P(m) is sum of (edge) lengths of all nodes of a BST tree obtained by a per-
mutation 7 € S,,, where S, is the set of all permutation of the set {1,...,n}.
The average node depth of an average BST is the number
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We are going to prove that Q(n) < 4nlog,n for all n > 0.
It is @Q(1) = 0 = 4log, 1, and by induction
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Consequently, the average node depth of an average BST tree is at most
4n logy n.



