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A twin in a word u = a1a2 . . . an is a pair (u1, u2) of disjoint and identical
(u1 = u2) subsequences of u. A binary word is a word u ∈ {0, 1}n. For ex-
ample, 10100 is a binary word with a twin (u1, u2) = (a1a5, a3a4) (marked by
under(over)linings). By |u| we denote the length of a (binary) word u. We shall
consider only binary words here and will often omit the adjective.

Theorem (Axenovich, Person and Puzynina, 2013). For every ε > 0
there is an n0 such that every binary word of length n > n0 has a twin (u1, u2)
with n− 2|u1| < εn.

That is, for given ε > 0 every sufficiently long word u has a partition u =
u1 ∪ u2 ∪ u3 into three subsequences such that u1 = u2 and |u3| < ε|u|. Here is
a simple argument giving ε

.
= 1/3. We partition u into intervals (factors) Ii of

length 3 each and a residual interval J with |J | ≤ 2. Each Ii contains two 0s or
two 1s. For each Ii we put one of them in u1 and the other in u2 and set u3 to
be the rest of u. Then u1 = u2 and |u3| = b|u|/3c + |J | < |u|/3 + 2. Can you
decrease the 1/3?

The purpose of this text, written in very hot Prague days, is to enjoy and
advertise the beautiful result of Axenovich, Person and Puzynina [2] lying on
the border of combinatorics on words and Ramsey theory, and possibly include
it later in the prepared book [3]. The theorem is remarkable for its beauty and
simplicity, it is indeed a bit surprising that it was discovered only recently, and
for the fact that its proof uses a particularly technically simple and clear version
of the regularity lemma method, simpler than the usual graph-theoretical set-
ting, not speaking of hypergraph versions. We write more on [2] and the proof
at the end.

A regularity lemma for binary words

For ε ∈ (0, 1) and u = a1a2 . . . an a binary word, an ε-interval in u is an
interval I = aiai+1 . . . ai+j of length |I| = j + 1 = dεne. For i ∈ {0, 1} we
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define di(u) = #(j, aj = i)/|u| ∈ [0, 1], the density of the letter i in u. We set
d(u) = d1(u). Clearly, d1(u) + d0(u) = 1 and this makes binary words simpler
than words over larger alphabets as it suffices to work with just one density
d(u) = d1(u).

Definition (ε-regularity). Let ε ∈ (0, 1) and u ∈ {0, 1}n. We say that u is
ε-regular if

|d(u)− d(I)| < ε

whenever I is ε-interval in u. A partition u = u1u2 . . . ut into intervals is
ε-regular if the total length of non-ε-regular intervals is small,∑

ui is not ε-reg.

|ui| < εn = ε|u| .

In an interval partition u = u1u2 . . . ut, as in the above definition, all ui are
nonempty, if it is not said else. Note that the definition of ε-regularity of a
word is equivalent to one with d(·) replaced by di(·), i = 0, 1. As an example
note that the partition of u into singleton intervals is always ε-regular as each
singleton word is ε-regular.

Let us show that ε-regular words have large twins.

Lemma 1. Let ε ∈ (0, 1). Every ε-regular binary word u has a twin (u1, u2)
with |u| − 2|u1| < 5ε|u|+ 3.

Proof. We set m = dε|u|e, di = d(di(u) − ε)me for i = 0, 1, and partition u as
u = v1v2 . . . vt so that |vi| = m for i < t and vt may be empty with |vt| < m.
For each i = 1, 2, . . . , t−1, by ε-regularity vi contains ≥ d1 ones and ≥ d0 zeros.
We put in u1 some d1 ones from v1, some d0 zeros from v2, some d1 ones from
v3, some d0 zeros from v4 and so on in the alternating fashion up to vt−2. We
define the other twin u2 in much the same way, but use intervals v2, v3, . . . , vt−1.
(If di < 0, no problem, we replace it by 0.) The rest of u ends in the bin, the
subsequence u3. By construction, u1 and u2 form a twin in u, are disjoint and
identical subsequences. Since d0 + d1 ≥ m(1− 2ε) and tm < |u|,

|u3| ≤ |v1|+ |vt−1|+ |vt|+ (t− 3)2εm < 3m+ 2ε|u| < 5ε|u|+ 3 .

2

The index ind(P ) of an interval partition P of a word u given by u =
u1u2 . . . ut is

ind(P ) =
1

|u|

t∑
i=1

d(ui)
2|ui| .

Since
∑t

i=1
|ui|
|u| = 1 and |ui|

|u| , d(ui) ∈ [0, 1], ind(P ) ∈ [0, 1] as well.
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Lemma 2 (regularity lemma). Let ε ∈ (0, 1), t0 ≥ 1 be an integer, and

T0 = t031/ε
4

. Then every word u ∈ {0, 1}n with n ≥ t0 has an ε-regular
partition into t intervals with t0 ≤ t ≤ T0.

Proof. First we show that index does not decrease when a partition is refined
(we need actually only very particular case of this inequality), and then how
to increase index by splitting a non-ε-regular word in two or three intervals.
Finally we obtain the desired ε-regular partition by iterating the splitting.

