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Discrete exterior calculus (DEC) offers a coordinate–free discretization of exterior calculus 
especially suited for computations on curved spaces. In this work, we present an extended 
version of DEC on surface meshes formed by general polygons that bypasses the need for 
combinatorial subdivision and does not involve any dual mesh. At its core, our approach 
introduces a new polygonal wedge product that is compatible with the discrete exterior 
derivative in the sense that it satisfies the Leibniz product rule. Based on the discrete 
wedge product, we then derive a novel primal–to–primal Hodge star operator. Combining 
these three ‘basic operators’ we then define new discrete versions of the contraction 
operator and Lie derivative, codifferential and Laplace operator. We discuss the numerical 
convergence of each one of these proposed operators and compare them to existing 
DEC methods. Finally, we show simple applications of our operators on Helmholtz–Hodge 
decomposition, Laplacian surface fairing, and Lie advection of functions and vector fields 
on meshes formed by general polygons.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The discretization of differential operators on surfaces is fundamental for geometry processing tasks, ranging from 
remeshing to vector fields manipulation. Discrete exterior calculus (DEC) is arguably one of the prevalent numerical frame-
works to derive such discrete differential operators. However, the vast majority of work on DEC is restricted to simplicial 
meshes, and far less attention has been given to meshes formed by arbitrary polygons, possibly non–planar and non–
convex.

In this work, we propose a new discretization for several operators commonly associated to DEC that operate directly 
on polygons without involving any subdivision. Our approach offers three main practical benefits. First, by working di-
rectly with polygonal meshes, we overcome the ambiguities of subdividing a discrete surface into a triangle mesh. Second, 
our construction operates solely on primal elements, thus removing any dependency on dual meshes. Finally, our method 
includes the discretization of new differential operators such as the contraction operator and Lie derivatives.

We concisely expose our framework, describe each of our operators and compare them to existing DEC methods. We 
examine the accuracy of our numerical scheme by a series of convergence tests on flat and curved surface meshes. We also 
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Fig. 1. Comparison of implicit mean curvature flows on a general polygonal mesh (29k vertices) after 10 iterations with time step t = 10−4. On the far 
left is the original mesh. Our method (center left) and the algorithm of Alexa and Wardetzky (2011) with their combinatorially enhanced Laplacian (center 
right) produce visually well–smoothed meshes. However, their method with purely geometric Laplacian (far right) exhibits some undesirable artifacts on 
the ears, neck, and tail of the kitten.

demonstrate the applicability of our method for Helmholtz–Hodge decomposition of vector fields, surface fairing, and Lie 
advection of vector fields and functions.

2. Related work and preliminaries

There is a vast literature on DEC on triangle meshes, e.g., (Hirani, 2003; Desbrun et al., 2005, 2006; Crane et al., 2013) – 
all these publications have in common that they deal with purely simplicial meshes and use a dual mesh to define operators, 
we will refer to their approach as to the classical DEC.

As announced, unlike the classical DEC, our method works with general polygonal meshes and does not involve any dual 
meshes. However, our operators differ also in other aspects, e.g., support (see Figs. 3–5). Next we briefly introduce several 
basic DEC notions and point out the key differences between our approach and existing schemes, principally the classical 
DEC.

2.1. Discrete differential forms and the exterior derivative

We strictly stick to the convention, common to previous DEC literature, that a discrete q–form is located on 
q–dimensional cells of the given mesh.

Discrete differential forms are usually denoted by small Greek letters and sometimes we add a number superscript to 
emphasize the degree of the form, i.e., a q–form α can be denoted as αq .

A polygonal mesh S is made of a set of vertices (0–dimensional cells), oriented edges (1–dimensional cells), and oriented 
faces (2–dimensional cells). A real discrete differential q–form αq on S is a q–cochain, i.e., a real number assigned to each 
q–dimensional cell cq of S . E.g., if (e0, e1, . . . , en) is the vector of all edges of S , then an 1–form α1 is a vector of real values

α1 = (α(e0), . . . ,α(en)).

The discrete exterior derivative d is the coboundary operator and it holds:

(dα)(cq+1) = α(∂cq+1) =
∑
cq∈S

[cq+1 : cq]α(cq),

where ∂ is the boundary operator and [cq+1 : cq] denotes the incidence relation between cells cq+1 and cq , as depicted in 
the example below.

[ f0 : e0] = 1, [ f0 : e1] = 1, . . . , [ f0 : e4] = −1

∂ f0 =
∑
ei∈S

[ f0 : ei]ei = e0 + e1 + e2 + e3 − e4

α1 = (α(e0), . . . ,α(en))

dα( f0) =
∑
e ∈S

[ f0 : ei]α(ei) = α(e0) + α(e1) + α(e2) + α(e3) − α(e4)
i

2
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Fig. 2. The wedge product of two 1–forms on a triangle: the product of two 1–forms is a 2–form located on faces (far left).

The boundary of a face f0 is a sum of incident oriented edges, where we take in account the orientation of the boundary 
edges with respect to the given face. The discrete exterior derivative of a 1–form α1 (stored on edges) is a 2–form dα
located on faces and it is the “oriented sum” of the values of α on boundary edges of f0.

2.2. The cup product and the wedge product

We consider the wedge product on polygons to be the main building block of our theory. On smooth manifolds, the 
wedge product allows for building higher degree forms from lower degree ones. Similarly in algebraic topology of pseudo-
manifolds, a cup product is a product of two cochains of arbitrary degree p and q that returns a cochain of degree p + q
located on (p + q)–dimensional cells. Thus we consider the cup product to be the appropriate discrete version of the wedge 
product.

