℓ1 metrics, and φ(G) is the minimum over ℓ1 metrics, we have
R(d0) ≤ φ(G).

Now we D-embed the metric space (V, d0) in ℓk1 for some k, with D as small
as possible. Bourgain’s theorem guarantees that there exists an embedding with
D = O(log n). The proof in Section 4.2 actually shows, first, that we can assume
k = O(log2 n), and second, that the embedding can be found by a randomized
polynomial-time algorithm: We just choose the appropriate random subsets
Aij , and then we check whether the Fréchet embedding defined by them has a
sufficiently low distortion—if not, we discard them and start from scratch.

So now we have an ℓ1 metric d1 on V , represented by an embedding in

ℓ
O(log2 n)
1 , which differs from d0 by distortion at most D = O(log n). It is easy
to see that

R(d1) ≤ D ·R(d0) ≤ Dφ(G).

2A linear program is the problem of minimizing a linear function of n real variables over a
set S ⊆ R

n specified by a system of linear inequalities and equations.
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Finally, given d1, we can find S with φ(G,S) ≤ R(d1), as was noted at the
beginning of the proof. This is the set returned by the algorithm, which satisfies
φ(G,S) ≤ O(log n) · φ(G) as required. �

A better approximation algorithm. The above algorithm can be sum-
marized as follows. We want to minimize R over the set L1 \ {0} ⊂ R

N of all
nonzero ℓ1 metrics on V . Instead, we minimize it over the larger set M of all
metrics, and the following properties of M are relevant:

(i) M contains L1 \ {0},

(ii) R can be minimized in polynomial time over M, and

(iii) every element of M can be approximated by an element of L1 with dis-
tortion at most O(log n).

If we could find another subset of RN with properties (i) and (ii) but with
a better distortion guarantee in (iii), then we would obtain a correspondingly
better approximation algorithm for the sparsest cut.

A suitable subset has indeed been found: the class N of all metrics of
negative type on V . These are all metrics that can be represented as squares
of Euclidean distances of points in ℓ2; see Section 3.6.

First, by Lemma 3.6.2, we have L1 ⊆ N , so (i) holds.

Second, the minimum of R over N can be computed by semidefinite pro-
gramming. Indeed, to the linear program shown above, which expresses the
minimization of R over M, it suffices to add constraints expressing that the
zuv are squared Euclidean distances. This is done exactly as in the proof of
Proposition 3.7.1.

Third, it is known that every n-point metric of negative type can be em-
bedded in ℓ2 (and thus also in ℓ1) with distortion O(

√
log n log log n), and the

proof provides a randomized polynomial-time algorithm.

This is a “logical” way to an improved approximation algorithm, but the
historical development went differently. First came a breakthrough of Arora,
Rao, and Vazirani, an O(

√
log n )-approximation algorithm for the sparsest cut,

which indeed begins by optimizing R over N , but then it “rounds” the solution
directly to a sparsest cut in the input graph, without constructing an embedding
in ℓ1 first.

Only later and with considerable additional effort it was understood that
the geometric part of this algorithm’s analysis also leads to low-distortion em-
beddings. Moreover, the distortion guarantee is slightly worse, by the log log n
factor, than the approximation guarantee of the algorithm.

However, there is a more general (and more important) algorithmic problem,
the sparsest cut for multicommodity flows,3 where the best known approxima-

3In the multicommodity flow problem, one can think of a graph G = (V,E) whose vertices
are cities and whose edges represent roads. Each edge (road) e has a nonnegative capacity

Cap(e) (trucks per day, say). There are k demands, such as that 56.7 trucks of DVD players
per day should be shipped from Fukuoka to Tokyo, 123.4 trucks of fresh fish per day should
be shipped from Kanazawa to Osaka, etc. Each demand is specified by an (unordered) pair
{u, v} of vertices and a nonnegative real number Dem(u, v).
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tion algorithm is indeed obtained essentially according to the items (i)–(iii)
above, using a low-distortion embedding of a metric of negative type in ℓ1.