For the first part, let u = u1u2 . . . ut = . . . ui,j . . . , 1 ≤ i ≤ t and 1 ≤ j ≤ ti,
be an interval partition P of a binary word into t intervals and its refinement
R given by t interval partitions ui = ui,1ui,2 . . . ui,ti . We show that ind(R) ≥
ind(P ). Indeed,

ind(R) =

t∑
i=1

|ui|
|u|

ti∑
j=1

d(ui,j)
2|ui,j |
|ui|

≥
t∑

i=1

|ui|
|u|

( ti∑
j=1

d(ui,j)|ui,j |
|ui|

)2

= ind(P )

by Jensen’s inequality applied to f(x) = x2 and since the last inner sum equals
d(ui) (by the definition of density).

For a non-ε-regular binary word u we find an interval partition u = u1u2u3
such that u1 or u3 but not both may be empty and

ind(u1u2u3) ≥ ind(u) + ε3 = d(u)2 + ε3 .

We define it by setting u2 to be an ε-interval in u such that |d(u)−d(u2)| ≥ ε. We
denote d = d(u), γ = d− d(u2), so |γ| ≥ ε, m = |u|, a = |u1|, b = |u2| = dεme,
and c = |u3|. Then, by part 1, ind(u1u2u3) is at least

d(u1u3)2
a+ c

m
+ d(u2)2

b

m
=

(
dm− (d− γ)b

a+ c

)2
a+ c

m
+ (d− γ)2

b

m

which after replacing a+ c = m− b simplifies to

d2 +
γ2b

m− b
≥ d2 +

ε3m

m
= d2 + ε3 .

Finally, let ε, t0, n, and u be as given. We start with any partition S of u
into t0 intervals ui. Let I be the indices i with ui not ε-regular. If S is not
ε-regular (

∑
i∈I |ui| ≥ ε|u|) we split each ui with i ∈ I into ui = ui,1ui,2ui,3 as

described in part 2. The resulting interval partition P of u satisfies by part 2

3



(for ui,j = ∅ we set d(ui,j) = 0)

ind(P ) =
∑
i 6∈I

d(ui)
2|ui|
|u|

+
∑
i∈I

3∑
j=1

d(ui,j)
2|ui,j |
|u|

=
∑
i 6∈I

d(ui)
2|ui|
|u|

+
∑
i∈I

ind(ui,1ui,2ui,3)|ui|
|u|

≥
∑
i 6∈I

d(ui)
2|ui|
|u|

+
∑
i∈I

(d(ui)
2 + ε3)|ui|
|u|

= ind(S) + ε3
∑

i∈I |ui|
|u|

≥ ind(S) + ε4 .

If P is not ε-regular, we repeat the splitting by part 2, and then iterate the
splitting step until we get an ε-regular interval partition of u with t intervals.
This always happens, without using any index increment bound. Since index
does increase by at least ε4 at each splitting and is bounded by 1, we terminate
after at most 1/ε4 splittings and have the stated upper bound t ≤ T0. 2

Proof of the Axenovich–Person–Puzynina theorem

Let ε ∈ (0, 1) and u ∈ {0, 1}n be given. We take the ε-regular interval

partition u = v1v2 . . . vt with t ≤ 31/ε
4

provided by Lemma 2 (used with t0 = 1).
For each ε-regular word vi we take its large twin provided by Lemma 1 and
concatenate them in the twin (u1, u2) in u. The rest of u goes of course in the
bin u3. How large is it? The total length on non-ε-regular vis plus the total
length of the bins of ε-regular vis, which gives the bound

|u3| < εn+ 5εn+ 3t ≤ 6εn+ 31+1/ε4 , n = 1, 2, . . . .

For large enough n, this is smaller than 7εn and the proof is complete.

Concluding remarks

The article [2] investigates also more general scenarios with alphabets larger
than binary and twins with more parts than two but here we restricted to the
simplest but already intriguing case of binary words and two parts in a twin.
It is shown in [2] (and it follow from the above displayed bound on |u3|) that
the εn in the theorem can be bounded by εn� n/(log n/ log log n)1/4, which is

later in [2] improved to εn� n/(log1/3 n/ log log2/3 n) (I use � as synonymous
to O(·)), but that it cannot be smaller than log n.

We took the above proof from [2] but we did some simplifying (we specialize
to the binary case and use simpler notion of ε-regularity of words) and rigorizing
(we introduce back ceilings d·e and floors b·c omitted in [2], to be sure that the
bounds are indeed correct; for example, the version of Lemma 1 in [2], Claim
11, asserts the bound |u| − 2|u1| ≤ 5ε|u|, which is suspicious for very small ε as
for odd |u| the left side cannot be smaller than 1).
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We close with an interesting open problem, mentioned at the closing of [2]
and then again in the survey [1, Open Problem 4.5]:

Does the A–P–P theorem hold for ternary words u ∈ {0, 1, 2}n?
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