The cup product was introduced by J. W. Alexander, E. Čech, and H. Whitney in 1930’s and it became a well–studied 
notion in algebraic topology, mainly in the simplicial setting. Later, the cup product was extended also to n–cubes (Massey, 
1991; Arnold, 2012).

In graphics, Gu and Yau (2003) presented a wedge product of two discrete 1–forms on triangulations, which turns to be 
equivalent to the cup product of two 1–cochains on triangle complexes well studied in algebraic topology, e.g., (Whitney, 
1957).

On triangles our discrete wedge product is equivalent to the cup product of Whitney (1957), see also the Fig. 2. On 
quadrilaterals our discrete wedge product is equivalent to the cup product of Massey (1991).

In common to previous approaches, the discrete wedge product is metric–independent and satisfies core properties such 
as the Leibniz product rule, skew–commutativity, and associativity on closed forms.

2.3. The Hodge star operator

The most common discretization of the Hodge star operator on triangle meshes is the so called diagonal approximation, 
see, e.g., (Desbrun et al., 2006), which is computed based on the ratios between the volumes of primal simplices and 
their dual cells. In contrast, we propose a Hodge star operator that does not use a dual mesh. Since our dual forms are 
again located on primal elements, we can compute the wedge product of primal and dual forms and hence define further 
operators. However, this primal–primal definition brings some drawbacks as well, we discuss them in Section 3.2.

2.4. The Hodge inner product

On smooth manifolds the Hodge star operator together with the wedge product defines the Hodge inner product, our 
definition is derived in the same fashion.

On the contrary, in classical DEC, e.g., (Desbrun et al., 2006), the Hodge star is actually derived from a previously given 
inner product. Alexa and Wardetzky (2011) in Lemma 3 also present a discrete version of inner product matrices, that 
become the building blocks of their theory.

2.5. The codifferential

On a Riemannian n–manifold, the Hodge star operator is employed to define the codifferential operator δ(αk) =
(−1)n(k−1)+1 � d � α. It is a linear operator that maps k–forms to (k − 1)–forms. On 1–forms it is also called the diver-
gence operator.

In classical DEC the discrete codifferential operator on triangle meshes is defined using the diagonal approximation of 
the Hodge star operator. Alexa and Wardetzky (2011) in Section 3 hint at a codifferential of 1–forms on general polygonal 
meshes. The main difference between these and our codifferentials is in the support, see Figs. 3 and 4.

2.6. The Laplace operator

In exterior calculus, the Laplace operator is given by � := δd +dδ, where δ is the codifferential and d the exterior deriva-
tive. The Laplacian is defined in this way also in the classical DEC and we follow this convention. The classical Laplacian on 
3
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Fig. 3. Comparison of the support of the codifferential of 1–forms between the classical DEC (L) and our method (R). The codifferential of a 1–form α is a 
0–form located on vertices. The value of δα on the red vertex v is a linear combination of values of α on edges colored green. The edge thickness reflects 
the weight of the corresponding edge values α on δα(v). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 4. Comparison of the support of the codifferential of 2–forms between the classical DEC (L) and our approach (R). The codifferential of a 2–form β is 
a 1–form δβ located on edges. The value of δβ on the red edge e is a linear combination of the values of β on faces colored green. The color intensity of 
faces reflects their weight of influence on δβ(e).

Fig. 5. Comparison of support of the Laplacian of 0–forms between the classical DEC (far left) and ours on triangle meshes (center left), Laplacian of Alexa 
and Wardetzky (2011) for their λ = 0 (center right) and ours on polygonal meshes (far right). The Laplacian of a 0–form α is a 0–form �α located again 
on vertices. The value of �α on the red vertex v is a linear combination of values of α on vertices colored green. The support of our Laplacian is always 
larger, the point size reflects the weight of respective αs on �α(v). We also color yellow the faces whose vertices carry the αs that enter as variables for 
�α(v).

0–forms is also called the cotan Laplace operator. Even though many different approaches lead to the cotan–formula, MacNeal 
(1949) was the first to derive it.

Discrete Laplacians of 0–forms on general polygonal meshes were introduced by Alexa and Wardetzky (2011). They 
derive Laplacians with a geometric and a combinatorial part that improves their mesh processing methods, see also Fig. 1. 
By Theorem 2 therein, on triangle meshes their Laplacians reduce to the cotan–formula. In Fig. 5 we compare the support 
of their purely geometric Laplacians to ours.

2.7. The contraction operator and the Lie derivative

The Lie derivative can be thought of as an extension of a directional derivative of a function to derivative of tensor fields 
(such as vector fields or differential forms) along a vector field. It is invariant under coordinate transformations, which 
makes it an appropriate version of a directional derivative on curved manifolds. It evaluates the change of a tensor field 
along the flow of a vector field and is widely used in mechanics.

Our discretization of Lie derivative of functions (0–forms) corresponds to the functional map framework of Azencot et 
al. (2013), but now generalized to polygonal meshes. Our discrete Lie derivatives are thus linear operators on functions that 
produce new functions, with the property that the derivative of a constant function is 0. Furthermore, both theirs and our 
Lie derivative of a vector field produce a vector field. However, whereas their framework is built for triangle meshes, we 
work with general polygonal meshes.