The embeddability of metrics of negative type in ℓ1 and in ℓ2 has been one
of the most fascinating topics in metric embeddings in recent years (approx-
imation algorithms providing a strong motivation), with some of the deepest
and technically most demanding results. Although it was initially conjectured
that all metrics of negative type might embed in ℓ1 with distortion bounded by
a universal constant, by now a lower bound of Ω((log n)c), for a small positive
constant c, is known.

4.4 Exercises

1.∗ Refer to the proof of Theorem 4.2.1 (Bourgain’s theorem). Show that the
same mapping f :V → R

k as given in the proof also provides an embedding
of V into ℓkp with O(log n) distortion, for every fixed p ∈ [1,∞). Describe
only the modifications of the proof—you need not repeat parts that remain
unchanged.

Assuming that the road capacities are not sufficient to satisfy all demands, one may ask
(among others), what is the largest λ such that at least λ fraction of each demand can
be satisfied, for all demands simultaneously. (To prevent confusion, let us stress that this

algorithmic problem can be solved in polynomial time.)
If S is a subset of the cities such that the total capacity of all roads between S and V \ S

equals A and the sum of all demands with one city in S and the other outside S equals B,
then A

B
is an upper bound for λ (and it’s quite natural to call A

B
the density of the cut S).

For k = 1, a single-commodity flow, the well known max-flow/min-cut theorem asserts that
there always exists a cut for which A

B
equals the maximum possible λ. For large k, there may

be a gap; equality need not hold for any cut. But, using an argument slightly more complicated
than that in the proof of Proposition 4.3.1, it can be shown that one can efficiently compute
a cut S for which A

B
is within a multiplicative factor of O(log k) of the optimum λ (and in

particular, that such a cut always exists).
Using the improved embedding of metrics of negative type in ℓ2, the O(log k) factor in this

result has been improved to O(
√
log k log log k). One also obtains a polynomial-time algorithm

guaranteed to find a cut at most this factor away from optimal.
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A Fourier-analytic proof of the KKL

theorem

A.1 A quick introduction to the Fourier analysis on the

Hamming cube

The reader has probably seen something from the “classical” Fourier analysis,
where a “reasonable” function f : [0, 2π] → R is expressed by a series of sines
and cosines. The Fourier analysis on the finite set {0, 1}n instead of the interval
[0, 2π] is analogous in some ways.1 But its foundations are much simpler: there
are no issues of convergence, only basic linear algebra in finite dimension.

So we consider the real vector space F of all functions f : {0, 1}n → R (with
pointwise addition and multiplication by scalars). It has dimension 2n; the
functions equal to 1 at one of the points and zero elsewhere form an obvious
basis. The idea of the Fourier analysis is expressing functions in another basis.

So for every a ∈ {0, 1}n, we define the function χa ∈ F by

χa(u) := (−1)a1u1+···+anun =
∏

i:ai=1

(−1)ui .

The χa are called the characters, and as we will soon check, they form a basis
of F .

For u,v ∈ {0, 1}n, u + v stands for the componentwise sum of a and b
modulo 2, the same notation as in Section 3.9. So we regard {0, 1}n as the
Abelian group (Z/2Z)n. We have χa(u+ v) = χa(u)χa(v) (in agreement with
the general definition of a character of an Abelian group G as a homomorphism
G → (C,×)), and also χa+b(u) = χa(u)χb(u).

Next, we define a scalar product on F by

〈f, g〉 := 1

2n

∑

u∈{0,1}n
f(u)g(u).

1Both are instances of a general framework, where G is a locally compact Abelian topo-
logical group, and complex functions on G are expressed using the characters of G.
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It is easy to check that (χa : a ∈ {0, 1}n) form an orthonormal system, meaning
that

〈χa, χb〉 =
{
1 for a = b,
0 for a 6= b

(this follows by an easy calculation, using the property χaχb = χa+b mentioned
above, and we skip it). This implies that the χa are linearly independent, and
since there are 2n of them, they constitute an orthonormal basis of F .

The Fourier coefficients of a function f ∈ F are the coordinates of f in
this basis. The coefficient of f corresponding to χa is traditionally denoted by
f̂(a).

