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For an n× n matrix A = (ai,j), we refer to the entry ai,j also as Ai,j and
by Ak we denote the k-th power of A; the n× n matrix Ak has entries

(Ak)i,j =
∑

i1,i2,...,ik−1

ai,i1ai1,i2 . . . aik−1,j =
∑

i1,i2,...,ik−1

Ai,i1Ai1,i2 . . . Aik−1,j.

By A(i, j) we denote the (n − 1) × (n − 1) submatrix obtained from A by
deleting the i-th row and j-th column. I denotes the unit matrix, Ii,j = δi,j

where δi,j is Kronecker’s symbol (= 1 if i = j and = 0 else).

The transfer matrix method formula. For every matrix A ∈ Cn×n, in
the ring of power series C[[x]] we have for every 1 ≤ i, j ≤ n the identity∑

k≥0

(Ak)i,jx
k =

(−1)i+j det((I − xA)(j, i))

det(I − xA)
.

The n× n matrix I − xA has entries (I − xA)i,j = δi,j − ai,jx.

Note that the numerator and denominator lie in the ring of polynomials
C[x] (which we embed naturally in C[[x]]) and that det(I − xA) has nonzero
constant term 1. Thus the power series det(I − xA) is invertible in C[[x]]
and the right side of the formula is well defined.

The aim of this note is to discuss in detail algebraic steps in derivation
of the TMM formula. For more condensed treatment and many applications
in combinatorial enumeration see Stanley [3, section 4.7] or Flajolet and
Sedgewick [1, section V.5].

The derivation of the TMM formula. Since(∑
k≥0

(Ak)i,jx
k

)n

i,j=1

=
∑
k≥0

Akxk

= (Ix0 − Ax)−1

= (I − xA)−1

=

(
(−1)i+j det((I − xA)(j, i))

det(I − xA)

)n

i,j=1

,
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comparison of entries in the initial and final n× n matrices yields the TMM
formula.

Let us discuss and explain this calculation. The first and third = signs are
not really equalities—they “equate” matrices with power series—and are to
be understood in the sense of isomorphism. The second and fourth = signs
are acceptable as equalities since they have on both sides structures of the
same type, power series in the former case and n× n matrices in the latter.

We are working here with two distinct (but isomorphic) rings

R = C[[x]]n×n and S = Cn×n[[x]],

the ring R of n × n matrices whose entries are power series from C[[x]] and
the ring S of power series whose coefficients are n × n matrices from Cn×n.
In the derivation, we start in R, switch to S, go to S, switch to R and finish
in R:

R → S → S → R → R.

Rings R and S both have 1 but are noncommutative and have zero divisors.
They are isomorphic via the mappings ([xk]F denotes the coefficient of xk in
the power series F )

κ : R → S, κ : M 7→
∑
k≥0

(
[xk]Mi,j

)n
i,j=1

xk

and

λ : S → R, λ :
∑
k≥0

M(k)xk 7→

(∑
k≥0

M(k)i,jx
k

)n

i,j=1

.

It is clear that κ and λ send 1 to 1 and preserve addition. To check that they
preserve multiplication is a little notational challenge, which we postpone for
a while. Also, κ ◦ λ and λ ◦ κ are identical mappings. Thus they provide an
isomorphism of R and S.

Let M ∈ R be the initial matrix, Mi,j :=
∑

k≥0(A
k)i,jx

k. We will discuss
in turn the four = signs in the derivation. The first one is just the application
of κ: we go from M to κ(M). The second = sign is the formula for sum of
a formal geometric series. This is the easily verifiable identity

1 = (1− ax)(1 + ax + a2x2 + · · ·)
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holding in every ring of power series U [[x]] over a (not necessarily commuta-
tive) ring U with 1 (here U = Cn×n). Thus

κ(M) = f−1 where f := Ix0 − Ax ∈ S.

The third = sign is the heart of the matter. It is an assertion that for
f = Ix0 − Ax we have in the ring R the identity

λ(f−1) = λ(f)−1.

It suffices if we convince ourselves that multiplicative inverses in any (not
necessarily commutative) ring U with 1 are unique. Indeed, if a, b, c ∈ U
are such that ab = ba = 1 and ca = 1 or ac = 1, then multiplication by b
from right or left gives that c = b. Now, in U = R, 1 = λ(1) = λ(ff−1) =
λ(f)λ(f−1), hence λ(f−1) = λ(f)−1.

The fourth and last = sign is Cramer’s formula from linear algebra for
the entries of the matrix inverse in Un×n, where U is a commutative ring
with 1 (here U = C[[x]]).

Summarizing the calculation,

κ(M) = f−1 thus M = λ(κ(M)) = λ(f−1) = λ(f)−1 = (I − xA)−1

which is the TMM formula. No fake = sign now!
We check that λ is multiplicative homomorphism, which suffices. Let

F, G ∈ S, F =
∑

k≥0 M(k)xk and G =
∑

k≥0 N(k)xk with M(k), N(k) ∈
Cn×n. Then

λ(FG) = λ
(∑

k≥0

( k∑
l=0

M(l)N(k − l)
)
xk
)

= λ
(∑

k≥0

P (k)xk
)

where

P (k)i,j =
k∑

l=0

n∑
i1=1

M(l)i,i1N(k − l)i1,j.

So

λ(FG) =

(∑
k≥0

P (k)i,jx
k

)n

i,j=1

=

(∑
k≥0

( k∑
l=0

n∑
i1=1

M(l)i,i1N(k − l)i1,j

)
xk

)n

i,j=1

.
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On the other hand,

λ(F )λ(G) =

(∑
k≥0

M(k)i,jx
k

)n

i,j=1

(∑
k≥0

N(k)i,jx
k

)n

i,j=1

=

(
n∑

i1=1

(∑
k≥0

M(k)i,i1x
k
)(∑

k≥0

N(k)i1,jx
k
))n

i,j=1

=

(
n∑

i1=1

∑
k≥0

( k∑
l=0

M(l)i,i1N(k − l)i1,j

)
xk

)n

i,j=1

.

Changing the order of summation and moving the outer sum
∑n

i1=1 inside,
we see that indeed

λ(F )λ(G) = λ(FG).

Final remarks and acknowledgments. The isomorphism of the rings
R and S follows naturally from their construction as tensor products, in
the two possible orders, of the algebras Cn×n and C[[x]]. Also, the additive
structure of R and S is in fact irrelevant for the derivation and we could
have worked with them just as multiplicative monoids. The field C can be
replaced by any commutative ring with 1.

Derivations of the TMM formula in the literature often do not properly
distinguish between R and S (but see Goulden and Jackson [2, section 1.1.10]
for an exception), if they give details at all. This is a bit unfortunate because
neither the summation of formal geometric series nor Cramer’s formula but
the switching between R and S is the main device propelling the derivation.

I would like to thank M. Loebl, whose inquiries about the TMM formula
prompted me to write this note.
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