While maintaining the discrete exterior calculus framework, our work can also be interpreted as an extension of the Lie 
derivative of 1–forms presented by Mullen et al. (2011) from planar regular grids to surface polygonal meshes in space.

3. Primal-to-primal operators

This section contains actual results of our research – we present the theory and numerically evaluate the quality of our 
approximations by setting our results against analytical solutions. We also compare our methods to other DEC schemes.
4
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Fig. 6. The wedge product on a quadrilateral: the product of two 0–forms is a 0–form located on vertices (far left). The product of a 0–form with a 1–form 
is a 1–form located on edges (center left). The product of a 0–form with a 2–form is a 2–form located on faces (center right), and the product of two 
1–forms is a 2–form located on faces (far right).

Not using dual meshes simplifies the definition of several operators on polygonal meshes, which may be a difficult task 
otherwise. Moreover, it helps to maintain the compatibility of our operators since both the initial and the mapped discrete 
forms are located on primal elements. However, this approach also brings some drawbacks, we discuss them in this section.

3.1. The discrete wedge product

Just like the wedge product of differential forms, our discrete wedge product is a product of two discrete forms of 
arbitrary degree k and l that returns a form of degree k + l located on primal (k + l)–dimensional cells (see Fig. 6).

On triangle meshes our discrete wedge product is identical to the cup product given by Whitney (1957) and on quadri-
laterals it is equivalent to the cubical cup product of Arnold (2012). Further, the wedge product of differential forms satisfies 
the Leibniz product rule with exterior derivative and is skew–commutative. The discrete wedge product must satisfy these 
properties as well, we thus appropriately extend the discrete wedge product from triangles and quads to general polygons 
and derive the following formulas:

Definition 3.1. Let S be a surface mesh (pseudomanifold) whose faces (2–cells) are polygons. The polygonal wedge product 
of two discrete forms αk, βl is a (k + l)–form αk ∧ βl defined on each (k + l)–cell ck+l ∈ S . Let v be a vertex, e = (vi, v j) an 
edge, and f = (v0, . . . , v p−1) a p–polygonal face with boundary edges e0, . . . , ep−1 having the same orientation as f . The
polygonal wedge product is given for each degree by:

(α0 ∧ β0)(v) = α(v)β(v),

(α0 ∧ β1)(e) = 1

2
(α(vi) + α(v j))β(e),

(α0 ∧ β2)( f ) = 1

p

( p−1∑
i=0

α(vi)

)
β( f ),

(α1 ∧ β1)( f ) =
� p−1

2 �∑
a=1

(
1

2
− a

p

) p−1∑
i=0

α(ei)(β(ei+a) − β(ei−a)),where all indices are modulo p.

The polygonal wedge product is illustrated in Figs. 2 and 6. It is a skew–commutative bilinear operation: αk ∧ βl =
(−1)klβl ∧ αk , matching its continuous analog, and it satisfies the Leibniz product rule with discrete exterior derivative: 
d(αk ∧ βl) = dα ∧ β + (−1)kα ∧ dβ .

The wedge product of three 0–forms is trivially associative (it reduces to multiplication of three scalars). Unfortunately 
for higher degree forms it is not associative in general, only if one of the 0–forms involved is constant. This is a common 
drawback of discrete wedge products, see e.g. (Hirani, 2003, Remark 7.1.4.).

In matrix form, our polygonal wedge product reads:

α0 ∧ ε0 = α0 � ε0,

α0 ∧ β1 = (Bα0) � β1,

α0 ∧ ω2 = (fvα0) � ω2,

(β1 ∧ γ 1)| f = (β1| f )
� R(γ 1| f ),

where � is the Hadamard (element–wise) product, β| f denotes the restriction of β to a p–polygonal face f , and the 
matrices B ∈R|E|×|V | , fv ∈R|F |×|V | , and R ∈Rp×p per f read:

B[i, j] =
{

1
2 if v j ≺ ei,

0 otherwise.
(1)

fv[i, j] =
{ 1

pi
if v j ≺ f i, f i is a pi–gon,

0 otherwise.
(2)
5
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R =
� p−1

2 �∑
a=1

(
1

2
− a

p

)
Ra, Ra[k, j] =

⎧⎨
⎩

1 if e j is (k + a)–th halfedge of f , [ f : e j] = 1,

−1 if e j is (k − a)–th halfedge of f , [ f : e j] = 1,

0 otherwise.
(3)

3.1.1. Numerical evaluation
We perform the numerical evaluation of our polygonal wedge product as an approximation to the continuous wedge 

product on a given mesh S over a smooth surface in the following fashion:

1. We integrate each differential l–form over all l–dimensional cells of the mesh S and thus define discrete forms α0, β1, 
γ 1, and ω2:

α0(v) = A(v), β1(e) =
∫
e

B, γ 1(e) =
∫
e

�, ω2( f ) =
∫
f

,

where Greek capital letters denote the respective continuous differential forms. In practice, we integrate the continuous 
differential 2–form  over a set of triangles (C, vi, vi+1) that approximate the possibly non–planar face f = (v0, . . . , v p−1), 
where C is the centroid of f , i.e.,

ω2( f ) =
p−1∑
i=0

∫
(C,vi ,vi+1)

, where C = 1

p

p−1∑
i=0

vi .

2. Next we compute the polygonal wedge products (α0 ∧ β1)(e), (α0 ∧ ω2)( f ), (β1 ∧ γ 1)( f ) for each edge and face of the 
mesh using our formulas.