A simple fact of linear algebra is that the coordinates with respect to an
orthonormal basis can be computed using scalar products. In our case we thus
have

f̂(a) = 〈χa, f〉.
Another easy general result of linear algebra tells us how the scalar prod-

uct of two vectors is computed from their coordinates with respect to some
orthonormal basis. In our case this rule reads

〈f, g〉 =
∑

a

f̂(a)ĝ(a) (A.1)

(here and in the sequel, the summation is over {0, 1}n unless specified other-
wise). The most often used special case of this is with f = g, where it expresses
the ℓ2 norm of f using the Fourier coefficients; this is the Parseval equality:

‖f‖22 := 〈f, f〉 =
∑

a

f̂(a)2.

Here is another straightforward fact, whose proof is again omitted.

A.1.1 Fact (Fourier coefficients of a translation). Let w ∈ {0, 1} be a
fixed vector, let f ∈ F , and let g ∈ F be defined by g(u) := f(u+w). Then

ĝ(a) = χa(w)f̂(a).

We will now express the influence of a Boolean function using its Fourier
coefficients. So let f : {0, 1}n → {0, 1}, and let ∂kf stand for the function given
by ∂kf(u) := f(u + ek) − f(u) (the notation should suggest a formal analogy
with the partial derivative of a real function on R

n). Since the values of ∂kf
are in {0,−1,+1}, we have

Ikf = 2−n
∑

u

|∂kf(u)| = 2−n
∑

u

|∂kf(u)|2 = ‖∂kf‖22,

and the Parseval equality thus gives

Ik(f) =
∑

a

∂̂kf(a)
2.
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Using Fact A.1.1 with w = ek, we easily calculate that

∂̂kf(a) =

{
−2f̂(a) if ak = 1,
0 if ak = 0.

We thus arrive at
Ik(f) = 4

∑

a:ak=1

f̂(a)2, (A.2)

and summing over k then yields

I(f) =

n∑

k=1

Ik(f) = 4
∑

a

|a|f̂(a)2, (A.3)

where |a| denotes the number of 1s in a.

A.2 ℓp norms and a hypercontractive inequality

We have been using the ℓ2 norm ‖f‖2 = 〈f, f〉1/2 of functions on {0, 1}n; now
we need to consider the ℓp norm

‖f‖p =
(
2−n

∑
|f(u)|p

)1/p

.

One can say that for p small (close to 1), the ℓp norm measures mainly the
“typical” behavior of f (in particular, ‖f‖1 = E[|f |]), while for larger p, ‖f‖p
is more influenced by “spikes” of f . Here is a pictorial analog for functions
[0, 1] → R:

‖f‖p and ‖f‖q not very different

f f

‖f‖p much larger than ‖f‖q

for p > q

Let us define the degree of f as

max{|a| : f̂(a) 6= 0},

the maximum “level” of a nonzero Fourier coefficient.2

2We can formally express f as a (multilinear) polynomial. To this end, we write χa(u) =
∏

i:ai=1
(1 − 2ui), which is a polynomial of degree |a| (note that this involves a “type cast”:

while we usually add the ui modulo 2, here we regard them as real numbers). Then the degree
of f is the degree of the corresponding polynomial.

Here we can also see the advantage of writing the Hamming cube as {−1, 1}n; then χa(u)
is simply the monomial

∏

i:ai=−1
ui.
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For a function f ∈ F and a threshold parameter t ∈ [0, d), let us define

flow :=
∑

a:|a|≤t

f̂(a)χa

as the “low-degree part” of f ; that is, flow is obtained from f by truncating the
Fourier expansion on level t.

We come to the main result of this section.

A.2.1 Proposition (A hypercontractive inequality). There are con-
stants C and p < 2 such that for every f : {0, 1}n → R and every t we
have

‖flow‖2 ≤ Ct‖f‖p.

We will comment on the meaning of the word “hypercontractive” at the end
of this section. Here we just observe that the ℓ2 norm on the left-hand side is
more sensitive to spikes than the ℓp norm on the right-hand side. So we can
think of the inequality as a quantitative expression of the intuitive fact that
removing high-level components of the Fourier expansion makes f smoother.