3. We also calculate analytical solutions of the (continuous) wedge products and discretize (integrate) these solutions.

4. We then compute the L∞ and L2 errors of our approximation. So let ξk denote our solution (a discrete k–form) and �k

the respective discretized analytical solution, we compute:

L2 error =
(
ξk − �k

)�
Mk

(
ξk − �k), L∞ error = ||ξk − �k||∞ = max

ck
(|ξk(ck) − �k(ck)|),

where Mk are inner product matrices. Concretely, M2 ∈R|F |2 , M0 ∈R|V |2 are diagonal matrices given by

M2[i, i] = 1

| f i| , M0[i, i] =
∑
f j�vi

| f j|
p j

, (4)

and M1 is the inner product of two 1–forms of Alexa and Wardetzky (2011), i.e., for two 1–forms ε and λ, M1 is defined in 
the sense that

ε�M1λ =
∑

f

ε|�f M f λ| f , M f := 1

| f | B f B�
f , (5)

where ε| f again denotes the restriction of ε to a p–polygonal face f and B f denotes a p × 3 matrix with edge midpoint 
positions as rows (we take the centroid of each face as the center of coordinates per face).

5. To evaluate the numerical convergence behavior, we refine the mesh over the given smooth underlying surface. The 
smooth surfaces used for tests are: unit sphere, torus azimuthally symmetric about the z-axis, and planar square. To create 
unstructured meshes, we randomly eliminate a given percentage of edges of an initially regular mesh.

We also use jittering to evaluate the influence of irregularity of a mesh on the experimental convergence. When jittering, 
we start with a regular mesh and displace each vertex in a random tangent direction to distance r · |e|, where |e| is the 
shortest edge length, and then project all thus displaced vertices on a given underlying smooth surface. That is why we use 
simple surfaces such as spheres and tori for our tests.

If not stated otherwise, all graphs use log10 scales on both the horizontal and vertical axes.
We have tested quadratic and trigonometric differential forms on flat and curved surface meshes (with non–planar faces) 

and our polygonal wedge products exhibit at least linear convergence to the respective analytical solutions, both in L2 and 
L∞ norm. In Fig. 7 we give an example.
6
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Fig. 7. Convergence of the wedge products on a set of unstructured polygonal meshes on a planar square to analytical solutions in L2 norm (far left) and 
L∞ norm (center left). Both axes are in log10 scale. The differential forms tested are trigonometric forms α0 = sin(x) cos(y) + 1, β1 = (sin2(x) − 1)dx +
(3 cos(x + 2) + sin(y))dy, γ 1 = (cos(x) sin(y) + 3)dx + cos(y)dy, ω2 = (sin(xy) + cos(1))dx ∧ dy. On the right are samples of tested meshes, both over a 
planar [−1, 1]2 square.

Fig. 8. On the left, the Hodge dual of a 2–form ω is a 0–form �ω, which value on a vertex v (colored red) is a linear combination of values of ω on adjacent 
faces (colored green). On the right, the Hodge dual of a 0–form α is a 2–form �α, the value of �α on a face f (colored red) is a linear combination of 
values of α on vertices (green) of that face.

3.2. The Hodge star operator

We define a discrete Hodge star operator as a homomorphism (linear operator) from the group of k–forms to (2 −
k)–forms. But since we do not employ any dual mesh and there is no isomorphism between the groups of k– and (2 −
k)–dimensional cells, our Hodge star is not an isomorphism (invertible operator), unlike its continuous counterpart and 
diagonal approximations.

On the other hand, thanks to the dual forms being located on elements of our primal mesh, we can compute discrete 
wedge products of primal and dual forms and thus define a discrete inner product and discrete contraction operator later 
on.

Moreover, thanks to the Hodge star operating on primal meshes, we circumvent the ambiguity of defining dual meshes 
of unstructured general polygonal meshes. The idea of defining a Hodge star operator without using a dual mesh was 
borrowed from Arnold (2012), where the author suggests metric–independent Hodge star operators on simplicial and cubical 
complexes.

Our formulas for discrete Hodge star operators � are further motivated by the condition that the Hodge dual of constant 
discrete forms on planar surfaces is exact, hence �μ = 1 and �1 = μ, where μ is the volume form on a given Riemannian 
manifold, for details see (Abraham et al., 1988, Section 6.5).

The Hodge star operator on 2–forms takes in account the degree pi of pi –polygonal faces f i and their vector areas | f i |. 
If ω2 is a 2–form, then the 0–form �ω on a vertex v is given by

(�2ω)(v) = 1∑
f i�v

| f i|
pi

·
∑
f i�v

ω( f i)

pi
, (6)

i.e., it is a linear combination of values of ω on faces adjacent to v , see Fig. 8 left.
The Hodge star on an 1–form β1 is first defined per halfedges of a p–polygonal face f as:

�1β = W1 R� β, (7)

where R is the matrix defined in (3) and W1 is a symmetric p × p matrix given by:

W1[i, j] = 〈ei, e j〉
| f | ,

for ek the halfedges incident to and having the same orientation as the face f , where 〈., .〉 denotes the Euclidean dot 
product.

If an edge e is not on boundary, it has two adjacent faces and two halfedges, thus we compute the values of �β on 
corresponding halfedges, sum their values with appropriate orientation sign and divide the result by 2, see an example in 
Fig. 9.
7
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Fig. 9. Let β ∈ C1 and e = (v0, v1) be the edge with e0, e4 as the corresponding halfedges, then �β(e) = �β(e0)−�β(e4)
2 , where �β(e4) is a linear combination 

of values of β on dashed orange halfedges and �β(e0) is a linear combination of values of β on dashed blue halfedges, concretely �β(e0) = 1
4| f0 |

(
(〈e0, e1〉 −

〈e0, e3〉)(β(e0) − β(e2)) + (〈e0, e0〉 − 〈e0, e2〉)(β(e3) − β(e1)
)

.

Fig. 10. The approximation errors of the discrete Hodge star on a set of irregular polygonal meshes on the torus. We have chosen α0 = x2 + y2, β1 = X� , 
where X = (−y, x, 0) is a tangent vector field, and ω2 = μ is the area element on the torus. Thus �μ = 1, �α = (x2 + y2)μ, and �β = Y � , where Y =
2(−xz, −yz, x2 + y2 −√

x2 + y2) is a tangent vector field orthogonal to X. On the right are two examples of meshes on the torus with 5k vertices and 20k 
vertices.

The Hodge dual of a 0–form α is a 2–form �α defined per a p–polygonal face f by:

(�0α)( f ) = | f |
p

∑
vi� f

α(vi), (8)

and it is simply the arithmetic mean of the values of α on vertices of the given face f multiplied by the vector area | f |.
In matrix form, the discrete Hodge star operators read

�0 = WF fv,

�1 = A W1 R�,

�2 = WV fv�,

where fv and R are defined in equations (2) and (3), resp., and WF ∈R|F |×|F | , WV ∈R|V |×|V | , A ∈R|E|×|E| are given by

WF [i, i] = | f i |, WV [i, i] = 1∑
fk�vi

| fk|
pk

, A[i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = j, ei is on boundary,

1
2 if i = j, ei is not on boundary,

− 1
2 if ei = −e j,

0 otherwise.

Although our Hodge star matrices are not diagonal, they are highly sparse and thus computationally efficient. We have 
performed numerical tests on linear, quadratic, and trigonometric forms on planar and curved meshes and they exhibit the 
same at least linear convergence rate. We give an example in Fig. 10.

3.3. The Hodge inner product

The L2–Hodge inner product of differential forms �k, k on a Riemannian manifold M is defined as:

(�k,k) :=
∫
M

� ∧ �.

We define a discrete L2–Hodge inner product of two discrete forms αk, βk on a mesh S by:

(αk, βk) :=
∑(

α ∧ �β
)
( f ) = α� Mk β, k = 0,1,2,
f ∈S

8
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Fig. 11. The influence of irregularity on experimental convergence of discrete Hodge inner products to analytically computed solutions. Concretely, on a set 
of jittered meshes with r = 0.2 (far left) and r = 0.4 (center left). We show a sample mesh with 5k vertices for r = 0.2 (center right) and r = 0.4 (far right). 
We set α0 = x2 + y2, β1 = −xzdx − yzdy + (x2 + y2)dz, ω2 = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy. Here α ∧ �α denotes our Hodge inner product on α, and 
similarly for β and ω. αAW denotes the inner product of 0–forms and βAW the product of 1–forms of Alexa and Wardetzky (2011).

where Mk are the discrete Hodge inner product matrices that read:

M0 = fv� WF fv,

M1 =R A W1 R�,

M2 = fv WV fv� .

It can be shown that our inner product of 1–forms restricted to a single face f is identical to the one of (Alexa and 
Wardetzky, 2011, Lemma 3): R A W1 R� | f = M f , where M f is defined as in equation (5). However, if a given mesh S is not 
just a single face, they differ in general, i.e., for 1–forms β1, γ 1:

β� M1 γ = β� R A W1 R� γ �= β� R W1 R� γ =
∑
f ∈S

β�M f γ .

To numerically evaluate our inner products, we calculate our discrete L2–Hodge norms of forms α0, β1, ω2 over a mesh 
S and compare them to their respective analytical L2 norms. That is, if �k is a differential k–form and γ k the corresponding 
discrete k–form, we compute the error of approximation as:∫

S

� ∧ �� −
∑
f ∈S

γ ∧ �γ =
∫
S

� ∧ �� − γ � Mk γ .

An example of numerical evaluation of our L2–Hodge inner products and numerical evaluation of inner products M0 and 
M1 of Alexa and Wardetzky (2011), see also the equations (4) – (5), is given in Fig. 11. The experimental convergence rate 
of our discrete L2 norms is at least linear on all tested forms on compact manifolds with or without boundary.

3.4. The contraction operator

The contraction operator iX , also called the interior product, is the map that sends a k–form ω to a (k − 1)–form iX ω
such that (iX ω)(X1, . . . , Xk−1) = ω(X, X1, . . . , Xk−1) for any vector fields X1, . . . , Xk−1. The following property holds (Hirani, 
2003, Lemma 8.2.1):

Lemma 3.1. Let M be a Riemannian n–manifold, X ∈ X(M) a vector field, then for the contraction of a differential k–form α with a 
vector field X holds:

i Xα = (−1)k(n−k) � (�α ∧ X�),

where � :X(M) → (M) is the flat operator.