We will prove the proposition with p = 4/3 and C =
√
3, and the main step

in the proof is the following lemma.

A.2.2 Lemma. Let f be a function of degree at most t. Then

‖f‖4 ≤
√
3
t‖f‖2.

Proof. The exponents 2 and 4 are convenient, since they allow for a relatively
simple inductive proof. We actually prove the fourth power of the required
inequality, i.e.,

‖f‖44 ≤ 9t‖f‖42
by induction on n.

In the inductive step, we want to get rid of the last variable un. We split
the Fourier expansion of f into two parts, one with the characters that do
not depend on un, and the other with those that do. For u ∈ {0, 1}n, let
u := (u1, . . . , un−1), and for b ∈ {0, 1}n−1, we write b0 for (b1, b2, . . . , bn−1, 0)
(and similarly for b1). We have

f(u) =
∑

a∈{0,1}n
f̂(a)χa(u)

=
∑

b∈{0,1}n−1

f̂(b0)χb0(u) +
∑

b∈{0,1}n−1

f̂(b1)χb1(u)

=
∑

b∈{0,1}n−1

f̂(b0)χb(u) + (−1)un
∑

b∈{0,1}n−1

f̂(b1)χb(u)

= g(u) + (−1)unh(u).
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Here g is of degree at most t and h of degree at most t− 1. Moreover, by the
orthogonality of the characters we can see that

‖f‖22 = ‖g‖22 + ‖h‖22.

We can begin the calculation for the inductive step.

‖f‖44 = 2−n
∑

u

f(u)4

= 2−n

[ ∑

v∈{0,1}n−1

(g(v) + h(v))4 +
∑

v∈{0,1}n−1

(g(v) − h(v))4
]
.

We expand the fourth powers according to the Binomial Theorem; the terms
with odd powers cancel out, while those with even powers appear twice, and
we arrive at

= 2 · 2−n
∑

v

(
g(v)4 + 6g(v)2h(v)2 + h(v)4

)

= ‖g‖44 + 6〈g2, h2〉+ ‖h‖44
(the norms and the scalar product are now for functions on {0, 1}n−1, one
dimension less).

For the terms ‖g‖44 and ‖h‖44 we will simply use the inductive assumption.
The only trick is with estimating the scalar product 〈g2, h2〉: for that we use
the Cauchy–Schwarz inequality 〈x,y〉 ≤ ‖x‖2‖y‖2, which in our case gives
〈g2, h2〉 ≤ ‖g2‖2‖h2‖2 = ‖g‖24‖h‖24. Only after that we apply induction, and we
obtain

≤ ‖g‖44 + 6‖g‖24‖h‖24 + ‖h‖44
≤ 9t‖g‖42 + 6 · 9t/2‖g‖24 · 9(t−1)/2‖h‖24 + 9t−1‖h‖42
= 9t

(
‖g‖42 + 6 · 9−1/2‖g‖24‖h‖24 + 9−1‖h‖42

)

≤ 9t
(
‖g‖22 + ‖h‖22

)2

= 9t‖f‖42.

The lemma is proved. (Well, wait a second. . . what is the basis of the induction?)
�

Proof of Proposition A.2.1. If we apply the lemma just proved to flow, we
get

‖flow‖4 ≤
√
3
t‖flow‖2, (A.4)

but how do we relate this to the norm of f itself?
The first trick of the proof is to consider the scalar product 〈flow, f〉 and

express it using the Fourier coefficients:

〈flow, f〉 =
∑

a

f̂low(a)f̂(a) =
∑

a:|a|≤t

f̂(a)2 = ‖flow‖22

(Parseval).
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The second and last trick is to write Hölder’s inequality for 〈flow, f〉, with
exponents p = 4 and q = 4

3 , which gives

‖flow‖22 = 〈flow, f〉 ≤ ‖flow‖4‖f‖4/3.

Now we bound ‖flow‖4 using (A.4), divide the resulting inequality by ‖flow‖2,
and we arrive at the desired inequality ‖flow‖2 ≤

√
3
t‖f‖4/3. �

On hypercontractive inequalities. Let (Z, ‖.‖) be a normed space. A
1-Lipschitz mapping Z → Z is often called contractive. This term is most often
used for linear mappings A:Z → Z, which in this context are referred to as
(linear) operators. For a linear operator, contractivity means ‖Ax‖ ≤ ‖x‖ for
every x ∈ Z.

Now let us consider two different norms ‖.‖ and ‖.‖′ on Z, and assume that
‖x‖ ≤ ‖x‖′ for all x. If the linear operator A even satisfies ‖Ax‖′ ≤ ‖x‖, it
is called hypercontractive (it is “more than contractive”, since if x is small
under the smaller norm, Ax is small even under the bigger norm).

For us, the relevant setting is Z = F , the space of all functions {0, 1}n → R,
and ‖.‖ = ‖.‖p, ‖.‖′ = ‖.‖q with p < q. Note that we indeed have ‖f‖p ≤ ‖f‖q
for all f ∈ F . This holds for the functions on any probability space, and it
follows from Hölder’s inequality. (This should not be confused with the case
of the ℓp norms on R

n, where we have the opposite inequality ‖x‖p ≥ ‖x‖q for
p < q.)

How does Proposition A.2.1 fit into this? We regard the “truncation” f 7→
flow as an operator L:F → F ; it is linear because each Fourier coefficient f̂(a)
depends linearly on f . The proposition then tells us that L is hypercontractive
for some p < 2 and q = 2, well, almost, because there is the factor Ct.

This hypercontractive inequality is relatively easy to prove, and in a sense,
it is tailored for the proof of the KKL theorem. The original, and usual, proof of
the KKL theorem uses another hypercontractive inequality, proved by Bonami
and independently by Gross (often also attributed to Beckner, who proved some
generalizations later).

To state it, we introduce, for a real parameter ρ ∈ [0, 1], the noise operator
Tρ:F → F . The simplest way of defining it is in terms of the Fourier expansion:

Tρf :=
∑

a

f̂(a)ρ|a|χa;

that is, the higher Fourier coefficient, the more it is reduced by Tρ. In particular,

T1f = f and T0f is the constant function equal to f̂(0) = E[f ].
To explain the name “noise operator”, we need another definition. Let

p := (1 − ρ)/2, and let x ∈ {0, 1}n be a random vector, the noise, where each
xi is set to 1 with probability p and 0 with probability 1− p, independent of all
other xj’s. Then we have

Tρf(u) := E[f(u+ x)] .

In words, to evaluate the function Tρf at some given u, we first flip each
coordinate of u with probability p, then we apply f to the resulting vector,
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and we take the expectation over the random flips. Thus, Tρf(u) is a weighted
average of the values of f , where (for ρ < 1) values at points closer to u are
taken with larger weight. It is not too hard to verify that this definition is
equivalent to the Fourier-analytic one above.

The hypercontractive inequality for Tρ asserts that

‖Tρf‖q ≤ ‖f‖p (A.5)

for all f ∈ F if (and only if) ρ2 ≤ p−1
q−1 , 1 ≤ p ≤ q. This, with q = 2,

was used in the first proof of the KKL theorem. Essentially, one first derives
Proposition A.2.1 from (A.5) and then proceeds as we will do in the next section.

In the usual proof of (A.5), one first proves the case n = 1, which is a
laborious but essentially straightforward calculus problem. Then one derives
the general case from the 1-dimensional one by a general inductive argument;
this is often expressed by saying that the inequality (A.5) tensors. This is one of
the most common approaches to proving multidimensional inequalities, such as
various isoperimetric inequalities: one needs to find a version of the considered
inequality that tensors, and then work out the one-dimensional version.

The KKL theorem, as well as (A.5), can also be derived from a log-Sobolev
inequality for the Hamming cube, which asserts that

∑

{u,v}∈E
|f(u)− f(v)|2 ≥ 1

n
Ent[f2],

where E is the edge set of the Hamming cube, and where the entropy of a
function g is defined as Ent[g] := E[g log(g/E [g])]. The log-Sobolev inequal-
ity is again proved for the 1-dimensional case and then tensored. This way
of proving the KKL theorem is nicely presented in the survey P. Biswal: Hy-
percontractivity and its Applications, available from Biswal’s home page. It is
probably shorter than the one presented in the current chapter.