Since we already have discrete wedge and Hodge star operators that are compatible with each other, we can employ the 
lemma to define our discrete contraction operator iX : Ck(S) → Ck−1(S) on a polygonal mesh S by:

iX α = (−1)k(2−k) � (�α ∧ X�), α ∈ Ck(S), k = 1,2, (9)

where the discrete flat operator on a vector field X is given by discretizing its value over all edges of S . Let e = (v0, v1) be 
an edge of S , then e = e(t) = v0 + (v1 − v0)t, t ∈ [0, 1], and we set:
9
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Fig. 12. The contraction operator on a unit sphere (L) and a torus (R). For the sphere we have used the same set of jittered meshes with r = 0.4 as in 
Fig. 11, and contracted the same forms as therein with respect to vector field X = (−y, x, 0). For the torus (R) we have contracted the differential forms of 
Fig. 10 with respect to vector field X = 2(−xz, −yz, x2 + y2 − √

x2 + y2) on the same set of meshes as therein. iX β L2 denotes the L2 error approximation 
of the contraction operator on the 1–form β , whereas iX β Inf denotes the L∞ error approximation on β , and similarly for the 2–form ω.

Fig. 13. The influence of jittering on experimental convergence of discrete Lie derivatives on regular polygonal meshes on a sphere (far and center left) and 
jittered meshes with vertex displacement by 0.4× shortest edge length (center and far right). We use the same set of jittered meshes as in Fig. 11. We 
employ the same forms and a vector field as in Fig. 12.

X�(e) =
∫
e

〈e′, X〉 =
1∫

0

〈e′(t), X(e(t))〉dt. (10)

Thus the discrete contraction operator is a linear operator that maps k–forms located on k–dimensional primal cells to 
(k − 1)–forms located on (k − 1)–dimensional primal cells.

Our discrete contraction of differential 2–forms with respect to different vector fields exhibits linear convergence to the 
analytically computed solutions, both in L∞ and L2 norms. On 1–forms, the errors of approximation decrease linearly in L2

and with slope 0.5 in L∞ norm, see two examples in Fig. 12.

3.5. The Lie derivative

We define the discrete Lie derivative LX : Ck(S) → Ck(S) using Cartan’s magic formula:

LX α = iX dα + d iX α, α ∈ Ck(S), k = 0,1,2. (11)

Unfortunately, the Leibniz product rule of our contraction operator and Lie derivative with discrete exterior derivative is not 
satisfied in general. Concretely

iX (αk ∧ βl) = (iX αk) ∧ βl + (−1)kαk ∧ (iX βl),

LX (αk ∧ βl) = (LX αk) ∧ βl + αk ∧ (LX βl),

holds only if α or β is a closed 0–form. Already Hirani (2003) noticed that the Leibniz rule for Lie derivative might not hold 
due to the discrete wedge product not being associative in general. We confirm the observation of Desbrun et al. (2005)
that the Leibniz rule may be satisfied only for closed forms.

The Lie derivatives exhibit converging behavior on all tested forms on regular meshes, planar and non–planar. However, 
the L2 error of approximation of Lie derivatives of 1– and 2–forms on irregular meshes stays rather constant, see an example 
on a set of regular versus jittered meshes on a unit sphere in Fig. 13. In this figure we can see that the L2 error of the Lie 
derivative of a 1–form β and a 2–form ω on regular meshes decreases with slope −0.5, whereas on very irregular meshes 
it stays constant.

Although our discrete Lie derivative of 1–forms on irregular meshes does not converge, in general, to analytically com-
puted solutions, it can still be employed for Lie advection (Section 4.3) of vector fields on irregular meshes and produce 
visually satisfying results, as we demonstrate in Fig. 20.
10



L. Ptáčková and L. Velho Computer Aided Geometric Design 88 (2021) 102002
Fig. 14. Lie derivative used for advection of a color function (far left) encoded as a 0–form β and advected using equation (16). The advected function after 
2000 (center left), 4000 (center right), and 5000 iterations (right) with time step 10−2.

Fig. 15. The influence of jittering on experimental convergence of codifferentials of β1 = (sin(2x) + cos( y
2 ))dx + (3 sin(x) − cos(y))dy and κ2 = (sin( x+1

4 ) +
cos(1 − y

3 ))dx ∧ dy on a set of planar quadrilateral jittered meshes with r = 0.01 (far left) and r = 0.2 (center left). δβ denotes the approximation error of 
our codifferential of β , and similarly for δκ . βAW stands for the L2 error of the codifferential of Alexa and Wardetzky (2011). On the center and far right 
are samples of such jittered meshes.

3.6. The codifferential operator

Just like on Riemannian n–manifolds, we define our discrete codifferential operator δ as

δkβ
k = (−1)n(k−1)+1 � d � β, β a discrete k-form.

Thus in matrix form our codifferential operators read:

δ1 = − WV fv� d1 A W1 R�,

δ2 = − A W1 R� d0 WV fv� .

If M is a compact manifold without boundary or if α or �β has zero boundary values, then the codifferential is the ad-
joint operator of the exterior derivative with respect to the L2–Hodge inner product: (dα, β) = (α, δβ) ∀α ∈ k−1(M), β ∈
k(M). Alexa and Wardetzky (2011) use this equation to derive their discrete codifferential operator on 1–forms, that reads

δ1 = M−1
0 d�

0 M1,

where M0 and M1 are as in equations (4)–(5). This codifferential reduces to the classical codifferential, e.g., (Desbrun et al., 
2006), in the case of a pure triangle mesh.

In Fig. 15 we test numerically our discretization and compare it to the codifferential of Alexa and Wardetzky (2011). We 
observe that the L2 errors become constant. Concretely, for the jittered meshes with r = 0.4, we get circa 5.69 · 10−2 for δβ
and 2.82 · 10−1 for βAW, i.e., our approximation error is roughly 5× smaller. We have seen this difference on more or less 
irregular planar and non–planar meshes for trigonometric, linear, and quadratic forms.

3.7. The Laplace operator

The Laplace–deRham operator � takes differential k–forms to k–forms and is defined as � = dδ + δd, where δ is the 
codifferential and d is the exterior derivative. On 0–forms (functions), it simplifies to

� = δd.

We define our discrete Laplacian in the same manner, using our codifferential.
11



L. Ptáčková and L. Velho Computer Aided Geometric Design 88 (2021) 102002
Fig. 16. The discrete Laplacian of a trigonometric 0–form α0 = sin(x − 1) − cos(2y) on two sets of planar quadrilateral jittered meshes with r = 0.01 (far 
and center left) and r = 0.2 (center and far right). We use the same set of meshes as in Fig. 15. �α denotes our Laplacian, α AWλ = 0 the purely geometric, 
α AWλ = 1 and α AWλ = 2 the combinatorially enhanced Laplacians of Alexa and Wardetzky (2011). The graphs in the center left and on the far right are 
in arithmetic scale.

Our Laplace operator is linearly precise, i.e., it is zero on linear 0–forms in plane. In Fig. 16 we depict the numerical 
behavior of our Laplacian on a trigonometric 0–form and compare it to the combinatorially enhanced (so called λ–simple 
choices with λ = 1, λ = 2) and purely geometric (λ = 0) Laplacians of Alexa and Wardetzky (2011). We note that all the 
L2 errors become constant. Our and the purely geometric Laplacian give a better approximation to the analytical Laplacian 
than the combinatorially enhanced Laplacians. We have observed this pattern also on different quadratic and trigonometric 
0–forms on more or less irregular polygonal meshes.

4. Applications

In this section we show some basic applications of our operators on general polygonal meshes.

4.1. Implicit mean curvature flow

One of the widely used methods for smoothing a surface is the implicit mean curvature flow. If f is a discrete 0–form 
representing vertex positions, then � f give us the direction and magnitude in which we should move each point in order 
to smooth the given mesh, see, e.g., (Desbrun et al., 1999).

Let f0 denote the initial state and ft the configuration after a mean curvature flow of some duration t > 0. We employ 
the backward Euler scheme to calculate ft by solving the linear system:

(I − t�) ft = f0,

where I is the identity matrix. To solve this system, we use the mldivide algorithm of MATLAB.
In Fig. 1 we show smoothing of general polygonal meshes and compare our method to the one of Alexa and Wardetzky 

(2011) with purely geometric Laplacians (λ = 0) and combinatorially enhanced Laplacians (λ = 1). After testing also other 
meshes and several other parameters λ, time steps, and number of iterations, we conclude that our results are visually 
comparable to theirs if λ ∈ [1, 2], and that our scheme does not create as many undesirable artifacts as theirs for λ = 0.

4.2. Helmholtz–Hodge decomposition

By the Hodge Decomposition Theorem (Abraham et al., 1988, Theorem 7.5.3), if M is a compact oriented Riemannian 
manifold without boundary and ωk ∈ k(M), then there exist uniquely determined forms αk−1, βk+1, γ k (γ harmonic, i.e., 
�γ = 0) such that

ω = dα + δβ + γ . (12)

If instead of forms, we think about a sufficiently smooth vector field X = (ω1)� , where � is the sharp operator, then 
an analogous Helmholtz theorem states that any vector field X can be decomposed into an irrotational vector field (corre-
sponding to dα), a divergence–free component (analogous to δβ), and a both irrotational and divergence–free vector field 
(corresponding to γ ). Thus the equation (12) is also referred to as to Helmholtz–Hodge decomposition (HHD).

If X is a divergence–free vector field (also known as solenoidal), we can find its two–component HHD, i.e., decompose X
into a rotational and irrotational part. In terms of differential forms, for ω1 = X� we get

ω = δβ + γ , (13)

where γ is a harmonic 1–form and thus γ � is an irrotational vector field, and (δβ)� is a rotational vector field. The two–
component HHD is used for decomposition of vector fields of incompressible flows.

We use our codifferential operator to find our discrete two–component Helmholtz–Hodge decomposition as in equation 
(13) by performing these steps:
12



L. Ptáčková and L. Velho Computer Aided Geometric Design 88 (2021) 102002
Fig. 17. The discrete sharp operator on a vertex v restricted to a face f . Let X� be a 1–from computed by applying a discrete flat operator on a constant 
vector field X , then the orthogonal projection of X on the unit direction vector of the edge e1 equals 〈X,e1〉

|e1 | = X�(e1)
|e1 | . Similarly the orthogonal projection 

of X on the unit direction vector of e2 is 〈X,e2〉
|e2 | = X�(e2)

|e2 | . Reconstructing the vector field X from X� , i.e., applying the sharp operator on X� as in equation 
(14), yields vector (X�)�| f = 〈X,e2〉

|e2 |
n f ×e1

|e1 | − 〈X,e1〉
|e1 |

n f ×e2
|e2 | that has the same direction as X and approximates its magnitude.