A.3 The KKL theorem

We begin with a quick Fourier-analytic proof of the following inequality, men-
tioned in Section 3.9, for the total influence of a Boolean function:

I(f) ≥ 4Var [f ] = 4µ(1− µ).

(A quiz for the reader: this is an isoperimetric inequality in disguise, bounding
from below the smallest number of edges connecting a subset A of vertices of
the Hamming cube to the complement of A. Can you see why?)

Using the equality I(f) = 4
∑

a |a|f̂(a)2 derived earlier and the Parseval
equality, we obtain

1
4 I(f) ≥

∑

a:a 6=0

f̂(a)2 = ‖f‖22 − f̂(0)2 = E
[
f2
]
−E[f ]2 = Var [f ]

(the penultimate equality is a little Fourier-analytic exercise).
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The beginning of the proof of the KKL theorem is in a similar spirit. We
recall that we actually want to prove a more general statement, Theorem 3.9.3,
which reads as follows:

For every f : {0, 1}n → {0, 1}, we have I(f) ≥ cµ(1 − µ) log 1
δ ,

where δ := maxk Ik(f).

(We leave the derivation of the KKL theorem itself from this to the reader.)
Let us write W :=

∑
a:a 6=0 f̂(a)

2 = µ(1 − µ) (the last equality is from the
short proof above). We distinguish two cases, depending on whether f has more
weight at “high” or “low” Fourier coefficients. We fix the threshold

t := ⌊12c log 1
δ ⌋

to separate low from high.

Case 1: main weight at high coefficients. Here we assume
∑

a:|a|>t

f̂(a)2 ≥ W
2 .

Then we are done quickly:

I(f) = 4
∑

a

|a|f̂(a)2 ≥ 4(t+ 1)
∑

a:|a|>t

f̂(a)2

≥ 2(t+ 1)W ≥ cµ(1− µ) log 1
δ

(here we see where the value of t comes from). Intuitively, lot of weight at high
coefficients means that f varies quickly, and this implies large influences.

Case 2: main weight at low coefficients. This is the complement of
Case 1, i.e., now

∑
a:0<|a|≤t f̂(a)

2 > W/2.
Here we use the assumption that δ = maxk Ik(f) (so far we haven’t needed

it), and we show that I(f) is even larger than claimed in the theorem.
For a while, we will work on an individual influence Ik(f) for k fixed. Let

g := ∂kf ; we will apply the (squared) hypercontractive inequality from Propo-
sition A.2.1 to g. For simplicity, we use the specific numerical values C =

√
3

and p = 4
3 obtained in the proof of the proposition. Thus

‖glow‖22 ≤ 3t‖g‖24/3 = 3t
(
2−n

∑

u

|g(u)|4/3
)2·3/4

= 3tIk(f)
3/2,

the last equality holding since the values of g are in {0,−1, 1} and thus Ik(f) =
‖g‖1 = ‖g‖pp for all p. Roughly speaking, this tells us that if the influence
Ik(f) is small, say smaller than 3−2t, then the contribution of the low Fourier
coefficients to it is even considerably smaller.

Now 3t = 3c log(1/δ) ≤ δ−1/4, say, for c sufficiently small. We estimate
Ik(f)

3/2 ≤ Ik(f) · δ1/2, then we sum over k, and the total influence will appear
on the right-hand side of the resulting inequality:

n∑

k=1

‖(∂kf)low‖22 ≤ 3tδ1/2
n∑

k=1

Ik(f) ≤ δ1/4I(f).
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In the same way as when we expressed I(f) in terms of the Fourier coefficients
(the passage from (A.2) to (A.3)), we get that the left-hand side equals

4
∑

a:|a|≤t

|a|f̂(a)2 ≥ 4
∑

a:0<|a|≤t

f̂(a)2 ≥ 2W.

Thus
I(f) ≥ 2Wδ−1/4 = 2µ(1 − µ)δ−1/4 ≥ cµ(1− µ) log 1

δ .