Fig. 18. HHD of a solenoidal vector field X on a torus centered at the origin (a general polygonal mesh with 20k vertices). The decomposed vector field is 
X = XH + XR , where XH = (−y, x, 0) is a harmonic field on the torus, and XR is a rotational vector field given by XR = ∇(exp(−(x − x1)2 − (y − y1)2 −
(z − z1)2) − exp(−(x − x2)2 − (y − y2)2 − (z − z2)2)) × n, where n is the unit normal vector of the torus. We have chosen the center of CCW rotation 
(x1, y1, z1) = ( 3

2 , 0, 0), where the vector potential β� reaches its maximum, and the center of CW rotation at (x2, y2, z2) = ( −√
2

2 , 
√

2
2 , 12 ), where the vector 

potential β� has its minimum (is negative). The vector field X is shown on the far left. Our discrete decomposition gives approximate expected results: 
the harmonic part γ � calculated by our method is in the center left and the rotational part (δβ)� in the center right. On the far right we visualize in 
pseudocolors the vector potential β� computed by our algorithm.

1. Discretize a given vector field X with discrete flat operator (10) and define discrete 1–form ω1 = X� .
2. Find the 2–form β by solving the equation dδβ = dω.
3. Set γ = ω − δβ .

We can then map the discrete 1–forms δβ and γ to discrete vector fields by applying discrete sharp operator � defined 
on an 1–form ε and per a vertex v by:

ε�(v) = 1

ρ(v)

∑
f �v

(
ε(e2)

|e2|
n f × e1

|e1| − ε(e1)

|e1|
n f × e2

|e2|
)

, (14)

where ρ(v) is the number of faces adjacent to v . Further e1, e2 ≺ f , e1 is the edge which endpoint is v , e2 is the edge with 
v as the starting point, see Fig. 17, and n f is a unit normal vector of the face f = (v0, . . . , vn−1) computed as:

n f = n̂ f

|n̂ f | , n̂ f = 1

2

n−1∑
j=0

(v j × v j+1), indices modulo n.

In Fig. 18 we give an example of our HHD of an incompressible vector field on a general polygonal mesh of a torus. In 
Fig. 19 we then employ the HHD to remove vortices of an arbitrary vector field.

4.3. Lie advection

The Lie derivative finds its application in dynamical systems. In computer graphics the Lie advection of differential 
forms (including scalar and vector fields) is used for tasks ranging from fluid flow simulation (McKenzie, 2007) to authalic 
parametrization of surfaces (Zou et al., 2011).

In Fig. 20 we employ our Lie derivative to perform a simple discrete Lie advection of a tangent vector field Y along a 
tangent vector field X = (−y, x, 0) on a torus azimuthally symmetric about the z axis. Y is a vorticial vector field given as
13
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Fig. 19. HHD applied to remove the vortices of a vector field ω on a mesh of Spot (model created by Keenan Crane). On the left is the original vector field 
ω = δβ + φ , on the right is its curl–free part φ.

Fig. 20. The Lie advection on a polygonal mesh on a torus (8k vertices), the mesh is shown in the top left corner. We advect an 1–form β = Y � along the 
flow of a tangent vector field X = (−y, x, 0), where Y is given in equation (15). The second picture from the left depicts β�

0 . We apply time steps of length 
10−3. From left to right and top to bottom, we plot Y = β

�

k after 1000, 2000, . . . , 5000 iterations. At the bottom right we see β�

k for k = 6283. Because the 
domain is periodic, β should be advected back to its original state β0 after 2π · 103 ≈ 6283 iterations. We can see that β�

6283 gets close to β�
0 , but some 

undesirable artifacts appear – especially at the small irregularity around the spot with coordinate position (
√

2
2 , −

√
2

2 , 12 ).

Y = −∇ exp

(
−

(
x +

√
2

2

)2 −
(

y −
√

2

2

)2 −
(

z − 1

2

)2
)

× n, (15)

where n is the unit normal vector of the torus. To advect Y , we discretize it as a 1–form β = Y � and denote this initial state 
as β0. We then iterate over our discrete solutions using a simple forward Euler method:

βk+1 = βk − t LX βk, k = 0, . . . , (16)

where t is the time step, k is the number of iterations, and each LX βk is computed using our discrete Lie derivative (11). 
Note that the vector field X is also discretized as a discrete 1–form.

The Lie derivative can be employed also for advection of a function by a vector field. In Fig. 14 we advect a color function 
on a mesh of a vase.

5. Discussion

Geometry processing with general polygonal meshes is a new developing area. We propose various discrete operators 
that act directly on meshes made of arbitrary polygons, possibly non–planar and non–convex, and thus open the possibility 
to perform many geometry processing tasks directly on these meshes.
14
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Tangent vector fields on surfaces are used in many applications in computer graphics and other areas. We propose to 
represent vector fields as 1–forms and we provide methods for their design such as the Helmholtz–Hodge decomposition or 
the Lie advection. However, further applications are now ready to be explored, e.g., finding pairs of vector fields with zero 
Lie derivative for surface parameterization or employing Le advection of volume forms for area preserving parametrization.

Furthermore, we present a novel discrete Laplace operator that is numerically comparable to the purely geometric Lapla-
cian of Alexa and Wardetzky (2011), but results in a better mesh smoothing. On the other hand, our Laplacian gives a 
better numerical approximation to the analytically computed solutions than their combinatorially enhanced Laplacians, yet 
performs as well as theirs in smoothing of tested general polygonal meshes.
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