Theorem 3.9.3 is proved. �

A.4 Exercises

1. Prove Fact A.1.1.



B

Proof of the short-diagonals lemma for ℓp

We recall what is to be proved: for every four points x1, x2, x3, x4 ∈ ℓp we
have

‖x1 − x3‖2p + (p− 1)‖x2 − x4‖2p
≤ ‖x1 − x2‖2p + ‖x2 − x3‖2p + ‖x3 − x4‖2p + ‖x4 − x1‖2p. (B.1)

First we will show that this result is an easy consequence of the following
inequality:

‖x+ y‖2p + ‖x− y‖2p
2

≥ ‖x‖2p + (p − 1)‖y‖2p, 1 < p < 2, (B.2)

where x,y ∈ R
k are arbitrary vectors. (The proof can also be extended for

infinite-dimensional vectors in ℓp or functions in Lp, but some things come out
slightly simpler in finite dimension.)

Deriving (B.1) from (B.2). For understanding this step, it is useful to note
that (B.2) is equivalent to a special case of the short-diagonals lemma, namely,
when x1,x2,x3,x4 are the vertices of a parallelogram:

x1 x2

x4

x
y

x3 = x2 + x4 − x1

In that case we have x3 = x2+x4−x1, and writing (B.2) with x := x2+x4−2x1

and y := x4 − x2 being the diagonals, we arrive at

‖x2 + x4 − 2x1‖2p + (p− 1)‖x4 − x2‖2p ≤ 2‖x4 − x1‖2p + 2‖x2 − x1‖2p. (B.3)

Now if x1,x2,x3,x4 are arbitrary, we use (B.2) for two parallelograms: The
first one has vertices x1,x2,x2 +x4−x1,x4 as above, leading to (B.3), and the
second parallelogram has vertices x2 + x4 − x3,x2,x3,x4, leading to

‖x2 + x4 − 2x3‖2p + (p− 1)‖x4 − x2‖2p ≤ 2‖x4 − x3‖2p + 2‖x2 − x3‖2p. (B.4)

Taking the arithmetic average of (B.3) and (B.4) we almost get the inequality
we want, except that we have 1

2 (‖x2 + x4 − 2x1‖2p + ‖x2 + x4 − 2x3‖2p) instead
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of ‖x1 − x3‖2p we’d like to have. It remains to see that the former expression is
at least as large as the latter, and this follows by the convexity of the function
x 7→ ‖x‖2p. Namely, we use 1

2(‖a‖2p+‖b‖2p) ≥ ‖(a+b)/2‖2p with a := x2+x4−2x1

and b := 2x3 − x2 − x4. �

Proof of inequality (B.2). This exposition is based on a sketch given as
the first proof of Proposition 3 in

K. Ball, E. A. Carlen, and E.H. Lieb. Sharp uniform convexity and
smoothness inequalities for trace norms. Invent. Math. 115,1(1994)
463–482.

The second proof from that paper has been worked out by Assaf Naor; see
http://www.cims.nyu.edu/~naor/homepage/files/inequality.pdf. I con-
sider the first proof somewhat more conceptual and accessible for a non-expert.

First we pass to an inequality formally stronger than (B.2), with the same
right-hand side:

(‖x+ y‖pp + ‖x− y‖pp
2

)2/p

≥ ‖x‖2p + (p − 1)‖y‖2p. (B.5)

To see that the l.h.s. of (B.5) is never smaller than the l.h.s. of (B.2), we use the

following well-known fact: The qth degree average
(
aq+bq

2

)1/q
is a nondecreasing

function of q for a, b fixed. We apply this with a = ‖x + y‖2p, b = ‖x − y‖2p,
q = 1 and q = p/2 < 1, and we see that the new inequality indeed implies the
old one. The computation with the new inequality is more manageable.

It is instructive to see what (B.5) asserts if the vectors x,y are replaced by
real numbers x, y. For simplicity, let us re-scale so that x = 1, and suppose

that y is very small. Then the l.h.s. becomes
(
(1+y)p+(1−y)p

2

)2/p
, and a Taylor

expansion of this gives (1 + p(p− 1)y2/2 +O(y3))2/p = 1 + (p − 1)y2 + O(y3),
while the r.h.s. equals 1 + (p − 1)y2. So both sides agree up to the quadratic
term, and in particular, we see that the coefficient p − 1 in (B.5) cannot be
improved.

The basic idea of the proof of (B.5) is this: With x and y fixed, we introduce
an auxiliary real parameter t ∈ [0, 1], and we consider the functions L(t) and
R(t) obtained by substituting ty for y in the left-hand and right-hand sides of
(B.5), respectively. That is,

L(t) :=

(‖x+ ty‖pp + ‖x− ty‖pp
2

)2/p

R(t) := ‖x‖2p + (p− 1)t2‖y‖2p.

Evidently L(0) = R(0) = ‖x‖2p. We would like to verify that the first derivatives
L′(t) and R′(t) both vanish at t = 0 (this is easy), and that for the second
derivatives we have L′′(t) ≥ R′′(t) for all t ∈ [0, 1], which will imply L(1) ≥ R(1)
by double integration.

We have R′(t) = 2(p − 1)t‖y‖2p (so L(0) = 0) and R′′(t) = 2(p − 1)‖y‖2p.
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For dealing with L(t), it is convenient to write f(t) := (‖x + ty‖pp + ‖x −
ty‖pp)/2. Then

L′(t) =
2

p
f(t)

2

p
−1f ′(t)

=
2

p
f(t)

2

p
−1 p

2

∑

i

(
|xi + tyi|p−1sgn(xi + tyi)yi

−|xi − tyi|p−1sgn(xi − tyi)yi

)

(we note that the function z 7→ |z|p has a continuous first derivative, namely,
p|z|p−1sgn(z), provided that p > 1). The above formula for L′(t) shows L′(0) =
0.

For the second derivative we have to be careful, since the graph of the
function z 7→ |z|p−1 has a sharp corner at z = 0, and thus the function isn’t
differentiable at 0 for our range of p. We thus proceed with the calculation of
L′′(t) only for t with xi ± tyi 6= 0 for all i, which excludes finitely many values.
Then

L′′(t) =
2

p

(
2

p
− 1

)
f(t)

2

p
−2f ′(t)2 +

2

p
f(t)

2

p
−1f ′′(t)

≥ 2

p
f(t)

2

p
−1

f ′′(t)

= f(t)
2

p
−1

(p− 1)

(∑

i

|xi + tyi|p−2y2i +
∑

i

|xi − tyi|p−2y2i

)
.

Next, we would like to bound the sums in the last formula using ‖x‖p
and ‖y‖p. We use the so-called reverse Hölder inequality, which asserts, for

nonnegative ai’s and strictly positive bi’s,
∑

i aibi ≥ (
∑

i a
r
i )

1/r(
∑

i b
s
i )

1/s, where
0 < r < 1 and 1

s = 1 − 1
r < 0. This inequality is not hard to derive from the

“usual” Hölder inequality
∑

i aibi ≤ ‖a‖p‖b‖q, 1 < p < ∞, 1
p + 1

q = 1. In our

case we use the reverse Hölder inequality with r = p/2, s = p/(p − 2), ai = y2i ,
and bi = |xi + tyi|p−2 or bi = |xi − tyi|p−2, and we arrive at

L′′(t) ≥ (p− 1)f(t)
2

p
−1‖y‖2p

(
‖x+ ty‖p−2

p + ‖x− ty‖p−2
p

)

Applying yet another inequality aα+bα

2 ≥ (a+b
2 )α with a = ‖x + ty‖pp, b =

‖x − ty‖pp, and α = (p − 2)/p < 0 (for α = −1, for example, this is the
inequality between the harmonic and arithmetic means), we get rid of the f(t)
term and finally obtain L′′(t) ≥ 2(p − 1)‖y‖2p.

We have thus proved L′′(t) ≥ R′′(t) for all but finitely many t. The function
L′(t) − R′(t) is continuous in (0, 1) and nondecreasing on each of the open
intervals between the excluded values of t (by the Mean Value Theorem), and
so L′(t) ≥ R′(t) for all t. The desired conclusion L(1) ≥ R(1) follows, again by
the Mean Value Theorem. �


