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Was sich überhaupt sagen lässt, lässt sich klar sagen; . . . 1

L. Wittgenstein [41, Vorwort (Foreword)]

1The omitted conclusion of Wittgenstein’s quote is more famous than the beginning: “Was
sich überhaupt sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber
muss man schweigen.” (Note that the complete quote rhymes.) This can be translated as
“What can be said at all, can be said clearly; and what one cannot talk about, must be left
in silence.”



Introduction

This is my translation of my textbook in Czech of elementary mathematical
analysis [24]. It contains fourteen chapters and one appendix. These chap-
ters are based on the fourteen lectures in the course Matematická analýza 1
(NMAI054) which I was teaching in Czech in School of Computer Science of
Faculty of Mathematics and Physics of Charles University (in Prague) in winter
and spring of 2024. I also used my fourteen lectures in the previous school year
2022/23, see

https://kam.mff.cuni.cz/~klazar/MAI24.html and
https://kam.mff.cuni.cz/~klazar/MAI23.html .

Time is flying. First time I lectured on mathematical analysis on October 5,
2004, see

https://kam.mff.cuni.cz/%7Eklazar/MA04.html .

Each chapter begins with a summary and contains a number of exercises illus-
trating topics covered. Solutions or hints to solutions of them can be found
in Appendix A which takes over 11% of the textbook. The content of every
chapter and every section should be clear from the title, see pages viii to ix.
This text is a minimal version of the more ambitious Mathematical Analysis 1+

which is in preparation; so far only in Czech but I am switching to English. It
will contain six additional chapters and three additional appendices.

I dedicate my textbook to the memory of Jǐŕı Matoušek who was my col-
league in the Department of Applied Mathematics of MFF UK. He was one
of the greatest contemporary Czech mathematicians and computer scientists.
With enthusiasm he had prepared lectures for the analysis course in 2014/15,
but the fateful illness did not allow him to deliver them.

Praha and Louny, August to December 2024 Martin Klazar
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Some highlights

Many lecture notes, textbooks and monographs on elementary mathematical
analysis exist, both on paper and electronic. I cite only [2, 5, 9, 15, 19, 20, 21,
26, 30, 33, 35, 39, 42]. Why to add another text? For example, did not already
Nicolas Bourbaki (?–?) write it all in [5] (I consulted it in the form of [6])?
During twenty years of teaching mathematical analysis I gradually realized that
there is surprisingly much room to say things better. Below I list some points
of interest in this text.

1 Paradoxes. Real numbers. In Definition 1.2.5 we attempt to introduce
sets. Definition 1.2.7 describes four kinds of lists of elements used to define
sets. Definition 1.2.23 of ordered k-tuples is better than the standard one,
see Exercise 1.2.24. Definitions 1.3.2 and 1.3.3 treat functions f : A → B in
this form common in mathematical analysis. In Theorem 1.5.12 we show that
fractions form an ordered field. In Theorem 1.5.19 we prove by infinite descend
that

√
2 is irrational. Theorem 1.6.12 is an urtheorem of theorems on limits

of monotone sequences. In Theorem 1.6.14 we prove completeness of R. In
Corollary 1.7.17 we deduce uncountability of R from Cantor’s Theorem 1.7.7
which says that no set can be mapped onto its power set.

2 Existence of limits. In Theorem 2.1.8 we show that except for the existence
of (additive and multiplicative) inverses and the axiom of shift, the arithmetic
of infinities in R∗ satisfies all other axioms of an ordered field. Theorem 2.1.9
is a related result concerning division. One can make more of subsequences
than it seems. In Theorem 2.2.5 we show that a sequence has no limit iff it
has two subsequences with different limits, and that the negation of lim an = A
is equivalent to the existence of a subsequence with limit different from A. In
some proofs these equivalences are useful. In Corollaries 2.3.4 and 2.3.10 we give
robust forms of theorems on limits of monotone and quasi-monotone sequences.
Theorem 2.3.25 is known as Fekete’s lemma. In Exercises 2.3.26–2.3.29 we
present some applications of it in extremal combinatorics.

3 Arithmetic of limits. AK series. We prove in detail Theorem 3.1.2 on
the arithmetic of limits of sequences, including infinite limits. Propositions 3.1.4
and 3.1.6, whose proofs are left as exercises, supplement the theorem. Our The-
orem 3.3.1 on limits and ordering is stronger than the usual version. Section 3.5
introduces AK (absolutely convergent) series. An AK series is a map r : X → R,
defined on an at most countable set X, such that for some c ≥ 0 for every finite
Y ⊂ X we have

∑
x∈Y |r(x)| ≤ c. The sum of r is then for finite X the usual

finite sum, and for infinite X the limit limn→∞
∑n
i=1 r(f(i)) where f : N → X

is any bijection. In Theorems 3.5.3 and 3.5.6 we show that these sums are com-
mutative and associative. AK series form a (proper) class S. We introduce
addition and multiplication on them and in Theorem 3.5.18 show that these
operations endow T = S/∼ with the structure of a semiring. The equivalence
∼ of two AK series r : X → R and s : Y → R means that there is a bijection
f : X → Y such that for every x ∈ X we have r(x) = s(f(x)).
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4 Infinite series. Elementary functions. Section 4.1 is devoted to classical
infinite series. Proposition 4.1.5 shows that the sum of any series with only
finitely many summands of one sign cannot be changed by reordering. Propo-
sition 4.1.14 determines when it is possible to reorder a series to sum to ±∞.
Proposition 4.1.16 considers reorderings with no sum. We prove Riemann’s The-
orem 4.1.17 on series that can be reordered to have any sum. Definition 4.2.6
introduces useful notation for functions. Here we work within the set R of func-
tions of the type f : M → R, where M ⊂ R, and use several operations on R:
addition f + g, multiplication f · g, division f/g, restriction f |X, composition
f(g) and inverting f−1; the last operation is defined only for injective f . Differ-
entiation is introduced in lecture 7. In Theorem 4.3.4 we prove by means of AK
series the exponential identity ex+y = ex ·ey. The runner Theorem 4.3.19 on the
geometry of sine and cosine will be proven in MA 1+. Precise Definition 4.4.5
of Elementary Functions is given. Definitions 4.5.1 and 4.5.6 introduce in non-
standard ways polynomials and rational functions. In Propositions 4.5.2 and
4.5.11 we obtain for these functions canonical forms.

5 Limits of functions. Asymptotic notation. We recommend to the
reader Theorem 5.3.1 on limits of monotone functions and Theorem 5.3.7 on
the interplay of limits of functions and the linear order (R∗, <). Theorem 5.4.1
on limits of composite functions is an equivalence, which is stronger than the
usual implication given in the literature. In Section 5.5 on asymptotic notation
(O, o,∼, . . . ) we also explain asymptotic expansions of functions, and give three
examples of such expansions. Do you know what is the asymptotic expansion,
for n → +∞, of the probability that the random graph with n vertices is
connected? The initial term 1 is well known, but we describe all remaining
terms of this asymptotic expansion.

6 Continuous functions. We state Blumberg’s Theorem 6.1.12 which says
that every function from R to R has a continuous restriction to a set dense in R.
We prove it in MA 1+. Here we prove Theorem 6.2.3 which says that the set of
continuous functions from R to R is in bijection with R. In Section 6.4 we discuss
real compact sets. Theorem 6.5.6 says that every uniformly continuous function
has a (unique) continuous extension to the closure of its definition domain. We
prove Theorem 6.6.3 on continuity of power series. Theorem 6.6.11 on continuity
of inverses is a climax of the chapter. It says that if a function f : M → R,
M ⊂ R, is injective and continuous then the inverse f−1 is continuous in five
cases: if (i) M is compact, (ii) M is an interval, (iii) M is open, (iv) M is closed
and f is monotone and (v) M ⊂ (a, b) is dense in (a, b) and f is monotone and
uniformly continuous.

7 Derivatives. What set can be the definition domain of a differentiated func-
tion? The literature, for example [35], prefers intervals. But for example [39]
allows any definition domain. We adopt the latter approach. Then it is easy
to get in Theorem 7.1.25 an example of a discontinuous derivative. In Theo-
rem 7.1.8 we give for arbitrary definition domain a version of the well known
criterion of local extremes. Definition 7.2.7 formalizes the common but never
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precised intuitive understanding of a tangent line as a limit of secants. Theo-
rem 7.2.11 shows how to get a tangent line in a point lying outside the graph of
a function. In Sections 7.3 and 7.4 we describe locally and globally interplays
between derivatives on one side and arithmetic operations, compositions and
inverses on the other side. In Theorem 7.5.1 we differentiate with the help of
power series the exponential function, sine and cosine. In the final Theorem 7.6.3
we prove that a certain subset of Elementary Functions, so called Simple El-
ementary Functions, is closed to derivatives. The general case of Elementary
Functions is currently left as Problem 7.6.1.

8 Applications of mean value theorems. In Section 8.1 we give three clas-
sical theorems of Rolle, Lagrange, and Cauchy on mean values of functions. In
Section 8.2 we show by means of Rolle’s theorem that the sequence (log n) is
not P-recurrent; it satisfies no linear recurrence with polynomial coefficients. In
Sections 8.3 and 8.4 we prove in two ways with the help of Lagrange’s theorem
that real transcendental numbers exist. Section 8.5 contains classical results on
monotonicity of functions and l’Hospital rules. We made an effort to present
them in fresh way. In Section 8.6 we introduce higher-order derivatives and treat
the relation of f ′′ to convexity and concavity of f . In Theorem 8.6.9 we prove
the classical result relating convexity and concavity to one-sided derivatives for
general definition domains. In the last Section 8.7 Drawing the graph of a func-
tion we describe in 12 steps how to determine main geometric features of the
graph of f ; in step 0 we check if f is an elementary, or even a simple elementary,
function. We work out in detail three examples: sgnx, tanx and arcsin

(
2x

1+x2

)
.

Drawing the graphs of the Riemann function r(x) and the function xx is left to
exercises.

9 Taylor expansions. Primitives
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Chapter 1

Paradoxes. Real numbers

This chapter is based on the lecture

https://kam.mff.cuni.cz/~klazar/MAI24_pred1.pdf

I gave on February 22, 2024. Section 1.1 presents two paradoxes concerning
infinite sums. In Section 1.2 we give a survey of logical and set-theoretic nota-
tion; besides other we define ordered pairs and ordered triples. In Section 1.3
we introduce functions and list their basic types and operations with them. Sec-
tion 1.4 is devoted to linear orders and to suprema and infima. In Section 1.5 we
define rational numbers and ordered fields. Theorem 1.5.12 shows that rational
numbers form an ordered field. In Theorem 1.5.19 we prove that in fractions the
equation x2 = 2 is unsolvable. By Corollary 1.5.21 the linear order of fractions
is not complete, it contains nonempty and from above bounded sets lacking
suprema. Section 1.6 introduces Cantor’s real numbers. Important are Defini-
tion 1.6.3 of R, Theorem 1.6.12 that is an urtheorem of theorems on limits of
monotone sequences, and completeness of R in Theorem 1.6.14. In Section 1.7
we define finite, infinite, countable and uncountable sets. In Theorem 1.7.5 we
prove that the set of fractions is countable. By Cantor’s Theorem 1.7.7 no set
can be mapped onto its power set. The Corollary 1.7.17 is that R is uncount-
able. Definition 1.7.13 and Theorem 1.7.16 (not proven here) describe decimal
expansions of real numbers.

1.1 Two paradoxes

• Mathematical analysis analyzes what? Infinite operations and processes. In-
finity is bound to produce paradoxes and we show two. Clearly,

S = 1− 1 + 1
2 −

1
2 + 1

3 −
1
3 + · · ·+ 1

n −
1
n + · · · = 0

because the sequence of partial sums 1, 1−1 = 0, 1−1+ 1
2 = 1

2 , 1−1+ 1
2−

1
2 = 0,

. . . is (1, 0, 12 , 0,
1
3 , 0, . . . ) and goes to 0. By reordering the summands in S we
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change the sum: S = 1 + 1
2 − 1 + 1

3 + 1
4 −

1
2 + · · · + 1

2n−1 + 1
2n −

1
n + · · · > 0

because 1
2n−1 + 1

2n −
1
n = 1

2n(2n−1) > 0.

Exercise 1.1.1 Why after the reordering of S the sum is positive?

Thus the definition of the infinite sum S = a1 + a2 + . . . as the limit S =
limn→∞

∑n
i=1 ai of the sequence of partial sums a1 + a2 + · · ·+ an, for limits of

real sequences see Definition 2.1.15, is not very good because — in contrast with
finite sums — the sum may depend on the order of summands. In Section 3.5 we
introduce infinite sums that are, like finite sums, commutative and associative.

There is also a strange infinite table with entries −1, 0 and 1. On the main
diagonal it has 1s, above it −1s and elsewhere 0s:

1 −1 0 0 0 . . .
∑

= 0
0 1 −1 0 0 . . .

∑
= 0

0 0 1 −1 0 . . .
∑

= 0
0 0 0 1 −1 . . .

∑
= 0

0 0 0 0 1 . . .
∑

= 0
...

...
...

...
...

. . .
...∑

= 1
∑

= 0
∑

= 0
∑

= 0
∑

= 0 . . .
∑

= 1 \ 0

The total sum of entries is 0 when we sum rows first, but it is 1 when we sum
columns first!

Exercise 1.1.2 With nonnegative entries this does not happen. Then the total
sum, obtained by summing rows first and then by summing columns first, always
comes out the same. It may be +∞, though.

We return to infinite sums in Sections 3.5 and 4.1.

1.2 Logical and set-theoretic notation

Exercise 1.2.1 Can you pronounce and write letters

α, β, Γ, γ, ∆, δ, ε, ζ, η, Θ, θ, ϑ, ι, κ, Λ, λ, µ, ν, Ξ, ξ, o, Π, π, ρ, Σ, σ,

τ, Υ, υ, Φ, φ, ϕ, χ, Ψ, ψ, Ω and ω

in the Greek alphabet?

Exercise 1.2.2 Can you recognize Latin letters

a, A, b, B, c, C, d, D, e, E, f, F, g, G, h, H, i, I, j, J, k, K, l, L, m, M, n, N

o, O, p, P, q, Q, r, R, s, S, t, T, u, U, v, V, w, W, x, X, y, Y, z and Z

in the Fraktur hand?
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These two kinds of alphabets are used in mathematical texts. The Hebrew letter
aleph ℵ is used for denoting cardinalities (generalized numbers of elements)
of sets. Also some other Hebrew letters and some Cyrillic letters appear in
mathematical notation but we stop here.

The definitoric equality ≡ is used in expressions like a ≡ b to define the new
symbol a by the already known expression b. Sometimes a and b may exchange
their roles. Elsewhere we encounter symbols := and =: (or other) serving this
purpose. We write iff to abbreviate “if and only if”.

• Logical notation. Let ϕ, ψ, θ, . . . be propositions, statements with unique
truth value either truth T or falsity F (see [36]). We combine them by means
of logical connectives ϕ ∨ ψ (or, disjunction), ϕ ∧ ψ (and, conjunction), ϕ⇒ ψ
(if . . . then . . . , implication), ϕ ⇐⇒ ψ (equivalence) and ¬ϕ (negation). Truth
tables of these connectives are well known. For example, for any truth values of
ϕ and ψ, both composite propositions in

¬(ϕ ∨ ψ) ⇐⇒ ¬ϕ ∧ ¬ψ and ¬(ϕ ∧ ψ) ⇐⇒ ¬ϕ ∨ ¬ψ

hold, they always have the truth value T . We say that they are tautologies. We
write composite propositions with the help of brackets. The convention is that
¬ bounds more strongly than ∨ and ∧, and that these bound more strongly
than ⇒ and ⇐⇒ . The corresponding brackets may be then omitted.

Exercise 1.2.3 Show that (ϕ⇒ ψ) ⇐⇒ (¬ψ ⇒ ¬ϕ) is a tautology.

Suppose that ϕ(x) is a propositional form with the variable x. Replacing in
it all occurrences of x with an arbitrary, but always the same, element a from
the domain of ϕ(x) we get the proposition ϕ(a). The domain of ϕ(x) is the
collection of objects a for which one can decide if the proposition ϕ(a) holds.
The expressions

∀x
(
ϕ(x)

)
and ∃x

(
ϕ(x)

)
use the general quantifier ∀ and the existential quantifier ∃. They respectively
mean that for every element a in the domain of ϕ(x) the proposition ϕ(a) holds,
and that in the domain there is at least one element a such that ϕ(a) holds.

Exercise 1.2.4 For any propositional form ϕ(x), both propositions

¬∃x
(
ϕ(x)

)
⇐⇒ ∀x

(
¬ϕ(x)

)
and ¬∀x

(
ϕ(x)

)
⇐⇒ ∃x

(
¬ϕ(x)

)
are true.

We discuss truth in more detail in MA 1+. We often omit ∀ and understand
it implicitly. For example, in the domain of natural numbers the expression
m+ n = n+m really means that ∀m

(
∀n
(
m+ n = n+m

))
.

• On sets. Sets are a main tool of rigorous mathematics. To define them sensibly
is hard. Here is our take on it.
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Definition 1.2.5 (set) A set x is a clearly defined collection of other sets y,
called elements of x, that is an element of another set. We write y ∈ x, respec-
tively y 6∈ x, to denote that the set y is, respectively is not, an element of the
set x. By writing x 3 y, respectively x 63 y, we say the same. The empty set
is the unique set with no elements; it is denoted by ∅. We denote sets by small
and capital letters of the Latin alphabet, for example by x, y, z, . . . or by A, B,
C, . . . or by other letters.

Isn’t it a circular definition? We say what is a set by referring to sets. To dispel
possible misunderstanding we expand on the definition.

We observe and use a mathematical universe which is inhabited by abstract
entities called sets. They mutually relate by two binary relations, the member-
ship ∈ and the equality =. We postulate rules for these relations in axioms of
set theory and mathematical logic. The rules for = are straightforward but the
rules for ∈ are less intuitive. To determine the latter we take inspiration in prop-
erties of idealized collections of physical objects. The primary purpose of sets
in mathematics is not to describe and manipulate collections of mathematical
objects like numbers and functions, but rather to build these objects, to build
the whole mathematics from sets. Sets are viewed best as purely mathematical
constructs. It is useful to populate the mathematical universe beside sets also
by related entities called classes, see Definition 1.2.14 below. A class is also
a clearly defined collection of sets, but unlike a set it need not be an element of
another class or set. We say more about sets and classes in MA 1+. For more
information on them we recommend to the reader the books [12, 32] and the
article [3].

Exercise 1.2.6 Is there a set A such that A ∈ A?

• Defining sets by lists. Any finite set can be, in theory, defined in finite time
by listing its elements. But also some infinite sets can be determined by “lists”
of their elements. We explain this matter in the next definition.

Definition 1.2.7 (four kinds of lists of elements) (a) By a list of elements
of a nonempty finite set we mean any finite expression like

{b, a, a, c} .

The names (which may be lists of elements themselves) of all distinct elements
of the set, here a, b and c, are given in some order, are separated by commas
and are enclosed in curly brackets. The names may be repeated and their order
does not matter.

(b) A list of elements of a nonempty finite set with (ellipsis) . . . is any finite
expression of the form

{p, q, . . . , r} .

Here p, q and r are names of three usually distinct elements of the set and “p,
q, . . . , r” indicates, by some implicit rule, all elements of the finite set.
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(c) An elliptical list of elements of an infinite set is any finite expression of
the form

{p, q, . . . } .

Here p and q are names of two distinct elements of the set and “p, q, . . . ”
indicates, by some implicit rule, all elements of the infinite set.

(d) Recall that the empty set is denoted by the symbol ∅.

(a) For example, both lists of elements {3, 1, 5} and {1, 5, 1, 3, 5, 5} denote the
set with three (distinct) elements 1, 3 and 5. (b) For example, {2, 3, . . . , 11}
denotes the set of ten natural numbers from 2 to 11, thus

{2, 3, . . . , 11} = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} .

We write “usually” not to exclude the definition M ≡ {p, q, . . . , r} when M
has less the three elements. (c) For example, {1, 2, . . . } means the set N of
natural numbers and {−3,−2, . . . } means the set of integers larger than −4.
(d) Thus ∅ = { }. In each case the meaning of the ellipsis . . . has to be inferred
from the context. It should be straightforward, but misunderstanding cannot
be completely ruled out — L. Wittgenstein taught us that it is in the nature of
language.

Another example of a list of elements of the first kind (without . . . ) is

{a, b, 2, b, {∅, {∅}}, {a}} .

Exercise 1.2.8 How many elements does this set have?

• Hereditarily finite sets. The situation with describing finite sets by lists of
elements is more complicated than that. If we want a complete description of
a set which one can go through in finite time then it does not suffice that the
set is finite. Also every element of it has to be finite, as well as every element
of its every element, and so on. The set X = {x1, x2, x3} is not completely
determined until we know which equalities x1 = x2, x1 = x3 and x2 = x3 hold.
Else we do not know how many elementsX has. In set theory (i.e., mathematics)
equalities x = y are decided by the axiom of extensionality. It says that two
sets are equal iff they have the same elements. We are able to go through these
elements in finite time only if there are finitely many of them. Thus we arrive
at the following definition. In it we understand finiteness intuitively, we define
it precisely later.

Definition 1.2.9 (hereditary finiteness) A set x is hereditarily finite, ab-
breviated HF, if for every n ∈ {0, 1, . . . } and every chain of sets

xn ∈ xn−1 ∈ · · · ∈ x0 = x

the set xn is finite.
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An example of an HF set is the number four in the set-theoretic form:

4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}} .

Another HF set is {{{{{{∅}}}}}}. The set {{0, 1, . . . }} has just one element
and is finite but is not HF. The axiom of foundation, which we state in MA 1+,
ensures that every chain of sets x0 3 x1 3 . . . is finite.

Exercise 1.2.10 Let x0 3 x1 3 · · · 3 xn be a maximal chain of sets nested with
respect to ∈ (i.e., it cannot be prolonged). What is xn?

In MA 1+ we show that HF sets are exactly the sets whose so called lists of
elements of elements are finite.

• Sets defined by properties. Another method to define sets is via properties of
their elements. The technical term for it is the axiom schema of comprehension.

Definition 1.2.11 (comprehension) The comprehension definition of a set
M has the form

M ≡ {x ∈ N : ϕ(x)}, respectively M ≡ {x : ϕ(x)} ,

where N is an already defined set and ϕ(x) is a propositional form. Thus M
consists of the sets x in N such that ϕ(x) holds, respectively of the sets x in the
domain of ϕ(x) such that ϕ(x) holds.

In formalized set theory properties and propositional forms are replaced with
formulas. It is assumed that every element of N belong to the domain of ϕ(x).
Let N = {1, 2, . . . } be the set of natural numbers. Then, for example, the set

M ≡ {n ∈ N : ∃m ∈ N
(
n = 2 ·m

)
}

contains exactly all even natural numbers. But where did N come from? We
return to this question in MA 1+.

Exercise 1.2.12 Define by comprehension the set P of prime numbers.

The reader probably knows that comprehension definitions of sets of the
second kind are in general problematic. Not every propositional form ϕ(x) has
a clearly determined domain. In the definition of the first kind an already defined
set N serves as a de facto domain of ϕ(x). But in the definition M ≡ {x : ϕ(x)}
one takes x from anywhere. As we now remind, this may lead to contradictions.

• Russel’s paradox, classes, GB, ZF and ZFC. The British mathematician and
philosopher Bertrand Russel (1872–1970) pointed out that the set definition

M ≡ {x : x 6∈ x} ,

where the domain of the propositional form x 6∈ x is the universe of all sets,
leads to a contradiction.

6



Exercise 1.2.13 How? What contradiction?

One way how to block Russel’s paradox is to say that the above collection
of sets M is a class, a very large collection of sets which is not an element of
anything.

Definition 1.2.14 (class) A class is a clearly defined collection of sets. Classes
are denoted by capital Latin letters in the Fracture hand, for example A,B,S, . . .
(see Exercise 1.2.2). Like sets, classes mutually relate by ∈ and =. Every set
is a class and every class that is an element of a class is a set. A class that is
not an element of another class is called proper class and is not a set.

Set theory based on sets and classes is denoted by the acronym GB, after the
Austrian-American mathematician Kurt Gödel (1906–1978), who was the great-
est mathematical logician of the 20th century and was born and grew up in Brno
(Austria-Hungary, today Czechia, oops Moravia), and the Swiss mathematician
Paul Bernays (1888–1977).

Another way that blocks Russel’s paradox, without classes by means of only
sets, is the carefully built set theory denoted by the acronym ZF, after the Ger-
man mathematician Ernst Zermelo (1871–1953) and the German-Israeli math-
ematician Adolf Fraenkel (1891–1965). Finally, the acronym ZFC, which is
used most often, refers to the ZF set theory with the axiom of choice added.
In MA 1+ we explain why this set-theoretic axiom is important, and there we
write on GB, ZF and ZFC set theories more.

But what the hell is all this doing in an introductory text on analysis, some
may ask. Classes were forced upon us by the development in Section 3.5. There
we cannot keep silent about classes without being non-rigorous. Elsewhere in
this text we work only with sets.

• Relations between sets. A set A is a subset of a set B, written A ⊂ B, if any
x ∈ A is also an element of B. Sets A and B are disjoint if they have no common

element. Sets A and B are equal, written A = B, iff ∀x
(
x ∈ A ⇐⇒ x ∈ B

)
.

This is the axiom of extensionality.

Exercise 1.2.15 The equivalence A = B ⇐⇒ A ⊂ B ∧B ⊂ A holds.

• Set operations. Let A and B be sets. Their union A∪B ≡ {x : x ∈ A∨x ∈ B}
and their intersection A ∩ B ≡ {x ∈ A : x ∈ B}. The sum (of the set A)⋃
A ≡ {x : ∃ b ∈ A

(
x ∈ b

)
}. The intersection (of the set A)

⋂
A ≡ {x :

∀ b ∈ A
(
x ∈ b

)
}, for A 6= ∅. The difference A \ B ≡ {x ∈ A : x 6∈ B}. The

power set of A is P(A) ≡ {X : X ⊂ A}. As we know from the passage about
Russel’s paradox, in formalized set theory the only correct definitions of these
are for A∩B and for A \B. Definitions of the form X ≡ {x : . . . } are formally
not allowed because it is forbidden to take x from anywhere, it can only be
taken from an already defined set. In formalized set theory the “definitions”
X ≡ {x : . . . } are replaced by axioms. By them one introduces the union, the
sum and the power set. By |X| (∈ N0) we denote the number of elements of
a finite set X.
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Exercise 1.2.16 Sets A a B are disjoint iff A ∩B = ∅.

Exercise 1.2.17 What is
⋂
∅?

Exercise 1.2.18 Let A and B be finite sets. Is it always true that |A \ B| =
|A| − |B|?

Exercise 1.2.19 What is P(∅)? If n ∈ {0, 1 . . . }, what is |P({1, 2, . . . , n})|?

Exercise 1.2.20 (De Morgan formulas) Let A and B 6= ∅ be sets. Then
A \

⋃
B =

⋂
B0 and A \

⋂
B =

⋃
B0, where B0 ≡ {A \ C : C ∈ B}.

Augustus De Morgan (1806–1871) was a British mathematician.

• Pairs and triples. The next definition of ordered pair of two sets is due to the
Polish mathematician Kazimierz Kuratowski (1896–1980).

Definition 1.2.21 (ordered pairs) Let A and B be sets. The set

(A, B) ≡ {{B, A}, {A}}

is the (ordered) pair of A and B.

Exercise 1.2.22 Using the axiom of extensionality prove the equivalence

(A,B) = (C, D) ⇐⇒ A = C ∧B = D .

We define the ordered triple of sets A, B and C as

(A, B, C) ≡ {(1, A), (2, B), (3, C)} ,

and not as (A, (B,C)) or ((A,B), C), as one can often read, even in textbooks
of set theory! Why? With the definition

(A, B, C) ≡ (A, (B, C))

it is not clear if the set (A,B,C) is an ordered triple of the sets A, B and C or
an ordered pair of the sets A and (B,C).

Definition 1.2.23 (ordered k-tuples) Let k ∈ N and let A1, . . . , Ak be sets.
Their ordered k-tuple is the set

〈A1, . . . , Ak〉 ≡ {(1, A1), (2, A2), . . . , (k, Ak)} .

For k = 3 we have that 〈A1, A2, A3〉 = (A1, A2, A3). For k = 2 the sets 〈A,B〉
and (A,B) are different but function in the same way. We shall use the latter.

Exercise 1.2.24 Let k, l ∈ N, A ≡ 〈A1, . . . , Ak〉 be an ordered k-tuple, B ≡
〈B1, . . . , Bl〉 be an ordered l-tuple and let A = B. Prove that then k = l and for
every i ∈ {1, 2, . . . , k} it holds that Ai = Bi.

Standard ordered k-tuples are often defined as iterated pairs, that is, for example
as

(A1, (A2, (. . . , (Ak−1, Ak) . . . ))) .

They obviously do not enjoy the property stated in Exercise 1.2.24.
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1.3 Functions and relations

We treat functions set-theoretically. (So no “a function is a rule that . . . ”.) We
compose any two functions, as we need it for the use of elementary functions in
Chapter 4.

• Functions and congruence of functions. Let A and B be sets. Their Cartesian
product is the set

A×B ≡ {(a, b) : a ∈ A, b ∈ B} .

Any set C ⊂ A × B is then a (binary) relation between A and B. Instead
of (a, b) ∈ C we write aCb, for example 2 < 5. When A = B, we speak of
a relation on A.

Definition 1.3.1 (functional relation) A relation C between A and B is
functional if for every a ∈ A there is exactly one b ∈ B such that aCb.

Definition 1.3.2 (functions and graphs) A function (a map) from a set A
to a set B is any ordered triple (A,B, f) such that f is a functional relation
between A and B. We denote it by the symbol

f : A→ B .

For any a ∈ A we denote by f(a) the unique b ∈ B such that afb. We often
abuse notation and denote the triple (A,B, f) simply by f ; it has a good reason,
see the next definition and exercise. Then we denote the third component f in
(A,B, f) by Gf and call it the graph of f .

Thus Gf = {(x, f(x)) : x ∈ A} = f . Instead of f : A→ B we sometimes write
also A 3 a 7→ f(a) ∈ B. The set A is the definition domain of f and B is the
range of f . We denote the definition domain of f by M(f). In f(a) = b the
element b is the value of f in the argument a.

When some mathematical objects are considered, one should precisely de-
scribe conditions when two of these objects are regarded as identical although
they may differ as sets. The relation resulting from these conditions is called
congruence of the considered objects. Well known examples of congruences are
isomorphisms of various algebraic and combinatorial structures. Congruence is
usually an equivalence relation (see Definition 1.3.17). Congruence of functions
works as follows.

Definition 1.3.3 (congruent functions) Let (A,B, f) and (C,D, g) be func-
tions. They are congruent, that is for practical purposes identical, if f = g (as
sets of ordered pairs).

Exercise 1.3.4 Two functions (A,B, f) and (C,D, g) are congruent ⇐⇒
A = C and f = g.
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In other words, congruent functions may differ only in their ranges.
For a function f : A→ B and any set C we define the sets

f [C] ≡ {f(a) : a ∈ C ∩A} (⊂ B) . . . the image of C by f and

f−1[C] ≡ {a ∈ A : f(a) ∈ C} (⊂ A) . . . the preimage of C by f .

Note that the set C is arbitrary. The set f [A] is the image of f .

Exercise 1.3.5 Is it true that f−1[f [C]] = C and that f [f−1[C]] = C?

• Species of functions. As we know, N = {1, 2, . . . }. We set N0 ≡ {0, 1, . . . }.
For n ∈ N let [n] ≡ {1, 2, . . . , n} and let [0] ≡ ∅. Let X be any set and n ∈ N0.
Three important families of functions are sequences, words and operations.

a : N→ X . . . a is a sequence (in X) ,

u : [n]→ X . . . u is a word (over X) and

o : X ×X → X . . . o is a (binary) operation (on X) .

For a sequence a in X we write an instead of a(n) and invoke it by writing
(an) ⊂ X. A word u over X is written as u1u2 . . . un where ui = u(i) for
i ∈ [n]. For n = 0 we have the empty word u = ∅. The value of an operation
o((a, b)) = c is recorded as a o b = c, for example 1 + 1 = 2. Any function
o : X → X is called a unary operation (on X).

A function f : X → Y is

injective ≡ always f(x) = f(x′)⇒ x = x′ ,

surjective (onto) ≡ f [X] = Y ,

bijective (a bijection) ≡ f is onto and injective ,

constant ≡ ∃ c ∈ Y ∀x ∈ X
(
f(x) = c

)
and

identical ≡ X ⊂ Y ∧ ∀x ∈ X
(
f(x) = x

)
.

In a more narrow sense we understand by an identical function on X the function
idX : X → X, idX(x) = x.

Exercise 1.3.6 When is the identical function from X to Y bijective?

Exercise 1.3.7 Is it true that if two functions are congruent (in the sense of
Definition 1.3.3), then they both are, or both are not, injective? Same question
for surjectivity, bijectivness, constantness and identicalness.

• Operations on functions. We introduce three. They are motivated by elemen-
tary functions in Chapter 4. The first operation is unary and partial (sometimes
it is not defined). Let f : X → Y be injective. Its inverse function (its inverse)
f−1 is the function

f−1 : f [X]→ X where f−1(y) = x ⇐⇒ f(x) = y .

If f is not injective then f−1 is not defined.
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Exercise 1.3.8 The notation f−1[A] may be ambiguous, it may mean the preim-
age of A by f and also the image of A by f−1. Is it a problem?

Exercise 1.3.9 Let f be injective. Are f and (f−1)−1 congruent? Are they
equal as triples? Same question for f−1 and ((f−1)−1)−1.

Composition is a binary operation. For g : X → Y and f : A → B their
composition f ◦ g = f(g) : X ′ → B has for x ∈ X ′ values f(g)(x) = f(g(x)) and

X ′ ≡ {x ∈ X : g(x) ∈ A} (= g−1[A]) .

In f(g) we call the function g inner, and f outer.

Exercise 1.3.10 Let f1 and f2, respectively g1 and g2, be congruent. Are then
f1(g1) and f2(g2) congruent?

The third operation on functions is in fact a system of unary operations. For
f : X → Y and any set Z we define the restriction of f to Z to be the function
f |Z : X ∩ Z → Y with the values

(f |Z)(x) ≡ f(x), x ∈ X ∩ Z .

Then f is an extension of f |Z. It is clear that if f1 and f2 are congruent then
for any Z the restrictions f1 |Z and f2 |Z are congruent. A function (A,B, f)
is a restriction of another function (X,Z, g) if f ⊂ g, i.e. f = g |A = g |M(f).
If f and g are functions, X is any set and f |X and g |X are congruent, then
we write that f = g on X.

Exercise 1.3.11 Any composition of two injections is an injection. Composi-
tion f(g) of the surjections g : X → Y and f : Y → B is surjective. In general
composition of two surjective maps need not be surjective.

Exercise 1.3.12 For any three functions f , g and h it holds that f ◦ (g ◦ h) =
(f ◦ g) ◦ h as triples.

Exercise 1.3.13 For every map h : X → Z there exist a set Y and functions
g : X → Y and f : Y → Z such that h = f ◦ g, g is onto and f is injective.

Exercise 1.3.14 f : X → Y is bijective iff there is a function g : Y → X such
that f(g) is idY and g(f) is idX .

Exercise 1.3.15 Which constant functions can be inverted?

• Sum (union) and intersection of a set system. Let I be a set. A set system
{Ai : i ∈ I} indexed by I, denoted also by Ai, i ∈ I, is simply any function
(I, Y,A) where for i ∈ I the value A(i) is denoted by the symbol Ai. Then⋃

i∈I Ai =
⋃
{Ai : i ∈ I} ≡

⋃
A[I]

and, for A[I] 6= ∅, ⋂
i∈I Ai =

⋂
{Ai : i ∈ I} ≡

⋂
A[I] .
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Exercise 1.3.16 Explain the meaning of the notation
⋃∞
i=1Ai and

⋂∞
i=0Ai.

• Equivalence relations. A relation R on A is reflexive (respectively irreflexive)
if always aRa (respectively never aRa). R is symmetric if always aRb implies
bRa. It is transitive if always aRb and bRc imply aRc.

Definition 1.3.17 (equivalence relation) Equivalence relation is a reflexive,
symmetric and transitive relation on a set.

Definition 1.3.18 (partition) Let A and B be sets. A is a partition of B if
the elements of A are nonempty, pairwise disjoint and

⋃
A = B. The elements

in A are then called blocks of the partition A.

Let R be an equivalence relation on A. For a ∈ A we define the sets

[a]R ≡ {b ∈ A : bRa} (⊂ A)

and call them blocks of R. It is clear that if aRb then [a]R = [b]R. We set

A/R ≡ {[a]R : a ∈ A} .

Exercise 1.3.19 If R is an equivalence relation on A then A/R is a partition
of A. Elements b, c ∈ A lie in one block of A/R iff bRc.

Let X be a partition of Y . We define the relation Y/X on Y by

x (Y/X) y ≡ ∃Z ∈ X
(
x, y ∈ Z

)
.

Exercise 1.3.20 If X is a partition of Y then Y/X is an equivalence relation
on Y . Elements x, y ∈ Y lie in one block of X iff x(Y/X)y.

Exercise 1.3.21 If R is an equivalence relation on A and B is a partition of
A then

A/(A/R) = R and A/(A/B) = B .

1.4 Suprema and infima

Let R be a relation on A. It is trichotomic if for every a, b ∈ A it is true that
aRb or bRa or a = b.

• Linear orders belong to fundamental mathematical structures.

Definition 1.4.1 (linear order) A linear order, shortly LO, is an irreflexive,
transitive and trichotomic relation on a set.

To invoke a LO on A, we use notation like (A,<). For a, b ∈ A notation a ≤ b
means that a < b or a = b. Notation a > b means that b < a. Similarly for
a ≥ b. We say that the relations < and > are strict, and that ≤ and ≥ are
non-strict.

12



Exercise 1.4.2 If (A,<) is a LO then the relations ≤ and ≥ are reflexive,
transitive and trichotomic.

Exercise 1.4.3 In any LO (A,<) for a, b ∈ A exactly one of a < b, b < a and
a = b holds.

• Suprema and infima. Let (A,<) be a LO and B ⊂ A. The set B is
bounded from above if there is an h ∈ A such that for every b ∈ B we have
b ≤ h. Then h is an upper bound of B. H(B) (⊂ A) is the set of upper bounds
of B. We similarly define boundedness from below, lower bounds and the set
D(B) (⊂ A) of lower bounds of B. An element m ∈ B is the maximum of B if
m ∈ H(B). We similarly define the minimum of B. We denote these elements
as max(B) and min(B). For B = ∅ they are not defined.

Exercise 1.4.4 Show that maxima and minima are unique.

Exercise 1.4.5 Any nonempty finite subset in any LO has both maximum and
minimum.

In the theory of real numbers suprema and infima of their sets, which we
now define more generally in any LO, play important roles.

Definition 1.4.6 (sup and inf) Let (A, <) be a LO and B ⊂ A. Then the
elements

sup(B) ≡ min(H(B)) (∈ A) and inf(B) ≡ max(D(B)) (∈ A) ,

if they exist, are respectively called the supremum and the infimum of B.

In contrast to maxima and minima, suprema and infima may lie outside the
considered set.

Exercise 1.4.7 Suprema and infima are unique.

Exercise 1.4.8 Prove the following result. State and prove the analogous result
for infima.

Proposition 1.4.9 (approximating suprema) Let (A, <) be a LO, B ⊂ A
and c ∈ A. Then c = sup(B) iff for every b ∈ B we have b ≤ c and for every
a ∈ A with a < c there is a b ∈ B such that a < b.

Thus sup(B) can be approximated from below arbitrarily tightly (in the sense
of <) by elements of B.
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1.5 Rational numbers

Real numbers are built from rational ones, which we now recall. Natural num-
bers and integers will be constructed in MA 1+.

• Rational numbers (fractions). Let

Z ≡ {. . . , −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, . . . }

(this is a “list” of elements of a kind we did not consider in Definition 1.2.7) be
the integers, with their usual operations of addition + and multiplication ·, the
usual neutral elements 0 a 1 and the usual LO <. We set

Z ≡
{
m
n : m ∈ Z, n ∈ Z \ {0}

}
,

where m
n denotes the ordered pair (m,n). The elements of Z are so called

protofractions. The congruence relation ∼ on Z is defined by

k

l
∼ m

n
≡ kn = lm .

Exercise 1.5.1 Show that ∼ is an equivalence relation on Z.

Definition 1.5.2 (rational numbers) We set Q ≡ Z/∼. The blocks [mn ]∼ in
Q are called rational numbers or fractions. We usually write them simply as m

n
or m/n.

Due to the embedding Z 3 m 7→ [m1 ]∼ ∈ Q we view the integers as a subset,
actually a subring, of fractions.

For the next exercise recall that m,n ∈ Z are coprime, if their only common
divisors are −1 and 1. A protofraction m

n is in lowest terms if n > 0 and m and
n are coprime. We denote the set of such protofractions by Zz (⊂ Z).

Exercise 1.5.3 (representing fractions) There exists exactly one bijection
f : Q→ Zz such that always f([m/n]∼) ∈ [m/n]∼.

Thus fractions have a (canonical) system of distinct representatives by protofrac-
tions in lowest terms.

• Ordered fields. We begin with the definition of a field.

Definition 1.5.4 (field) A field XF is any structure

XF ≡ 〈X, 0X , 1X , +, ·〉

such that X is a set (or a class), 0X , 1X ∈ X are distinct elements, + and ·
are operations on X (the “addition” and “multiplication”) and that for every
α, β, γ ∈ X the following axioms hold. First, α+ 0X = α · 1X = α which means
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that both 0X and 1X is a neutral element to the respective operation. Further,
it holds that

α+ β = β + α . . . commutativity of + ,

α · β = β · α . . . commutativity of · ,
(α+ β) + γ = α+ (β + γ) . . . associativity of + ,

(α · β) · γ = α · (β · γ) . . . associativity of · and

α · (β + γ) = (α · β) + (α · γ) . . . distributivity of · to k + .

Finally, it holds that (α, β, γ ∈ X)

∀α ∃β
(
α+ β = 0X

)
. . . additive inverses always exist and

∀α 6= 0X ∃ γ
(
α · γ = 1X

)
. . . multiplicative inverses almost always exist .

The additive inverse β to α is denoted by −α, and the multiplicative inverse γ
by 1

α or 1/α or α−1.

A ring is any structure RR ≡ 〈R, 0R, 1R,+, ·〉 satisfying all above field axioms,
with the possible exception of existence of multiplicative inverses. For example,
the integers form a ring but do not form a field.

Exercise 1.5.5 Neutral elements in any field are unique. The same holds for
additive and multiplicative inverses.

Exercise 1.5.6 Describe a field with two elements. Is it unique? Is there a field
with just one element?

Definition 1.5.7 (ordered field) An ordered field is any structure TOF ≡
〈T, 0T , 1T ,+, ·, <〉 such that 〈T, 0T , 1T ,+, ·〉 is a field, (T,<) is a LO and that
for every α, β, γ ∈ T two axioms of order hold, namely

α < β ⇒ α+ γ < β + γ . . . the axiom of shift and

α > 0T ∧ β > 0T ⇒ α · β > 0T . . . the axiom of positivity .

Exercise 1.5.8 Every ordered field is infinite.

Definition 1.5.9 An ordered field TOF is Archimedean if every element x ∈ T
has an upper bound of the form x ≤ 1T + 1T + · · ·+ 1T .

This term refers to Archimedes of Syracuse (cca 287–cca 212 before our era).

• Fractions form an ordered field. We remind the arithmetic of fractions and
then prove that it makes Q an ordered field. We take the ordered integral domain
of integers 〈Z, 0, 1,+, ·, <〉 for granted. We set 0Q ≡ [0/1]∼ and 1Q ≡ [1/1]∼
(recall that ∼ is the congruence on the set of protofractions Z).

Exercise 1.5.10 0
1 6∼

1
1 , so that 0Q 6= 1Q.
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Addition and multiplication of fractions are well known:

[a/b]∼ + [c/d]∼ ≡ [(ad+ cb)/bd]∼ and [a/b]∼ · [c/d]∼ ≡ [ac/bd]∼ .

As for comparison, for fractions [a/b]∼ and [c/d]∼ with b, d > 0 (which can be
assumed) we set

[a/b]∼ < [c/d]∼ ≡ ad < cb

where on the right side < is the standard LO on Z.

Exercise 1.5.11 Why can we assume that the denominators b and d are posi-
tive?

Theorem 1.5.12 (Q is an OF) The structure QOF ≡ 〈Q, 1Q, 0Q,+, ·, <〉 is
an ordered field.

Proof. First we check that +, · and < do not depend on the representations by
protofractions. Let a

b ∼
a′

b′ and c
d ∼

c′

d′ , so that ab′ = a′b and cd′ = c′d. Then
a
b+ c

d = ad+cb
bd ∼ a′d′+c′b′

b′d′ = a′

b′+
c′

d′ because (ad+cb)b′d′ = a′bdd′+c′dbb′ = (a′d′+

c′b′)bd. Similarly a
b ·

c
d = ac

bd ∼
a′c′

b′d′ = a′

b′ ·
c′

d′ because acb′d′ = a′bc′d = a′c′bd.
Finally, we may assume (by Exercise 1.5.11) that b, d, b′, d′ > 0. Then a

b <
c
d iff

ad < cb iff adb′d′ = a′bdd′ < c′dbb′ = cbb′d′ iff a′d′ < c′b′ (since bd, b′d′ > 0) iff
a′

b′ <
c′

d′ .
Thus the arithmetic operations and the comparison are defined correctly.

Since a
b + 0

1 = a·1+0·b
b·1 = a

b , the fraction 0Q is neutral to +. Similarly for 1Q.
Commutativity of addition and multiplication is immediate from commutativity
of these operations in Z. The same holds for associativity of multiplication. As
for associativity of addition, we indeed have that(

a
b + c

d

)
+ e

f = (ad+cb)f+ebd
bdf = adf+(cf+ed)b

bdf = a
b +

(
c
d + e

f

)
where we additionally used the distributive law in Z. As for the distributive
law, it holds too because

a
b ·
(
c
d + e

f

)
= a(cf+ed)

bdf ∼ acbf+aebd
b2df = a

b ·
c
d + a

b ·
e
f

where we used also the congruence ∼ on Z. The additive inverse to a
b is −ab

because a
b + −a

b = ab+(−a)b
b2 ∼ 0

1 . Similarly for multiplicative inverses: the

multiplicative inverse to a
b 6∼

0
1 , i.e. when a 6= 0, is b

a because a
b ·

b
a = ab

ab ∼
1
1 .

It remains to show that (Q, <) is a LO and that the two order axioms hold.
Irreflexivity of < is clear. Let a

b <
c
d and c

d <
e
f , with b, d, f > 0. Thus ad < cb

and cf < ed. Multiplying the first inequality by f and the second one by b we
get that adf < edb. Hence af < eb and a

b <
e
f . The transitivity of < is proven.

If a
b and c

d are two (proto)fractions with b, d > 0, then one of ad < cb, ad > cb
and ad = cb holds. In the first case we have that a

b <
c
d , in the second case that

a
b >

c
d and in the third case that a

b ∼
c
d . This proves that < is trichotomic.

Suppose that a
b <

c
d with b, d > 0, thus ad < cb, and that e

f is any fraction.
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Then also a
b + e

f <
c
d + e

f : (af + eb)df < (cf + ed)bf iff adf2 < cbf2 iff ad < cb.

Finally, suppose that 0
1 <

a
b ,

c
d , where b, d > 0. Then 0 < a, c, so that 0 < ac.

Hence 0
1 <

ac
bd = a

b ·
c
d . 2

Exercise 1.5.13 The ordered field QOF is Archimedean.

• Incompleteness of fractions. QOF lacks an important property which real
numbers have. It is completeness.

Definition 1.5.14 (completeness) A LO is complete if every nonempty and
from above bounded set in it has a supremum. An ordered field is complete if
its LO is complete.

Exercise 1.5.15 What is the supremum of ∅? What is the supremum of a set
that is not bounded from above?

Exercise 1.5.16 Show that in any complete ordered field any nonempty and
from below bounded set has an infimum.

Exercise 1.5.17 Show that every complete ordered field is Archimedean.

It follows from the next theorem that the LO (Q, <) is not complete. In the
proof we use the axiom of induction. In MA 1+ we show that this axiom follows
from more fundamental axioms of set theory.

Axiom 1.5.18 (axiom of induction) In the standard linear order (N, <) ev-
ery nonempty set of natural numbers has minimum.

We show that the number
√

2 is irrational. But the real numbers are not
yet defined; we put it in the following form.

Theorem 1.5.19 (
√

2 6∈ Q) The equation x2 = 2 has no solution in Q.

Proof. We proceed by contradiction. Let a, b ∈ N satisfy (a/b)2 = 2. So
a2 = 2b2 and a, b is a solution of the equation x2 = 2y2. By the axiom of
induction we can take a to be minimum one. The number a2 is even. Hence a
is even, a = 2c for some c ∈ N. But then

(2c)2 = 2b2 ; 4c2 = 2b2 ; b2 = 2c2 .

We got a new solution b, c (∈ N) of x2 = 2y2. But b < a, contradicting the
minimality of the solution a, b. 2

One can generalize rational insolubility of x2 − 2 = 0 as follows.

Exercise 1.5.20 If the equation xn + an−1x
n−1 + · · · + a1x + a0 = 0 satisfies

that n ∈ N, n ≥ 2, ai ∈ Z, a prime number p divides every coefficient ai but p2

does not divide a0, then in Q the equation has no solution.
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Corollary 1.5.21 (incompleteness of Q) The LO (Q, <) is not complete.
For example, the set X = {x ∈ Q : x2 < 2} (⊂ Q) is nonempty and bounded
from above but sup(X) does not exist.

Proof. The first two properties of X are clear as 1 ∈ X and x < 2 for every
x ∈ X. For contradiction let s ≡ sup(X) ∈ Q. Clearly, s > 0. If s2 > 2, there
is an r ∈ Q such that 0 < r < s and (s− r)2 > 2. But then for every x ∈ X we
have s− r > x. This contradicts the fact that s is the smallest upper bound of
X. If s2 < 2, there is a fraction r > 0 such that (s + r)2 < 2. Thus s + r ∈ X
and we have a contradiction with the fact that s is an upper bound of X. By
the trichotomy, s2 = 2. But this is not possible by the previous theorem. 2

Exercise 1.5.22 Find for the fractions r some specific values. They are func-
tions of s.

1.6 Cantor’s real numbers

We present Cantor’s definition of real numbers. In it real numbers are equiv-
alence blocks of Cauchy sequences of fractions. Each of these blocks is an un-
countable set. In MA 1+ we describe Dedekind’s construction of real numbers.
In it every real number is a hereditarily at most countable set. The German
mathematician Georg Cantor (1845–1918) is worldwide famous as a creator
of set theory. The French mathematician Augustin-Louis Cauchy (1789–1857)
belongs to the founders of mathematical analysis, especially in the complex
domain. The German mathematician Richard Dedekind (1831–1916) made in
1858 an epochal mathematical discovery: real numbers can be rigorously and
relatively straightforwardly built from the natural numbers.

• Real numbers. A sequence (an) ⊂ Q is called Cauchy if for every k ∈ N there
is an n0 ∈ N such that

m, n ≥ n0 ⇒ |am − an| ≤ 1
k .

We define the set C ≡ {(an) : (an) ⊂ Q and is Cauchy}. Like on Z, we define
on C the congruence ∼. We set (an) ∼ (bn) ≡ for every k there is an n0 such
that

n ≥ n0 ⇒ |an − bn| ≤ 1
k .

Exercise 1.6.1 Show that ∼ is an equivalence relation on C.

Exercise 1.6.2 Prove that (an) ∼ (bn) iff for every k there is an n0 such that

m, n ≥ n0 ⇒ |am − bn| ≤ 1
k .

Definition 1.6.3 (Cantor’s reals) We define R ≡ C/∼. We call this set of
blocks of the equivalence relation ∼ the set of real numbers.
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• Arithmetic of real numbers. We set 0R ≡ [(0, 0, . . . )]∼ and 1R ≡ [(1, 1, . . . )]∼.
These are the zero and the unity in R. The sum and the product of real numbers
[(an)]∼ and [(bn)]∼ is defined, respectively, by

[(an)]∼ + [(bn)]∼ ≡ [(an + bn)]∼ and [(an)]∼ · [(bn)]∼ ≡ [(an · bn)]∼ .

The order on R is defined by [(an)]∼ < [(bn)]∼ ≡ there exist a k and an n0 such
that

n ≥ n0 ⇒ an ≤ bn − 1
k .

Next three propositions show correctness of these definitions. Clearly, (0, 0, . . . )
and (1, 1, . . . ) are in C. Hence 0R, 1R ∈ R.

Proposition 1.6.4 (correctness of + and · 1) Let (an) and (bn) be in C.
Then (an + bn), (anbn) ∈ C as well.

Proof. Let (an) and (bn) be as stated and let a k be given. Then for every
large m a n we have that |am − an|, |bm − bn| ≤ 1

2k . So for the same m and n,

|(am + bm)− (an + bn)| ≤ |am − an|+ |bm − bn| ≤ 1
2k + 1

2k = 1
k .

Hence (an + bn) is Cauchy.
Cauchy sequences are bounded and so there is an l such that for every n one

has that |an|, |bn| ≤ l. For every large m and n it holds that |am−an|, |bm−bn| ≤
1
2lk . Thus for the same m and n we have

|ambm − anbn| ≤ |am| · |bm − bn|+ |bn| · |am − an| ≤ l
2lk + l

2lk = 1
k .

Hence (anbn) is Cauchy. 2

The sum and the product of two real numbers is therefore a real number.

Proposition 1.6.5 (correctness of + and · 2) Let (an), (bn), (cn) ∈ C and
(an) ∼ (cn). Then

(an + bn) ∼ (cn + bn) and (anbn) ∼ (cnbn) .

Proof. Let (an), (bn) and (cn) be as stated and let a k be given. As before we
take an l such that for every n it holds that |bn| ≤ l. For every large n we have
that |an − cn| ≤ 1

k . For these n one has that

|(an + bn)− (cn + bn)| = |an − cn| ≤ 1
k .

Hence (an + bn) ∼ (cn + bn). For every large n also |an − cn| ≤ 1
lk . Thus

|anbn − cnbn| = |an − cn| · |bn| ≤ l
lk = 1

k .

Hence (anbn) ∼ (cnbn). 2
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From this we easily deduce that if (an), (a′n), (bn) and (b′n) are in C and (an) ∼
(a′n) and (bn) ∼ (b′n), then

[(an + bn)]∼ = [(a′n + b′n)]∼ and [(anbn)]∼ = [(a′nb
′
n)]∼ .

The sum and the product in R are therefore independent of the representing
Cauchy sequences.

Proposition 1.6.6 (correctness of <) Let (an), (bn), (cn), (dn) ∈ C, let (an) ∼
(cn) and (bn) ∼ (dn). Then

[(an)]∼ < [(bn)]∼ ⇐⇒ [(cn)]∼ < [(bn)]∼

and
[(an)]∼ < [(bn)]∼ ⇐⇒ [(an)]∼ < [(dn)]∼

Proof. Let (an), (bn), (cn) and (dn) be as stated. Suppose that the first
comparison holds. Thus for some k and every large n it holds that an ≤ bn− 2

k .
For every large n we have also that |an − cn| ≤ 1

k . Thus for every large n we
have that

cn ≤ an + 1
k ≤ bn + 1

k −
2
k = bn − 1

k .

Hence [(cn)]∼ < [(bn)]∼. Suppose that the second comparison holds. Then for
some k and every large n one has that cn ≤ bn − 2

k . Then for every large n we
have that

an ≤ cn + 1
k ≤ bn −

2
k + 1

k = bn − 1
k .

Hence [(an)]∼ < [(bn)]∼. The second equivalence is proven similarly. 2

Hence if (an), (a′n), (bn) and (b′n) are in C, (an) ∼ (a′n) and (bn) ∼ (b′n), then

[(an)]∼ < [(bn)]∼ ⇐⇒ [(a′n)]∼ < [(b′n)]∼ .

Comparison of two real numbers therefore does not depend on representing
Cauchy sequences.

Thus the arithmetic on R is correctly defined. We show that it makes R an
ordered field. We begin by showing that it makes R a ring.

Proposition 1.6.7 (R is a ring) RR ≡ 〈R, 0R, 1R,+, ·〉 is a ring.

Proof. By Theorem 1.5.12 the structure QR ≡ 〈Q, 0Q, 1Q,+, ·〉 is a ring. Let
Q be the set of sequences (an) ⊂ Q. We consider the structure

QR ≡ 〈Q, 0Q, 1Q, +, ·〉

with 0Q ≡ (0Q, 0Q, . . . ), 1Q ≡ (1Q, 1Q, . . . ) and

(an) + (bn) ≡ (an + bn) and (an) · (bn) ≡ (an · bn) .
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Clearly QR is a ring — we have the same ring QR in every coordinate and sat-
isfaction of ring axioms in every coordinate implies their satisfaction in QR.

But C ⊂ Q and we have shown above that C is closed to constant operations
0Q and 1Q and to operations of component-wise addition and multiplication.
Thus CR ≡ 〈C, 0Q, 1Q,+, ·〉 is a subring of QR. We have the onto map

F : C → R, F (an) ≡ F ((an)) ≡ [(an)]∼ .

In it F (an) = F (bn) iff (an) ∼ (bn). In the above Propositions 1.6.4 and 1.6.5
we have shown that the operations + and · in CR are lifted by F to operations
in RR. Since this preserves ring axioms, RR is a ring. 2

QR is actually a field but neither QR nor CR is a field, the equality

(0, 1, 0, 0, 0, . . . ) · (1, 0, 0, 0, 0, . . . ) = (0, 0, 0, 0, 0, . . . ) = 0Q ,

shows that in CR the product of two nonzero elements may be zero. The lifting
by F removes this problem and makes RR a field, even an ordered one.

Theorem 1.6.8 (R is an OF) The above defined structure

ROF ≡ 〈R, 0R, 1R, +, ·, <〉

is an ordered field.

Proof. By the previous proposition RR is a ring. It remains to show that (i)
RR has multiplicative inverses, that (ii) (R, <) is a LO and that (iii) both order
axioms hold in ROF.

(i) Let α = [(an)]∼ ∈ R be nonzero, so that (an) 6∼ (0, 0, . . . ). Thus for some
l and infinitely many n we have that |an| ≥ 2

l . Since (an) ∈ C, for every large
n one has that |an| ≥ 1

l . For an 6= 0Q we define bn ≡ 1/an and for an = 0Q we
set bn ≡ 0Q. We show that (bn) ∈ C. Let a k be given. For every large m and
n it holds that |am − an| ≤ 1

l2k . Then for every large m and n we have that

|bm − bn| = |an−am|
|aman| ≤

l2

l2k = 1
k .

Hence (bn) ∈ C. We set β ≡ [(bn)]∼ ∈ R and get that α · β = 1R, because
(anbn) ∼ (1, 1, . . . ). Hence β = α−1.

(ii) Irreflexivity and transitivity of < are immediate. We prove trichotomy.
Let α = [(an)]∼ and β = [(bn)]∼ be two distinct real numbers. So (an) 6∼ (bn)
and for example for some k and infinitely many n it holds that an− bn ≥ 2

k (the
other possibility with an − bn ≤ − 2

k is resolved similarly). Since (an), (bn) ∈ C,
for every large n it holds that an − bn ≥ 1

k . Thus bn ≤ an − 1
k for these n and

β < α.
(iii) Let α = [(an)]∼, β = [(bn)]∼ and γ = [(cn)]∼ be tree real numbers. If

α < β then for some k and every large n one has that an ≤ bn − 1
k . For these n

we have that also an + cn ≤ bn + cn − 1
k and α + γ < β + γ. If 0R < α, β then
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for some k and every large n one has that 1/
√
k ≤ an, bn. Then for these n also

1
k ≤ anbn and 0R < αβ. So both axioms of order hold. 2

ROF contains in a natural way QOF.

Definition 1.6.9 (rational reals) A real number α is rational if for some
fraction a it holds that α = [(a, a, . . . )]∼. We denote this real number by a.

Exercise 1.6.10 Show that the map f : Q → R given by f(a) = a is an iso-
morphism between QOF and the ordered subfield of rational real numbers in R.

Thus if we want to work with a fraction b as a real number, we understand it
as a rational real number b.

• Remark on non-strict inequalities. We make an effort to use in computations
in ROF, whenever it is possible, non-strict inequalities ≤ and ≥ instead of the
strict < and >. So above in the definition of the LO (R, <) we write n ≥ n0 ⇒
an ≤ bn − 1

k , and not n > n0 ⇒ an < bn − 1
k . Non-strict inequalities are safer

than strict ones. For if x, y ∈ R then the inequality x ≤ y is preserved when
it is multiplied by any real z ≥ 0, but the strict inequality x < y need not be
preserved.

Exercise 1.6.11 Why?

• Completeness of real numbers. The extension of Q in R brings completeness.
However, in the next section we pay a price for it. We need the following
interesting result which we call an urtheorem on limits of monotone sequences.

Theorem 1.6.12 (ULMS) For n ∈ N let an, b ∈ Q be such that a1 ≥ a2 ≥
· · · ≥ b. Then the sequence (an) is Cauchy.

Proof. Let (an) and b be as stated. Then for every two indices m ≤ n we have
that 0 ≤ am − an ≤ a1 − b. Suppose that (an) is not Cauchy. Then there is a k
and a sequence of natural numbers m0 < m1 < . . . such that for every i ∈ N it
holds that ami − ami−1 ≥ 1

k . We take any n ∈ N such that n
k > a1 − b and get

the contradiction that amn
− am0

=
∑n
i=1(ami

− ami−1
) ≥ n

k > a1 − b. 2

Thus any weakly decreasing and from below bounded sequence of fractions
defines a real number. For this form of Theorem 2.3.3 on limits of monotone
sequences (of real numbers) we even do not need real numbers.

Exercise 1.6.13 State and prove the variant of the theorem for weakly increas-
ing sequences of fractions.

Now we prove that the LO (R, <) is complete.

Theorem 1.6.14 (completeness of R) The linear order (R, <) is complete.
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Proof. Suppose that B ⊂ R is nonempty and bounded from above. We define
two sequences (an), (bn) ⊂ Q. We take any rational real upper bound a1 of B
and set b1 ≡ 1Q. Suppose that a1, . . . , an and b1, . . . , bn in Q are defined. If
an − bn is an upper bound of B, we set an+1 ≡ an − bn and bn+1 ≡ bn. If it is
not, so that β > an − bn for some β ∈ B, we set an+1 ≡ an and bn+1 ≡ bn/2.
We repeat this indefinitely. The sequence (an) weakly decreases and every an
is an upper bound of B. Since B 6= ∅, (an) is bounded from below. Thus by
Theorem 1.6.12 we have (an) ∈ C. We show that α ≡ [(an)]∼ = sup(B).

Let α < β for some β = [(cn)]∼ ∈ B. Then for some k and every large n
we have that an ≤ cn − 1

k . Since (cn) ∈ C, we can take an m such that for
every large n we have that am ≤ cn − 1

2k . But then am < β, contradicting that
am is an upper bound of B. Thus α is an upper bound of B. Let a γ ∈ R
with γ < α be given. Since B 6= ∅, the step bn ; bn/2 is performed infinitely
many times. It follows that there exist an m ∈ N and a β ∈ B such that
β > am − bm ≥ α − (α − γ) = γ. Hence β > γ and it follows that α is the
smallest upper bound of B. 2

By Exercise 1.5.17 the ordered field ROF is Archimedean as a consequence of
its completeness.

Exercise 1.6.15 Show in a simple way that ROF is Archimedean.

Corollary 1.6.16 (
√

2 ∈ R) The equation x2 = 2 is solvable in the field R.

Proof. We take the set X ≡ {a ∈ R : a2 < 2}. Using Theorem 1.6.14 we set
s ≡ sup(X) ∈ R. As in the proof of Corollary 1.5.21 we show that neither of
the cases s2 < 2 and s2 > 2 occurs. Hence s2 = 2. 2

We generalize this argument in the next theorem which we prove later in Corol-
lary 6.3.7. Continuity of functions means — we define it precisely later — that
a small change in the argument causes a small change in the value.

Theorem 1.6.17 (Bolzano–Cauchy) Let u ≤ v be in R and f : [u, v] → R
be a continuous function with the property that f(u)f(v) ≤ 0. Then there exists
a w ∈ [u, v] such that f(w) = 0.

Bernard Bolzano (1781–1848) was a Czech-Italian-German priest, philosopher
and mathematician.

1.7 R is uncountable

We begin with the definition of finite and infinite sets.

• Finite and infinite sets. We take the set N = {1, 2, . . . } of natural numbers
for granted and define whether a given set X is finite or infinite by using maps
from N to X.
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Definition 1.7.1 (finite and infinite) A set is infinite if there is an injective
map from N to the set. Else the set is finite.

Exercise 1.7.2 If X is finite then there is an onto map f : N→ X.

Exercise 1.7.3 For every finite X there is a number n ∈ N0 and a bijection
f : [n]→ X.

• Countable and uncountable sets. We shall consider really large sets.

Definition 1.7.4 (uncountable sets) A set is countable if there is a bijection
from N to the set. A set is at most countable if it is finite or countable. A set
is uncountable if it is not at most countable.

N is obviously countable. Are there any uncountable sets? Shortly we prove
that the set of real numbers R = C/∼ is uncountable. But first we show that
the set of fractions Q is countable.

Theorem 1.7.5 (Q is countable) The set of fractions Q is countable.

Proof. Recall that Zz (⊂ Z) are protofractions m
n in lowest terms. By Exer-

cise 1.5.3 it suffices to show that Zz is countable. For m
n ∈ Zz and j ∈ N we

define the norm ‖mn ‖ ≡ |m|+ n (∈ N) and the list

Z(j) ≡
(
z1, j < z2, j < · · · < zkj , j : zi, j ∈ Zz, ‖zi, j‖ = j

)
.

For example,

Z(5) =
(−4

1 < −3
2 < −2

3 < −1
4 < 1

4 <
2
3 <

3
2 <

4
1

)
,

k5 = 8 and 0
5 6∈ Z(5) because the protofraction 0

5 is not in lowest terms.
Clearly, j 6= j′ ⇒ Z(j) ∩ Z(j′) = ∅, every set Z(j) is finite (and nonempty)
and

⋃
j∈N Z(j) = Zz. We define the map f : N→ Zz by

f(1) ≡ z1, 1, f(2) ≡ z2, 1, . . . , f(k1) ≡ zk1, 1, f(k1 + 1) ≡ z1, 2, . . .

— the values of f first run through the k1 ordered protofractions in Z(1), then
through k2 ordered protofractions in Z(2), and so on. For j ∈ N the general
value equals

f(k1 + k2 + · · ·+ kj−1 + i) = zi, j , i ∈ [kj ] .

For j = 1 the argument of f is defined as i. We see that f is a bijection. 2

Exercise 1.7.6 The set Z of integers is countable.

• Cantor’s theorem. We deduce the uncountability of R from the next basic
set-theoretic result due to G. Cantor: for no set there is an onto map from the
set to its power set.
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Theorem 1.7.7 (Cantor’s on P(X)) For no set X there is a surjective map
f : X → P(X).

Proof. Let X be a set and f : X → P(X) be any map. Let Y ≡ {x ∈ X :
x 6∈ f(x)}. Then Y ⊂ X but we show that Y 6∈ f [X]. Suppose that for some
y ∈ X we have f(y) = Y . This at once gives a contradiction: if y ∈ Y then
y 6∈ f(y) = Y , and if y 6∈ Y = f(y) then y ∈ Y . Hence f is not onto. 2

Exercise 1.7.8 Determine Y when X = ∅.

Exercise 1.7.9 Prove the following proposition.

Proposition 1.7.10 (injective Cantor’s theorem) For no set X there is an
injective map f : P(X)→ X.

Let {0, 1}N be the set of sequences (an) ⊂ {0, 1}. We show that it is un-
countable.

Corollary 1.7.11 (on {0, 1}N) There is no onto map f : N→ {0, 1}N.

Proof. The map g : {0, 1}N → P(N) given by g((an)) ≡ {n ∈ N : an = 1}
is clearly a bijection. If the stated onto map f existed, the composition g ◦ f
would go from N onto P(N), in contradiction with Theorem 1.7.7. 2

Exercise 1.7.12 Show that g is a bijection.

• Decimal expansions. In practice we write real numbers as “infinite” decimal
expansions.

Definition 1.7.13 (decimal expansion) A decimal expansion ρ is any se-
quence

ρ = an an−1 . . . a0 . a−1 a−2 . . .

such that n ∈ N, an ∈ {+,−}, for every m ≤ n− 1 the digit am ∈ {0, 1, . . . , 9}
and if an−1 = 0 then n = 1.

For example, in the decimal expansion π = 3.1415 . . . we have n = 1, a1 = +,
a0 = 3, a−1 = 1, a−2 = 4 and so on; the + sign is by convention omitted. We
denote the set of decimal expansions by R.

There is a map F : R→ R such that F (ρ) is the real number[(
εan−110n−1, ε(an−110n−1 + an−210n−2),

ε(an−110n−1 + an−210n−2 + an−310n−3), . . .
)]
∼ (∈ R)

where for an = + (respectively −) we set ε ≡ 1 (respectively −1). We say
that ρ is a mostly-nine expansion if there is an m such that am = am−1 =
am−2 = · · · = 9 and either m = n − 1, or m < n − 1 and am+1 < 9. Its
successor expansion arises by changing the 9s in am, am−1, . . . to 0s and then if
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m < n − 1 by increasing the digit am+1 by 1, and if m = n − 1 by increasing
n by 1 and adding the new digit an−1 ≡ 1. The sign and other digits are not
changed.

Definition 1.7.14 (associated expansions) Two decimal expansions ρ 6= ρ′

are associated if {ρ, ρ′} = {+0.000 . . . ,−0.000 . . . } or ρ and ρ′ are a mostly-nine
expansion and its successor.

Exercise 1.7.15 The set of pairs of associated expansions is countable.

For instance,

{−23.56999 . . . , −23.57000 . . . } and {+999.999 . . . , +1000.000 . . . }

are two pairs of associated expansions. Another example is the well known
“paradoxical” (see [1]) pair of associated expansions

{κ, κ′} = {+0.999 . . . , +1.000 . . . } .

By the next theorem simply F (κ) = F (κ′) = 1R, although κ 6= κ′.

Theorem 1.7.16 (R and R) The map F : R → R is onto and for every two
decimal expansions ρ and ρ′ it holds that F (ρ) = F (ρ′) iff ρ = ρ′ or {ρ, ρ′} is
a pair of associated expansions.

We prove this theorem in MA 1+.

• R is uncountable. In the culmination and conclusion of Chapter 1 we prove
that the set of real numbers is uncountable.

Corollary 1.7.17 (price for completeness) There is no map from N onto
R. Thus the set of real numbers is uncountable.

Proof. Using the previous theorem we represent real numbers by decimal
expansions. We consider the set of expansions

X ≡ {+ 0 . a−1 a−2 . . . a−m · · · : a−m ∈ {0, 1}, m ∈ N} .

By the previous theorem the restriction F |X is injective. For y ∈ Y = F [X]
(⊂ R) we denote by F−1(y) the unique x ∈ X such that F (x) = y. Then
F−1 : Y → X is a bijection.

We assume for the contrary that f : N→ R is surjective. Then we have also
an onto map f0 : N→ Y . It is clear that we have also a bijection g : X → {0, 1}N.
Thus we have also the onto map

h = g(F−1(f0)) : N→ {0, 1}N ,

which contradicts Corollary 1.7.11. 2
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Exercise 1.7.18 Why is there a map onto f0? Why is there the bijection g?
Why is the map h surjective?

We show another method to prove the uncountability of R, also due to
G. Cantor. We know that it suffices to show that there is no map from N onto
{0, 1}N.

Theorem 1.7.19 (Cantor’s diagonalization) Let F : N → {0, 1}N be any
map. Then the sequence f : N→ {0, 1}, given by

f(n) ≡ 1− (F (n))(n) ,

is not in F [N] and therefore F is not surjective.

Proof. The map f is not in the image of F because f 6= F (n) for every n. And
this holds because for every n we have f(n) 6= (F (n))(n). 2

The interesting article [28] considers the uncountability of R from the perspec-
tive of the so-called reverse mathematics ([34]).
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Chapter 2

Existence of limits of
sequences

In Section 2.1 of this chapter, which is based on the lecture

https://kam.mff.cuni.cz/~klazar/MAI24_pred2.pdf

presented on February 29, 2024, we introduce arithmetic of infinities. We work
in the extended reals

REX ≡ 〈R∗, 0R, 1R, +, ·, <, /, ±(·)〉 where R∗ ≡ R ∪ {−∞, +∞} .

In Proposition 2.1.6 we show that in the LO (R∗, <) every set has infimum
and supremum. Theorems 2.1.8 and 2.1.9 describe arithmetic in REX. Then
we define neighborhoods of points and infinities. Definition 2.1.15 introduces
both finite and infinite limits of real sequences. Definition 2.1.18 introduces
robustness of properties of real sequences.

Section 2.2 deals mainly with subsequences. In Theorem 2.2.5 we show that
every real sequence has a subsequence that has a limit. In this theorem we
also characterize by limits of subsequences the sequences that (i) have no limit
or that (ii) have no limit or the limit differs from the given A (∈ R∗). In
Proposition 2.2.10 we show that limn1/n = 1. The proof uses the binomial
theorem which is reminded in Exercise 2.2.9.

Section 2.3 presents five existential theorems on limits of real sequences. By
Theorem 2.3.3 every monotone sequences has a limit. Theorem 2.3.9 gener-
alizes it to quasi-monotone sequences. Corollaries 2.3.4 and 2.3.10 are robust
versions of these theorems. The Bolzano–Weierstrass Theorem 2.3.15 says that
every bounded sequence has a convergent subsequence. By Theorem 2.3.20
convergent real sequences coincide with the Cauchy sequences. Fekete’s lemma
(Theorem 2.3.25) shows that subadditivity or superadditivity of a sequence (an)
suffices for the existence of the limit lim an

n .
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2.1 Infinities, neighborhoods, limits

• Notation. Recall the logical and set-theoretic notation of Section 1.2. Recall
the meaning of the symbols R, N and N0. We use letters i, j, k, l, m, m0, m1,
. . . and n, n0, n1, . . . , possibly with primes, to denote natural numbers. By a,
b, c, d, e, δ, ε and θ, possibly with indices and primes, we denote real numbers.
The numbers δ, ε and θ are always positive. We refer to the elements of R as
(real) numbers or points (on the real axis). A sequence (an) ⊂ R is a function
a : N→ R. Sets of real numbers are denoted by M and N .

Exercise 2.1.1 Negate in words the proposition

∀ ε ∃ δ ∀ a, b ∈M
(
|a− b| < δ ⇒ |f(a)− f(b)| < ε

)
.

Exercise 2.1.2 (triangle inequality) For every real numbers a1, a2, . . . , an
it holds that

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an| .

We speak briefly of ∆-inequality. In Theorem 4.1.19 we give an infinite version.

• Computing with infinities. We add to R two new different elements, the
infinities +∞ and −∞. We get the extended reals

R∗ ≡ R ∪ {+∞, −∞} .

The elements in R∗ are denoted by A, B, K and L. For the next definition we
assume that the arithmetic in the ordered field ROF is known. In an expression
containing k infinities ±∞ or ∓∞ (or some k symbols with signs), the selection
of equal signs means the selection of all upper, or all lower, signs. The selection

of independent signs means the selection of all 2k combinations of signs.

Definition 2.1.3 (operations in REX) We define the structure

REX ≡ 〈R∗, 0R, 1R, +, ·, <, /, ±(·)〉 .

The first three items R∗, 0R and 1R are clear.
1. For A,B ∈ R the sum A + B is as in ROF. For A = ±∞ and B ∈ R we
set A+B ≡ A, and similarly if A and B are exchanged. If A = B = ±∞ then
A+B ≡ A. The two sums (±∞) + (∓∞) (equal signs) are not defined and are
labeled as indefinite expressions.
2. For A,B ∈ R the product A · B = AB is as in ROF. If A,B 6= 0 and
at least one of them is an infinity then AB is infinity with the corresponding
sign (explained below). The four products 0 · (±∞) and (±∞) · 0 are indefinite
expressions.
3. For A,B ∈ R the comparison A < B is as in ROF. We add the comparisons
−∞ < a, a < +∞ and −∞ < +∞, for any a ∈ R.
4. The division operation / is extended from ROF by a

±∞ ≡ 0 (for any a ∈ R)

and for any a ∈ R \ {0} by setting ±∞a to infinity with the corresponding sign.
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The four ratios ±∞±∞ (independent signs) are indefinite expressions. So are the

ratios A
0 (for any A ∈ R∗).

5. Finally, we extend from ROF the change of sign operation by −(±∞) ≡ ∓∞
(equal signs).

Neither additive nor multiplicative inverses of infinities are defined, although
−(±∞) = ∓∞ and 1

±∞ = 0. The corresponding sign is given by the rule that
the product, or the ratio, of two equal (respectively different) signs is the sign
+ (respectively −). In contrast with ROF the operations in REX are partial, are
not always defined. They are undefined exactly on the indefinite expressions
which we now repeat, they are

±∞+ (∓∞), 0 · (±∞), (±∞) · 0, ±∞±∞ and A
0

where in the first expression signs are equal, in the fourth one are independent
and A ∈ R∗. In ROF division and sign change can be expressed by other
operations and inverses, a/b = a · b−1 and −a is the additive inverse to a, but
in REX this is not possible. More generally, the subtraction in ROF can be
expressed as a− b ≡ a+ (−b). In REX we define it in the same way.

Exercise 2.1.4 Compute: −∞−2 , (−∞)− (+∞), −∞+ 10 and +∞
0 .

Exercise 2.1.5 Show that (R∗, <) is a LO.

• Properties of the arithmetic in REX. We describe them in the next proposition
and two theorems.

Proposition 2.1.6 (inf and sup in REX) In the LO (R∗, <) every set X ⊂
R∗ has infimum and supremum.

Proof. We prove the existence of supremum, for infimum we would argue simi-
larly. Recall that H(X) (⊂ R∗) denotes the set of upper bounds of X. We have
sup(∅) = min(H(∅)) = min(R∗) = −∞ and sup({−∞}) = min(H({−∞})) =
min(R∗) = −∞. If +∞ ∈ X then sup(X) = min(H(X)) = min({+∞}) = +∞.

We resolve the remaining case when X 6= ∅, {−∞} and +∞ 6∈ X. Let
X ′ ≡ X \ {−∞}. Then X ′ 6= ∅ and X ′ ⊂ R. If X ′ is not bounded from above
in (R, <) then sup(X) = min(H(X)) = min({+∞}) = +∞. Finally, if X ′ is
bounded from above in (R, <) then the supremum sup(R∗, <)(X) = sup(R, <)(X

′)
(∈ R) exists by Theorem 1.6.14. 2

Exercise 2.1.7 Find all sets X ⊂ R∗ such that sup(X) = −∞.

Theorem 2.1.8 (OF axioms in REX) With the exception of existence of ad-
ditive and multiplicative inverses and the axiom of shift, the structure REX sat-
isfies all other axioms of ordered fields as long as involved arithmetic expressions
are defined.
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Proof. As for the violated axioms, infinities do not have inverses and no
inequality a < b is preserved by adding an infinity to it.

Other OF axioms are not violated. Since 0 + (±∞) = (±∞) + 0 = ±∞ and
1 · (±∞) = (±∞) · 1 = ±∞ (equal signs), the elements 0 and 1 remain neutral.
Addition and multiplication are introduced in Definition 2.1.3 in a commutative
way and remain commutative.

Let A,B,K ∈ R∗. We may assume that at least one of them is infinity. We
prove associativity and check the equalities

(A+B) +K
(1)
= A+ (B +K) and (A ·B) ·K (2)

= A · (B ·K) .

(1) If two of A, B and K are infinities with different signs then neither side is
defined. Else (1) equates the same infinity. (2) If one of A, B and K is zero
then neither side is defined. Else (2) equates the same infinity with the sign
equal to the product of the signs of A, B and K.

We prove the distributive law and check the equality

A · (B +K)
(3)
= (A ·B) + (A ·K) .

Suppose that A = ±∞. We may assume that B,K 6= 0 and have the same sign
s (else the right side is not defined). Then (3) equates the same infinity with the
sign equal to the product of the sign of A and the sign s. Suppose that A ∈ R.
We may assume that A 6= 0 and that B + K is not the indefinite expression
±∞+ (∓∞). It follows that then (3) equates the same infinity.

The order. We know from Exercise 2.1.5 that (R∗, <) is a LO. It is easy to
see that the axiom of positivity holds. 2

Theorem 2.1.9 (division in REX) For every A,B,K,L ∈ R∗ it holds that

A

K
+
B

K

(1)
=
A+B

K
and

A

K
· B
L

(2)
=

A ·B
K · L

if the involved arithmetic expressions are defined.

Proof. Let A,B,K,L ∈ R∗. We again assume that one of them is infinity.
We begin with (1). If K = ±∞ then the left side is not defined or (1) holds as
0 + 0 = 0. Let K ∈ R \ {0}. We may assume that A + B is not ±∞ + (∓∞)
and see that (1) equates the same infinity.

We turn to (2). We may assume that K,L 6= 0. If A or B is infinity then we
may assume that A,B 6= 0 and K,L ∈ R. Then (2) equates the same infinity.
Let A,B ∈ R. Then (2) holds as 0 = 0. 2

By [7, p. 214 of volume 1] and [10, p. 19] the symbol∞ for infinity was introduced
in 1655 by the English mathematician John Wallis (1616–1703).

• Neighborhoods of points and infinities. Recall notation for real intervals:

(a, b] = {x ∈ R : a < x ≤ b}, (−∞, a) = {x ∈ R : x < a}
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etc. Unfortunately, one can still encounter notation for intervals using reverse
square brackets. In it the previous intervals would be written as ]a, b] and
(−∞, a[. Sometimes brackets 〈 and 〉 are used.

Definition 2.1.10 (neighborhoods of points and infinities) For b ∈ R we
define the ε-neighborhood of the point b as U(b, ε) ≡ (b − ε, b + ε). We define
ε-neighborhoods of infinities as

U(−∞, ε) ≡ (−∞, −1/ε) and U(+∞, ε) ≡ (1/ε, +∞) .

Four exercises give basic properties of neighborhoods.

Exercise 2.1.11 If c ∈ U(A, ε) and c < b < A + ε or A− ε < b < c then also
b ∈ U(A, ε).

For M,N ⊂ R notation M < N means that always x ∈M , y ∈ N ⇒ x < y.

Exercise 2.1.12 If A < B then there is an ε such that U(A, ε) < U(B, ε), in
particular U(A, ε) ∩ U(B, ε) = ∅.

Exercise 2.1.13 Always ε ≤ δ ⇒ U(A, ε) ⊂ U(A, δ).

Exercise 2.1.14 Always
⋂∞
k=1 U(b, 1/k) = {b} and

⋂∞
k=1 U(±∞, 1/k) = ∅.

• Limits of sequences. By (an), (bn) and (cn) we denote sequences of real
numbers. We call them real sequences or just sequences. The next definition is
fundamental.

Definition 2.1.15 (limit of a sequence) Let (an) ⊂ R and L ∈ R∗. If for
every ε > 0 there is an n0 such that n ≥ n0 ⇒ an ∈ U(L, ε), we write that
lim an = L or limn→∞ an = L or an → L, and say that the sequence (an) has
the limit L.

If L ∈ R, we say that (an) has a finite limit or that it converges. If L = ±∞
then (an) has an infinite limit. A sequence diverges if it has no limit or an
infinite limit. Finite limit lim an = a means that for every real (and no mater
how small) number ε > 0 there is an index n0 ∈ N such that for every index
n ≥ n0 the distance between an and a is smaller than ε, i.e. |an − a| < ε. The
infinite limit lim an = −∞ means that for every (and no mater how negative)
number c there is an index n0 such that for every index n ≥ n0 it holds that
an ≤ c. The opposite inequality gives the limit +∞. The eventually constant
sequence (an) with an = a for every n ≥ n0 is a convergent sequence. It has the
limit lim an = a. From now on we write, following the remark in Section 1.6,
the non-strict |an − a| ≤ ε instead of |an − a| < ε.

Exercise 2.1.16 Explain why the condition ∀ε . . . |an − a| ≤ ε . . . is equivalent
to the condition ∀ε . . . |an − a| < ε . . . .

32



Proposition 2.1.17 (uniqueness of limits) Limits of sequences are unique,
if lim an = K and lim an = L then K = L.

Proof. Let (an), K and L be as stated, and ε be arbitrary. By Definition 2.1.15
there is an n0 such that n ≥ n0 ⇒ an ∈ U(K, ε) and an ∈ U(L, ε). Thus for
every ε we have that U(K, ε) ∩ U(L, ε) 6= ∅. By Exercise 2.1.12, K = L. 2

• Robust properties of sequences. Let RN be the set of real sequences. Any set
V ⊂ RN is called a property of real sequences.

Definition 2.1.18 (robust property) We say that a property V ⊂ RN is
robust if for any sequences (an) and (bn) such that an 6= bn for only finitely
many indices n, the equivalence

(an) ∈ V ⇐⇒ (bn) ∈ V

holds.

Exercise 2.1.19 Which of the properties V1, . . . , V4 of sequences (an) are ro-
bust? V1 : (an) converges, V2 : (an) diverges, V3 : lim an = −∞ and V4 :
a1 = 0.

Interestingly, the notion of robustness is itself robust, as the next exercise shows.

Exercise 2.1.20 Prove the following.
1. If V ⊂ RN is robust, then so is RN \ V .
2. If X ⊂ P(RN) is such that every Y ∈ X is robust, then so is

⋃
X.

3. If X ⊂ P(RN), X 6= ∅, is such that every Y ∈ X is robust, then so is
⋂
X.

• Two limits. We show that lim 1
n = 0. Which is clear, for a given ε and every

n ≥ n0 ≡ d1/εe we have that

0 <
1

n
≤ 1

d1/εe︸ ︷︷ ︸
≥ 1/ε

≤ 1

1/ε
= ε; |1/n− 0| ≤ ε .

Here dae ∈ Z denotes the upper integer part of a real number a, it is the smallest
number v ∈ Z such that v ≥ a. Similarly the lower integer part bac of a is the
largest v ∈ Z such that v ≤ a.

In the second example we compute that

3
√
n−
√
n→ −∞ .

Let a c < 0 be given. Then for every n ≥ n0 ≥ max({4c2, 26}) it holds that

nontrivial︷ ︸︸ ︷
3
√
n−
√
n =

trivial︷ ︸︸ ︷
n1/2 · (n−1/6 − 1)︸ ︷︷ ︸

· · · ≤ −1/2

≤ −n1/2︸ ︷︷ ︸
· · · ≤ −2|c|

/ 2 ≤ −2|c|/2 = c .
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The first upper bracket says that in this form the limit is non-trivial, it looks like
the indefinite expression +∞− (+∞). Using a simple algebraic transformation
we get the trivial form (+∞) · (0 − 1) = −∞. Lower brackets show the upper
bound for the enclosed expression when n ≥ n0.

One does not need to find the optimum value of the index n0 as a function
of ε or c. This is possible only in the simplest cases like lim 1

n . Usually we are
content with any explicit value n0 such that for n ≥ n0 the inequality in the
definition of limit holds.

Exercise 2.1.21 Find the limit limn→∞
3
√
n−
√
n

4
√
n

.

2.2 Subsequences and lim n
√
n

• Subsequences of sequences. We obtain a subsequence of a sequence by omitting
several terms from it so that still an infinite sequence remains. The formal
definition is below. In Definition 2.2.6 we introduce so called weak subsequences.

Definition 2.2.1 (subsequence) We say that (bn) is a subsequence of (an) if
for some (mn) ⊂ N such that m1 < m2 < . . . it holds for every n that bn = amn

.
We denote this relation of (bn) and (an) by (bn) � (an).

If there is an m such that (bn) = (am, am+1, . . . ), we call the subsequence (bn)
the tail of (an).

Exercise 2.2.2 The relation � on RN is reflexive and transitive.

Exercise 2.2.3 Find sequences (an) 6= (bn) such that (an) � (bn) and (bn) �
(an).

Proposition 2.2.4 (� preserves limits) Let (bn) � (an) and lim an = L.
Then lim bn = L.

Proof. This follows from Definitions 2.1.15 and 2.2.1, the sequence (mn) in the
latter definition satisfies for every n that mn ≥ n. 2

We prove the first part of the next theorem later.

Theorem 2.2.5 (on subsequences) Let (an) ⊂ R. The following hold.

1. There exists a sequence (bn) such that (bn) � (an) and lim bn exists.

2. The limit lim an does not exist ⇐⇒ (an) has two subsequences with
different limits.

3. It is not true that lim an = A ⇐⇒ (an) has a subsequence whose limit
differs from A.
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Proof. 1. We prove it later.
2. The implication ¬ ⇒ ¬ follows from the last proposition. We prove the

implication ⇒. Suppose that (an) does not have a limit. By part 1 there is
a (bn) � (an) with lim bn = B. Since B is not a limit of (an), there exists an
ε and a sequence (cn) � (an) such that for every n it holds that cn 6∈ U(B, ε).
By part 1 there is a (dn) � (cn) such that lim dn = K. Then (dn) � (an) and
K 6= B. Hence (bn) and (dn) are the required subsequences.

3. The implication ¬ ⇒ ¬ again follows from the last proposition. We
prove implication ⇒. Suppose that ¬(lim an = A). Hence there is an ε and
a (bn) � (an) such that for every n one has that bn 6∈ U(A, ε). By part 1 there
is a (cn) � (bn) such that lim cn = B. Then (cn) � (an) and B 6= A. Hence
(cn) is the required subsequence. 2

Thus it is always possible to prove that the given sequence does not have a limit
by presenting two subsequences of it with different limits. For example,

(an) = ((−1)n) = (−1, 1, −1, 1, −1, . . . )

does not have a limit because (1, 1, . . . ) � (an) and (−1,−1, . . . ) � (an) and
these constant subsequences have different limits 1 and −1.

Definition 2.2.6 (weak subsequence) Let (an) ⊂ R. We say that (bn) is
a weak subsequence of (an) if there is an (mn) ⊂ N such that limmn = +∞ and
it holds for every n that bn = amn . Then we write (bn) �∗ (an).

Exercise 2.2.7 Generalize Proposition 2.2.4: if (bn) �∗ (an) and lim an = L
then also lim bn = L.

Exercise 2.2.8 If (bn) �∗ (an) then there is a (cn) such that (cn) � (bn) and
(cn) � (an).

• The limit of n-th root of n. A limit is nontrivial if it involves limit of an
indefinite (arithmetic nor power) expression. Else it is trivial. For example,
the limits lim(2n + 3n) and lim 4

5n−3 are trivial, but lim(2n − 3n) and lim 4n+7
5n−3

are nontrivial. Nontrivial limits can be often computed by transforming them
algebraically to trivial limits, like in the above lim( 3

√
n −
√
n). The next limit

of n1/n is nontrivial because n → +∞, 1
n → 0 and (+∞)0 is an indefinite

power expression (we describe these precisely later). As we see in a minute,
the exponent prevails and n1/n → 1. We revisit limits of arithmetic-power
expressions in MA 1+. We remind the well known binomial theorem.

Exercise 2.2.9 (binomial theorem) For every a, b ∈ R and n ∈ N0,

(a+ b)n =
∑n
j=0

(
n
j

)
ajbn−j .

Here for j ∈ N we have
(
n
j

)
≡ n(n−1)...(n−j+1)

j! and
(
n
0

)
≡ 1.
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Proposition 2.2.10 (n1/n → 1) It is true that

lim
n→∞

n1/n = lim
n→∞

n
√
n = 1 .

Proof. Always n1/n ≥ 1. If n1/n 6→ 1, there would be a c > 0 and a se-
quence (ni) ⊂ N such that 2 ≤ n1 < n2 < . . . and for every i it holds that

n
1/ni

i ≥ 1 + c (Exercise 2.2.11). Raising this inequality to the power ni and
using Exercise 2.2.9 we get for every index i that

ni ≥ (1 + c)ni =
∑ni

j=0

(
ni

j

)
cj = 1 +

(
ni

1

)
c+

(
ni

2

)
c2 + · · ·+

(
ni

ni

)
cni

≥
(
ni

2

)
c2 = ni(ni−1)

2 · c2 .

Then for every i we have

ni ≥ ni(ni−1)
2 · c2 ; 1 + 2/c2 ≥ ni .

This is impossible, the sequence n1 < n2 < . . . is not bounded from above. 2

Exercise 2.2.11 Explain why there is the sequence (ni) with the stated prop-
erty.

2.3 Five theorems

We present and prove five theorems on existence of limits of real sequences,
namely Theorem 2.3.3, 2.3.9, 2.3.15, 2.3.20 and 2.3.25.

• Monotonicity and boundedness. We say that a sequence (an) weakly increases
(respectively weakly decreases) if for every n it holds that an ≤ an+1 (respec-
tively an ≥ an+1). It increases (respectively decreases) if for every n it holds
that an < an+1 (respectively an > an+1). It is monotone if it weakly decreases
or weakly increases. It is strictly monotone if it decreases or increases.

We say that (an) is bounded from above if there is a c such that for every n
it holds that an ≤ c. Reverting the inequality we get boundedness from below.
A sequence (an) is bounded if it is bounded both from above and from below.

Exercise 2.3.1 A sequence (an) is bounded iff there is a c such that for every
n it holds that |an| ≤ c.

Exercise 2.3.2 Which of these nine properties of sequences are robust?

• Limits of monotone sequences. One can often prove that a sequence has limit
by means of the following theorem and corollary.

Theorem 2.3.3 (limits of MS) Suppose that (an) ⊂ R weakly increases, re-
spectively weakly decreases. Then

lim an = sup({an : n ∈ N}), respectively lim an = inf({an : n ∈ N}) .

The supremum and infimum are taken in the linear order (R∗, <).
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Proof. We assume that (an) weakly decreases (the other case is similar) and
denote the stated infimum by A (∈ R∗). Let an ε be given. We take a c > A
with c ∈ U(A, ε). By the definition of infimum there is an m such that am < c.
Then for every n ≥ m we have A ≤ an ≤ am < c. By Exercise 2.1.11 also
an ∈ U(A, ε). Hence lim an = A. 2

A drawback of the theorem is that monotonicity is not a robust property of
sequences. We fix it in the corollary.

Corollary 2.3.4 (robust generalization) Suppose that (an) ⊂ R has a tail
(am, am+1, . . . ) that weakly increases, respectively weakly decreases. Then

lim an = sup({an : n ≥ m}), respectively lim an = inf({an : n ≥ m}) .

The supremum and infimum are again taken in the linear order (R∗, <).

Proof. Let (an) and m be as stated. It is clear that the limit of the tail
(am, am+1, . . . ) equals to the limit of the whole sequence. 2

Exercise 2.3.5 The assumption in the corollary is a robust property of se-
quences.

• Limits of quasi-monotone sequences. We generalize monotone sequences. A se-
quence (an) ⊂ R goes up (respectively goes down) if for every index n the set
of indices m such that am < an (respectively am > an) is finite. We say that
(an) is quasi-monotone if it goes up or down.

Exercise 2.3.6 Every monotone sequence is quasi-monotone.

Exercise 2.3.7 Find a quasi-monotone sequence (an) such that for no m the
tail (am, am+1, . . . ) is monotone.

Exercise 2.3.8 Express quasi-monotonicity only by quantifiers, logical connec-
tives, brackets, variables and inequalities between natural and real numbers.

In the next theorem we use the quantities lim sup and lim inf of a sequence.
They are always defined and have values in R∗. We introduce them in the next
lecture.

Theorem 2.3.9 (limits of QMS). If (an) goes up, respectively down, then
lim an = lim sup an, respectively lim an = lim inf an.

Proof. Suppose that (an) goes up (the other case is similar), A ≡ lim sup an
and that an ε is given. Then (an) has a subsequence (amn) with lim amn = A
and for every n ≥ n0 we have that an < A + ε. We take an n′ such that
amn′ ∈ U(A, ε). Since (an) goes up, we can take an n1 ≥ n0 such that for every
n ≥ n1,

amn′ ≤ an < A+ ε .
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By Exercise 2.1.11 it holds that an ∈ U(A, ε). Hence lim an = A. 2

Here is the robust strengthening.

Corollary 2.3.10 (robust generalization) Suppose that (an) ⊂ R has a tail
(am, am+1, . . . ) that goes up, respectively down. Then

lim an = lim sup an, respectively lim an = lim inf an .

Proof. Clearly, the limit of the tail (am, am+1, . . . ) equals lim an and the same
holds for the limsup and liminf. 2

Exercise 2.3.11 The assumption in the corollary defines a robust property of
sequences.

Now we see that also in Theorem 2.3.3 and Corollary 2.3.4 supremum and
infimum can be replaced with limsup and liminf. Quasi-monotone sequences
were introduced by the British mathematician Godfrey H. Hardy (1877–1947).
We revisit them in MA 1+.

• The Bolzano–Weierstrass theorem. We begin with an auxiliary proposition
which is of interest by itself.

Proposition 2.3.12 (existence of MSS) Every real sequence has a mono-
tone subsequence.

Proof. For any (an) we set

M ≡ {n : ∀m
(
n ≤ m⇒ an ≥ am

)
} .

If M = {m1 < m2 < . . . } is infinite, we have the weakly decreasing subsequence
(amn). If M is finite, we take a number m1 > max(M) (if M = ∅ then m1 is
arbitrary). Then m1 6∈M and there is a number m2 > m1 such that am1

< am2
.

Since m2 6∈ M , there is an m3 > m2 such that am2
< am3

. And so on, we get
the increasing subsequence (amn

). 2

Exercise 2.3.13 Generalize this to any LO.

From Theorem 2.3.3 and from the previous proposition we get two corollaries.
The first one is part 1 of Theorem 2.2.5. The second one is the Bolzano–
Weierstrass theorem.

Corollary 2.3.14 (part 1 of Theorem 2.2.5) Every real sequence has a sub-
sequence with limit.

Proof. Let (an) ⊂ R. By the previous proposition there is a monotone (bn) �
(an). By Theorem 2.3.3 the sequence (bn) has a limit. 2
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Theorem 2.3.15 (Bolzano–Weierstrass) Every bounded real sequence has
a convergent subsequence.

Proof. Let (an) be bounded and (bn) � (an) be a monotone subsequence
guaranteed by Proposition 2.3.12. Then (bn) is bounded and by Theorem 2.3.3
it has a finite limit. 2

Exercise 2.3.16 Let a ≤ b be real numbers. Then every sequence (an) ⊂ [a, b]
has a subsequence (amn) such that lim amn ∈ [a, b].

Karl Weierstrass (1815–1897) was a German mathematician.

• Cauchy sequences. We met rational Cauchy sequences in the definition of R.
Real Cauchy sequences are defined in the same way.

Definition 2.3.17 (real Cauchy sequence) A sequence (an) ⊂ R is Cauchy
if for every ε there is an n0 such that m,n ≥ n0 ⇒ |am − an| ≤ ε.

Exercise 2.3.18 Cauchy sequences form a robust property of sequences.

Exercise 2.3.19 Every Cauchy sequence is bounded.

Theorem 2.3.20 (on Cauchy sequences) A real sequence converges iff it is
Cauchy.

Proof. Implication ⇒. Let lim an = a and an ε be given. Then for every large
n one has that |an−a| ≤ ε

2 . Using Exercise 2.1.2 we have for every large m and
n that

|am − an| ≤ |am − a|+ |a− an| ≤ ε
2 + ε

2 = ε .

Hence (an) is Cauchy.
Implication⇐. Let (an) be Cauchy. By Exercise 2.3.19 (an) is bounded. By

the Bolzano–Weierstrass theorem it has a convergent subsequence (amn) with
the limit a. Thus for a given ε we have for every large m and n that |amn

−a| ≤ ε
2

and |am − an| ≤ ε
2 . Always mn ≥ n, so that again we have by the ∆-inequality

that for every large n,

|an − a| ≤ |an − amn
|+ |amn

− a| ≤ ε
2 + ε

2 = ε .

Hence lim an = a. 2

Interestingly, A.-L. Cauchy was living for several years in political exile in
Prague.

Exercise 2.3.21 Show that there is a Cauchy sequence (an) ⊂ Q such that
lim an 6∈ Q.

Thus the previous theorem does not hold in QOF. This is not surprising, we
know that this ordered field is not complete
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Exercise 2.3.22 Where the completeness of R was used in the previous proof?

• Fekete’s lemma. We state this lemma as a theorem. It is due to the Hungarian-
Israeli mathematician Michael Fekete (1886–1957).

Exercise 2.3.23 “fekete” means . . . ?

Exercise 2.3.24 Solve the previous exercise by means available in 1984.

A sequence (an) is superadditive, respectively subadditive if for every two
indices m and n it holds that am+n ≥ am + an, respectively am+n ≤ am + an.

Theorem 2.3.25 (Fekete’s lemma) Let (an) ⊂ R and let M ≡ {ann : n ∈
N}. If (an) is superadditive, respectively subadditive, then lim an

n = sup(M),
respectively lim an

n = inf(M). The supremum and infimum are taken in the LO
(R∗, <).

Proof. Suppose that (an) is superadditive (for subadditive sequence we ar-
gue similarly) and that an ε is given. We take a c < sup(M) such that
c ∈ U(sup(M), ε). Then there is an m such that am

m > c. Let n ≥ m. We
express n as n = km+ l, where k ∈ N, l ∈ N0 and 0 ≤ l < m (so we divide n by
m with remainder). From the superadditivity of (an) it follows that

an
n ≥

kam
km+l + al

n = am/m
1+l/km + al

n .

For n → ∞ also k → ∞, thus 1 + l
km → 1, al

n → 0 and for every δ it holds
for large n that an

n ≥
am
m − δ. Thus there is an n0 ≥ m such that for every

n ≥ n0 we have that c < an
n ≤ sup(M). Using Exercise 2.1.11 we get that

an
n ∈ U(sup(M), ε). Hence an

n → sup(M). 2

Four exercises show applications of Theorem 2.3.25 in extremal combina-
torics.

Exercise 2.3.26 (abba-free words) Let f(n) = l be the maximum length of
a word u = a1a2 . . . al over [n] such that (i) for every i ∈ [l − 1] one has that
ai 6= ai+1 and (ii) u does not contain the pattern abba, which means that there
are no four indices 1 ≤ k1 < k2 < k3 < k4 ≤ l such that ak1 = ak4 6= ak2 = ak3 .

Show with the help of Fekete’s lemma that the limit L ≡ lim f(n)
n exists

It is not too hard to show that f(n) = 3n− 2, so that L = 3.

Exercise 2.3.27 (abab-free words) The same problem for abab-free words.

Here similarly f(n) = 2n− 1, so that L = 2.

Exercise 2.3.28 (aabb-free words) The same problem for aabb-free words.
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An arithmetic progression X (⊂ Z) of length k ∈ N is any set

X = {a+ jd : j ∈ [k]}, a ∈ Z & d ∈ N .

Exercise 2.3.29 (function rk(n)) For k, n ∈ N let rk(n) be the maximum
size of a set A ⊂ [n] containing no arithmetic progression of length k. Show by

Fekete’s lemma that for every k the finite limit Lk ≡ limn→∞
rk(n)
n (∈ [0, 1])

exists.

Clearly, L1 = L2 = 0. For k ≥ 3 the next famous theorem holds.

Theorem 2.3.30 (E. Szemerédi, 1975) Also for every k ≥ 3 it holds that
Lk = 0.

The proof is quite complicated, see [38] or [40]. Endre Szemerédi (1940) is
a Hungarian mathematician.
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Chapter 3

Arithmetic of limits. AK
series

This chapter, based on the lecture

https://kam.mff.cuni.cz/~klazar/MAI24_pred3.pdf

of March 7, 2024, starts with Section 3.1 on relations between limits of se-
quences and arithmetic operations. The main result is Theorem 3.1.2 on limits
of sums, products and ratios. In two supplements, Propositions 3.1.4 and 3.1.6,
we consider situations not covered in the theorem, and explain indefiniteness of
indefinite expressions; proofs are moved to exercises.

In Section 3.2 we give in Proposition 3.2.2 an example of a computation of
the limit of a recurrent sequence. In Proposition 3.2.4 we determine the limits
lim qn. Section 3.3 is devoted to relations between limits of sequences and the
order of real numbers. Our Theorem 3.3.1 on this relation is stronger than
the standard one. Likewise the squeeze Theorem 3.3.10. Section 3.4 introduces
lim inf and lim sup of a real sequence. Theorem 3.4.4 shows that these quantities
are always defined and Theorem 3.4.6 gives their basic properties.

In the final Section 3.5 infinite series come on the stage. We introduce them
in a novel way, as AK series that properly generalize finite sums. We wrote
about AK series in Some highlights. We return to infinite series in the next
lecture and in MA 1+.

3.1 Arithmetic of limits of sequence

• Arithmetic of limits of sequences. Recall that (an), (bn) and (cn) denote real
sequences, that always ε, δ, θ > 0 and that R∗ are extended reals, with elements
denoted by A, B, K and L. Recall the computing with infinities in Defini-
tion 2.1.3. The next theorem is the main tool for computing limits. But first
an exercise.
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Exercise 3.1.1 (variants of the ∆-inequality) For every a, b ∈ R it holds
that

|a+ b| ≥ |a| − |b| and |a− b| ≥ |a| − |b| .

Theorem 3.1.2 (AL of sequecnes) Let (an), (bn) ⊂ R, lim an = K and
lim bn = L. Then lim(an + bn) = K + L, lim anbn = KL and lim an

bn
= K

L ,
if the expression on the right side is not indeterminate.

Proof. Sum. Let K,L ∈ R and an ε be given. For every large n we have that
|an −K| ≤ ε

2 and |bn − L| ≤ ε
2 . By the ∆-inequality it holds for these n that

|(an + bn)− (K + L)| ≤ |an −K|+ |bn − L| ≤ ε
2 + ε

2 = ε .

Hence an + bn → K + L.
Let K = L = ±∞ and an ε be given. For every large n the numbers an

and bn have the same sign as K and |an|, |bn| ≥ 1
2ε . Thus for these n the sum

an+ bn has the same sign as K and |an+ bn| = |an|+ |bn| ≥ 1
2ε + 1

2ε = 1
ε . Hence

an + bn → K + L = K = L.
Let K = ±∞, L ∈ R and an ε be given. For every large n the number an

has the same sign as K, |an| ≥ 1
ε + |L|+ 1 and |bn−L| ≤ 1, thus |bn| ≤ |L|+ 1.

For these n the sum an + bn has the same sign as K and, by Exercise 3.1.1,
|an+ bn| ≥ |an|− |bn| ≥ 1

ε + |L|+ 1−|L|−1 = 1
ε . Hence an+ bn → K+L = K.

The cases K ∈ R and L = ±∞ follow from the commutativity of addition.
Product. Let K,L ∈ R and an ε ≤ 1 be given. For every large n one has

that |an − K| ≤ ε
2|L|+1 , thus |an| ≤ |K| + 1, and |bn − L| ≤ ε

2|K|+2 . By the

∆-inequality it holds for these n that

|anbn −KL| ≤ |an| · |bn − L|+ |L| · |an −K|
≤ (|K|+ 1) · ε

2|K|+2 + |L| · ε
2|L|+1 ≤

ε
2 + ε

2 = ε .

Hence anbn → KL.
Let K = ±∞, L = ±∞ and an ε be given. For every large n the number

an has the same sign as K, bn as L and |an|, |bn| ≥ 1√
ε
. Thus for these n the

product anbn has the same sign as KL and |anbn| = |an| · |bn| ≥ 1√
ε
· 1√

ε
= 1

ε .

Hence anbn → KL.
Let K = ±∞, L ∈ R \ {0} (L = 0 yields an indefinite expression) and let an

ε be given. For every large n the number an has the same sign as K, |an| ≥ 2
ε|L|

and |bn−L| ≤ |L|2 , thus |bn| ≥ |L|2 . So for these n the product anbn has the same

sign as KL and |anbn| = |an| · |bn| ≥ 2
ε|L| ·

|L|
2 = 1

ε . Hence anbn → KL. The

cases K ∈ R\{0} and L = ±∞ follow from the commutativity of multiplication.
Ratio. Let K ∈ R, L ∈ R \ {0} (L = 0 yields an indefinite expression) and

an ε be given. For every large n it holds that |an − K| ≤ min({1, εL2

4(|L|+1)})
and |bn − L| ≤ min({1, εL2

4(|K|+1) ,
|L|
2 }), thus |an| ≤ |K| + 1, |bn| ≤ |L| + 1 and

|bn| ≥ |L|2 . By the ∆-inequality it holds for these n that∣∣an
bn
− K

L

∣∣ =
∣∣anL−bnK

bnL

∣∣ ≤ |an|·|L−bn|+|bn|·|an−K||bn|·|L| ≤ εL2/4+εL2/4
L2/2 = ε .
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Hence an
bn
→ K

L .
Let K = ±∞, L ∈ R \ {0} and an ε be given. For every large n the number

an has the same sign as K, |an| ≥ |L|+1
ε and |bn−L| ≤ 1, thus |bn| ≤ |L|+1. So

for these n the ratio an
bn

has the same sign as K
L and

∣∣an
bn

∣∣ = |an|
|bn| ≥

|L|+1
ε(|L|+1) = 1

ε .

Hence an
bn
→ K

L .
Let K ∈ R, L = ±∞ and an ε be given. For every large n one has that

|an −K| ≤ 1, thus |an| ≤ |K| + 1, and |bn| ≥ |K|+1
ε . For these n it holds that∣∣an

bn
− 0
∣∣ =

∣∣an
bn

∣∣ = |an|
|bn| ≤

|K|+1
(|K|+1)/ε = ε. Hence an

bn
→ K

L = 0. 2

If lim an = K, lim bn = L and K
L is not an indefinite expression, then L 6= 0.

There are only finitely many n with bn = 0 and the corresponding undefined
ratios an

bn
may be ignored or defined arbitrarily.

• Supplements to AL of sequences. The previous theorem is not a complete
description of arithmetic of limits of sequences. Even if one the two sequences
does not have a limit, their sum sequence or product sequence or ratio sequence
still may have a unique limit. We present six scenarios of this kind and leave
proofs for them as an exercise.

Exercise 3.1.3 Prove the following proposition.

Proposition 3.1.4 (supplement 1 to AL) Let (an), (bn) ⊂ R. Even if (an)
possibly does not have a limit, the following implications hold.

1. If (an) is bounded and L ≡ lim bn = ±∞ then lim(an + bn) = L.

2. If (an) is bounded and lim bn = 0 then lim anbn = 0.

3. If for every large n it holds that an ≥ c > 0 and L ≡ lim bn = ±∞ then
lim anbn = L.

4. If (an) is bounded and lim bn = ±∞ then lim an
bn

= 0.

5. If for every large n we have that an ≥ c > 0 and bn > 0, and lim bn = 0
then lim an

bn
= +∞.

6. If for every large n one has that 0 < an ≤ c and L ≡ lim bn = ±∞ then
lim bn

an
= L.

In parts 3 and 5 we may also have an ≤ c < 0, in part 6 we may have c ≤ an < 0
and in part 5 we may have bn < 0. It is not hard to state precisely and prove
these modifications.

If the expression K+L or KL or K
L is indefinite, then the corresponding limit

is not uniquely determined. We show on several examples what may happen.

Exercise 3.1.5 Prove the following proposition.
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Proposition 3.1.6 (supplement 2 to AL) Let A ∈ R∗. Then there exist
eight sequences (an,i), (bn,i) ⊂ R, i ∈ [4], such that the following hold.

1. lim an,1 = +∞, lim bn,1 = −∞ and lim(an,1 + bn,1) = A.

2. lim an,2 = 0, lim bn,2 = +∞ and lim an,2 · bn,2 = A.

3. lim an,3 = lim bn,3 = 0 and lim
an,3

bn,3
= A.

4. lim an,4 = ±∞, lim bn,4 = ±∞ and lim
an,4

bn,4
= A.

3.2 Limits of recurrent sequences

In this section we compute as an example the limit of a recurrent sequence. We
return to recurrent sequences in MA 1+.

• The limit of a recurrent sequence. We begin with the well known inequality
between the arithmetic and geometric mean.

Exercise 3.2.1 (AG inequality) For every two real numbers a, b ≥ 0 it is
true that a+b

2 ≥
√
ab.

Proposition 3.2.2 (one recurrent limit) Let (an) ⊂ Q be given by a1 ≡ 1
and for n ≥ 2 by an ≡ an−1

2 + 1
an−1

. Then lim an =
√

2.

Proof. First we show that a2 ≥ a3 ≥ · · · ≥ 0, so that (an) converges by
Corollary 2.3.4. Clearly, always an > 0 and an is defined for every n. For n ≥ 2
we get by the AG inequality that

an = an−1

2 + 1
an−1

≥ 2
√

an−1

2 · 1
an−1

=
√

2 .

Then for n ≥ 3 it holds that an−1 ≥ an iff an−1

2 ≥ 1
an−1

which means iff

an−1 ≥
√

2 which is true. Let a ≡ lim an ≥
√

2. By the AL of sequences and
limits of subsequences one has that

a = lim an = lim an−1

2 + 1
lim an−1

= a
2 + 1

a .

Hence a
2 = 1

a , a2 = 2 and a =
√

2. 2

In order that computation of this kind be correct we always have to show that
the limit of the recurrent sequence exists. For example, the recurrent sequence
(an) given by a1 ≡ 1 and for n ≥ 2 by an ≡ −an−1 does not have the limit
lim an = 0, although in R∗ the equation L = −L has the only solution L = 0.
The sequence is alternating, (an) = (1,−1, 1,−1, . . . ), and has no limit.

• Limits of geometric sequences. A geometric sequence is the sequence of powers

(qn) = (q, q2, q3, . . . ), q ∈ R .
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Exercise 3.2.3 (one more supplement to AL) For every (an) ⊂ R it holds
that

lim an = 0 ⇐⇒ lim |an| = 0 .

Proposition 3.2.4 (limits of geometric sequences) Let q ∈ R. Then for
|q| < 1 we have that lim qn = 0, for q = 1 that lim qn = 1, for q > 1 that
lim qn = +∞ and for q ≤ −1 the limit does not exist.

Proof. Let |q| < 1. By Exercise 3.2.3 we can assume that q ∈ [0, 1). Then (qn)
weakly decreases and is bounded from below. By Corollary 2.3.10 it has the
limit L ≡ lim qn ∈ [0,+∞). Since qn = q · qn−1, we have the equation L = q ·L.
Thus L = 0

1−q = 0. For q = 1 we have the constant sequence (1, 1, . . . ). Let
q > 1. By the first part of this proposition and by part 5 of Proposition 3.1.4 one
has that lim qn = lim 1

(1/q)n = 1
0+ = +∞. For q ≤ −1 the sequence (qn) does

not have a limit because its subsequences with odd, respectively even, indices
have different limits. 2

3.3 Limits of sequences versus order

We consider interaction of limits of sequences with the LO (R∗, <). We revisit
and investigate this topic further in MA 1+.

• One standard theorem in stronger clothes. If we can compare terms in two
sequences then we can compare their limits, and vice versa. But which terms
in the sequences are being compared?

Theorem 3.3.1 (limits versus order 1) Let (an), (bn) ⊂ R be sequences with
lim an = K and lim bn = L. Then the following hold.
1. If K < L then for some n0 for every two, not necessarily equal, indices
m,n ≥ n0 it holds that am < bn.
2. If for every n0 there exist indices m and n such that m,n ≥ n0 & am ≥ bn,
then K ≥ L.

Proof. 1. Let K < L. By Exercise 2.1.12 there is an ε such that U(K, ε) <
U(L, ε). By the definition of limit we have an n0 such that if m,n ≥ n0 then
am ∈ U(K, ε) and bn ∈ U(L, ε). So m,n ≥ n0 ⇒ am < bn.

2. Logic tells us that the implication ϕ ⇒ ψ is equivalent to the reversal
¬ψ ⇒ ¬ϕ (Exercise 1.2.3). The reversal of the implication in part 1 is exactly
part 2. 2

Version 2 of the theorem will concern limits of functions. One of the mysteries
in teaching mathematical analysis is that (elsewhere) the theorem is stated
unnecessarily weakly, in the form of part 1 as: if K < L then there is an n0
such that for every n ≥ n0 it holds that an < bn. Or in the form of part 2 as:
if an ≤ bn for every n ≥ n0 then K ≤ L. I was teaching these weakish forms of
the theorem for many years.
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Exercise 3.3.2 Explain why part 1 of Theorem 3.3.1 which allows distinct in-
dices m and n is stronger than the form with m = n.

Corollary 3.3.3 (limits preserve ≤) Suppose that (an), (bn) ⊂ R are se-
quences such that lim an = K, lim bn = L and that for every n0 there exist
indices m and n satisfying m,n ≥ n0 & am ≤ bn. Then K ≤ L.

Proof. This an equivalent restatement of Theorem 3.3.1, basically part 2. 2

In general strict inequalities are not preserved in limits as they may turn in
equalities. This is another reason why non-strict equalities are safer than the
strict ones.

Exercise 3.3.4 Find convergent sequences (an) and (bn) such that for every m
and n it holds that am < bn but at the same time lim an = lim bn.

Next proposition further strengthens Theorem 3.3.1.

Exercise 3.3.5 Prove the next strengthening and state it in the form of part 2.

Proposition 3.3.6 (strengthening Thm 3.3.1) If lim an = K, lim bn = L
and K < L, then there exists an n0 and real numbers a < b such that for every
m,n ≥ n0 we have that am ≤ a < b ≤ bn.

• Intervals. For a, b ∈ R we denote the closed interval with the endpoints a and
b as I(a, b):

I(a, b) ≡ [a, b] if a ≤ b and I(a, b) ≡ [b, a] if a ≥ b .

A set M ⊂ R is convex if for every a, b ∈M the whole I(a, b) ⊂M . For example,
every neighborhood U(A, ε) is convex.

Proposition 3.3.7 (on intervals) Convex sets of real numbers are exactly the
sets ∅, the singletons {a} for a ∈ R, the whole R and for reals a < b the intervals
(a, b), (−∞, a), (a, +∞), (a, b], [a, b), [a, b], (−∞, a] & [a, +∞).

Proof. The transitivity of < shows that all stated sets are convex. We show
that there are no other real convex sets. Let X ⊂ R be a convex set different
from ∅, R and {a} and let a ∈ R \X. Convexity of X implies that a ∈ H(X)
(upper bounds of X) or a ∈ D(X) (lower bounds of X). We discuss only the
former case as the latter can be reduced to it by reversing inequalities.

So let H(X) 6= ∅. We set b ≡ sup(X). Let D(X) = ∅. If b ∈ X then
X = (−∞, b]. If b 6∈ X then X = (−∞, b). Let D(X) 6= ∅. Then we set
c ≡ inf(X), clearly c < b. If b 6∈ X and c 6∈ X then X = (c, b). If b 6∈ X and
c ∈ X then X = [c, b). If b ∈ X and c 6∈ X then X = (c, b]. Finally if b ∈ X
and c ∈ X then X = [c, b]. 2

Exercise 3.3.8 Are there nonempty finite intervals?
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Definition 3.3.9 (nontrivial intervals) Nontrivial intervals are the nonempty
and non-singleton intervals.

• The squeeze theorem. Czech textbooks of mathematical analysis call the fol-
lowing theorem the “two cops theorem”, the idea being that two cops lead
between them the suspect to the common limit.

Theorem 3.3.10 (squeeze theorem 1) If lim an = lim bn = a, (cn) ⊂ R and
for every large n it holds that cn ∈ I(an, bn), then also lim cn = a.

Proof. Let the sequences (an), (bn) and (cn) be as stated and let an ε be given.
Then for every large n it holds that an, bn ∈ U(a, ε). By the convexity of U(a, ε)
it holds for every large n that cn ∈ I(an, bn) ⊂ U(a, ε). Hence cn → a. 2

Exercise 3.3.11 For infinite limits one cop suffices: if lim an = −∞ and for
every large n one has that bn ≤ an, then lim bn = −∞. Similarly for +∞.

3.4 Limes inferior and limes superior

These Latin terms mean “the lowest limit” and “the highest limit”, respectively.

• Limit points of sequences. These are limits of subsequences.

Definition 3.4.1 (limit point) An element A ∈ R∗ is a limit point of (an) if
A = lim bn for some (bn) � (an). We denote the set of limit points of (an) by
L(an) (⊂ R∗).

For example, (an) ≡ (n− 1 + (−1)nn+ 1
n ) has L(an) = {−1,+∞}.

Exercise 3.4.2 Every real sequence has at least one limit point.

• Limes inferior and limes superior of a sequence. We already revealed that
these are, respectively, the smallest and the largest limit point of it.

Definition 3.4.3 (liminf and limsup) Let (an) be a real sequence. We de-
fine lim inf an ≡ min(L(an)) and lim sup an ≡ max(L(an)). The minimum and
maximum are taken in the LO (R∗, <).

We show that these minima and maxima always exist.

Theorem 3.4.4 (liminf and limsup exist) For every (an) ⊂ R, L(an) 6= ∅
and the set L(an) has in the LO (R∗, <) both minimum and maximum.

Proof. Let (an) ⊂ R. Then L(an) 6= ∅ by Exercise 3.4.2. We show that
max(L(an)) exists, the minimum is treated similarly. Let A ≡ sup(L(an)),
taken in the LO (R∗, <) (by Proposition 2.1.6 this supremum exists). We show
that A ∈ L(an). If A = −∞ then L(an) = {−∞} and we are done, A ∈ L(an).
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Let A > −∞. Then there is a real sequence (bn) ⊂ L(an) such that lim bn =
A. For A < +∞ and for A = +∞ 6∈ L(an) it follows from the definition of
supremum. For A = +∞ ∈ L(an) we are done. Since every number bn is the
limit of a subsequence of (an), it is easy to construct a subsequence (amn

) such
that for every n we have amn ∈ U(bn, 1/n). Then lim amn = lim bn = A and
A ∈ L(an). 2

It is clear that if lim an exists then L(an) = {lim an}. We obtain some more
properties of liminfs and limsups.

Proposition 3.4.5 (lim inf
?
= lim sup) Always lim inf an ≤ lim sup an. The

equality holds iff the limit lim an exists. Then lim inf an = lim sup an = lim an.

Proof. Let (an) ⊂ R. The inequality is obvious as lim inf an = min(L(an))
and lim sup an = max(L(an)). If it is an equality then L(an) is a singleton
and (an) does not have two subsequences with different limits. Then by part 2
of Theorem 2.2.5 the sequence (an) has a limit which equals to lim inf an and
lim sup an. If lim inf an 6= lim sup an, the sequence (an) has two subsequences
with different limits and lim an does not exist. 2

Theorem 3.4.6 (properties of liminfs and limsups) Let (an) ⊂ R, A ≡
lim inf an and B ≡ lim sup an. Then the following hold.
1. If A = −∞ then for every c < 0 it holds for infinitely many n that an ≤ c.
If A = +∞ then lim an = +∞.
2. If A ∈ R then for every ε it holds for infinitely many n that an ≤ A+ ε, and
for every n ≥ n0 that an ≥ A− ε.
3. If B = +∞ then for every c > 0 it holds for infinitely many n that an ≥ c.
If B = −∞ then lim an = −∞.
4. If B ∈ R then for every ε it holds for infinitely many n that an ≥ B− ε, and
for every n ≥ n0 that an ≤ B + ε.

Proof. We prove parts 1 and 2. Proofs for 3 and 4 are the exercise below.
1. Let A = −∞. Then for some (bn) � (an) it holds that lim bn = −∞

and the claim holds by the definition of the limit −∞. Let A = +∞. Then
L(an) = {+∞} and by Proposition 3.4.5 we have that lim an = +∞.

2. Let A ∈ R and an ε be given. Since there is a (bn) � (an) with lim bn = A,
we have for infinitely many n that an ≤ A+ε. If we had an < A−ε for infinitely
many n, a (cn) � (an) would exist with lim cn less than A−ε. This is impossible
because A = min(H(an)). Hence for every n ≥ n0 it holds that an ≥ A− ε. 2

As an example of use of liminfs and limsups we mention a number-theoretic
estimate. One can show that the function τ(n) that counts divisors of n, for
example τ(6) = |{1, 2, 3, 6}| = 4, is such that

lim sup
log(τ(n))

(log 2)(log n)/(log log n)
= 1 while lim inf τ(n) = 2 .
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Exercise 3.4.7 Prove the latter bound.

The corresponding sequence begin as

(τ(n)) = (1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 4, . . . ) .

Exercise 3.4.8 Prove parts 3 and 4 of the last theorem.

Exercise 3.4.9 Find a sequence (an) such that L(an) = R∗.

Exercise 3.4.10 Is there a sequence (an) such that L(an) = [−1, 0) ∪ (0, 1]?

Exercise 3.4.11 Find lim inf an and lim sup an for an ≡ n(1 + (−1)n) .

3.5 AK series

Important applications of limits are rigorous treatments of infinite sums.

• AK series. Our goal is to extend, in a commutative and associative way,
finite sums

∑
x∈X rx with finite index sets X and rx ∈ R— we take them for

granted — to sums with countable index sets. The paradoxes in Section 1.1 show
that straightforward infinite addition is neither commutative nor associative.
AK series are a remedy for this and are interesting on their own.

Definition 3.5.1 (AK series) Any map r : X → R defined on an at most
countable set X with the property that for some c ≥ 0 for every finite set Y ⊂
X it holds that

∑
x∈Y |r(x)| ≤ c is called an AK series (absolutely convergent

series). We write it as
∑
x∈X rx, with rx ≡ r(x).

We use the acronym AK because AC is already taken by the axiom of choice.
In the definition, “absolutely” refers not so much to the absolute value as to
independence of sums of AK series on the order of summation. Let

S ≡ {r : r : X → R is an AK series}

(see Exercise 1.2.2 and Definition 1.2.14) be the (proper) class of AK series.
Clearly, any finite sum

∑
x∈X rx with finite index set X is an AK series. If∑

x∈X rx ∈ S and Y ⊂ X then
∑
x∈Y rx ∈ S as well.

Exercise 3.5.2 Prove it.

We say that
∑
x∈Y rx is a subseries of

∑
x∈X rx.

Let R =
∑
x∈X rx ∈ S. If X is finite we define the sum S(R) (∈ R) of R to

be simply the sum of of the real numbers rx in this finite list. For countable X
the sum S(X) arises in the following theorem.
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Theorem 3.5.3 (sum of AK series) Let R =
∑
x∈X rx ∈ S with infinite X.

Then for any bijection f : N→ X there exists a unique finite limit

S(R) ≡ lim
n→∞

n∑
i=1

rf(i) (∈ R)

that is independent of f . S(R) is the sum of R.

Proof. Let f, g : N→ X be bijections and an ε be given. We set

c ≡ sup({
∑
x∈Y |rx| : Y ⊂ X and is finite}) .

We take a finite set Y ⊂ X such that c − ε ≤
∑
x∈Y |rx| ≤ c. Then for every

finite set Z ⊂ X \ Y one has that
∑
x∈Z |rx| ≤ ε. We take an n0 such that

f [ [n0] ], g[ [n0] ] ⊃ Y . Then for every m,n ≥ n0 it holds that∣∣∑m
i=1 rf(i) −

∑n
i=1 rg(i)

∣∣ ≤∑x∈Zm
|rx|+

∑
x∈Wn

|rx| ≤ ε+ ε = 2ε ,

because Zm and Wn are some finite subsets of X \ Y . The choice g = f shows
that the sequence

(∑n
i=1 rf(i) : n ∈ N

)
is Cauchy. By Theorem 2.3.20 it has

a finite limit. The choice g 6= f shows that the limit is independent of the
bijection f . 2

The map S : S→ R, which is a class, sends any AK series to its sum.

Proposition 3.5.4 (approximating sums) Let R =
∑
x∈X rx ∈ S. Then

for every ε there is a finite subset Y = Y (ε,R) of X such that for every finite
set Z with Y ⊂ Z ⊂ X it holds that |

∑
x∈Z rx − S(R)| ≤ ε.

Proof. For finite X it is trivial, Y ≡ X. For infinite X we take any bijection
f : N → X, and then an n0 such that for n ≥ n0 it holds that |

∑n
i=1 rf(i) −

S(R)| ≤ ε
2 and that for every finite set M ⊂ N\ [n0] it holds that

∑
i∈M |rf(i)| ≤

ε
2 . We set Y ≡ f [ [n0] ]. Let Z with Y ⊂ Z ⊂ X be a finite set. Then

|
∑
x∈Z rx − S(R)| ≤ |

∑
x∈Y rx − S(R)|+

∑
x∈Z\Y |rx| ≤

ε
2 + ε

2 = ε .

2

• AK series correctly extend finite sums. We show that sums of countable AK
series are commutative and associative. Thus AK series form a correct extension
of finite sums. Their commutativity is an immediate corollary of Theorem 3.5.3.

Corollary 3.5.5 (commutativity of S(·)) Let R =
∑
x∈X rx ∈ S with infi-

nite X. Then for every bijection f : X → X it holds that R′ ≡
∑
x∈X rf(x) ∈ S

and S(R′) = S(R).

We prove the associativity.
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Theorem 3.5.6 (associativity of S(·)) Let R =
∑
x∈X rx ∈ S and Y be

a partition of X. For Z ∈ Y let rZ ≡ S(RZ) where RZ ≡
∑
x∈Z rx. Then

R′ ≡
∑
Z∈Y rZ ∈ S and S(R′) = S(R).

Proof. Let R and Y be as stated. First we show that R′ ∈ S. Let

c ≡ sup({
∑
x∈Z |rx| : Z ⊂ X and is finite})

and let Y ′ = {Z1, . . . , Zn} ⊂ Y be a finite set. For any i ∈ [n] we apply
Proposition 3.5.4 and take finite sets Z ′i ≡ Y (2−i, RZi

) (⊂ Zi). We set Z0 ≡
Z ′1 ∪ · · · ∪ Z ′n. Then∑

Z∈Y ′ |rZ | ≤
∑n
i=1 |rZi

−
∑
x∈Z0

rx|+ |
∑
x∈Z0

rx| ≤ 1 + c .

Hence
∑
Z∈Y rZ ∈ S.

Let an ε be given. We show that |S(R)−S(R′)| ≤ ε. We use Proposition 3.5.4
and take finite sets X ′ ≡ Y ( ε3 , R) (⊂ X), {Z1, . . . , Zn} ≡ Y ( ε3 , R

′) (⊂ Y , n ∈ N)
and Z ′i ≡ Y (2−i ε3 , RZi) (⊂ Zi), i ∈ [n]. Let X0 ≡ X ′ ∪ Z ′1 ∪ · · · ∪ Z ′n and
Z ′′n ≡ (X ′ \

⋃n
i=1 Z

′
i) ∪ Z ′n. Then |S(R)− S(R′)| is at most

|S(R)−
∑
x∈X0

rx|+
∑n−1
i=1 |

∑
x∈Z′i

rx − r(Zi)|+ |
∑
x∈Z′′n

rx − r(Zn)|+

+ |
∑n
i=1 r(Zi)− S(R′)| ≤ ε

3 + ε
3 + ε

3 = ε .

So |S(R)− S(R′)| ≤ ε. This holds for any ε and therefore S(R) = S(R′). 2

Exercise 3.5.7 Why do we define the set Z ′′n in the above way?

Exercise 3.5.8 Where was associativity of finite sums used in the previous
proof?

• Congruence of AK series. R =
∑
x∈X rx and R′ =

∑
x∈Y sx in S are

congruent, in symbols R ∼ R′, if there is a bijection f : X → Y such that
for every x ∈ X we have that rx = sf(x).

Exercise 3.5.9 Show that ∼ is an equivalence relation on S. (Equivalence
relation on a class is defined in the same way as on a set.)

Exercise 3.5.10 If R,R′ ∈ S are congruent then S(R) = S(R′).

• Scalar multiple, binary sum and product of AK series. We introduce three
operations on S and begin with the scalar multiple. This is actually a system
of unary operations on S, indexed by R.

Exercise 3.5.11 Prove the following proposition.

Proposition 3.5.12 (scalar multiple) For a ∈ R and R =
∑
x∈X rx ∈ S

let aR ≡
∑
x∈X arx. Then aR ∈ S and S(aR) = aS(R). We call aR the

scalar multiple of R (by a).
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Exercise 3.5.13 If a ∈ R and R ∼ R′ then aR ∼ aR′.

The other two operations on S are binary.

Theorem 3.5.14 (binary sum) For R =
∑
x∈X rx and R′ =

∑
y∈Y sy in S

we define Z ≡ X × {0} ∪ Y × {1} and

R+R′ ≡
∑
z∈Z tz ,

where tz ≡ rx if z = (x, 0) and tz ≡ sy if z = (y, 1). Then R + R′ ∈ S and
S(R+R′) = S(R) + S(R′). We call R+R′ the binary sum of R and R′.

Proof. We show that R +R′ ∈ S. Let c be a constant witnessing that R ∈ S
and R′ ∈ S, and let W ⊂ Z be a finite set. Then W = (X ′×{0})∪ (Y ′×{1}),
where X ′ ⊂ X and Y ′ ⊂ Y are finite sets, and∑

z∈W |tz| =
∑
x∈X′ |rx|+

∑
y∈Y ′ |sy| ≤ c+ c = 2c .

Hence R+R′ ∈ S.
We prove that S(R+R′) = S(R)+S(R′); our argument does not distinguish

finite and infinite index sets. Let r ≡ S(R), s ≡ S(R′) and t ≡ S(R +R′), and
let an ε be given. We show that |t− (r+ s)| ≤ ε. We use Proposition 3.5.4 and
take finite sets X ′ ≡ Y ( ε3 , R) (⊂ X), Y ′ ≡ Y ( ε3 , S) (⊂ Y ) and Z ≡ Y ( ε3 , R+ S)
(⊂ X×{0}∪Y ×{1}). We take finite sets X ′′ and Y ′′ such that X ′ ⊂ X ′′ ⊂ X,
Y ′ ⊂ Y ′′ ⊂ Y and Z ⊂ X ′′×{0} ∪ Y ′′×{1} ≡W . Then |t− (r+ s)| is at most

|t−
∑
z∈W tz|+ |

∑
x∈X′′ rx − r|+ |

∑
y∈Y ′′ sy − s| ≤

ε
3 + ε

3 + ε
3 = ε .

This holds for every ε and t = r + s. 2

We could call this operation also the disjoint union of two AK series.

Exercise 3.5.15 If Q ∼ Q′ and R ∼ R′ then Q+R ∼ Q′ +R′.

Theorem 3.5.16 (product) For R =
∑
x∈X rx and R′ =

∑
y∈Y sy in S let

R ·R′ ≡
∑

(x, y)∈X×Y rxsy .

Then R · R′ ∈ S and S(R · R′) = S(R)S(R′). We call R · R′ the product of R
and R′.

Proof. First we show that R · R′ ∈ S. We take a constant c witnessing that
R and R′ are AK series. Let Z ⊂ X × Y be a finite set. We take finite sets
X ′ ⊂ X and Y ′ ⊂ Y such that Z ⊂ X ′ × Y ′. Then∑

(x, y)∈Z |rxsy| ≤
∑
x∈X′ |rx| ·

∑
y∈Y ′ |sy| ≤ c · c = c2 .

Hence R ·R′ ∈ S.
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We prove that S(R · R′) = S(R)S(R′); our argument does not distinguish
finite and infinite index sets. Let r ≡ S(R), s ≡ S(R′) and t ≡ S(R · R′), and
let an ε ≤ 1 be given. We show that |t − rs| ≤ ε. We use Proposition 3.5.4
and take finite sets X ′ ≡ Y ( ε

3(|s|+1) , R) (⊂ X), Y ′ ≡ Y ( ε
3(|r|+1) , S) (⊂ Y )

and Z ≡ Y ( ε3 , R · R
′) (⊂ X × Y ). We take finite sets X ′′ and Y ′′ such that

X ′ ⊂ X ′′ ⊂ X, Y ′ ⊂ Y ′′ ⊂ Y and Z ⊂ X ′′ × Y ′′. Then |t− rs| is at most

|t−
∑

(x, y)∈X′′×Y ′′ rxsy|+ |
∑
x∈X′′ rx ·

∑
y∈Y ′′ sy − rs| ≤

≤ ε
3 + |(r + δ)(s+ θ)− rs| where |δ| ≤ ε

3(|s|+1) and |θ| ≤ ε
3(|r|+1) .

Hence |t− rs| ≤ ε
3 + ε

3 + ε
3 = ε. This holds for every ε and t = rs. 2

Exercise 3.5.17 If Q ∼ Q′ and R ∼ R′ then Q ·R ∼ Q′ ·R′.

• A semiring of factorized AK series. We show that AK series, when factorized
by ∼, form a semiring with respect to binary sum and product. We define
T ≡ S/∼ and call this class the factorized AK series. By a semiring we mean
the ring structure on a set or a class with the existence of additive inverses
dropped. Let 0T ≡ ∅ be the empty AK series and 1T ≡

[∑
x∈{1} 1

]
∼ be the AK

series that have just a single summand 1.

Theorem 3.5.18 (semiring TSR) The structure

TSR ≡ 〈T, 0T, 1T, +, ·〉

is a semiring. In more details, + and · are commutative and associative opera-
tions on T, the element 0T and 1T in T is neutral to + and ·, respectively, and
· is distributive to +.

Proof. Exercises 3.5.15 and 3.5.17 show that + and · indeed operate on the
class T. We show that + is commutative. Let R =

∑
x∈X rx and R′ =

∑
x∈Y sx

be in S, and let Z ≡ X × {0} ∪ Y × {1} and W ≡ X × {1} ∪ Y × {0}. We take
the bijection f : Z → W that sends (x, 0) ∈ Z to (x, 1) ∈ W , and (y, 1) ∈ Z to
(y, 0) ∈ W . Then we see that for R + R′ =

∑
z∈Z tz and R′ + R =

∑
z∈W t′z it

holds for every z ∈ Z that tz = t′f(z) because tz = rx = t′f(z) if z = (x, 0), and

tz = sy = t′f(z) if z = (y, 1). Hence R+R′ ∼ R′ +R. The proof of associativity
of + is similar, see Exercise 3.5.19. We leave proofs of commutativity and
associativity of · to respective Exercises 3.5.20 and 3.5.21.

Let R =
∑
x∈X rx ∈ S. Since X × {0} ∪ ∅ × {1} = X × {0}, the bijection

sending x ∈ X to (x, 0) ∈ X×{0} proves thatR ∼ R+0T. Similarly the bijection
sending x ∈ X to (x, 1) ∈ X×{1} proves that R ∼ R ·1T. We finally show that ·
is distributive to +. Let R =

∑
x∈X rx, R′ =

∑
x∈Y sx and R′′ =

∑
x∈Z tx be in

S, and let W ≡ X×(Y ×{0}∪Z×{1}) and W ′ ≡ (X×Y )×{0}∪(X×Z)×{1}.
We take the bijection f : W →W ′ that sends (x, (y, 0)) ∈W to ((x, y), 0) ∈W ′,
and (x, (z, 1)) ∈ W to ((x, z), 1) ∈ W ′. Then we see that for R · (R′ + R′′) =∑
w∈W uw and R · R′ + R · R′′ =

∑
w∈W ′ u

′
w it holds for every w ∈ W that
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uw = u′f(w) because uw = rxsy = u′f(w) if w = (x, (y, 0)), and uw = rxtz = u′f(w)

if w = (x, (z, 1)). We get that R · (R′ +R′′) ∼ R ·R′ +R ·R′′. 2

Exercise 3.5.19 Give the bijection proving that R+(R′+R′′) ∼ (R+R′)+R′′.

Exercise 3.5.20 Give the bijection proving that R ·R′ ∼ R′ ·R.

Exercise 3.5.21 Give the bijection proving that R · (R′ ·R′′) ∼ (R ·R′) ·R′′.

In conclusion we describe interaction of scalar multiples with + and ·.

Proposition 3.5.22 (on scalar multiples) For every a, b ∈ R and T = [R]∼,
T ′ = [R′]∼ in T it holds that a(T+T ′) = aT+aT ′, (ab)T = a(bT ), (ab)(T ·T ′) =
aT · bT ′ and 1T = T .

Proof. Let R =
∑
x∈X rx and R′ =

∑
x∈Y sx. The congruence a(R + R′) ∼

aR+ aR′ follows from the identity bijection from the set X × {0} ∪ Y × {1} to
itself. Similarly identical bijections work in the other three identities. 2

Exercise 3.5.23 What about (a+ b)R = aR+ bR?

• AK series versus classical series. For classical series
∑∞
n=1 an, which are

sequences (an) ⊂ R, the sum is (defined as) the limit lim(a1 + · · ·+ an). This is
a simple definition but it does not work as needed — we saw in the first chapter
that the limit may depend on the order of summands. Absolutely convergent
series fix it but in the classical approach are introduced only afterwards; we
decided to begin with them. Most applications of infinite series use absolutely
convergent series. Another disadvantage of the classical approach to infinite
series is its fixing a single index set, N or N0. This is too restrictive and indeed
classical series often do not obey it and use other index sets like Z or N×N. In
the next chapter we apply Theorems 3.5.6 and 3.5.16 in Theorem 4.3.4 in the
proof of the identity ex+y = ex · ey, where ex =

∑
n∈N0

xn

n! . For the convenience
of the reader and to be in sync with the standard syllabus we begin the next
chapter with an introduction to classical infinite series.
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Chapter 4

Infinite series. Elementary
functions

In contrast to the last section where we introduced AK series, in the first section
of this chapter, which is based on the lecture

https://kam.mff.cuni.cz/~klazar/MAI24_pred4.pdf

of March 14, 2024, we approach infinite series in the standard, classical way.
In Proposition 4.1.10 we show that the harmonic series diverges and in The-
orem 4.1.22 we deduce the formula for sum of geometric series. Riemann’s
Theorem 4.1.17 describes a family of series with the property that their sums
may be arbitrarily changed by reordering summands. In Section 4.2 we general-
ize limits of real sequences to limits of functions. We prove Theorem 4.2.13 on
Heine’s definition of limits of functions. This theorem reduces limits of functions
to limits of sequences.

In Section 4.3 Basic Elementary Functions appear: constants, expx, log x,
ab, cosx, sinx, tanx, cotx and inverses of the last four. In Theorem 4.3.4 we
prove that expx · exp y = exp(x+y). Compared to the lecture, Sections 4.4 and
4.5 are new. We introduce Really Basic Elementary Functions. Definitions 4.4.5
and 4.4.14 precisely describe Elementary Functions as functions obtained from
Basic Elementary Functions by repeated addition, multiplication, division and
composition. In Definitions 4.5.1 and 4.5.6 we introduce in a novel way polyno-
mials and rational functions.

4.1 Classical infinite series

In Section 3.5 we introduced AK series. Now we give a more standard intro-
duction to the theory of infinite series.

• Series in general. An infinite series is a sequence (an) ⊂ R. We denote it by∑
an,

∑∞
n=1 an or a1 + a2 + · · · . The numbers an are summands of the series.
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The sum of the series is the limit

lim
n→∞

(a1 + a2 + · · ·+ an) (∈ R∗) .

We denote the sum again by
∑
an,

∑∞
n=1 an or a1 + a2 + · · · . Terms in the

sequence (sn) ≡ (a1 + · · ·+ an) are partial sums sn of the series. So the sum is
the limit lim sn. A series with finite sum converges, else it diverges.

Exercise 4.1.1 Both convergence and divergence of a series is a robust property
of sequences.

The sum itself is, however, sensitive to changes of summands.

Exercise 4.1.2 In any convergent series any change of any single summand
changes the sum.

Exercise 4.1.3 Every series a1+a2+. . . such that an ≥ 0 for every n ≥ n0 has
a sum and this sum is not −∞. Likewise every series with almost all summands
non-positive has a sum and this sum is not +∞.

Exercise 4.1.4
∑∞
n=1 1 = +∞.

A reordering of a series
∑
an is any series

∑
bn such that there is a bijection

f : N→ N for which bn = af(n) for every n.

Proposition 4.1.5 (commutativity of sums) Suppose that
∑
an has only

finitely many negative summands or only finitely many positive summands.
Then all reorderings of

∑
an have the same sum.

Proof. Let
∑
an have finitely many positive summands, with indices I ⊂ N.

Let f, g : N→ N be bijections and let sn ≡
∑n
i=1 af(i) and tn ≡

∑n
i=1 ag(i). We

take an m such that f [ [m] ], g[ [m] ] ⊃ I. Then sequences (sn) and (tn) weakly
decrease starting from the index m, and by Corollary 2.3.4 both have a limit.
It is not hard to see that for every n1 ≥ m there exist n2, n3 ≥ m such that
tn2 ≤ sn1 and sn3 ≤ tn1 . Thus lim sn = lim tn. In the other case that

∑
an has

finitely many negative summands we argue similarly. 2

The necessary convergence condition of a series
∑
an is that lim an = 0.

Proposition 4.1.6 (NCC of a series) If
∑
an converges then lim an = 0.

Proof. Suppose that s ≡ lim sn = lim(a1 + · · · + an) is finite. Then lim an =
lim(sn − sn−1) = lim sn − lim sn−1 = s− s = 0. 2

Thus if lim an does not exist or is not 0 then
∑
an diverges. For sums ±∞ NCC

does not hold.

Exercise 4.1.7 Explain the equalities in the conclusion of the last proof.
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• The harmonic series. It is the series
∑

1
n . Although lim 1

n = 0, we show that
this series diverges and has the sum

∑
1
n = +∞.

Exercise 4.1.8 If (an) weakly increases and has a subsequence with the limit
+∞, then lim an = +∞.

Exercise 4.1.9 If the series
∑
an and

∑
bn satisfy for every n ≥ n0 that

an ≥ bn and if the sum
∑
bn = +∞, then the sum

∑
an = +∞.

Proposition 4.1.10 (summing harmonic series) The sum
∑∞
n=1

1
n = 1 +

1
2 + 1

3 + · · · = +∞.

Proof. We take the series
∑
bn ≡ 1

2 + 1
4 + 1

4 + 1
8 + 1

8 + 1
8 + 1

8 + 1
16 + · · · .

In general b2k = b2k+1 = · · · = b2k+1−1 = 1
2k+1 . For every n we have that

1
n ≥ bn. Partial sums (sn) of

∑
bn increase and for k ∈ N0 it holds that

s2k+1−1 = 1
2 + 2 · 14 + 4 · 18 + · · · + 2k · 1

2k+1 = k+1
2 . By Exercise 4.1.8 the sum∑

bn = lim sn = +∞. By Exercise 4.1.9 the sum
∑

1
n = +∞ as well. 2

By Proposition 4.1.5 every reordering of the harmonic series sums to +∞. The
partial sums (hn) ≡

(∑n
i=1

1
i

)
= (1, 32 ,

11
6 ,

25
12 ,

137
60 , . . . ) (⊂ Q) are so called

harmonic numbers. That hn → +∞ was proven already in 1350 by the French
medieval philosopher Nicolas Oresme (1320 to 1325–1382).

Theorem 4.1.11 (asymptotics of hn) For n ∈ N we have that

hn = log n+ γ +O(1/n) .

Here γ = 0.57721 . . . is so called Euler’s constant.

By O(1/n) we denote the term an of a sequence (an) satisfying for some constant
c ≥ 0 for every n that |an| ≤ c · 1

n . We prove this theorem in lecture 14 with
the help of integrals. Asymptotic notation, including the symbol O(·), will be
introduced in Section 5.5.

Exercise 4.1.12 Prove that hn ∈ N ⇐⇒ n = 1. Hint: m = (2l − 1)2k.

Exercise 4.1.13 (unsolved) Euler’s constant γ is an irrational number.

• Riemannian series. In the first lecture we met the series 1 − 1 + 1
2 −

1
2 +

1
3 −

1
3 + · · · + 1

n −
1
n + . . . with the sum 0. By reordering its summands we

changed the sum to a positive one. In the forthcoming theorem we prove that
this and similar series can be reordered to have any sum. But we begin with
less general changes of sums. Let

∑∞
n=1 an be a series. By k1 < k2 < . . . we

denote the indices n such that an ≥ 0, and similarly z1 < z2 < . . . are indices
n such that an < 0. If the number of indices kn is infinite, by Proposition 4.1.5
all reorderings of the series

∑
akn have the same sum. The same holds for the

eventual series
∑
azn .
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Proposition 4.1.14 (reordering to ±∞) A series
∑
an can be reordered to

have sum −∞ ⇐⇒ the sum
∑
azn = −∞. Similarly,

∑
an has a reordering

with the sum +∞ ⇐⇒ the sum
∑
akn = +∞.

Proof. We prove the first equivalence and leave the second one for an ex-
ercise. Let

∑
azn = −∞ (so there are infinitely many indices zn). We may

assume that there are infinitely many indices kn. If their number is finite, by
Proposition 4.1.5 every reordering of

∑
an sums to −∞. We define a bijection

f : N → N such that the sum
∑
af(n) = −∞. It is the “limit” of certain in-

jective sequences Pk = (mn,k) ⊂ N, k ∈ N0, whose terms are indices kn and
zn. We begin with the sequence P0 ≡ (zn). We take an initial segment U1 of
P0 such that

∑
i∈U1

ai ≤ −1 − ak1 . We insert in P0 after U1 the index k1 and
get the sequence P1. We take an initial segment U2 in P1 such that |U2| > |U1|
and

∑
i∈U2

ai ≤ −2 − ak2 . We insert in P1 after U2 the index k2 and get the
sequence P2. And so on. Since |U1| < |U2| < . . . , the sequences P0, P1, P2, . . .
converge, in the obvious sense, to the sought for bijection f .

Suppose that it is not true that
∑
azn = −∞. Then either the number of

indices zn is finite or the sum
∑
azn ∈ R. In the former case by Proposition 4.1.5

all reorderings of
∑
an have the same sum different from −∞. In the latter case

there exists a c such that for every n it holds that
∑n
i=1 azi ≥ c. It follows that

no reordering of
∑
an has the sum −∞. 2

Exercise 4.1.15 Prove the second equivalence of the previous proposition by
reducing it to the first one.

Proposition 4.1.16 (reordering to no sum) A series
∑
an has an reorder-

ing without sum ⇐⇒ the sum
∑
azn = −∞ and the sum

∑
akn = +∞.

Proof. Let the sum
∑
azn = −∞ and the sum

∑
akn = +∞. We take

a (finite) initial segment U1 of (zn) such that
∑
i∈U1

ai ≤ −1. We take an initial
segment V1 of (kn) such that

∑
i∈V1

ai ≥ 2. We take an initial segment U2 of
the sequence (zn) \U1 such that

∑
i∈U2

ai ≤ −2. We take an initial segment V2
of the sequence (kn) \ V1 such that

∑
i∈V2

ai ≥ 2. And so on. The sequence

U1V1U2V2 . . . ⊂ N

is a bijection f from N to N and the series
∑
af(n) does not have sum because

both
∑n
i=1 af(i) ≤ −1 and

∑n
i=1 af(i) ≥ 1 holds for infinitely many n.

Let for example the sum
∑
azn ∈ R; if

∑
akn ∈ R, we argue similarly. If∑

akn = +∞ then it follows that every reordering of
∑
an has the sum +∞.

If
∑
akn ∈ R, the series

∑
an is an AK series and by Theorem 3.5.3 all its

reorderings have the same finite sum. 2

A series
∑
an is Riemannian if lim an = 0, the sum

∑
akn = +∞ and the

sum
∑
azn = −∞.
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Theorem 4.1.17 (on Riemannian series) Let
∑
an be a Riemannian se-

ries. Then for every A ∈ R∗ the series
∑
an has a reordering with the sum A.

The series can be also reordered so that it has no sum.

Proof. The cases A = ±∞ are proven in Proposition 4.1.14. The case of no
sum is proven in Proposition 4.1.16. Let A = b ∈ R. We construct an injective
sequence (pn) ⊂ N that is a bijection from N to N and is such that the sum∑∞
n=1 apn = b. In our construction we mark (for n = 1, 2, . . . ) terms of the

sequences (zn) and (kn) as used. We start with the terms in both sequences
marked as unused. We set p1 ≡ k1 and mark the term k1 as used. Suppose that
p1, p2, . . . , pn are defined and let sn ≡

∑n
i=1 api . If sn ≤ b then pn+1 is the

first unused term of (kn) which we mark as used. If sn > b then pn+1 is the
first unused term of (zn) which we mark as used.

It follows that for infinitely many n both sn ≤ b and sn > b hold. So we
exhaust both (zn) and (kn), and (pn) is a bijection from N to N. It holds for
every n ≥ n0 that

sn ∈ [b+ azin , b+ akjn ] ,

where lim in = lim jn = +∞. As lim an = 0, we get that lim sn = b. 2

The theorem is in essence due to the German mathematician Bernhard Riemann
(1826–1866) whose main discovery is the link between the complex zeta function
ζ(s) =

∑
1
ns and the distribution of prime numbers in N.

• Abscon series. We considered much more general series of this kind in the
previous Section 3.5. In this section we look standardly on a particular subset
of the class S.

Definition 4.1.18 (abscon series)
∑
an is an absolutely convergent series

(an abskon series) if the sum
∑
|an| < +∞.

It is clear that every abscon series is an AK series.

Theorem 4.1.19 (infinite triangle inequality) Let
∑
an be an abscon se-

ries. Then
∑
an converges and its sum satisfies the inequality |

∑
an| ≤

∑
|an|.

Proof. Let
∑
an be an abscon series with partial sums (sn) and let

∑
|an|

have partial sums (tn). The series
∑
an converges by Theorem 3.5.3, but we

give a direct proof. By the assumption and Theorem 2.3.20 the sequence (tn)
is Cauchy. Hence for a given ε for every two large indices m ≤ n it holds that

|tn − tm| =
∣∣|am+1|+ |am+2|+ · · ·+ |an|

∣∣ = |am+1|+ |am+2|+ · · ·+ |an| ≤ ε

(for m = n these sums are zero). By the ∆-inequality we have for the same
indices m ≤ n that

|sn − sm| = |am+1 + am+2 + · · ·+ an| ≤ |am+1|+ |am+2|+ · · ·+ |an| ≤ ε .
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Hence (sn) is Cauchy. By Theorem 2.3.20 the sequence (sn) converges. Hence
the series

∑
an converges.

By the ∆-inequality it holds for every n that |sn| ≤ tn, equivalently −tn ≤
sn ≤ tn. Sending n→∞ gives by Theorem 3.3.1 that the sums satisfy inequal-
ities −

∑
|an| ≤

∑
an ≤

∑
|an|. Hence

∣∣∑ an
∣∣ ≤∑ |an|. 2

Exercise 4.1.20 Every reordering of an abscon series is an abscon series.

Proposition 4.1.21 (on abscon series)
∑
an is an abscon series ⇐⇒ all

reorderings of it have the same finite sum.

Proof. Implication ⇒ follows from Theorem 3.5.3. If
∑
an is not an abscon

series then the sum
∑
azn = −∞ or the sum

∑
akn = +∞, and by Proposi-

tion 4.1.14 some reordering does not have finite sum. 2

• Geometric series. These are series of the form
∑∞
n=0 q

n = 1 + q + q2 + · · ·+
qn+ · · · with q ∈ R. We call the number q the quotient of the (geometric) series.

Theorem 4.1.22 (sum of geometric series) The sum
∑∞
n=0 q

n equals 1
1−q

if −1 < q < 1, +∞ if q ≥ 1 and does not exist if q ≤ −1.

Proof. For every q ∈ R \ {1} and n ∈ N we have the identity

sn ≡ 1 + q + q2 + · · ·+ qn−1 = 1−qn
1−q = 1

1−q + qn

q−1 .

So for q < −1 we have by the AL of sequences that lim s2n−1 = +∞ and
lim s2n = −∞. Hence lim sn does not exist. For q = −1 similarly s2n−1 = 1
and s2n = 0, the sum again does not exist. For −1 < q < 1 we have that
lim qn = 0. Thus by the AL of sequences, lim sn = 1

1−q . For q = 1 one has that
sn = n and the sum lim sn = +∞. For q > 1 it holds that lim qn = +∞ and by
the AL of sequences, lim sn = +∞. 2

As an application of this formula we express a periodic decimal expansion as
a fraction:

27.272727 · · · = 27(1 + 10−2 + 10−4 + . . . ) = 27 · 1
1−10−2 = 27·100

99 = 300
11 .

Exercise 4.1.23 Let q ∈ (−1, 1) and m ∈ Z. Then the sum
∑
n≥m q

n = qm

1−q
(we ignore 0m for m < 0).

Exercise 4.1.24 Which geometric series are abskon?

• The zeta series ζ(s). In the definition we use real exponentiation ab which we
soon introduce in Section 4.3.

Definition 4.1.25 (series ζ(s)) For s ∈ R the zeta series is ζ(s) ≡
∑

1
ns .
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We determine the convergence of ζ(s) by the Cauchy condensation criterion.

Theorem 4.1.26 (CCC) Let a1 ≥ a2 ≥ · · · ≥ 0 be real numbers. Then the
series

∑
an converges ⇐⇒ the series R ≡

∑
2n · a2n converges.

Proof. Suppose that R has the sum +∞. Hence also the series 1
2R =

∑
2n−1 ·

a2n has sum +∞. We have the inequalities a2 ≥ a2, a3 + a4 ≥ 2a4, a5 +

· · · + a8 ≥ 4a8, . . . ,
∑2k

j=2k−1+1 aj ≥ 2k−1a2k , · · · . Summing them we get that∑
an = +∞.
Suppose that R converges. We have the inequalities a2 + a3 ≤ 2a2, a4 +

· · ·+ a7 ≤ 4a4, . . . ,
∑2k+1−1
j=2k aj ≤ 2ka2k , · · · . Summing them we get that

∑
an

converges. 2

The proof of convergence of ζ(s) for s > 1 is a nice application of CCC.

Theorem 4.1.27 (convergence of ζ(s)) For s ≤ 1 the sum ζ(s) = +∞. For
s > 1 the zeta series converges.

Proof. To prove the former claim is Exercise 4.1.28. Let s > 1. The series R
in CCC for ζ(s) is ∑

2n

(2n)s =
∑

1
(2s−1)n .

Since 0 < 1
2s−1 < 1, by Theorem 4.1.22 this geometric series converges. So by

Theorem 4.1.26 the series ζ(s) converges. 2

In MA 1+ we show that ζ(2) = π2

6 . This is due to the Swiss mathematician
Leonhard Euler (1707–1783). In MA 1+ we also show that the sum ζ(3) is an
irrational number; this was proved by the French mathematician Roger Apéry
(1916–1994) in 1979.

Exercise 4.1.28 Prove that for s ≤ 1 the sum ζ(s) = +∞.

Exercise 4.1.29 For which real s does the series
∑
n≥2

1
n(logn)s converge?

4.2 Limits of functions

We extend the notion of the limit of a real sequence (an), which is a function
a : N→ R, to any function f : M → R with arbitrary M ⊂ R.

• Deleted neighborhoods and limit points. Recall ε-neighborhoods U(A, ε). The
deleted ε-neighborhood of A ∈ R∗ is

P (A, ε) ≡ U(A, ε) \ {A} .

Let M ⊂ R. An element L ∈ R∗ is a limit point of M if

∀ ε
(
P (L, ε) ∩M 6= ∅

)
.

The set of limit points of M ⊂ R is denoted by L(M) (⊂ R∗).
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Exercise 4.2.1 Prove the following proposition.

Proposition 4.2.2 (on limit points) Let M ⊂ R and A ∈ R∗. The next four
claims are mutually equivalent.
1. A ∈ L(M).
2. There is a sequence (an) ⊂M \ {A} such that lim an = A.
3. There is an injective sequence (an) ⊂M such that lim an = A.
4. For every n ∈ N it holds that P (A, 1

n ) ∩M 6= ∅.

Exercise 4.2.3 If M ⊂ R is finite then L(M) = ∅.

Exercise 4.2.4 If M ⊂ R is infinite then L(M) 6= ∅.

Exercise 4.2.5 If b ∈ L(M) then also b ∈ L(M \ {b}).

• Real functions and their limits. We introduce the following important notation
for functions.

Definition 4.2.6 (functions) For M ⊂ R we set

F(M) ≡ {(M, R, f) : f : M → R and M ⊂ R} .

Let R ≡
⋃
M⊂R F(M). For f ∈ F(M) we define Z(f) ≡ {b ∈ M : f(b) = 0}

(⊂M). Recall that the definition domain of any f : X → Y is M(f) = X.

Thus for M ⊂ R we denote by F(M) the set of functions with the definition
domain M and range R, and R is the set of all such functions for all M . By
Z(f) we denote the set of zeros of f .

Definition 4.2.7 (limit of a function) Suppose that f ∈ R, A ∈ L(M(f))
and that L ∈ R∗. If for every ε there is a δ such that

f [P (A, δ)] ⊂ U(L, ε) , (∗)

we write limx→A f(x) = L and say that the function f has in A the limit L.

Due to our definition of the image of a set by a function it suffices to write
just f [P (A, δ)]; we do not have to write f [P (A, δ) ∩M(f)]. The limit does not
depend on the value f(A) and the function f even need not be defined in A.
If A = ±∞ then it in fact cannot be defined in A. For a sequence (an) ⊂ R,
which is a function a : N→ R, it clearly holds that limx→+∞ a(x) = lim an.

Exercise 4.2.8 Besides +∞, what other limit points does the set N (⊂ R)
have?
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For A = a ∈ R & L = b ∈ R we can write the relation that limx→a f(x) = b as

∀ ε∃ δ
(
x ∈M(f) ∧ 0 < |x− a| ≤ δ ⇒ |f(x)− b| ≤ ε

)
— recall that we like more non-strict inequalities than strict ones. It should be
stressed that if f ∈ F(M) and A 6∈ L(M) then limx→A f(x) is not defined. Then
for some δ one has that P (A, δ) ∩M = ∅ and f [P (A, δ)] = ∅. Then inclusion
(∗) in Definition 4.2.7 would hold for every L and every ε. The existence of the
limit limx→A f(x) always means that A ∈ L(M(f)).

Proposition 4.2.9 (locality of limits) If f, g ∈ R, A ∈ R∗ and there is a θ
such that f = g on P (A, θ) then limx→A f(x) = limx→A g(x), if one side is
defined.

Proof. This is immediate from Definition 4.2.7 because we can take the δ in it
such that δ ≤ θ. Then P (A, δ) ⊂ P (A, θ) and f [P (A, δ)] = g[P (A, δ)]. 2

Here “locality” means “1ocalness”, in the sense of the “principle of locality” [31]
in physics. Later we will see that also continuity and derivatives are local.

Proposition 4.2.10 (uniqueness of limits) Limits of functions are unique,
if limx→K f(x) = L and limx→K f(x) = L′ then L = L′.

Proof. For every ε there is a δ such that the nonempty (!) set f [P (K, δ)]
is contained both in U(L, ε) and U(L′, ε). Thus ∀ε

(
U(L, ε) ∩ U(L′, ε) 6= ∅

)
.

Exercise 2.1.12 gives that L = L′. 2

We show that limits of restrictions are equal to limits of original functions.

Proposition 4.2.11 (limits of restrictions) Let f ∈ F(M), X be any set,
A ∈ L(X ∩M) and let limx→A f(x) = L. Then limx→A(f |X)(x) = L.

Proof. Let an ε be given. Then there is a δ such that f [P (A, δ)] ⊂ U(L, ε).
The inclusion P (A, δ)∩ (X ∩M) ⊂ P (A, δ)∩M and the definition of restriction
give the inclusions

(f |X)[P (A, δ)] ⊂ f [P (A, δ)] ⊂ U(L, ε) .

Hence limx→A(f |X)(x) = L. 2

This is the first result of several forthcoming ones which concern interaction of
limits of functions with an operation on R. Later we consider interaction with
composition and with the arithmetic operations of addition, multiplication and
division. Interaction with inverting functions will be investigated in MA 1+.

Exercise 4.2.12 Give an example of a function f ∈ F(M) and a set X such
that limx→A f(x) does not exist but limx→A(f |X)(x) exists (in particular we
have A ∈ L(X ∩M)).
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• Heine’s definition of the limit of a function. We noted that limits of sequences
are particular cases of limits of functions. The German mathematician Eduard
Heine (1821–1881) showed how to go in the other way and reduce limits of
functions to limits of sequences.

Theorem 4.2.13 (Heine’s definition of LF) Let f ∈ F(M) and K ∈ L(M).
Then limx→K f(x) = L ⇐⇒ for every sequence (an) ⊂ M \ {K} with
lim an = K we have that lim f(an) = L.

Proof. The implication ⇒. Suppose that limx→K f(x) = L, (an) ⊂ M \ {K}
and has the limit K, and that an ε is given. Then there is a δ such that for every
x ∈ P (K, δ)∩M we have f(x) ∈ U(L, ε). For this δ there is an n0 such that for
every n ≥ n0 we have an ∈ P (K, δ) ∩M . Hence n ≥ n0 ⇒ f(an) ∈ U(L, ε) and
f(an)→ L.

The reversal ¬ ⇒ ¬. Suppose that it is not true that limx→K f(x) = L.
Then there is an ε such that for every δ there is a b = b(δ) ∈ P (K, δ) ∩M with
f(b) 6∈ U(L, ε). For every n ∈ N we set δ = 1

n and choose a point bn ≡ b( 1
n ) in

P (K, 1
n )∩M such that f(bn) 6∈ U(L, ε). Then (bn) ⊂M \ {K} and lim bn = K,

but ¬
(

lim f(bn) = L
)
. The right side of the equivalence does not hold. 2

In the proof of the reversal ¬ ⇒ ¬ we used the axiom of choice; we explain it
in MA 1+.

Exercise 4.2.14 How did we use it?

• A few limits of functions. We compute one limit. Using the identities x− y =
x2−y2
x+y a x

y = 1
y/x we see that limx→+∞

(√
x+
√
x−
√
x
)

= limx→+∞
√
x√

x+
√
x+
√
x

= limx→+∞
1√

1+1/
√
x+1

= 1√
1+1/(+∞)+1

= 1
1+1 = 1

2 .

Exercise 4.2.15 Compute the following limits.
1. limx→−∞

x√
1+x2−1 ,

2. limx→+∞
1√

1+x−
√
x

,

3. limx→0
1
x and

4. limx→−∞
1
x .

4.3 Basic Elementary Functions

We introduce five important subsets of R: Basic Elementary Functions (BEF),
Elementary Functions (EF), Really Basic Elementary Functions (RBEF), Poly-
nomials (POL) and Rational Functions (RAC).

Definition 4.3.1 (BEF) Basic Elementary Functions, abbreviated BEF, are
the constant functions (constants) kc(x) for c ∈ R and the functions expx,
log x, ax for a > 0, xb for b ∈ R, 0x, xm for m ∈ Z, sinx, cosx, tanx, cotx,
arcsinx, arccosx, arctanx and arccotx.
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Now we define them. Note that xb and xm mean functions of different types,
depending on whether the exponent is real or integral.

• Constant functions or constants are the functions kc : R→ R, c ∈ R, with the
only value kc(x) = c. Instead of kc(x), we often write just kc or even only c.

Exercise 4.3.2 How many constants kc(x) are there?

• The exponential function expx = exp(x) = ex : R → R is for x ∈ R given by

the sum expx ≡
∑∞
n=0

xn

n! (here 00 ≡ 1).

Exercise 4.3.3 For every x ∈ R the series expx is an abscon series, hence an
AK series.

Using AK series we prove the exponential identity.

Theorem 4.3.4 (exponential identity) For every real numbers x and y it
holds that exp(x+ y) = exp(x) · exp(y).

Proof. Let x, y ∈ R. Since expx is an AK series, using Theorems 3.5.16 and
3.5.6 we get that the product of sums expx · exp y equals∑

m∈N0

xm

m! ·
∑
n∈N0

yn

n! =
∑

(m,n)∈N2
0

xm

m! ·
yn

n! =
∑∞
k=0

∑
m,n∈N0
m+n=k

xm

m! ·
yn

n! .

Due to an algebraic rearrangement and Exercise 2.2.9 the last sum equals∑∞
k=0

1
k!

∑k
m=0

(
k
m

)
xmyk−m =

∑∞
k=0

1
k! (x+ y)k = exp(x+ y) .

2

Usually this identity is proved by means of a theorem on classical series due to
the Polish mathematician Franz (Franciszek) Mertens (1840–1927), which we
state here without proof.

Theorem 4.3.5 (F. Mertens) Let
∑∞
n=0 an and

∑∞
n=0 bn be series with re-

spective sums a & b and let

cn ≡
∑n
i=0 aibn−i, n ∈ N0 .

Suppose that at least one of the two series is abscon. Then
∑∞
n=0 cn converges

and has the sum ab.

We list some more properties of expx.

Exercise 4.3.6 Prove parts 1–3 in the following proposition.

Proposition 4.3.7 (properties of ex) The exponential function has the fol-
lowing properties.
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1. exp 0 = 1, and for every x ∈ R it holds that expx > 0 and exp(−x) =
1

exp x .

2. For every real x < y it holds that expx < exp y.

3. We have the limits limx→−∞ expx = 0 and limx→+∞ expx = +∞.

4. The function exp is a bijection from R to (0,+∞).

Part 4 will be proven later in Corollary 6.3.3.

• Euler’s number e is the sum e ≡ exp 1 =
∑
n≥0

1
n! = 2 + 1

2! + 1
3! + · · · =

2.71828 · · · .

Exercise 4.3.8 Show that e is irrational. Hint: multiply the equality
∑
j≥0

1
j! =

n
m by m!.

• (Natural) logarithm log : (0,+∞) → R. It is the inverse to the exponential

function, log ≡ exp−1. We obtain its properties by inverting the properties of
the exponential.

Exercise 4.3.9 Prove the following proposition.

Proposition 4.3.10 (properties of log x) Logarithm has the following prop-
erties.

1. log 1 = 0, for every real x, y > 0 it holds that log(xy) = log x + log y and
if x < y then log x < log y.

2. We have the limits limx→0 log x = −∞ and limx→+∞ log x = +∞.

3. Logarithm is a bijection from (0,+∞) to R.

• Real exponentiation ab. Here a is the base and b is the exponent. It looks like
a single bivariate function, but for our purposes we introduce two (by inclusion)
incomparable families of univariate functions. The first family uses the relation
ab ≡ exp(b log a) and its extension by limx→−∞ expx = 0. The second family is
based on iterated multiplication.

Definition 4.3.11 (ab analytically) We define three systems of functions.
1. For any a > 0 we have the function ax ≡ exp(x log a); it is in F(R).
2. For any b > 0 we have the function xb ≡ exp(b log x) ∪ {(0, 0)}; it is in
F([0,+∞)). For any b ≤ 0 we have the function xb ≡ exp(b log x); it is in
F((0,+∞)).
3. The function 0x ≡ k0(x) | (0,+∞).

This definition leaves 00 undefined and always ab ≥ 0. Odd roots, that is
3
√
x = x1/3, 5

√
x = x1/5, etc. are sometimes defined for every x ∈ R. Then,

for example, 3
√
−8 = −2. We do not allow this. Note the different definition

domains in part 2 in the cases b > 0 and b ≤ 0.
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Definition 4.3.12 (ab algebraically) For m ∈ Z we define functions xm. For
any m > 0 we have the function xm ≡ x · x · . . . · x, with m factors x; it is in
F(R). We set x0 ≡ k1(x); it is in ∈ F(R). For any m < 0 we have the function
xm ≡ 1

x−m = k1(x)/x−m; it is in F(R \ {0}).

In this definition 00 = 1 and ab may be negative.

Exercise 4.3.13 Definitions 4.3.11 and 4.3.12 coincide on the intersection of
their domains of validity.

Exercise 4.3.14 Show that for every x ∈ R one has that ex = expx. On the
left side we have real exponentiation with the base e = 2.71 . . . and exponent x.
On the right side we have the value of the exponential function in x.

• Exponential identities. We discuss some well known, but also some not so well
known, identities for the real exponentiation.

Theorem 4.3.15 (three basic exponential identities) Let a, b > 0 & x, y
be real numbers. Then

(a · b)x = ax · bx, ax · ay = ax+y & (ax)
y

= ax·y .

Proof. (ab)x is exp(x log(ab)) = exp(x log a+x log b) = exp(x log a) exp(x log b)
= axbx. axay is exp(x log a) exp(y log a) = exp(x log a + y log a) = exp((x +
y) log a) = ax+y. (ax)y is exp(y log(exp(x log a))) = exp(yx log a) = axy. 2

But
(
(−1)2

) 1
2 = 1

1
2 = 1 6= −1 = (−1)1 = (−1)2·

1
2 ; we used both definitions of

real exponentiation.
The Polish-American mathematician Alfred Tarski (1901–1983), who was

the second greatest mathematical logician of the 20th century, conjectured that
every identity for real exponentiation, like xy · (xy)y = xy+y

2

, can be derived
from the three previous basic identities (and other basic properties of addition,
multiplication and exponentiation). In 1981 the British mathematician Alex
Wilkie (1948) refuted Tarski’s conjecture; he proved that identities like(

(1 + x)y + (1 + x+ x2)y
)x · ((1 + x3)x + (1 + x2 + x4)x

)y
=
(
(1 + x)x + (1 + x+ x2)x

)y · ((1 + x3)y + (1 + x2 + x4)y
)x

cannot be derived from the three basic identities. Identities of this kind are now
called Wilkie’s identities. In MA 1+ we return to this topic.

Exercise 4.3.16 Prove that for every real x, y > 0 the stated Wilkie’s identity
holds. Hint: (1 + x) · (1 + x2 + x4) = (1 + x3) · (1 + x+ x2).

Exercise 4.3.17 Show that 00 is an indefinite expression: for every A ∈ R∗
with A ≥ 0 there exist sequences (an) ⊂ (0,+∞) and (bn) ⊂ R such that

lim an = lim bn = 0 and lim (an)
bn = A. Could A be negative?
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It is often useful to define 00 as 1.

• Cosine and sine. Functions cos, sin : R → R originated in geometry, but the
most concise definition is via sums of series. Let t ∈ R. Then cos t is the
sum

∑∞
n=0(−1)n t2n

(2n)! (here 00 = 1), and sin t the sum
∑∞
n=0(−1)n t2n+1

(2n+1)! . So

cos t = 1− t2

2 + t4

24 − · · · a sin t = t− t3

6 + t5

120 − · · · .

Exercise 4.3.18 For every t both cos t and sin t is an abscon series, hence also
an AK series.

The planar set S ≡ {(x, y) ∈ R2 : x2 + y2 = 1} is the unit circle. It has radius
1 and center (0, 0). The next theorem, which we do not prove here, exemplifies
the main geometric property of cosine and sine.

Theorem 4.3.19 (runner, cosx and sinx) Let t ∈ R. A runner starts in the
point (1, 0) of the track S and runs on S with the unit speed; for t > 0 she runs
counter-clockwisely, and for t ≤ 0 clockwisely. Then in the time |t| the runner
is in the point (cos t, sin t) of S.

A rigorous geometric definition of the functions cosx and sinx is not an easy
undertaking and we move it, as well as the proof of the theorem, to MA 1+.

The number π can be defined in two ways. Firstly, π = 3.14159 . . . is twice
the minimum x > 0 such that cosx = 0. Secondly, 2π is the circumference of S,
that is, the time when the runner passes for the second time through the point
(1, 0). The second definition is informal because we define the length of a circular
arc only in MA 1+. Then we prove the equivalence of both definitions. Thus
the next basic properties of sine and cosine are given here only conditionally,
assuming Theorem 4.3.19.

Exercise 4.3.20 Deduce from Theorem 4.3.19 the next proposition.

Proposition 4.3.21 (properties of sinx and cosx) These properties are as
follows.

1. Both sinx and cosx is a 2π-periodic function: cos(t + 2π) = cos t and
sin(t+ 2π) = sin t.

2. On [0, π2 ] sine increases from 0 to 1.

3. ∀ t ∈ [0, π]
(

sin(t) = sin(π − t)
)

and ∀ t ∈ [0, 2π]
(

sin(t) = − sin(2π − t)
)
.

4. For every t ∈ R we have that cos t = sin(t+ π
2 ) and cos2 t+ sin2 t = 1.

5. The summation formulae hold: for every s, t ∈ R,

sin(s± t) = sin s · cos t± cos s · sin t and

cos(s± t) = cos s · cos t∓ sin s · sin t .

Exercise 4.3.22 (Euler’s formula) ∀ t
(

exp(it) = cos t+ i sin t
)
, i ≡

√
−1.
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• The functions tangent and cotangent in R are defined by tan t ≡ sin t
cos t and

cot t ≡ cos t
sin t .

Exercise 4.3.23 M(tan) = R \ { (2m−1)π2 : m ∈ Z} and M(cot) = R \ {mπ :
m ∈ Z}.

• The function arcsine (inverse sine) arcsinx : [−1, 1] → R and arccosine (in-
verse cosine) arccosx : [−1, 1]→ R is congruent to the inverse of the restriction
of sinx and cosx to the interval [−π2 ,

π
2 ] and [0, π], respectively.

Exercise 4.3.24 Thus they are (congruent to) the bijections

arcsin : [−1, 1]→ [−π2 ,
π
2 ] and arccos : [−1, 1]→ [0, π] .

For simplicity of notation we denote these pairs of congruent functions by the
same symbols.

• The function arctangent (inverse tangent) arctan: R → R and arccotangent
(inverse cotangent) arccotx : R→ R is the inverse of the restriction of tanx and
cotx to the interval (−π2 ,

π
2 ) and (0, π), respectively.

Exercise 4.3.25 Thus they are (congruent to) the bijections

arctan: R→ (−π2 ,
π
2 ) and arccot : R→ (0, π) .

We again denote two congruent functions by the same symbol.

4.4 Elementary Functions

In this section we define the set of Elementary Functions.

• Six operations on functions. We introduce and remind six operations on the
set of functions R. Recall that R is the set of functions f of the type f : M → R
where M ⊂ R.

Definition 4.4.1 (six operations on R) Let f, g ∈ R.

1. Sum f + g : M(f) ∩M(g)→ R has values (f + g)(x) ≡ f(x) + g(x).

2. Product fg = f · g : M(f) ∩M(g)→ R has values (fg)(x) ≡ f(x)g(x).

3. Ratio (division) f/g : M(f)∩M(g)\Z(g)→ R, where Z(g) = {x ∈M(g) :
g(x) = 0}, has values (f/g)(x) ≡ f(x)/g(x).

4. Recall that for any set X restriction f |X : M(f) ∩ X → R has values
(f |X)(x) ≡ f(x).

5. Recall that composition f(g) = f ◦ g : M(f(g)) → R, where M(f(g)) ≡
{x ∈M(g) : g(x) ∈M(f)}, has values f(g)(x) ≡ f(g(x)).
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6. Finally recall that if f is injective then inverse f−1 : f [M(f)] → R has
values f−1(y) ≡ x iff f(x) = y.

The operations in parts 1, 2, 3 and 5 are binary; in parts 4 and 6 they are unary.
In part 4 we have a set system of unary operations indexed by subsets of R. The
unary operation in part 6 is partial because it is not defined on non-injective
functions. The ratio operation in part 3 is always defined; in this functional
arithmetic there is nothing like the forbidden division by zero. In Chapter 7 we
introduce another, seventh, operation on R, the unary operation of derivative
f 7→ f ′.

Exercise 4.4.2 Prove the following proposition.

Proposition 4.4.3 (monoids of functions) Let R be as in Definition 4.2.6,
0R ≡ k0(x) and 1R ≡ k1(x). The structures

Ramo ≡ 〈R, 0R, +〉 and Rmmo = 〈R, 1R, ·〉

are commutative monoids, that is, the above operations + and · are commutative
and associative, and have neutral elements 0R and 1R. They are not groups
because inverses in general do not exist (but see Exercise 4.4.9). Operation · is
distributive to +, always

f · (g + h) = (f · g) + (f · h) .

Let f, g ∈ R. Their difference is the function f − g : M(f)∩M(g)→ R with
values (f − g)(x) ≡ f(x)− g(x).

Exercise 4.4.4 For every f, g ∈ R it holds that f − g = f + (k−1 · g).

• “How elementary, dear Watson!” 1 We define the set of so called Elementary
Functions; sometimes it is confounded with the previous set BEF.

Definition 4.4.5 (EF 1) A function f ∈ R is elementary ⇐⇒ there exist
n ∈ N and functions fi ∈ R, i ∈ [n], such that fn = f and for every i ∈ [n] one
has that fi ∈ BEF or there exist indices j, k ∈ [i− 1] such that fi = fj + fk or
fi = fj · fk or fi = fj/fk or fi = fj(fk). The set of elementary functions is
denoted as EF and is called the Elementary Functions.

Clearly, every function fi in the generating word f1, f2, . . . , fn (of fn) is elemen-
tary too. Said less formally and less precisely, we get EF from BEF by repeated
applications of addition, multiplication, division, and composition. For exam-
ple, the identity function id(x) ≡ x for every x ∈ R is elementary because
id(x) = log(expx).

1By [13] the only “elementary” statement in the work of A. C. Doyle on Sherlock Holmes is
found in the story The Crooked Man and reads: “ ‘Excellent!’ I [Watson] cried. ‘Elementary,’
said he.” All other “elementary” exclamations of S. Holmes originate probably in movie and
TV adaptations. The Czech version “Jak prosté, milý Watsone!”, if not “elementary”, even
rhymes.
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Exercise 4.4.6 The absolute value |x| (∈ F(R)) is elementary.

Exercise 4.4.7 k1(x)/k0(x) =?

Exercise 4.4.8 Is the empty function ∅ elementary?

Exercise 4.4.9 For every f ∈ EF there is a unique g ∈ EF such that M(g) =
M(f) and f + g = k0 |M(f).

We remind the types of real intervals given in Proposition 3.3.7:

I ≡ {∅, {a},R, (a, b), (−∞, a), (a,+∞), (a, b], [a, b), [a, b], (−∞, a], [a,+∞)} ,

for any a, b ∈ R with a < b.

Proposition 4.4.10 (interval restrictions) For every f ∈ EF and every in-
terval I ∈ I it holds that f | I ∈ EF.

Proof. It suffices to show that for every interval I ∈ I the function g ≡ k0 | I is
elementary. Then f + g gives the required restriction. For I = ∅ let g ≡ k1/k0.
For I = {a} let g ≡

√
a− x+

√
x− a. For I = (−∞, b] let g ≡

√
b− x−

√
b− x.

For I = R let g ≡ k0. For I = (a, b) let g ≡ log(x−a) + log(b−x)− log(x−a)−
log(b−x). Of course, x is id(x), a is ka(x) and b is kb(x). For other intervals in
I we combine these square roots and logarithms in similar ways. 2

Exercise 4.4.11 Find f, g ∈ EF such that M(f) = Z and M(g) = R \ ({0} ∪
{ 1n : n ∈ Z \ {0}}).

BEF contains many redundant functions that can be expressed from other
functions in BEF: cosx = sin(x + π/2), tanx = sin x

cos x , cotx = cos x
sin x , arccosx =

π
2 + arcsinx, arctanx = arcsin

(
x/
√

1 + x2
)

and arccotx = π
2 − arctanx. For

real exponentiation we have the following reduction.

Exercise 4.4.12 Show that of the functions in Definitions 4.3.11 and 4.3.12 it
suffices to keep just the functions xb, b ∈ (0,+∞) \N, which lie in F([0,+∞)).

We remove from BEF these redundant functions and get the next set of
functions.

Definition 4.4.13 (RBEF) Really Basic Elementary Functions are: the con-

stants kc(x) for c ∈ R, expx, log x, xb for b > 0 and b 6∈ N, sinx and arcsinx.

In MA 1+ we show that functions xb for b ∈ (0,+∞)\N cannot be expressed in
terms of other functions in RBEF. Now we can give a more compact definition
of EF.

Definition 4.4.14 (EF 2) In Definition 4.4.5 the set of functions BEF may
be replaced with the smaller set RBEF.
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For example, the function
√
x ≡ x1/2, which is in F([0,+∞)), is in RBEF. Note

that exp( 1
2 log x) 6=

√
x because M(exp( 1

2 log x)) = (0,+∞). We return to EF
in MA 1+ where we prove that some antiderivatives are non-elementary.

The elementary function |x|
x : R \ {0} → {−1, 1} is −1 for x < 0 and 1

for x > 0. It resembles the function signum sgn: R → {−1, 0, 1} given by
sgnx = −1 for x < 0, sgn 0 = 0 and sgnx = 1 for x > 0.

Proposition 4.4.15 (sgn 6∈ EF) However, sgn 6∈ EF.

Proof. Every elementary function is continuous, see Definition 6.1.1 and The-
orem 6.6.16, but sgnx is not continuous. 2

Maybe we should reconsider the definition of EF so that sgnx is elementary
after all. We return to this in MA 1+.

Exercise 4.4.16 Give examples of functions in EF which are not differentiable
in some points of their definition domain.

4.5 Polynomials and Rational Functions

We define these subsets of R by restricting generation of Elementary Functions
in Definition 4.4.5.

• Polynomials. We propose somewhat unorthodox, at least for the textbook of
mathematical analysis, approach to polynomials.

Definition 4.5.1 (POL) A function f ∈ R is a polynomial ⇐⇒ there exist
n ∈ N and functions fi ∈ R, i ∈ [n], such that fn = f and for every i ∈ [n] one
has that fi ∈ {kc(x) : c ∈ R} ∪ {id(x)} or there exist indices j, k ∈ [i− 1] such
that fi = fj + fk or fi = fj · fk. The set of polynomials is denoted as POL and
is called the Polynomials.

It is clear that every function fi, i ∈ [n], is a polynomial. In our approach
polynomials arise from identity and constants by repeated addition and multi-
plication. We show that every polynomial has the well known canonical form.
For f ∈ R and n ∈ N0 we define the power fn for n = 0 as f − f + k1
(= k1 |M(f)) and for n > 0 as f · f · . . . · f with n factors f .

Proposition 4.5.2 (canonical form) Every polynomial p has M(p) = R and
either p = k0 and is the zero polynomial or p has the unique canonical form

p =
∑n
j=0 kaj · id

j
R (= a0 + a1x+ a2x

2 + · · ·+ anx
n)

with n ∈ N0, aj ∈ R & an 6= 0.
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Proof. It is immediate that M(p) = R for every p ∈ POL. Let p be a poly-
nomial. By Definition 4.5.1, p = fn has the generating word f1, . . . , fn. We
use induction on n. If n = 1 then either p is the zero polynomial or it has the
canonical form p = kc · id0

R with c 6= 0 or p = k0 · id0
R + k1 · id1

R. Let n > 1. If
p = fn is a constant or the identity, we are in the previous case. Let p = fj +fk
or p = fj · fk with 1 ≤ j, k < n. Then either fj is the zero polynomial or, by
induction, has the canonical form. The same holds for fk. If fj or fk is the zero
polynomial, we see that p is the zero polynomial or has the canonical form. If
both fj and fk has the canonical form, we see with the help of Proposition 4.4.3
that p is the zero polynomial or has the canonical form.

Uniqueness of canonical forms follows from the next exercise. Suppose that p
has two distinct canonical forms. By Proposition 4.4.3 we see that the difference
p− p has also canonical form. By Exercise 4.5.3 the polynomial p− p has only
finitely many zeros. This is a contradiction because p− p = k0. 2

The degree deg p of a nonzero polynomial p is the index n ∈ N0 in its canonical
form. It is useful to set deg k0 ≡ −∞.

Exercise 4.5.3 Show that every nonzero polynomial p has finite set Z(p) =
{b ∈ R : p(b) = 0} of zeros.

An integral domain is a ring in which product of two nonzero elements is
never zero.

Exercise 4.5.4 Prove the following proposition.

Proposition 4.5.5 (POL is ID) The structure R[x] ≡ 〈POL, k0, k1,+, ·〉 is
an integral domain.

• Rational functions. Their definition is very similar to the definition of poly-
nomials, we only add the operation of division. But the result is that we get in
a considerably more complicated situation.

Definition 4.5.6 (RAC) A function f ∈ R is rational ⇐⇒ there exist n ∈ N
and functions fi ∈ R, i ∈ [n], such that fn = f and for every i ∈ [n] one has
that fi ∈ {kc(x) : c ∈ R} ∪ {id(x)} or there exist indices j, k ∈ [i − 1] such
that fi = fj + fk or fi = fj · fk or fi = fj/fk. The set of rational functions is
denoted as RAC and is called the Rational Functions.

Again every function fi, i ∈ [n], in the generating word is rational. Our rational
functions arise from constants and the identity by repeated addition, multipli-
cation and division. For instance, the function 1

x = k1/id (∈ F(R \ {0})) is
rational. Every polynomial is rational, POL ⊂ RAC. The empty function ∅ is
not a polynomial but is rational because, for example, ∅ = k1/k0. For obtain-
ing canonical forms of functions in RAC we need three lemmas confirming on
computations with ratios in R.
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Lemma 4.5.7 (adding two ratios) For every four functions f1, g1, f2 and
g2 in R it holds that

F ≡ f1
g1

+
f2
g2

=
f1g2 + f2g1

g1g2
≡ G .

Proof. The definition domain M(F ) = M(f1/g1) ∩M(f2/g2) equals to(
(M(f1) ∩M(g1)) \ Z(g1)

)
∩
(
(M(f2) ∩M(g2)) \ Z(g2)

)
.

The definition domain M(G) = (M(f1g2 + f2g1)∩M(g1g2)) \Z(g1g2) equals to(
(M(f1) ∩M(g2)) ∩ (M(f2) ∩M(g1)) ∩ (M(g1) ∩M(g2))

)
\ (Z(g1) ∪ Z(g2)) .

The equality Z(g1g2) = Z(g1) ∪ Z(g2) follows from the fact that R, like any
field, is an integral domain. M(F ) = M(G) because it is easy to see that both
displayed sets are equal to the set(

M(f1) ∩M(f2) ∩M(g1) ∩M(g2)
)
\
(
Z(g1) ∪ Z(g2)

)
.

Due to the arithmetic in R we know that F (x) = G(x) for every x ∈ M(F ) =
M(G). Hence F = G. 2

The proof of the second lemma is similar and we omit it.

Lemma 4.5.8 (multiplying two ratios) For every four functions f1, g1, f2
and g2 in R it holds that

f1
g1
· f2
g2

=
f1f2
g1g2

.

We prove the third lemma; the next exercise shows that it is a bit tricky.

Exercise 4.5.9 It is not true that for every four functions f1, g1, f2 and g2 in
R it holds that

f1/g1
f2/g2

=
f1g2
f2g1

Lemma 4.5.10 (ratio of two ratios) For every four functions f1, g1, f2 and
g2 in R it holds that

F ≡ f1/g1
f2/g2

=
f1g

2
2

f2g1g2
≡ G .

Proof. Then M(F ) = (M(f1/g1) ∩M(f2/g2)) \ Z(f2/g2) equals to(
(M(f1) ∩M(g1) \ Z(g1)) ∩ (M(f2) ∩M(g2) \ Z(g2))

)
\
(
Z(f2) \ Z(g2)

)
.

Then M(G) = (M(f1g
2
2) ∩M(f2g1g2)) \ Z(f2g1g2)) equals to(

M(f1) ∩M(f2) ∩M(g1) ∩M(g2)
)
\
(
Z(f2) ∪ Z(g1) ∪ Z(g2)

)
.
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Thus M(F ) = M(G) because both displayed sets are clearly equal to(
M(f1) ∩M(f2) ∩M(g1) ∩M(g2)

)
\
(
Z(g1) ∪ Z(f2) ∪ Z(g2)

)
.

Due to the arithmetic in R we know that F (x) = G(x) for every x ∈ M(F ) =
M(G). Hence F = G. 2

Proposition 4.5.11 (canonical form) Every nonempty rational function r
has M(r) = R \Z, where Z ⊂ R is a finite set, and there exist two polynomials
p and q such that q 6= k0, Z = Z(q) and r = p/q.

Proof. Let r ∈ RAC. By Definition 4.5.6, r = fn has the generating word
f1, . . . , fn. We proceed by induction on n. If n = 1 then r is a constant or the
identity and has the canonical form kc/k1 or id/k1. Let n > 1. If r = fn is
a constant or the identity, we are in the previous case. Suppose that j and k
with 1 ≤ j, k < n are such that r = fj + fk or r = fj · fk or r = fj/fk. Then
fj = ∅ or by induction fj has a canonical form, and the same holds for fk. If
fj = ∅ or fk = ∅ then also r = ∅.

It remains to deal with the case of canonical forms fj = p/q and fk = p′/q′,
where M(fj) = R \ Z(q) and M(fk) = R \ Z(q′). We consider the three stated
cases for r. In the first case we have by Lemma 4.5.7 that

r = fj + fk = pq′+p′q
qq′ .

The numerator and the denominator are polynomials and qq′ 6= k0, due to
Proposition 4.5.5. Also, M(r) is

M(fj) ∩M(fk) = (R \ Z(q)) ∩ (R \ Z(q′)) = R \ (Z(q) ∪ Z(q′)) = R \ Z(qq′) .

Hence we have a canonical form for r. In the second case we have by by
Lemma 4.5.8 that

r = fjfk = pp′

qq′

and like in the first case we see that this is a canonical form for r. Finally in
the third case we have by Lemma 4.5.10 that

r = fj/fk = p(q′)2

qq′p′ .

The numerator and the denominator are polynomials. If p′ = k0 then r = ∅,
else qq′p′ 6= k0. Also, M(r) is

M(fj) ∩M(fk) \ Z(fk) = (R \ Z(q)) ∩ (R \ Z(q′)) \ (Z(p′) \ Z(q′))

= R \ (Z(q) ∪ Z(q′) ∪ Z(p′)) = R \ Z(qq′p′) .

We again have a canonical form for r. 2

Unlike for polynomials, canonical forms of rational functions are not unique. For

instance, both 0+1x
0+1x and 0+0x+1x2

0+0x+1x2 is a canonical form of the rational function
x/x = id/id (= k1 |R \ {0}).
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We introduce the congruence ∼ on RAC \ {∅} by setting

r ∼ s def⇐⇒ r |M(s) = s |M(r) .

Exercise 4.5.12 Show that ∼ is an equivalence relation.

For example, k1 ∼ x/x ∼ (x · (x− 1))/(x · (x− 1)).

Exercise 4.5.13 Prove the next proposition.

Proposition 4.5.14 (the field R(x)) The structure

R(x) ≡ 〈(RAC \ {∅})/∼, [k0]∼, [k1]∼, +, ·〉

is a field, the field of rational functions.

Unlike in algebra, elements of our R(x) are really functions, more precisely
equivalence blocks of them.
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Chapter 5

Limits of functions.
Asymptotic notation

This chapter reflects my lecture

https://kam.mff.cuni.cz/~klazar/MAI24_pred5.pdf

given on March 21, 2024. We begin with Section 5.1 on one-sided limits of
functions. Propositions 5.1.7 and 5.1.13 describe relations between ordinary and
one-sided limits. In Section 5.2 we introduce pointwise continuity of functions.
In Proposition 5.2.5 we characterize it by limits, and in Exercise 5.2.6 by Heine’s
definition. Section 5.3 contains Theorem 5.3.1 on limits of monotone functions,
Theorem 5.3.3 on arithmetic of limits of functions, Theorem 5.3.7 on relations
of limits of functions and the order (R∗, <) and the squeeze Theorem 5.3.11. In
Section 5.4 we present Theorem 5.4.1 on limits of composite functions in a form
stronger than it is common. In the final Section 5.5 we explain asymptotic
symbols O, �, �, Ω, Θ, �, o, ω and ∼. We discuss asymptotic expansions of
functions and give three examples of them.

5.1 One-sided limits

The complement of a point a to the real axis is R\{a} = (−∞, a)∪(a,+∞) and
comprises two separated intervals. In the plane R2 we can go around a point but
in the real line R this is impossible. So we consider left-sided and right-sided
limits of functions. We begin with one-sided neighborhoods.

• One-sided neighborhoods and one-sided limit points. Left, respectively right,
ε-neighborhood of a point b ∈ R is

U−(b, ε) ≡ (b− ε, b], respectively U+(b, ε) ≡ [b, b+ ε) .

Left, respectively right, deleted ε-neighborhood of a point b is

P−(b, ε) ≡ (b− ε, b), respectively P+(b, ε) ≡ (b, b+ ε) .
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A point b ∈ R is a left, respectively right, limit point of M ⊂ R if

∀ ε
(
P−(b, ε) ∩M 6= ∅

)
, respectively ∀ ε

(
P+(b, ε) ∩M 6= ∅

)
.

The set of these points is denoted by L−(M), respectively L+(M) (⊂ R).
A point b ∈ R is a two-sided limit point of M ⊂ R if

∀ ε
(
P−(b, ε) ∩M 6= ∅ ∧ P+(b, ε) ∩M 6= ∅

)
.

The set of these points is denoted by LTS(M) (⊂ R). Two-sided limit points
play key role in the criterion of local extremes. We do not define one-sided
neighborhoods for infinities, nor ±∞ can be a one-sided limit point of a set.

Exercise 5.1.1 b ∈ L−(M), respectively b ∈ L+(M) ⇐⇒ ∃ (an) ⊂ (−∞, b) ∩
M , respectively ∃ (an) ⊂ (b,+∞) ∩M , such that lim an = b.

Exercise 5.1.2 Let M ⊂ R and b ∈ R. Prove the following.
1. b ∈ L−(M) ⇒ b ∈ L(M).
2. b ∈ L+(M) ⇒ b ∈ L(M).
3. b ∈ L(M) ⇒ b ∈ L−(M) or b ∈ L+(M).
4. It can be that b ∈ L(M) but b 6∈ L−(M) or b 6∈ L+(M).

By Exercise 4.2.3 no finite set has a limit point, the less one-sided limit point.
By Exercise 4.2.4 every infinite real set has a limit point. This is not true for
one-sided limit points.

Exercise 5.1.3 Give an example of an infinite subset of R that has no one-sided
limit points. Hint: ±∞ is never a one-sided limit point.

Exercise 5.1.4 Every infinite and bounded real set has a one-sided limit point.

• One-sided limits of functions. We refine limits of functions by one-sided limits.

Definition 5.1.5 (one-sided limit) Let f ∈ F(M), b ∈ L−(M) and L be
in R∗. If for every ε there is a δ such that f [P−(b, δ)] ⊂ U(L, ε), we write
limx→b− f(x) = L and say that the function f has in b the left-sided limit L.
By replacing the sign − with the sign + we get the right-sided limit in b, denoted
by limx→b+ f(x) = L.

Like for the ordinary limit, the one-sided limit in b is not defined if b is not
the respective one-sided limit point. Again if limx→b± f(x) exists, it means in
particular that b is the respective one-sided limit point.

Exercise 5.1.6 Prove the following proposition.

Proposition 5.1.7 (on one-sided limits) The following hold.
1. limx→a f(x) = L ⇒ limx→a− f(x) = L or limx→a+ f(x) = L.
2. limx→a− f(x) = limx→a+ f(x) = L ⇒ limx→a f(x) = L.
3. limx→a− f(x) = K, limx→a+ f(x) = L and K 6= L ⇒ ¬∃ limx→a f(x).
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For instance, the limit limx→0 sgnx does not exist because limx→0− sgnx = −1
and limx→0+ sgnx = 1.

Exercise 5.1.8 Prove the following proposition.

Proposition 5.1.9 (uniqueness of limx→b± f(x)) If limx→b± f(x) = K and
limx→b± f(x) = L then K = L (equal signs).

Exercise 5.1.10 Prove the following proposition.

For b ∈ R let I−(b) ≡ (−∞, b) and I+(b) ≡ (b,+∞).

Proposition 5.1.11 (Heine’s definition of limx→b± f(x)) Suppose that f is
in F(M) and that b is in L±(M). Then limx→b± f(x) = L ⇐⇒ for every
sequence (an) ⊂ M ∩ I±(b) with lim an = b one has that lim f(an) = L (equal
signs).

Sometimes ordinary limits are unnecessarily replaced with one-sided lim-
its. For example, we can sometimes read that limx→0+ log x = −∞. By our
definitions we can write simply that limx→0 log x = −∞. Here

lim
x→0

log x = lim
x→0+

log x = −∞

but limx→0− log x is not defined because 0 6∈ L−(M(log x)) = L−((0,+∞)). In
conclusion we mention one more relation between ordinary and one-sided limits.
We use it in the proof of Corollary 5.4.5.

Exercise 5.1.12 Prove the following proposition.

Proposition 5.1.13 (using restriction) Let f ∈ F(M) and b ∈ L±(M).
Then limx→b± f(x) = L ⇐⇒ limx→b(f | I±(b))(x) = L (equal signs).

5.2 Point-wise continuity

• Continuity of a function in a point of the definition domain. We arrive at an
important definition.

Definition 5.2.1 (pointwise continuity) Let f ∈ F(M) and b ∈ M . We
say that f is continuous in b if for every ε there is a δ such that f [U(b, δ)] ⊂
U(f(b), ε). Else we say that f is discontinuous in b.

Exercise 5.2.2 So when is a function f discontinuous in b (∈M(f))?
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For example sgnx is discontinuous in x = 0, but it is continuous in every
other point. If b 6∈ M(f) then the function f is in b neither continuous nor
discontinuous. Comparing the above definition with that of limx→b f(x) = L
we see that L is replaced with f(b), and the deleted neighborhood P (b, δ) with
the ordinary neighborhood U(b, δ).

Proposition 5.2.3 (locality of continuity) If f, g ∈ R, b ∈ M(f) ∩M(g)
and there is a θ such that f = g on U(b, θ) then f is continuous in b ⇐⇒ g is
continuous in b.

Proof. This is immediate from Definition 5.2.1 because we can take the δ in it
such that δ ≤ θ. Then U(b, δ) ⊂ U(b, θ) and f [U(b, δ)] = g[U(b, δ)]. 2

Exercise 5.2.4 A function f is continuous in b ∈ M(f) iff for every ε there
exists a δ such that x ∈M(f) ∧ |x− b| ≤ δ ⇒ |f(x)− f(b)| ≤ ε.

Continuity of f in b is not equivalent with limx→b f(x) = f(b). This only holds
in limit points of M .

Proposition 5.2.5 (on pointwise continuity) For any function f ∈ F(M)
and any point b ∈ M ∩ L(M) the claims 1, 2 and 3 simultaneously hold, or
simultaneously do not hold.
1. The function f is continuous in b.
2. The limit limx→b f(x) = f(b).
3. For every sequence (an) ⊂M with lim an = b it holds that lim f(an) = f(b).

Proof. The implication 1 ⇒ 2. Let f be continuous in b by Definition 5.2.1
and an ε be given. Thus there is a δ such that f [U(b, δ)] ⊂ U(f(b), ε). Then
b ∈ L(M(f)) and also f [P (b, δ)] ⊂ U(f(b), ε). Hence limx→b f(x) = f(b).

The implication 2 ⇒ 3. Suppose that limx→b f(x) = f(b), that (an) ⊂ M
has lim an = b and that an ε is given. Thus there is a δ such that

f [P (b, δ)] ⊂ U(f(b), ε) . (∗)

We take an n0 such that n ≥ n0 ⇒ an ∈ U(b, δ). Then also n ≥ n0 ⇒
f(an) ∈ U(f(b), ε): for an 6= b we use the inclusion (∗), and for an = b it holds
that f(an) = f(b) ∈ U(f(b), ε). Hence lim f(an) = f(b).

The implication 3⇒ 1. We prove its reversal ¬1⇒ ¬3. Suppose that f is not
continuous in b. Then there is an ε such that ∀ δ ∃ a = a(δ) ∈ U(b, δ) ∩M with
f(a) 6∈ U(f(b), ε). For every n we chose such an = a(1/n) and get the sequence
(an) ⊂M such that lim an = b, but for every n it holds that f(an) 6∈ U(f(b), ε).
Hence (f(an)) does not converge to f(b) and part 3 does not hold. 2

We proved the last implication again with the help of the axiom of choice. Part 3
describes Heine’s definition of pointwise continuity. The next exercise makes it
more precise.
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Exercise 5.2.6 In Proposition 5.2.5 in the equivalence 1 ⇐⇒ 3 it is possible to
omit the assumption that b ∈ L(M). Thus f is continuous in a point b ∈M(f)
⇐⇒ for every sequence (an) ⊂M with lim an = b one has that lim f(an) = f(b).

The right side of this equivalence is sometimes taken as the definition of point-
wise continuity.

• Isolated points. Let M ⊂ R. The set M \ L(M) consists of so called
isolated points of M .

Exercise 5.2.7 A point b ∈ M is an isolated point of M ⊂ R iff for some ε it
holds that U(b, ε) ∩M = {b}.

Exercise 5.2.8 Let b ∈ M ⊂ R. Then b is either a limit point of M or an
isolated point of M .

Proposition 5.2.9 (continuity in isolated points) Every function f ∈ R
is continuous in every isolated point of M(f).

Proof. Let f ∈ F(M) and b ∈ M be an isolated point. By Exercise 5.2.7
there is a δ such that U(b, δ) ∩M = {b}. For this δ the inclusion f [U(b, δ)] =
f [{b}] = {f(b)} ⊂ U(f(b), ε) holds for every ε. Hence f is continuous in b by
Definition 5.2.1. 2

Thus every sequence (an) ⊂ R, understood as a function a ∈ F(N), is continuous
in every point n of its definition domain N.

Exercise 5.2.10 A function f ∈ F(M) is not continuous in b ∈M ⇐⇒ there
is a sequence (an) ⊂M such that lim an = b and lim f(an) = A 6= f(b).

• One-sided continuity. A function f is left-continuous in b ∈M(f) if for every
ε there is a δ such that f [U−(b, δ)] ⊂ U(f(b), ε). By replacing the sign − with
the sign + we get the right-continuity.

Exercise 5.2.11 A function is continuous at a point iff it is both left- and
right-continuous at the point.

• Riemann’s function. It is the function r ∈ F(R) with values r(x) = 0 for

x ∈ R \Q and r(mn ) = 1
n if the fraction m

n is in lowest terms.

Proposition 5.2.12 (on Riemann’s function) Riemann’s function is con-
tinuous exactly at irrational numbers.

Proof. Let x = m
n be a fraction in lowest terms and ε ≤ 1

n . For every δ there
is an irrational α ∈ U(x, δ). But r(α) = 0 6∈ U(r(x), ε) = U( 1

n , ε), so that r is
discontinuous in x. Let x ∈ R \Q and an ε ∈ (0, 1) be given. We set

M ≡ {|x− m
n | :

m
n ∈ Q ∩ U(x, 1) ∧ 1

n ≥ ε} and δ ≡ min(M) .
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This δ exists and is positive because by Exercise 5.2.13 the set M 6= ∅ and is
a finite set of positive real numbers. For this δ we have that y ∈ U(x, δ) ⇒
r(y) ∈ U(r(x), ε) = U(0, ε) — for every y ∈ U(x, δ) we have that r(y) = 0 or
r(y) = 1

n < ε. Hence r is continuous in x. 2

Exercise 5.2.13 Why is M a nonempty finite set of positive real numbers?

5.3 Limits and order, arithmetic of limits

We extend these kind of results obtained earlier for limits of sequences to limits
of functions.

• Limits of monotone functions. Let f ∈ F(M) and X be any set. A function
f weakly increases, respectively weakly decreases, on X if for every x ≤ y in
X ∩ M we have that f(x) ≤ f(y), respectively that f(x) ≥ f(y). Weakly
increasing or weakly decreasing f is monotone on X. Note that X need not be
a subset of M .

Theorem 5.3.1 (limits of monotone functions) Let f ∈ F(M). The fol-
lowing hold.
1. If b ∈ L−(M) and there is a θ such that f weakly increases on P−(b, θ) then

lim
x→b−

f(x) = sup(f [P−(b, θ)]) .

2. If +∞ ∈ L(M) and there is a θ such that f weakly increases on U(+∞, θ)
then

lim
x→+∞

f(x) = sup(f [U(+∞, θ)]) .

Suprema are taken in the LO (R∗, <).

Proof. 1. Let f , M , b and θ be as stated and an ε be given. We set A ≡
sup(f [P−(b, θ)]) and take any a ∈ U(A, ε) with a < A. By the definition
of supremum there is a c ∈ P−(b, θ) ∩ M such that a < f(c) ≤ A. We set
δ ≡ b− c. For every d ∈ M with c < d < b it holds that a < f(c) ≤ f(d) ≤ A.
Hence, by Exercise 2.1.11, f(d) ∈ U(A, ε). Thus f [P−(b, δ)] ⊂ U(A, ε) and
limx→b− f(x) = A.

2. Let f , M and θ be as stated and an ε be given. A ≡ sup(f [U(+∞, θ)])
and we take any a ∈ U(A, ε) with a < A. By the definition of supremum there
is a c ∈ U(+∞, θ)∩M such that a < f(c) ≤ A. We set δ ≡ 1

c . For every d ∈M
with c < d it holds that a < f(c) ≤ f(d) ≤ A. Using Exercise 2.1.11 we get
that f(d) ∈ U(A, ε). Hence f [U(+∞, δ)] ⊂ U(A, ε) and limx→+∞ f(x) = A. 2

The theorem is not valid for ordinary limits: the function sgn: R → {−1, 0, 1}
weakly increases on R but limx→0 sgnx does not exist. We find ordinary limits of
monotone functions by reducing them via Proposition 5.1.7 to one-sided limits.
These we compute by means of the previous theorem and the next exercise.
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Exercise 5.3.2 Describe further variants of the theorem: for locally weakly
decreasing functions and/or the right-sided limit in b, respectively in −∞.

• Arithmetic of limits of functions. We extend arithmetic of limits (AL) from
sequences to functions. In proofs we use Heine’s definition of limits of functions.

Theorem 5.3.3 (AL of functions) Let f, g ∈ R, A ∈ L(M(f) ∩ M(g)),
limx→A f(x) = K and limx→A g(x) = L. Then limx→A(f + g)(x) = K + L,
limx→A(fg)(x) = KL and limx→A(f/g)(x) = K/L, if the expression on the
right side is not indefinite.

Proof. We only consider ratio, the proofs for sum and product are similar and
easier. We assume that K/L is not an indefinite expression. Then L 6= 0 and
A ∈ L(M(f/g)) (Exercise 5.3.4). Let (an) ⊂ M(f/g) \ {A} be any sequence
with lim an = A. The implication ⇒ in Heine’s definition of limits of functions
gives that lim f(an) = K and lim g(an) = L. Using Theorem 3.1.2 we get that

lim f(an)
g(an)

= lim f(an)
lim g(an)

= K
L . Since for every sequence (an) as above the sequence( f(an)

g(an)

)
= ((f/g)(an)) has this limit, the implication ⇐ in Heine’s definition of

limits of functions gives that also limx→A(f/g)(x) = K/L. 2

Exercise 5.3.4 Why for L 6= 0 is A ∈ L(M(f/g))?

Using Proposition 5.1.13 we get easily variants of the previous theorem for one-
sided limits.

Exercise 5.3.5 Deduce from the theorem the next corollary.

Corollary 5.3.6 (the limit of 1
g 1) If g ∈ R and limx→A g(x) = B 6= 0 then

limx→A(k1/g)(x) = limx→A
1

g(x) = 1
B .

• Limits of functions and the LO (R∗, <). Recall that forM,N ⊂ R the notation
M < N means that for every a ∈M and b ∈ N it holds that a < b. Also recall
that for any function f and any set X,

f [X] = f [X ∩M(f)] = {f(x) : x ∈ X ∩M(f)} .

In the next theorem and proposition we have f, g ∈ R.

Theorem 5.3.7 (limits versus order 2) Suppose that limx→A f(x) = K and
limx→B g(x) = L (possibly A 6= B). Then the following hold.
1. If K < L then there is a δ such that f [P (A, δ)] < g[P (B, δ)].
2. If for every δ > 0 there exist an x ∈ P (A, δ)∩M(f) and a y ∈ P (B, δ)∩M(g)
such that f(x) ≥ g(y), then K ≥ L.
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Proof. 1. Since K < L,by Exercise 2.1.12 there is an ε such that U(K, ε) <
U(L, ε). Then by the assumption there is a δ such that f [P (A, δ)] ⊂ U(K, ε)
and g[P (B, δ)] ⊂ U(L, ε). Hence f [P (A, δ)] < g[P (B, δ)].

2. Part 2 is the reversal of the implication in part 1. 2

One can strengthen the theorem in the same way as Proposition 3.3.6 strength-
ens Theorem 3.3.1.

Exercise 5.3.8 Prove the following proposition.

Proposition 5.3.9 (strengthening Theorem 5.3.7) Let limx→A f(x) = K
and limx→B g(x) = L (possibly A 6= B). Then the following hold.
1. If K < L then there exist a δ and two numbers a, b, such that f [P (A, δ)] <
{a} < {b} < g[P (B, δ)].
2. If for every δ and every two real numbers a < b there is an x ∈ P (A, δ)∩M(f)
and a y ∈ P (B, δ) ∩M(g) such that f(x) ≥ a or g(y) ≤ b, then K ≥ L.

Exercise 5.3.10 State versions of Theorem 5.3.7 and Proposition 5.3.9 for
one-sided limits and prove them.

As we know, I(a, b) denotes the real interval {x ∈ R : min({a, b}) ≤ x ≤
max({a, b})}.

Theorem 5.3.11 (squeeze theorem 2) Suppose that f, g, h ∈ F(M), that
limx→K f(x) = limx→K g(x) = L and that there is a θ such that for every
x ∈ P (K, θ) ∩M it holds that h(x) ∈ I

(
f(x), g(x)

)
. Then limx→K h(x) = L.

Proof. Let f , g, h, M , K, L and θ be as stated and an ε be given. We
take a δ ≤ θ such that for every x ∈ P (K, δ) ∩M the values f(x) and g(x) lie
in U(L, ε). For these x it holds that h(x) ∈ I

(
f(x), g(x)

)
⊂ U(L, ε) because

U(L, ε) is a convex set. Hence h[P (K, δ)] ⊂ U(L, ε) and limx→K h(x) = L. 2

5.4 Limits of composite functions

Composing functions has no analogue for sequences, which makes the next the-
orem a relative novelty. It is usually stated as an implication but we present it
as an equivalence.

• A theorem on limits of composite functions. In the following f, g ∈ R. Recall
that f(g) : M(f(g)) → R has the definition domain M(f(g)) = {x ∈ M(g) :
g(x) ∈M(f)}. It is a subset, possibly proper, of M(g).

Theorem 5.4.1 (limits of CF) Let limx→A g(x) = K, limx→K f(x) = L and
A ∈ L(M(f(g))). Then limx→A f(g)(x) = L ⇐⇒ condition 1 or condition 2
holds.
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1. The implication K ∈M(f) ⇒ f(K) = L holds.
2. There is a θ such that K 6∈ g[P (A, θ)].
If neither condition 1 nor condition 2 holds then limx→A f(g)(x) does not exist
or equals f(K) but f(K) 6= L.

Proof. Let A, g, K, f and L be as stated and an ε be given. By the as-
sumption there is a δ′ such that (a) f [P (K, δ′)] ⊂ U(L, ε)], and a δ such that
(b) g[P (A, δ)] ⊂ U(K, δ′). Suppose that condition 1 holds. Then inclusion (a)
strengthens to f [U(K, δ′)] ⊂ U(L, ε) and

f(g)[P (A, δ)] = f [ g[P (A, δ)] ] ⊂ f [U(K, δ′)] ⊂ U(L, ε) .

Hence limx→A f(g)(x) = L. Suppose that condition 2 holds. We can take the
previous δ such that in addition δ ≤ θ, where θ is as in condition 2. Then
inclusion (b) strengthens to g[P (A, δ)] ⊂ P (K, δ′) and

f(g)[P (A, δ)] = f [ g[P (A, δ)] ] ⊂ f [P (K, δ′)] ⊂ U(L, ε) .

Hence again limx→A f(g(x)) = L.
Suppose that neither condition 1 nor condition 2 holds. The former means

that K ∈ M(f) but f(K) 6= L. The latter means that for every n there is an
an ∈ P (A, 1/n) ∩M(g) such that g(an) = K. Then (an) ⊂ M(f(g)) \ {A},
lim an = A and

lim f(g)(an) = lim f(g(an)) = lim f(K) = f(K) (6= L) .

By Heine’s definition of limits of functions the limit limx→A f(g(x)) either does
not exist or equals to f(K), which is not L. 2

Condition 1 is satisfied whenever K 6∈ M(f), for example if K = ±∞. Simi-
larly condition 2 is satisfied if the function g is injective. We get the following
corollary.

Corollary 5.4.2 (of the theorem) Let limx→A g(x) = K, limx→K f(x) = L
and A ∈ L(M(f(g))). If K = ±∞ or g is injective then limx→A f(g)(x) = L.

Exercise 5.4.3 Prove the last theorem with the help of Heine’s definition of
limits of functions.

• Using Theorem 5.4.1. We give several applications of the theorem and the
corollary. One can often encounter the next two equivalences of limits of func-
tions.

Corollary 5.4.4 (shifting the argument to 0) Suppose that f ∈ F(M) and
b ∈ R. Then limx→b f(x) = L ⇐⇒ limx→0 f(x+ b)(x) = L.
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Proof. Let f and b be as stated. The implication ⇒: let limx→b f(x) = L.
Thus b ∈ L(M). We take the outer function f , the injective inner function
g(x) ≡ x+ b, A ≡ 0 and K ≡ b. It holds that M(f(g)) = X ≡ {x− b : x ∈M}
and 0 ∈ L(X). Also, limx→0 g(x) = b and limx→b f(x) = L. Corollary 5.4.2
gives that limx→0 f(x+ b)(x) = limx→0 f(g)(x) = L.

The implication ⇐: let limx→0 f(x + b)(x) = L. Thus 0 ∈ L(X). We take
the outer function g(x) ≡ f(x + b), the injective inner function h(x) ≡ x − b,
A ≡ b and K ≡ 0. It holds that M(g(h)) = M(f) = M and b ∈ L(M). Clearly,
limx→b h(x) = 0, limx→0 g(x) = L and g(h) = f((x−b)+b) = f . Corollary 5.4.2
gives that limx→b f(x) = limx→b g(h)(x) = L. 2

Corollary 5.4.5 (→ 0± ⇐⇒ → ±∞) Let f ∈ R. Then limx→±∞ f(x) = L
⇐⇒ limx→0± f( 1

x )(x) = L (equal signs). Note that the last limit is one-sided.

Proof. We confine to the sign +, the case of − is similar. The implication ⇒:
let limx→+∞ f(x) = L, so that +∞ ∈ L(M(f)). We take the outer function
f , the injective inner function g ≡ 1

x | (0,+∞), A ≡ 0 and K ≡ +∞. Clearly,
0 ∈ L(M(f(g))) and limx→0 g(x) = +∞. By Corollary 5.4.2 we have that
L = limx→0 f(g)(x) = limx→0+ f( 1

x )(x).
The implication ⇐: let limx→0+ f( 1

x )(x) = L, so that 0 ∈ L+(f( 1
x )). For g

as above we take the outer function F ≡ f(g), the injective inner function g, A ≡
+∞ and K ≡ 0. Then A ∈ L(M(F (g))) and limx→0 F (x) = limx→0+ f( 1

x )(x) =
L. Clearly, g(g) = x | (0,+∞). Corollary 5.4.2 gives that L = limx→+∞ F (g)(x).
Exercise 1.3.12 implies that f(g)(g) = f(g(g)) = f(x | (0,+∞)). Thus the last
limit equals limx→+∞ f(x). 2

In computing limits we use that limx→b f(x) = L ⇐⇒ limx→0 f(x+ b)(x) = L
and that limx→±∞ f(x) = L ⇐⇒ limx→0± f( 1

x )(x) = L without thinking.
Above we formally justified it.

Exercise 5.4.6 Deduce Corollary 5.3.6 from Theorem 5.4.1. We repeat this
corollary here for the convenience of the reader.

Corollary 5.4.7 (the limit of 1
g 2) If g ∈ R and limx→A g(x) = B 6= 0 then

limx→A
1

g(x) = 1
B .

5.5 Asymptotic notation

Books on computational complexity and algorithms intersect with books on
analysis in definitions of asymptotic notation, see for instance Exercise 5.5.5. In
this section we present our definitions. What does the adjective “asymptotic”
really mean? We reveal it in a moment in Definition 5.5.3.

• Asymptotic relations. Let X and Y be sets. The symmetric difference X∆Y ≡
(X \ Y )∪ (Y \X). Next f and g are functions in R, the set of functions f with
the definition domain M(f) ⊂ R and range R.
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Definition 5.5.1 (almost equality) Functions f and g are almost equal, in
symbols f

.
= g, if M(f)∆M(g) and {x ∈M(f)∩M(g) : f(x) 6= g(x)} are finite

sets.

Exercise 5.5.2 The relation
.
= on the set R is an equivalence relation.

Definition 5.5.3 (asymptotic relations) A ⊂ R ×R is an asymptotic re-
lation (on R) if for any functions f , g, f0 and g0 in R such that f

.
= f0 and

g
.
= g0 the equivalence fAg ⇐⇒ f0Ag0 holds.

Asymptoticity of relations between functions is a concept similar to robustness
of properties of sequences in Definition 2.1.18.

• Asymptotic symbols O, � and other. These are not defined by limits. We say
that a function f ∈ R is bounded on N (⊂ R) if there is a constant c ≥ 0 such
that for every x ∈M(f) ∩N one has that |f(x)| ≤ c.

Definition 5.5.4 (O and �) Let f, g ∈ R and let N ⊂ R. We write that
f = O(g) (on N) and say that on N the function f is big O of g if the function
f
g |N is bounded, which means that there is a constant c ≥ 0 such that for every

x ∈M(f/g) ∩N one has that
∣∣ f(x)
g(x)

∣∣ ≤ c. Notation f(x)� g(x) (on N) means

the same.

For example, 20x2 +100x−1 = O(x2) (on [1,+∞)). The notation f = g+O(h)
(on N) is in the error form and means that f − g = O(h) (on N). Notation
like log x = Oε(x

ε) (on [1,+∞)) means that the constant c in Definition 5.5.4
is a function of ε. The notation that f � g (on N) and that f = Ω(g) (on N)
mean that g � f (on N). The notation that f = Θ(g) (on N) and that f � g
(on N) both mean that simultaneously f � g (on N) and g � f (on N).

Exercise 5.5.5 In [25, p. 19] we find this definition of big O: “In particular,
for f, g : N → N, g = O(f) means that g(n) ≤ cf(n) + c for some constant
c ≥ 1 and all n”. Is this big O equivalent with our big O in Definition 5.5.4?

Exercise 5.5.6 Answer next questions.
1. Is x2 = O(x3) (on R \ (−1, 1))?
2. Is x2 = O(x3) (on R)?
3. Is x3 = O(x2) (on R)?
4. Is x3 = O(x2) (on (−20, 20))?
5. Is log x = O(x1/3) (on (0,+∞))?
6. Is log x = O(x1/3) (on (1,+∞))?

Proposition 5.5.7 (O is asymptotic) For every set N ⊂ R the f = O(g)
(on N) relation on R is asymptotic.
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Proof. Suppose that N ⊂ R and that f , g, f0 and g0 are functions in R such
that f

.
= f0, g

.
= g0 and f = O(g) (on N). We show that then f0 = O(g0) (on

N) as well. By the assumption there is a constant c ≥ 0 such that for every

x ∈ M(f/g) ∩ N it holds that
∣∣ f(x)
g(x)

∣∣ ≤ c. It follows from the definition of
.
=

that the set X ≡ f0
g0

[N ] \ f
g [N ] is finite (Exercise 5.5.8). For X 6= ∅ we set

d ≡ max({|x| : x ∈ X}), and d ≡ 1 if X = ∅. Then for every x ∈M(f0/g0)∩N
we have that

∣∣ f0(x)
g0(x)

∣∣ ≤ max({c, d}), as needed. 2

Exercise 5.5.8 Why is the set X finite?

• Asymptotic symbols o, ω and ∼. These are defined by limits.

Definition 5.5.9 (o and ω) Let f, g ∈ R and let A ∈ L(M(f/g)). We write
f(x) = o(g(x)) (x→ A) and say that for x→ A the function f is little o of g if

limx→A
f(x)
g(x) = 0. Notation f(x) = ω(g(x)) (x→ A) means the same.

Like before notation f = g + o(h) (x→ A) means that f − g = o(h) (x→ A).

Definition 5.5.10 (∼) Let f, g ∈ R and let A ∈ L(M(f/g)). We write that
f(x) ∼ g(x) (x→ A) and say that for x→ A the function f is asymptotic to g

if limx→A
f(x)
g(x) = 1.

For example, x2 ∼ (x− 3)2 (x→ +∞).

Exercise 5.5.11 Answer next questions.
1. Is x2 = o(x3) (x→ +∞)?
2. Is x3 = o(x2) (x→ 0)?
3. Is x2 = o(x3) (x→ 0)?
4. Is (x+ 1)3 ∼ x3 (x→ 1)?
5. Is (x+ 1)3 ∼ x3 (x→ +∞)?

6. Is e−1/x
2

= o(x20) (x→ 0)?

Proposition 5.5.12 (o and ∼ are asymptotic) For every element A ∈ R∗
the f(x) = o(g(x)) (x → A) relation and the f(x) ∼ g(x) (x → A) relation on
R are asymptotic.

Proof. Suppose that A ∈ R∗ and that f , g, f0 and g0 are functions in R such
that f

.
= f0, g

.
= g0 and f = o(g) (x → A). We show that then f0 = o(g0)

(x → A) as well. For the asymptotic symbol ∼ the argument is the same. By

the assumption, A ∈ L(f/g) and limx→A
f(x)
g(x) = 0. By Exercise 5.5.8 the set

f0
g0

[R]∆ f
g [R] is finite. It follows that A ∈ L(f0/g0) and that limx→A

f0(x)
g0(x)

=

limx→A
f(x)
g(x) = 0. 2

• Properties of asymptotic symbols. We do not have time and space to treat
this theoretically and practically important topic in a more systematic way; we
confine to one proposition and one exercise.
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Proposition 5.5.13 (o yields O) If functions f, g ∈ R are such that f(x) =
o(g(x)) (x→ A) then there is a θ such that f = O(g) (on P (A, θ)).

Proof. Let f , g and A be as stated in the hypothesis of the implication.

Since limx→A
f(x)
g(x) = 0, for the given ε = 1 there is a θ such that for every

x ∈M(f/g) ∩ P (A, θ) we have that∣∣ f(x)
g(x)

∣∣ =
∣∣ f(x)
g(x) − 0

∣∣ ≤ 1 .

Hence f = O(g) (on P (A, θ)), with the upper bounding constant c = 1. 2

Exercise 5.5.14 Prove the next proposition.

Proposition 5.5.15 (properties of O, o and ∼) Let f(x), g(x) and h(x) be
in R, N ⊂ R and A ∈ R∗. Then the following hold.
1. If f = O(h) (on N) and g = O(h) (on N) then f + g = O(h) (on N).
2. If f = O(h) (on N) and g is bounded on N then fg = O(h) (on N).
3. If f = O(h) (on N) and 1

g is bounded on N then f/g = O(h) (on N).

4. If f = o(h) (x → A), g = o(h) (x → A) and A ∈ L( f+gh ) then f + g = o(h)
(x→ A).
5. If f = o(h) (x → A), g is bounded on a P (A, θ) and A ∈ L( fgh ) then
fg = o(h) (x→ A).
6. If f = o(h) (x → A), 1

g is bounded on a P (A, θ) and A ∈ L( fgh ) then

f/g = o(h) (x→ A).
7. If f(x) ∼ h(x) (x → A), g(x) = o(h(x)) (x → A) and A ∈ L( f+gh ) then
f(x) + g(x) ∼ h(x) (x→ A).
8. If f(x) ∼ h(x) (x → A), limx→A g(x) = 1 and A ∈ L( fgh ) then f(x)g(x) ∼
h(x) (x→ A).
9. If f(x) ∼ h(x) (x → A), limx→A g(x) = 1 and A ∈ L( fgh ) then f(x)/g(x) ∼
h(x) (x→ A).

The notation o, O and ∼ originated with the German mathematicians Paul
Bachmann (1837–1920) and Edmund Landau (1877–1938). Asymptotic sym-
bols �, � and � are due to the Russian-Soviet mathematician Ivan M. Vino-
gradov (1891–1983). We do not say that their asymptotic symbols are identical
with ours in Definitions 5.5.4, 5.5.9 and 5.5.10.

• Famous asymptotics. For real x we define π(x), the value of the prime num-
ber counting function, to be the number of primes p ∈ N such that p ≤ x.
For example, π(

√
20) = |{2, 3}| = 2. In 1896 the French mathematician

Jacques Hadamard (1865–1963) and, in parallel with him, the Belgian math-
ematician Charles Jean de la Vallée Poussin (1866–1962) proved the famous
Prime Number Theorem which says that

π(x) ∼ x

log x
(x→ +∞) .
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In Section 2.3 we introduced for k, n ∈ N the number rk(n) ∈ N0 as the
size of the largest set X ⊂ [n] not containing an arithmetic progression with
length k. In 1975 E. Szemerédi proved the by now famous theorem, which we
mentioned in Section 2.3, that for every k it holds that

rk(n) = o(n) (n→ +∞) .

For x ∈ R we define D(x) ≡ |{(m, n) ∈ N2 : mn ≤ x}|.

Exercise 5.5.16 Show that D(x) =
∑
n≤x τ(n) where τ(n) denotes the number

of divisors of n; for example τ(28) = |{1, 2, 4, 7, 14, 28}| = 6.

The (Dirichlet) divisor problem is the problem to estimate the error in asymp-
totics of D(x). In 1849 the German mathematician Peter L. Dirichlet (1805–
1859) proved that

D(x) = x log x+ (2γ − 1)x+O(
√
x) (on [1,+∞))

where γ is Euler’s constant. In 1903 the Russian-Ukrainian mathematician
Georgij F. Voronoj (1868–1908) improved it to

D(x) = x log x+ (2γ − 1)x+O
(
x1/3 log x

)
(on [2,+∞)) .

Exercise 5.5.17 Why not on [1,+∞) as before?

The 20th century saw a series of further improvements in the divisor problem.
The current record holder is the British mathematician Martin N. Huxley (1944)
who proved in 2003 that for every ε one has that

D(x) = x log x+ (2γ − 1)x+Oε
(
x131/416+ε

)
(on [1,+∞)) .

For n ∈ N and an algorithm (Turing machine) T for multiplying inte-
gers we define T (n) as the smallest k ∈ N such that T multiplies any two
n-digit numbers in at most k steps. The elementary school algorithm Tes
works in Tes(n) = O(n2) (on N) steps. In 1960 the Soviet-Russian mathe-
matician Anatolij A. Karacuba (1937–2008) invented an algorithm TK working
in TK(n) = O

(
nlog2 3

)
= O

(
n1.585...

)
(on N) steps. In 2021 the Australian com-

puter scientist David Harvey with the Dutch computer scientist Joris van der
Hoeven (1971) discovered an algorithm THH for multiplying integers that has
complexity

THH(n) = O(n log n) (on N) .

Exercise 5.5.18 But for n = 1 the ratio THH(n)
n logn is not defined?

• Asymptotic expansions. Compared to the above asymptotic symbols, asymp-
totic expansions capture asymptotic behavior of functions in greater detail.
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Definition 5.5.19 (asymptotic scale) Let (fn) ⊂ R. If A ∈ L(
⋂∞
n=1M(fn)),

if there is a θ such that every fn 6= 0 on P (A, θ) and if for every n it holds that
fn+1(x) = o(fn(x)) (x→ A), we say that (fn) is an asymptotic scale for x→ A.

For example, (x−n) is an asymptotic scale for x→ +∞, and (xn) for x→ 0.

Definition 5.5.20 (asymptotic expansion) Suppose that (an) ⊂ R, f ∈ R
and that (fn) ⊂ R is an asymptotic scale for x→ A. If for every n it holds that

f(x) =
∑n
i=1 aifi(x) + o(fn+1(x)) (x→ A) ,

we call the sequence of functions (anfn(x)) an asymptotic expansion of f(x) for
x→ A and write this in symbols as

f(x) ≈
∑∞
n=1 anfn(x) (x→ A) .

It follows from this definition that there is a θ = θn such that f =
∑n
i=1 aifi +

O(fn+1) (on P (A, θ)). Hence we have the asymptotic approximation
∑n
i=1 aifi

to f with an error of order fn+1.

Exercise 5.5.21 Prove it.

The assumption that (fn) is an asymptotic scale only ensures that as n grows,
magnitudes of these errors get smaller and smaller. On the other hand, for fixed
x ∈ R nothing is assumed about the convergence of the series

∑
anfn(x) and it

typically diverges. Usually it is not true that f(x) =
∑∞
n=1 anfn(x).

The Scottish mathematician James Stirling (1692–1770) derived an asymp-
totic expansion of log(n!) for n ∈ N and n→ +∞ already in 1730, we state it in
a moment, but the modern theory of asymptotic expansions originates with the
French mathematician Henri Poincaré (1854–1912) in his memoir of 1886. For
expositions of the theory of asymptotic expansions see [11, 14]. We conclude
this chapter with three examples of them; proofs will be given in MA 1+.

Theorem 5.5.22 (AE of log(n!)) For n ∈ N and n→ +∞,

log(n!) ≈ (n+ 1
2 ) log n− n+ 1

2 log(2π) +
∑∞
k=1

B2k

2k(2k−1) · n
1−2k .

Theorem 5.5.23 (AE of harmonic numbers) For n ∈ N and n→ +∞,

hn =
∑n
i=1

1
i ≈ log n+ γ + 1

2n −
∑∞
k=1

B2k

2k · n
−2k .

Here Bk (∈ Q), k ∈ N0, denote the Bernoulli numbers. They are defined by the
power series expansion

x
exp x−1 =

∑∞
k=0

Bk

k! · x
k .

Bk are named after their discoverer, the Swiss mathematician Jacob Bernoulli
(1655/54–1705), and have initial values B0 = 1, B1 = − 1

2 , B2k+1 = 0 for every
k ∈ N, B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 = − 1
30 , B10 = 5

66 , B12 = − 691
2730 ,

B14 = 7
6 and B16 = − 3617

510 .
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Exercise 5.5.24 Using the definition derive a recurrence for Bk and show that
B2k+1 = 0 for every k ∈ N.

We read in [11] that the formula in Theorem 5.5.22 is in fact not the original
expansion of Stirling but a similar formula due to the French mathematician
Abraham de Moivre (1667–1754). The asymptotic expansion of harmonic num-
bers is due to L. Euler.

The third asymptotic expansion is much more recent, see [27]. Recall that
a graph G = (V,E) is a pair of a nonempty finite set V of vertices and a set

E ⊂
(
V
2

)
of edges, where

(
V
2

)
denotes the set of two-element subsets of V . Recall

that G is connected if for every partition {A,B} of V with two blocks there is
an edge e ∈ E that intersects both blocks A and B.

Theorem 5.5.25 (AE of probability of connectedness) For n ∈ N and
n→ +∞,

1
2n(n−1)/2 · |{G = ([n], E) : G is connected}| ≈ 1−

∑∞
k=1 tk2k(k+1)/2 ·

(
n
k

)
2−kn

where tk ∈ N is the number of irreducible tournaments of size k.

We repeat that this result is due to [27]. Since there are 2n(n−1)/2 graphs
G = ([n], E), the product on the left side is the probability that a random
graph with the vertex set [n] is connected; by the first term of the expansion,
for n→ +∞ this probability goes to 1. What is tk? A tournament T = (V,E) is
a pair of a nonempty finite set V of vertices and an irreflexive relation E ⊂ V ×V
on V such that for every two distinct vertices u, v ∈ V exactly one pair of (u, v)
and (v, u) is in E. We say that T is irreducible if for every partition {A,B} of
V with two blocks there exist pairs (a, b) ∈ A×B and (c, d) ∈ B ×A such that
(a, b), (c, d) ∈ E. Then tk is the number of irreducible tournaments T = ([k], E).
By [29, A054946] the sequence of numbers tn begins as

(tn) = (t1, t2, . . . ) = (1, 0, 2, 24, 544, 22320, 1677488, . . . ) .

The article [4] develops a calculus for computing asymptotic expansions; it
can be applied to a class of problems in enumerative combinatorics.
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Chapter 6

Continuous functions

In this chapter we investigate continuous functions. It is a revised version of
the lecture

https://kam.mff.cuni.cz/~klazar/MAI24_pred6.pdf

I gave on March 28, 2024. In Section 6.1 we introduce dense and sparse sets and
state Blumberg’s Theorem 6.1.12. It says that every function f : R → R has
a continuous restriction f |M to a set M ⊂ R dense in R. A proof will be given
in MA 1+. In Section 6.2 in Theorem 6.2.3 we show that the set of continuous
functions f : R → R is in bijection with R. The main result of Section 6.3 is
Theorem 6.3.1 which says that continuous functions attain any intermediate
value.

In Section 6.4 we introduce real compact sets. The “min-max” Theorem 6.4.1
shows that every continuous function with a compact definition domain attains
both minimum and maximum. We define open and closed sets of real numbers,
discuss their basic properties and in Theorem 6.4.13 we characterize compact
sets. By Proposition 6.5.2 any continuous function with compact definition do-
main is uniformly continuous. By Theorem 6.5.6 every uniformly continuous
function has a unique continuous extension to the closure of the definition do-
main. We leave it to the reader in Exercise 6.5.7 to prove by means of the
last theorem a version of the min-max theorem for functions f ∈ F(M) with
M ⊂ Q.

Section 6.6 is concerned with the interplay of continuity and various oper-
ations on functions. Theorem 6.6.1 deals with arithmetic operations, and in
Theorem 6.6.3 we prove continuity of functions defined as sums of power series.
Theorem 6.6.9 deals with composite functions, and Theorem 6.6.11 with inverse
functions — we described this theorem in detail in Some highlights. We conclude
this chapter with Theorem 6.6.16 which says that every elementary function is
continuous.
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6.1 Blumberg’s theorem

• Continuous functions. By Definition 5.2.1 a function f ∈ F(M) is continuous
at a point a ∈ M if for every ε there is a δ such that f [U(a, δ)] ⊂ U(f(a), ε).
We will make use several times of the equivalence

f is continuous at a ⇐⇒ ∀ (an) ⊂M
(

lim an = a⇒ lim f(an) = f(a)
)
. (H)

This Heine’s definition of point-wise continuity was proven in Exercise 5.2.6.

Definition 6.1.1 (continuous functions) A function f ∈ R is continuous
(on M(f)) if it is continuous at every point b ∈ M(f). The set of continuous
functions f ∈ F(M) is denoted by C(M). We set C ≡

⋃
M⊂R C(M). We call the

functions in R \ C discontinuous.

Exercise 6.1.2 Every function in R with finite definition domain is continu-
ous.

Exercise 6.1.3 Every constant function ka ∈ F(R), a ∈ R, is continuous.

Exercise 6.1.4 The identity x = idR ∈ F(R) is continuous.

Proposition 6.1.5 (continuity of restriction 1) If f ∈ C and X is a set
then also f |X ∈ C.

Proof. Let f and X be as stated, and let b ∈ M(f |X) and an ε be given.
Thus b ∈ M(f) and since f ∈ C there is a δ such that f [U(b, δ)] ⊂ U(f(b), ε).
But U(b, δ) ∩M(f) ∩X ⊂ U(b, δ) ∩M(f), so that

(f |X)[U(b, δ)] ⊂ f [U(b, δ)] ⊂ U(f(b), ε)

and f |X is continuous at b. This holds for every point b ∈ M(f |X) and
f |X ∈ C. 2

• Dense and sparse sets. Suppose that N ⊂ M ⊂ R. The set N is dense in M
if for every a ∈M and δ it holds that U(a, δ) ∩N 6= ∅.

Exercise 6.1.6 N is dense in M ⇐⇒ for every point a ∈ M there is a se-
quence (bn) ⊂ N such that lim bn = a.

Exercise 6.1.7 Show that both Q and R \Q is dense in R.

Let N ⊂M ⊂ R. The set N is sparse in M if

∀ (a, b) ⊂M ∃ c, d
(
a ≤ c < d ≤ b ∧N ∩ (c, d) = ∅

)
— any nontrivial interval in M contains a nontrivial subinterval disjoint to N .
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Exercise 6.1.8 Show that N ≡ { 1n : n ∈ N} is sparse in M ≡ [0, 1].

Proposition 6.1.9 (density and continuity) Let f, g ∈ C(M), N be dense
in M and f |N = g |N . Then f = g.

Proof. Let b ∈ M and (an) ⊂ N have lim an = b. By (H) we have that
f(b) = f (lim an) = lim f(an) = lim g(an) = g (lim an) = g(b). 2

We say that g ∈ C is a kernel of f ∈ C if g is a restriction of f and M(g)
is dense in M(f). Then we easily reconstruct f from g: for b ∈ M(f) we take
a sequence (an) ⊂M(g) with lim an = b, and then it holds that f(b) = lim f(an).

Proposition 6.1.10 (compression in C) Every f ∈ C has an at most count-
able kernel.

Proof. It suffices to show that every set M ⊂ R has an at most countable
dense subset N . We order all finite decimal expansions in a sequence (an)
(⊂ Q). Let Xn ≡ {bn} for some bn ∈ M with an initial segment of its decimal
expansion equal to an if such bn exists, and else let Xn ≡ ∅. The desired set is
N ≡

⋃∞
n=1Xn (Exercise 6.1.11). We again used the axiom of choice. 2

Hence every function f ∈ C can be compressed in an at most countable contin-
uous restriction. From it f can be recovered by means of the described limits.

Exercise 6.1.11 In the previous proof, why is N dense in M?

The following theorem was proven in 1922.

Theorem 6.1.12 (Blumberg’s) For every function f ∈ F(R) there is a set
M ⊂ R such that f |M is continuous and M is dense in R.

The American mathematician Henry Blumberg (1886–1950) was born in north-
ern Lithuania in the town Žagarė, but the family emigrated to America already
in 1891. We prove Blumberg’s theorem in MA 1+.

6.2 The number of continuous functions

We show that there exists a bijection between the sets C(R) and R.

• The Cantor–Bernstein theorem. We use it in the construction of this bijection.

Theorem 6.2.1 (Cantor–Bernstein) Let X and Y be sets. If there are in-
jections f : X → Y and g : Y → X then there is a bijection h : X → Y .

We mentioned G. Cantor earlier. Felix Bernstein (1878–1956) was a German
mathematician. We prove the theorem in MA 1+. For example, (m,n) 7→ 2m3n

is an injection from N×N to N and n 7→ (1, n) is an injection from N to N×N,
hence by the C.–B. theorem there exists a bijection from N × N to N. In the
next exercise we define such bijection directly.
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Exercise 6.2.2 The function s : N× N→ N, where s(m,n) = (2m− 1) · 2n−1,
is a bijection.

• So how many continuous functions f : R → R are there? As many as real
numbers.

Theorem 6.2.3 (cardinality of continuous functions) There exists a bi-
jection h : R→ C(R).

Proof. By Theorem 6.2.1 it suffices to have injections f : R → C(R) and
g : C(R) → R. The injection f is described in Exercise 6.2.4. We define g. We
encode any function j ∈ C(R) in a single number g(j) ∈ R. We regard real
numbers as decimal expansions with the sign + omitted, for example −π =
−3.1415 . . . or 2022.0000 . . . . We employ two bijections

r : Q→ N and s : N× N→ N .

Exercise 6.2.2 contains a formula for s. The ten digits 0, 1, . . . , 9, the decimal
point . and the sign − are encoded in the bijection

c : {0, 1, . . . , 9, ., −} ≡ X → Y ≡ {00, 01, . . . , 09, 10, 11}

by pairs of digits, for example as

c(0) ≡ 00, c(1) ≡ 01, . . . , c(9) ≡ 09, c(.) ≡ 10 and c(−) ≡ 11 .

The value g(j) ∈ R of g on j ∈ C(R) has the expansion

g(j) = 0. a1 a2 a3 . . . a2n−1 a2n . . . (∈ [0, 1)) ,

whose two-element blocks of digits a2n−1a2n (∈ Y ) code the values j(α) of j on
all fractions α. By Exercise 6.1.7 and Proposition 6.1.9 these values uniquely
determine j. So let α ∈ Q, k ≡ r(α) (∈ N) and let us denote the value j(α) as

j(α) = b(k, 1) b(k, 2) . . . b(k, l) . . . ,

where l runs in N and b(k, l) ∈ X. We set n ≡ s(k, l) and

a2n−1 a2n ≡ c(b(k, l)) .

Thus g is injective because we can reconstruct j from the decimal expansion of
g(j). The memberships of g(j) in [0, 1) and in R hint to the injection g(j) 7→
F (g(j)) where F (g(j)) is in [0, 1) and R; the function F is introduced after
Definition 1.7.13. By part 2 of Theorem 1.7.16 it is an injection. 2

Exercise 6.2.4 Show that the map a 7→ ka is an injection from R to C(R).

Exercise 6.2.5 For every nonempty set M ⊂ R there is a bijection h : R →
C(M).
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6.3 Intermediate values

We show that continuous functions map intervals to intervals. In Section ?? we
will see that derivatives (i.e., functions that are derivatives of other functions)
have this property too.

• Continuous functions attain intermediate values. The image of the function
sgn (∈ F(R)) is the set sgn[R] = {−1, 0, 1}. Thus although 1

2 ∈ (0, 1), for no b
we have sgn(b) = 1

2 . For continuous functions this cannot happen.

Theorem 6.3.1 (on intermediate values) Let a < b be in R, f ∈ C([a, b])
& f(a) < c < f(b) or f(a) > c > f(b). Then there is a d ∈ (a, b) such that
f(d) = c.

Proof. Let f(a) < c < f(b), the case f(a) > c > f(b) is similar. We set
X ≡ {x ∈ [a, b] : f(x) < c} and d ≡ sup(X). Clearly d ∈ [a, b]. The continuity
of f at a and at b implies that d ∈ (a, b). We will see that f(d) < c and f(d) > c
lead to contradictions, hence f(d) = c. Let f(d) < c. By the continuity of f at
d there is a δ such that for every x ∈ U(d, δ)∩ [a, b] it holds that f(x) < c. But
then X contains numbers larger than d, which is a contradiction. Let f(d) > c.
By the continuity of f at d there is a δ such that for every x ∈ U(d, δ)∩ [a, b] it
holds that f(x) > c. But then every x < d and close to d lies outside X, which
is also a contradiction. 2

Exercise 6.3.2 For every interval I ⊂ R and every function f ∈ C(I) the
image f [I] is an interval.

Corollary 6.3.3 (the image of expx) It holds that exp[R] = (0,+∞). Thus
exp is a bijection from R to (0,+∞).

Proof. Since exp > 0 on R, we have that exp[R] ⊂ (0,+∞). From the limits
limx→−∞ expx = 0 and limx→+∞ expx = +∞ (part 3 of Proposition 4.3.7),
from the continuity of the exponential (Corollary 6.6.6) and from Theorem 6.3.1
it follows that (0,+∞) ⊂ exp[R]. Thus exp[R] = (0,+∞). The exponential
increases and hence is a bijection. 2

Exercise 6.3.4 Prove the following corollary.

Corollary 6.3.5 (mountaineering) A mountain climber starts her ascend at
midnight, after 24 hours reaches the summit and then descends for 24 hours to
the base camp. Show that there exists a moment t0 ∈ [0, 24] when in each of the
two days she is in the same altitude.

A function f ∈ F(M) increases, respectively decreases, on an (arbitrary)
set X if for every x < y in M ∩ X we have that f(x) < f(y), respectively
f(x) > f(y).
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Corollary 6.3.6 (continuity and injectivity) If I ⊂ R is an interval and
f ∈ C(I) is injective, then f either increases or decreases.

Proof. If, for contrary, f neither increases nor decreases then I contains three
numbers a < b < c such that f(a) < f(b) > f(c) or f(a) > f(b) < f(c). In
the first case we see by Theorem 6.3.1 that for every d such that f(a), f(c) <
d < f(b) there is an x ∈ (a, b) and a y ∈ (b, c) such that d = f(x) = f(y),
in contradiction with the injectivity of f . The second case leads to a similar
contradiction. 2

Now we can easily prove Theorem 1.6.17 which is repeated here as a corollary.

Corollary 6.3.7 (Bolzano–Cauchy) Let I be an interval, f ∈ C(I) & for
some a, b ∈ I it holds that f(a)f(b) ≤ 0. Then there exists a c ∈ I such that
f(c) = 0.

Proof. If f(a)f(b) = 0 then f(a) = 0 or f(b) = 0. If f(a)f(b) < 0 then a 6= b
& f(a) < 0 < f(b) or f(b) < 0 < f(a). We use Theorem 6.3.1. 2

6.4 Compactness

Compact sets are a basic analytical tool. We consider only real ones and de-
scribe their relations to continuous functions. A set M ⊂ R is compact if every
sequence (an) ⊂M has a convergent subsequence (amn

) with the limit lim amn

in M . By the Bolzano–Weierstrass theorem and the theorem on limits and or-
der every interval [a, b] is compact. Later we give a complete description of all
compact sets.

• Minima and maxima. We show that every continuous function with compact
definition domain has always the smallest and the largest value.

Theorem 6.4.1 (min-max) Let f ∈ C(M) where M 6= ∅ is a compact set.
Then there exist points a, b ∈ M such that for every x ∈ M one has that
f(a) ≤ f(x) ≤ f(b). The point a, respectively b, is a minimum, respectively
a maximum, of f .

Proof. We show that f has a maximum, minima are treated similarly. Let
A ≡ sup(f [M ]), in the LO (R∗, <). It is clear that f [M ] 6= ∅ and we take
a sequence (an) ⊂M with lim f(an) = A. We take a subsequence (amn) of (an)
with lim amn

≡ b ∈M . By (H) it holds that f(b) = lim f(amn
) = lim f(an) = A,

in particular A ∈ R. Thus for any x ∈M we have that f(x) ≤ A = f(b). 2

Exercise 6.4.2 The functions f, g : [0, 1) → R, f(x) = 1
1−x and g(x) = x, are

continuous and do not have maximum.

99



We extend minima and maxima by the adjective “global”. Thus f ∈ F(M)
has in b ∈M a global maximum, respectively a global minimum, if for every x in
M one has that f(x) ≤ f(b), respectively f(x) ≥ f(b). We say that the function
f has at b ∈ M a local maximum, respectively a local minimum if for some δ
for every x in U(b, δ)∩M it holds that f(x) ≤ f(b), respectively f(x) ≥ f(b). If
these inequalities hold for every x 6= b as strict (as <, respectively >), we speak
of a strict global maximum, etc.

• Continuous image of a compact set is compact. This is an important result
on compact sets, especially in the general topological version (which we do not
state here).

Theorem 6.4.3 (images of compacts) If f ∈ C(M) and M is compact then
f [M ] is a compact set.

Proof. Let f and M be as stated and (bn) ⊂ f [M ]. Using the axiom of choice
we take a sequence (an) ⊂M such that f(an) = bn. It has a subsequence (amn

)
with lim amn

≡ a ∈ M . By (H) we have that lim f(amn
) = f(a) ≡ b, so that

(bmn) = (f(amn)) has the limit b ∈ f [M ]. Hence f [M ] is compact. 2

Exercise 6.4.4 Explain the connection between Theorems 6.4.3 and 6.4.1.

• Open and closed sets. A set M ⊂ R is open if for every b ∈ M there is a δ
such that U(b, δ) ⊂M . It is closed if its complement R \M is open.

Exercise 6.4.5 Let A, respectively B, be a nonempty set of open, respectively
closed, sets. The following hold.
1. Sets ∅ and R are open and closed.
2.
⋃
A is open.

3. If A is finite then
⋂
A is open.

4. If B is finite then
⋃
B is closed.

5.
⋂
B is closed.

6. For every b and δ the set U(b, δ) is open.

Exercise 6.4.6 If M ⊂ R is open, then M ⊂ L(M), every point b ∈ M is
a limit point of M .

Proposition 6.4.7 (on closed sets) A set M ⊂ R is closed ⇐⇒ the limit
of every convergent sequence (an) ⊂M lies in M .

Proof. ⇒. Let M ⊂ R be closed and let (an) ⊂ M have lim an = a. If
a ∈ R \M , then for some δ we have U(a, δ) ∩M = ∅. This is not possible
because an → a. Hence a ∈M .
¬ ⇒ ¬. If M ⊂ R is not closed then there is an a ∈ R \M such that for

every n there is an an ∈ U(a, 1
n ) ∩M . Thus (an) ⊂ M & lim an = a 6∈ M (we

again use the axiom of choice). 2

For A ⊂M ⊂ R we say that A is relatively closed (in M) if there is a closed
set U ⊂ R such that A = M ∩ U .
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Proposition 6.4.8 (zero sets are relatively closed) For every f ∈ C the
set Z(f) = {x ∈M(f) : f(x) = 0} is relatively closed (in M(f)).

Proof. Let N ≡ M(f) \ Z(f). By the continuity of f , for every b ∈ N there
is a δb such that U(b, δb) ∩Z(f) = ∅. Let A ≡

⋃
b∈N U(b, δb). By Exercise 6.4.5

the set A is open. Thus, Z(f) = M(f) ∩ (R \A) and R \A is closed. 2

For A ⊂M ⊂ R we say that A is relatively open (in M) if there is an open
set B ⊂ R such that A = M ∩B.

Proposition 6.4.9 (images of open sets) If f ∈ C is injective and M(f)
and M ⊂ R are open then f [M ] is open.

Proof. Let b ∈ f [M ] and a ≡ f−1(b) (∈ M(f) ∩M). Since M(f) and M are
open, we can take an interval I ≡ [a− δ, a+ δ] such that I ⊂M(f) ∩M . Then

f(a− δ) < b < f(a+ δ) or f(a− δ) > b > f(a+ δ)

because f(a− δ), f(a+ δ) < b = f(a) and f(a− δ), f(a+ δ) > b = f(a) would
lead by Theorem 6.3.1 to a contradiction with the injectivity of f . We take an
ε < min({|f(a + δ) − b|, |f(a − δ) − b|}). Theorem 6.3.1 gives U(b, ε) ⊂ f [I] ⊂
f [M ]. Hence f [M ] is open. 2

Proposition 6.4.10 (preimages of open sets) If f ∈ C and M ⊂ R is open
then f−1[M ] is relatively open (in M(f)).

Proof. For every b ∈ M there is an εb such that U(b, εb) ⊂ M . For every
a ∈ f−1[M ] (⊂ M(f)) there is a δa such that, with b ≡ f(a), it holds that
f [U(a, δa)] ⊂ U(b, εb) ⊂ M . Thus, U(a, δa) ∩ M(f) ⊂ f−1[M ]. Let B ≡⋃
a∈f−1[M ] U(a, δa). Since f−1[M ] = M(f)∩B and B is an open set (by parts 2

and 6 of Exercise 6.4.5), the set f−1[M ] is relatively open in M(f). 2

Propositions 6.4.8 and 6.4.10 are needed in the proof of Theorem 7.6.3.
The next theorem provides an idea of structure of any open set. For real

numbers a < b we define an open interval as an interval of the form (−∞, a),
(a,+∞) or (a, b).

Theorem 6.4.11 (structure of open sets) A set M ⊂ R is open ⇐⇒ there
exists an at most countable system of disjoint open intervals {Ij : j ∈ J} such
that

⋃
j∈J Ij = M .

Proof. Let M ⊂ R be a nonempty open set; for M = ∅ the claim holds trivially
with J = ∅. For a ∈M we define Ia as the inclusion-wise maximal open interval
I such that a ∈ I ⊂M ; it is the union of all such intervals I. For any a, b ∈M ,
we have Ia = Ib or Ia ∩ Ib = ∅. Hence, the required system of intervals is
{Ia : a ∈ Q ∩M}. 2
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• The Cantor set. By the previous theorem the closed set R \M is a union
of the “gaps” separating the intervals Ij . For |J | = n we have at most n + 1
of them. It is hard to imagine that for the countable set J the set of gaps
may be uncountable. Such closed sets are hard to visualize. An example is the
Cantor set C, defined as follows.

C ≡
⋂∞
n=1 Cn (⊂ [0, 1] ≡ C0), for n ≥ 1 we set Cn ≡ 1

3Cn−1 ∪
(
1
3Cn−1 + 2

3

)
.

Thus C is the leftover of the interval [0, 1] when we delete from it the open
middle third (1

3 ,
2
3 ), then delete from the rest [0, 13 ] ∪ [ 23 , 1] the open middle

thirds ( 1
9 ,

2
9 ) a ( 7

9 ,
8
9 ), and continue in this manner for infinitely many steps.

Exercise 6.4.12 C is an uncountable closed set with zero “length”.

• Characterization of compact sets. A set M ⊂ R is bounded if there is a c ≥ 0
such that M ⊂ [−c, c]. Next, we describe all compact real sets.

Theorem 6.4.13 (compact real sets) A set M ⊂ R is compact ⇐⇒ M is
bounded and closed.

Proof. Let M be bounded and closed and (an) ⊂ M . By Theorem 2.3.15 we
have a convergent subsequence (amn

) with lim amn
≡ a ∈ R. M is closed and

Proposition 6.4.7 shows that a ∈M . Hence M is compact.
Suppose that M is not bounded. We define a sequence (an) ⊂M such that

|am − an| ≥ 1 if m 6= n. This is inherited by all subsequences which therefore
do not converge and M is not compact. The first term a1 is arbitrary. Suppose
that a1, a2, . . . , an are defined and satisfy that |ai − aj | ≥ 1 if i 6= j. Since M is
not bounded, there is an an+1 ∈M such that |an+1| ≥ 1+max({|a1|, . . . , |an|}).
Then, by the ∆-inequality, for every i ∈ [n] we have that |an+1−ai| ≥ 1. Doing
this extension in infinitely many steps we get the required sequence (an).

Suppose that M is not closed. By Proposition 6.4.7 there is a sequence
(an) ⊂ M with limit in R \M . Every subsequence of (an) has the same limit
and therefore does not converge in M . The set M is not compact. 2

Exercise 6.4.14 Every set [a, b] \ P (c, δ) is compact.

6.5 Uniform continuity

An f ∈ F(M) is uniformly continuous if for every ε there is a δ such that for
any a, b ∈M ,

|a− b| ≤ δ ⇒ |f(a)− f(b)| ≤ ε .

Here we write ≤, these inequalities are safer than <. The set of uniformly
continuous functions in F(M) is UC(M) and we set UC ≡

⋃
M⊂R UC(M).

Exercise 6.5.1 UC ⊂ C, any uniformly continuous function is continuous.
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• Uniform continuity and compactness. In the other way any continuous func-
tion with compact definition domain is uniformly continuous.

Proposition 6.5.2 (compactness and UC) For any compact set M ⊂ R it
holds that C(M) ⊂ UC(M), hence C(M) = UC(M).

Proof. Suppose that M ⊂ R is compact and that f ∈ F(M) is not uniformly
continuous. We prove that f is not continuous at a point c ∈ M . By the
assumption there is an ε such that for every δ there exist points a, b ∈M with
|a − b| ≤ δ and |f(a) − f(b)| > ε. The axiom of choice gives two sequences
(an), (bn) ⊂ M such that always |an − bn| ≤ 1

n but |f(an) − f(bn)| > ε. Using
compactness ofM we pass to subsequences (Exercise 6.5.3) and get that lim an =
lim bn = c for some c ∈M . Since |f(an)− f(bn)| > ε for every n, it is not true
that lim f(an) = lim f(bn) = f(c). By (H) f is not continuous at c. 2

Exercise 6.5.3 Explain in detail the step when we pass to subsequences.

Exercise 6.5.4 The continuous functions f, g : (0, 1] → R, f(x) ≡ 1
x and

g(x) ≡ sin( 1
x ), are not uniformly continuous.

Exercise 6.5.5 Let M ≡ [0, 1] ∩Q. Find a function f ∈ C(M) \ UC(M).

• Extending uniformly continuous functions. The theorem in this passage is
quite important. For a set M ⊂ R its closure is the real set

M ≡ {b ∈ R : ∃ (an) ⊂M with lim an = b} = L(M) ∪M \ {−∞, +∞} .

Theorem 6.5.6 (extending functions in UC(M)) Let M ⊂ R and let f be
in UC(M). Then f has a unique extension to a function g ∈ UC(M) and
g(b) = lim f(an) for any sequence (an) ⊂M with lim an = b.

Proof. Let f and M be as stated and b ∈ M . Let (an), (a′n) ⊂ M have
lim an = lim a′n = b and an ε be given. We take the δ provided by the uniform
continuity of f . Since for every large m and n one has that |am − a′n| ≤ δ, for
the same m and n it holds that |f(am)− f(a′n)| ≤ ε. Selecting (an) = (a′n) we
see that the sequence (f(an)) is Cauchy. By Theorem 2.3.20 it has the limit
lim f(an) ≡ c. Selecting (an) 6= (a′n) we see that the limit c does not depend on
the choice of the sequence (an). We get a function g : M → R given by g(b) ≡ c.

We show that (i) g extends f , (ii) g is uniformly continuous and (iii) g is the
only continuous extension of f to M . The claim (i) is clear, for b ∈M we have
that g(b) = lim f(b) = f(b), due to the constant sequence (an) ≡ (b, b, . . . ). To
prove claim (ii), we take for a given ε the δ provided by the uniform continuity
of f . Let b, b′ ∈ M be given, with |b − b′| ≤ δ

2 . Then we can take sequences
(an), (a′n) ⊂M such that lim an = b and lim a′n = b′ and

|f(b)− f(b′)| ≤ | lim f(an)− lim f(a′n)| ≤ ε
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because for every large m and n it holds that |am − a′n| ≤ δ. To prove claim
(iii) we take any continuous extension h : M → R of f and any b ∈M . We take
any sequence (an) ⊂M with lim an = b. Then

h(b) = limh(an) = lim f(an) = g(b)

and h = g. The first equality is by (H) once again, the second equality is due
to h extending f and the third equality is the definition of g. 2

In [23] we show that with the help of this extension theorem one can build
univariate real analysis without uncountable sets, that is, without use of un-
countable real functions by using only functions in F(M) with M ⊂ Q.

Exercise 6.5.7 Prove for such functions the next version of Theorem 6.4.1.

HMC is an acronym for hereditarily at most countable.

Theorem 6.5.8 (HMC min-max) Let M ⊂ Q be a bounded set and f be in
UC(M). Then there exist points b, c ∈ M such that for every a ∈ M one has
that f(b) ≤ f(a) ≤ f(c). The values f(b) ≡ g(b) and f(c) ≡ g(c) are of the
extension g of f provided by Theorem 6.5.6.

Thus in a sense b and c are a minimum and a maximum of f , respectively, even
though they may lie outside the definition domain M .

6.6 Operations on functions and continuity

We consider operations on functions in R that we introduced in Definition 4.4.1
and determine if they preserve continuity. We also find out if sums of power
series yield a continuous function.

• Arithmetic of continuity. Recall the first three operations in Definition 4.4.1.
They are sum, product and ratio (division). In the following f, g ∈ R.

Theorem 6.6.1 (arithmetic of continuity) 1. If f and g are continuous at
b ∈ M(f) ∩ M(g) then f + g and fg are continuous at b. If f and g are
continuous at b ∈ M(f/g) then also f/g is continuous at b. 2. If f, g ∈ C then
f + g, fg, f/g ∈ C.

Proof. 1. We treat only f/g, sum and product are treated similarly and more
easily. Let f , g and b be as stated & (an) ⊂ M(f/g) have lim an = b. By (H)
it holds that lim f(an) = f(b) and lim g(an) = g(b). By Theorem 3.1.2 we have
that

lim(f/g)(an) = lim f(an)
g(an)

= lim f(an)
lim g(an)

= f(b)
g(b) = (f/g)(b) .

Thus by (H) the function f/g is continuous at b.
2. This follows from the first part. 2
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Exercise 6.6.2 Show that POL ⊂ C and RAC ⊂ C, that is, polynomials and
rational functions are continuous.

• Continuity of power series. Our goal is to prove continuity of all functions
introduced in Sections 4.3 and 4.4. Those that are defined by composing and
inverting will be dealt with later. Continuity of the exponential, cosine and sine
follows from the next theorem.

Theorem 6.6.3 (continuity of power series) Suppose that (an) ⊂ R and
lim |an|1/n = 0. Then for every x ∈ R the series S(x) ≡

∑∞
n=0 anx

n is abscon
and its sum S(x) ∈ C(R).

Proof. Let the coefficients (an) be as stated and x ∈ R. Then 0 ≤ |an|1/n|x| ≤
1
2 for n ≥ n0, so that |anxn| ≤ ( 1

2 )n for n ≥ n0. The series
∑∞
n=0 anx

n is
therefore abscon and converges. Further

|S(x+ c)− S(x)| = |c| ·
∣∣∑∞

n=1 an
∑n
i=1

(
n
i

)
ci−1xn−i

∣∣
≤ |c| ·

∑∞
n=1 |an| · (|x|+ |c|)n−1 · 2n → 0 if c→ 0 .

Thus the function S is continuous at x. 2

Exercise 6.6.4 Explain why in the previous proof the displayed equality and
inequality hold.

Exercise 6.6.5 Prove that lim(n!)1/n = +∞.

Corollary 6.6.6 (continuity of ex, cosx, sinx) These functions are contin-
uous on the common definition domain R.

Proof. This follows from the definitions that

ex =
∑∞
n=0

xn

n! , cosx =
∑∞
n=0(−1)n x2n

(2n)! and sinx =
∑∞
n=0(−1)n x2n+1

(2n+1)! ,

and from Theorem 6.6.3 and Exercise 6.6.5. 2

Corollary 6.6.7 (continuity of tanx and cotx) Both functions are contin-
uous on their definition domains.

Proof. As we know, tanx = sin x
cos x and cotx = cos x

sin x . Thus continuity of these
functions follows from Corollary 6.6.6 and Theorem 6.6.1. 2

• Restriction and composition. Recall the last three operations on R in Def-
inition 4.4.1. They are restriction, composition and inverse. We dealt with
restriction in Proposition 6.1.5. Here we supplement it with the point-wise
form. In the following f and g are in R and X is any set.

Proposition 6.6.8 (continuity of restriction 2) 1. If f is continuous at
b ∈M(f |X) then f |X is continuous at b. 2. If f ∈ C then f |X ∈ C.
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Proof. 1. Let f , b andX be as stated. We take any sequence (bn) ⊂M(f |X) =
M(f) ∩ X with lim bn = b. By (H) we have that lim f(bn) = f(b). Thus
lim(f |X)(bn) = lim f(bn) = f(b) and (H) gives that f |X is continuous at b.

2. This follows from part 1. Another proof, using neighborhoods, is given in
Proposition 6.1.5. 2

Next we consider the operation of composition.

Theorem 6.6.9 (continuity of composition) 1. If g is continuous at the
point b ∈ M(f(g)) and f is continuous at g(b) then f(g) is continuous at b. 2.
If f, g ∈ C then f(g) ∈ C.

Proof. 1. Let f , g and b be as stated, and (bn) ⊂M(f(g)) be a sequence with
lim bn = b. Then lim g(bn) = g(b) by (H). Hence, again by (H), lim f(g)(bn) =
lim f(g(bn)) = f(g(b)) = f(g)(b). (H) shows that f(g) is continuous at b.

2. This follows from the first part. 2

Exercise 6.6.10 Prove part 1 of the previous theorem not by (H) but by means
of neighborhoods.

• Inverses. Now the situation is much more interesting compared to the previous
operations. Inverting a function in general does not preserve continuity. For
example, the function f : N0 → R with values f(0) ≡ 0 and, for n > 0, f(n) ≡
1
n is continuous, but the inverse 0 7→ 0 and 1

n 7→ n is not continuous at 0.
Eventually we obtained the following theorem.

Theorem 6.6.11 (continuity of inverse) Let f ∈ C(M) be injective. Then
in each of the following five situations the inverse f−1 ∈ F(f [M ]) is continuous.
1. M is compact. 2. M is an interval. 3. M is open. 4. M is closed and f is
monotone. 5. M ⊂ (a, b), M is dense in (a, b) and f is monotone and uniformly
continuous.

Proof. 1. Let M be compact, b ∈ f [M ] and let (bn) ⊂ f [M ] have lim bn = b.
Let a ≡ f−1(b) and an ≡ f−1(bn) (∈ M). We show that lim an = a, which
by (H) proves continuity of f−1 at b. We show that every subsequence of (an)
has a subsequence with the limit a. Part 3 of Theorem 2.2.5 then implies that
lim an = a. Let (a′n) be a subsequence of (an). We use compactness of M and
take a subsequence (amn

) of (a′n) with lim amn
= c ∈ M . By (H) it holds that

lim f(amn
) = f(c) = b because (f(amn

)) is a subsequence of (bn). Since f is
injective, c = a.

2. Let M be an interval. Corollary 6.3.6 says that f increases or decreases.
Suppose that f decreases, the case of increasing f is similar. Theorem 6.3.1
says that f [M ] is an interval. Let b ∈ f [M ] and an ε be given. We show that
f−1 is right-continuous at b. This is true when b is the right endpoint of the
interval f [M ] because then U+(b, δ)∩ f [M ] = {b}. We assume that b is not the
right endpoint of f [M ]. Since f−1 decreases, a ≡ f−1(b) (∈ M) is not the left
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endpoint of the interval M . We may have ε is so small that [a− ε, a] ⊂M . We
set

δ ≡ f(a− ε)− f(a) = f(a− ε)− b > 0 .

Theorem 6.3.1 implies that f is a (decreasing) bijection [a − ε, a] → [b, b + δ],
and hence also (a−ε, a]→ [b, b+δ). So [b, b+δ) ⊂ f [M ] and U+(b, δ)∩f [M ] =
U+(b, δ) = [b, b+ δ). Hence

f−1[U+(b, δ)] = U−(a, ε) ⊂ U(a, ε) = U(f−1(b), ε)

and f−1 is right-continuous at b. Left-continuity of f−1 at b is proven similarly.
Exercise 5.2.11 gives that f−1 is continuous at b.

3. Let M be open. Let b ∈ f(M), a ≡ f−1(b) (∈M) and an ε be given. For
small enough ε one has that U(a, ε) ⊂ M . Proposition 6.4.9 says that the set
f [U(a, ε)] (3 b) is open. So for some δ we have that U(b, δ) ⊂ f [U(a, ε)]. Thus

f−1[U(b, δ)] ⊂ U(a, ε) = U(f−1(b), ε)

and f−1 is continuous at b (exactly by Definition 5.2.1).
4. Let M be closed and f be increasing, for decreasing f we argue similarly.

We assume for contradiction that for some b ∈ f [M ] with a ≡ f−1(b) (∈ M)
there is a sequence (bn) ⊂ f [M ] such that lim bn = b but lim f−1(bn) does not
exist or differs from a. By part 2 of Theorem 2.2.5 and by Proposition 2.3.12
the sequence (bn) has has a decreasing or an increasing subsequence (cn) such
that lim f−1(cn) = B (∈ R∗) and B 6= a. We assume that (cn) decreases, the
case of increasing (cn) is similar. Then b < · · · < c2 < c1, hence a < · · · <
f−1(c2) < f−1(c1) (both f and f−1 increases). By part 2 of Theorem 3.3.1 we
have that B ∈ [a, f−1(c1)). Thus, crucially, B ∈ R (here the argument fails for
non-monotone f). Even B ∈ M because M is closed. Due to the continuity
of f in B we have that f(B) = lim f(f−1(cn)) = lim cn = b = f(a). But this
contradicts the injectivity of f because B 6= a.

5. Let M , a, b and f be as stated. We use Theorem 6.5.6 and continuously
extend f to a function f : [a, b]→ R. By Proposition 3.3.6 and by denseness of
M in (a, b) the function f is strictly monotone and therefore injective. By part 1
or part 2 of this theorem the function (f)−1 is continuous. Proposition 6.1.5
gives that also (f)−1 | f [M ] = f−1 is continuous. 2

In MA 1+ we prove the previous theorem in a more general context and gener-
alize part 5.

Exercise 6.6.12 Present examples showing that in part 4 of the theorem none
of the assumptions (closedness of M , monotonicity of f) can be omitted.

• Continuity of elementary functions. We prove that EF ⊂ C.

Exercise 6.6.13 Use the previous theorem and prove the following corollary.
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Corollary 6.6.14 (continuity of some BEF) These functions are continu-
ous: log x, arccosx, arcsinx, arctanx and arccotx.

Proposition 6.6.15 (continuity of xb) For every b ∈ (0,+∞) the function
xb : [0, +∞)→ [0, +∞) is continuous.

Proof. Let b > 0 and x > 0. We get that xb is continuous at x by using
the expression xb = exp(b log x), continuity of ex (Corollary 6.6.6), continuity
of logarithm (Corollary 6.6.14), continuity of the constant function kb (Exer-
cise 6.1.3), continuity of product (Theorem 6.6.1) and continuity of composition
(Theorem 6.6.9). Continuity at x = 0 follows with the help of Proposition 5.2.5
from the limit

lim
x→0

xb = lim
x→0

exp(b log x) = lim
y→−∞

exp y = 0 = 0b .

Here the second equality follows from Theorem 5.4.1 and from part 2 of Propo-
sition 4.3.10. The third equality follows from part 3 of Proposition 4.3.7. 2

We conclude this chapter by proving continuity of elementary functions.

Theorem 6.6.16 (EF ⊂ C) Every elementary function is continuous.

Proof. We proceed by induction on the length of a generating word of the
given elementary function f (Definition 4.4.14). If f is a constant function,
exponential, logarithm, xb with non-integral exponent b > 0, sine or arcsine,
it is continuous by, respectively, Exercise 6.1.3, Corollaries 6.6.6 and 6.6.14,
Proposition 6.6.15 and Corollaries 6.6.6 and 6.6.14. If f is a sum, a product,
a ratio or a composition of two simpler elementary functions, it is continuous
by induction and Theorems 6.6.1 and 6.6.9. 2
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Chapter 7

Derivatives

The seventh lecture is important because derivatives enter the stage. I gave it
on April 4, 2024, as

https://kam.mff.cuni.cz/~klazar/MAI24_pred7.pdf .

It is considerably extended and reworked here.
In Section 7.1 we define ordinary and one-sided derivatives of functions with

arbitrary definition domains. We consider both point-wise derivatives b 7→ f ′(b)
and global derivatives f 7→ f ′. Theorem 7.1.8 is the well-known criterion of
local extremes for general functions. If f is differentiable at a point b then f is
continuous at b (Proposition 7.1.11) and f(b) is a limit point of the image of f
(Proposition 7.1.15 and Exercise 7.1.17). Theorem 7.1.25 describes a discontin-
uous derivative. A better known example is in Exercise 7.5.8.

Section 7.2 starts with Definition 7.2.1 of standard tangents. Definition 7.2.7
introduces limit tangents — they formalize the intuition of a tangent at a point
as the limit of sequences of secant lines going through that point. In Theo-
rem 7.2.9 we demonstrate the equivalence of standard and limit tangents. In
Theorem 7.2.11 we show how to define the tangent at a point B without actually
using B— as the limit of sequences of secant lines going through pairs A,C of
points of the graph such that A and C converge to B from the opposite sides.
We hope to revisit tangents in MA 1+.

Section 7.3 is devoted to the arithmetic of derivatives. Theorem 7.3.1 de-
scribes the point-wise and global derivatives of sums — we investigate the rela-
tion between f ′, g′ and (f + g)′ for any pair of functions f, g ∈ R. In general
(f + g)′ 6= f ′+ g′. Theorem 7.3.4 presents both the point-wise and global Leib-
niz formula for derivatives of products, and Theorem 7.3.8 does the same for
ratios. Corollaries 7.3.3, 7.3.7, 7.3.10, 7.4.3 and 7.4.7 describe situations where

the respective equalities (f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′, ( fg )′ = f ′g−fg′
g2 ,

(f(g))′ = f ′(g) · g′ and (f−1)′ = 1
f ′(f−1) do hold.

Section 7.4 treats derivatives of composite functions (Theorem 7.4.1) and
inverses (Theorem 7.4.4 and Corollary 7.4.6). We always give both point-wise
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and global forms of the formula, and allow for any definition domain. Proofs
make use of Heine’s definition of derivatives. In Section 7.5 in Theorem 7.5.1
we differentiate power series. By this we obtain derivatives of ex, sinx, and
cosx. We also differentiate logarithm, but derivatives of other Basic Elemen-
tary Functions (Definition 4.3.1) are left as exercises. In Section 7.6 we pose
Problem 7.6.1: show that Elementary Functions have elementary derivatives. In
Theorem 7.6.3 we prove that the subset of Simple Elementary Functions, SEF,
is closed to derivatives.

7.1 Point-wise and global derivatives

We introduce point-wise derivatives for functions with arbitrary definition do-
mains and then the unary operation f 7→ f ′ for f ∈ R. In this and subsequent
chapters, we will see how to find, with the help of derivatives, extremes of func-
tions, intervals of monotony, and intervals of convexity and concavity. Deriva-
tives provide approximations of functions by polynomials and their expansions
in power series.

• Point-wise derivatives. The next definition is fundamental.

Definition 7.1.1 (point-wise derivative) Let f ∈ F(M) and b ∈M∩L(M).
The derivative of f at b is the limit

lim
x→b

f(x)− f(b)

x− b
(∗)
= lim

h→0

f(b+ h)− f(b)

h
(∈ R∗) ,

if it exists. We denote it by f ′(b) or by df
dx (b).

Due to the uniqueness of limits of functions, derivatives are unique.

Exercise 7.1.2 How would you prove the equality (∗)?

Corollary 7.1.3 (locality of derivatives) If f, g ∈ R, b ∈ R and there is a θ
such that f = g on U(b, θ) then f ′(b) = g′(b), if one side is defined.

Proof. This is immediate from Proposition 4.2.9 and Definition 7.1.1. 2

This corollary differs from Proposition 4.2.9: f ′(b) is the limit of a function at
the point b, but the function involves f(b) and therefore equality on P (b, δ) does
not suffice.

If f ′(b) ∈ R, we say that f is differentiable at b. Then f has near b local
approximation by a linear function, so called tangent (at the point (b, f(b)) of
the graph of f):

f(x) = f(b) + f ′(b) · (x− b)︸ ︷︷ ︸
the tangent

+ o(x− b)︸ ︷︷ ︸
error

(x→ b) .

A useful tool is Heine’s definition of derivatives (HDD).
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Proposition 7.1.4 (HDD) Let f ∈ F(M) and b ∈ L(M) ∩M . Then f ′(b) =
B ⇐⇒ for every sequence (an) ⊂ M \ {b} with lim an = b it is true that

lim f(an)−f(b)
an−b = B.

Proof. This follows from Definition 7.1.1 and Theorem 4.2.13. 2

The existence of f ′(b) implies that b ∈M(f)∩L(M(f)), and we will not always
explicitly state this.

• One-sided derivatives. They are defined by one-sided limits. Let f be in

F(M) and b ∈ L−(M) ∩M . Then we call the limit f ′−(b) ≡ limx→b−
f(x)−f(b)

x−b
(∈ R∗) the left-sided derivative of f at b. By changing the signs − to + we get
the right-sided derivative f ′+(b) of f at b.

Exercise 7.1.5 The following hold.
1. f ′(a) = L ⇒ f ′−(a) = L or f ′+(a) = L.
2. f ′−(a) = f ′+(a) = L ⇒ f ′(a) = L.
3. f ′−(a) = K 6= L = f ′+(a) ⇒ f ′(a) does not exist.

Exercise 7.1.6 As in Proposition 5.1.13 concerning limits of functions, one-
sided derivatives of functions can be reduced via restrictions to ordinary deriva-
tives. State this result precisely and prove it.

• Derivative and extremes. We employ the two-sided limit points defined above.
Recall that a is a two-sided limit point of a real set M iff for every δ both
P−(a, δ) ∩ M and P+(a, δ) ∩ M are non-empty. The set of these points is
denoted by LTS(M) (⊂ R).

Exercise 7.1.7 LTS(M) ⊂ L(M). The opposite inclusion in general does not
hold.

We adapt the well-known result linking derivatives and local extremes for func-
tions with arbitrary definition domains.

Theorem 7.1.8 (derivatives and extremes) Suppose that f ∈ F(M), that
b ∈ M ∩ LTS(M) and that f ′(b) (∈ R∗) exists and is not 0. Then f does not
have local extreme at b— for every δ there exist points c, d ∈ U(b, δ) ∩M such
that f(c) < f(b) < f(d).

Proof. Let f , M and b be as stated, and a δ be given. Let f ′(b) < 0, the case
with f ′(b) > 0 is similar. We take an ε small enough so that U(f ′(b), ε) < {0}.
By Definition 7.1.1 there is a θ ≤ δ such that

x ∈ P (b, θ) ∩M ⇒ D ≡ f(x)−f(b)
x−b ∈ U(f ′(b), ε), hence D < 0 .

For these x < b it holds that f(x) > f(b) because x−b < 0 and D < 0. Similarly
for these x > b we have that f(x) < f(b). We take any numbers

c ∈ P+(b, θ) ∩M and d ∈ P−(b, θ) ∩M .
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These numbers exist because b ∈ LTS(M). Hence c, d ∈ U(b, δ)∩M and f(c) <
f(b) < f(d). 2

Exercise 7.1.9 The function f(x) = x : [0, 1]→ R has a strict global minimum
at 0, and at 1 it has a strict global maximum. At the same time it has nonzero
derivatives f ′(0) = f ′(1) = 1. Does it contradict the theorem?

We restate the previous theorem by reversed implication in the better-known
form of necessary condition for local extremes.

Theorem 7.1.10 (NCLE) Let f ∈ F(M), b ∈ M and let f have a local ex-
treme at b. Then b 6∈ LTS(M) or f ′(b) does not exist or f ′(b) = 0.

So f ∈ R may have local, thus also global, extremes only in the following set of
“suspicious” points.

SUSP(f) ≡ {b ∈M(f) : b 6∈ LTS(M) ∨ ¬∃ f ′(b) ∨ f ′(b) = 0} (⊂M(f)) .

• Derivative and continuity. Differentiability of a function strengthens its point-
wise continuity.

Proposition 7.1.11 (derivative and continuity) Every function f ∈ R is
continuous at every point b ∈M(f) where it has a finite derivative f ′(b) ∈ R.

Proof. Suppose that f ∈ R, b ∈M(f) and that f ′(b) exists and is in R. Thus
b ∈ L(M(f)) and by Theorem 5.3.3 we have that

limx→b f(x) = limx→b
(
f(b) + (x− b) · f(x)−f(b)x−b

)
= f(b) + 0 · f ′(b) = f(b) .

The first equality follows from Proposition 4.2.9 and the second from Theo-
rem 5.3.3. By Proposition 5.2.5, the function f is continuous at b. 2

Exercise 7.1.12 Are the functions on the two sides of the first equality the
same?

Exercise 7.1.13 Show that sgn′(0) = +∞.

Thus existence of infinite derivative at a point does not imply continuity at the
point.

Exercise 7.1.14 Show that (|x|)′−(0) = −1 and (|x|)′+(0) = +1.

By part 3 of Exercise 7.1.5 the derivative (|x|)′(0) does not exist. Continuity at
a point therefore, of course, does not imply existence of derivative at the point.

Besides Theorem 7.1.8, nonzero point-wise derivative gives the next result
which is helpful for derivatives of inverses.

Proposition 7.1.15 (limit points of images) Suppose that f ∈ F(M) and
that f ′(b) exists, is nonzero and finite. Then f(b) ∈ L(f [M ]).
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Proof. Let f and b ∈ M ∩ L(M) be as stated and let an ε be given. Since
f ′(b) 6= 0, by Definition 7.1.1 there is a δ such that for every x ∈ P (b, δ)∩M one
has that f(x) 6= f(b). By Proposition 7.1.11 we can take this δ so small that for
these x also f(x) ∈ U(f(b), ε). Since b ∈ L(M) we can take an a ∈ P (b, δ)∩M .
Then f(a) ∈ P (f(b), ε) ∩ f [M ]. Hence f(b) ∈ L(f [M ]). 2

Exercise 7.1.16 For f ′(b) = ±∞ the proposition does not hold.

Exercise 7.1.17 The proposition holds even with the derivative f ′(b) = 0, if
the function f is non-constant on every neighborhood U(b, δ).

Exercise 7.1.18 Adapt Proposition 7.1.11 to one-sided derivatives and one-
sided continuity.

• Examples of derivatives. Let us differentiate
√
x (∈ F([0, +∞))). Let a ≥ 0.

Then

(
√
x)′(a) = limx→a

√
x−
√
a

x−a = limx→a
x−a

(x−a)(
√
x+
√
a)

= limx→a
1√

x+
√
a
.

For a > 0 we get (
√
x)′(a) = 1

2
√
a
. For a = 0 we have (

√
x)′(0) = +∞. Thus

infinite derivative may coexist with continuity at a point.

Exercise 7.1.19 For every a ≥ 0 compute (
√
x)′−(a) and (

√
x)′+(a).

• Global derivative. We add to six operations in Definition 4.4.1 a seventh one.

Definition 7.1.20 (global derivative) R 3 f 7→ f ′ ∈ R is a new unary
operation on R. The function f ′ : D(f)→ R with values f ′(b) ≡ df

dx (b) is called

the derivative of f . Here D(f) ≡ {b ∈M : ∃ dfdx (b) ∈ R} (⊂ L(M) ∩M).

Thus the notation f ′(b) is not ambiguous. The derivative may have smaller def-
inition domain than the original function. For instance M(

√
x) = [0,+∞) but

D(
√
x) = M((

√
x)′) = (0, +∞). We investigate interactions of derivative with

the operations in Definition 4.4.1 and begin with the operation of restriction.

Proposition 7.1.21 (derivative and restriction) Let f ∈ R, X be any set
and M ≡M(f) ∩X. Then the following hold.
1. If f ′(b) exists and b ∈M ∩ L(M) then (f |X)′(b) = f ′(b).
2. The function f ′ |M ∩ L(M) is a restriction of the function (f |X)′.

Proof. Let f , X, M and b be as stated. By Proposition 4.2.11, (f |X)′(b)
equals

limx→b
(f |X)(x)−(f |X)(b)

x−b = limx→b
( f(x)−f(b)

x−b
∣∣X)(x) = limx→b

f(x)−f(b)
x−b

which is f ′(b).
2. Let N ≡ M ∩ L(M), g ≡ f ′ |N and c ∈ M(g). Then c ∈ D(f) ∩N and

by part 1 we have that (f |X)′(c) = f ′(c) = g(c). Hence f ′ |N is a restriction
of (f |X)′. 2

113



Exercise 7.1.22 (derivative of constants) For every c ∈ R, k′c = k0.

Exercise 7.1.23 (derivative of identity plus constant) For every c ∈ R,
(id + kc)

′ = k1.

Exercise 7.1.24 For every f ∈ R we have that f |D(f) ∈ C.

• A function with discontinuous derivative. We find a function f ∈ R such that
f ′ 6∈ C.

Theorem 7.1.25 (discontinuous derivative) There exists a function f ∈ R
such that M(f) = D(f) and f ′ is discontinuous.

Proof. Let (an) and (bn) be sequences such that a1 > b1 > a2 > b2 > · · · > 0,
lim an = lim bn = 0 and an − bn = o(bn) (n→∞). Let N ≡ {0} ∪

⋃∞
n=1(bn, an)

and f ∈ F(N) be given by f(0) ≡ 0 and f(x) ≡ x − bn for x ∈ (bn, an).
Then for any x ∈ (bn, an) we have that f ′(x) = (x − bn)′ = 1 (Exercise 7.1.23

and Corollary 7.1.3). But 0 ∈ L(N) and f ′(0) = limx→0
f(x)
x = 0 because for

x ∈ (bn, an) it holds that
∣∣ f(x)
x

∣∣ ≤ an−bn
bn

→ 0 (n → ∞). Hence D(f) = N and
since f ′(0) = 0 but f ′ = 1 on N \ {0}, the derivative f ′ is discontinuous. 2

By the previous exercise, f ∈ C.

Exercise 7.1.26 Why is lim an−bn
bn

= 0?

7.2 Standard and limit tangents

We give two definitions of the tangent (line) to the graph Gf of a function f ∈ R
at a point (b, f(b)) ∈ Gf .

• Standard tangents. We already mentioned them in connection with differen-
tiability of a function at a point.

Definition 7.2.1 (standard tangents) Suppose that f ∈ F(M) is differen-
tiable at b ∈ M ∩ L(M). The tangent to the graph of f at the point (b, f(b)) is

the line ` (⊂ R2) given by the equation

y = f ′(b) · (x− b) + f(b) = f ′(b) · x+ f(b)− f ′(b) · b, x ∈ R .

The line ` has the slope f ′(b) (∈ R) and goes through the point (b, f(b)).

Exercise 7.2.2 Let f and b be as in the definition. Then the function x 7→
f ′(b) · (x− b) + f(b) is the only linear function approximating f near b with the
precision o(x− b) (x→ b).

Exercise 7.2.3 Write the equation of the tangent to the graph of
√
x at the

point (a,
√
a).
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We often read about tangents that they are certain limits of secant lines, but
it is never clearly said what these limits exactly are. In the spirit of the initial
motto, let us say it clearly.

• Non-vertical lines. By plane geometry every non-vertical line ` has a unique
expression ` = {(x, sx + t) : x ∈ R} where s, t ∈ R. We call s the slope of `.

Let N (⊂ P(R2)) be the set of non-vertical lines in the plane.

Exercise 7.2.4 The function p : N → R2, given by p(`) = (p1(`), p2(`)) ≡
(s, t), is a bijection.

Definition 7.2.5 (limits in N ) For (`n) ⊂ N and ` ∈ N we write lim `n = `
iff lim p1(`n) = p1(`) and lim p2(`n) = p2(`). Here pi(·) are as in the previous
exercise.

Exercise 7.2.6 Let A = (a, b) and A′ = (a′, b′) be in R2 & a 6= a′. Then there

is a unique line ` ∈ N such that A ∈ ` and A′ ∈ `. This line ` has slope b′−b
a′−a .

We denote this unique non-vertical line ` going through the points A = (a, b)
and A′ = (a′, b′) with a 6= a′ by κ(A,A′) or by κ(a, b, a′, b′). If A and A′ lie in
the graph of f , we speak of ` as a secant of this graph.

• Limit tangents. We propose a rigorous definition of tangents to graphs of
functions as limits of sequences of secants.

Definition 7.2.7 (limit tangents) Let f ∈ F(M), b ∈M ∩L(M) and ` ∈ N .
If for every sequence (an) ⊂M \ {b} with lim an = b it holds by Definition 7.2.5
that

lim
n→∞

κ(b, f(b), an, f(an)) = ` ,

we say that the line ` is the limit tangent to Gf at (b, f(b)).

This tangent does not need the derivative f ′(b).

Exercise 7.2.8 If ` is a limit tangent to Gf at (b, f(b)) then (b, f(b)) ∈ `.

We show that standard and limit tangents coincide.

Theorem 7.2.9 (on limit tangents) Let f ∈ F(M), b ∈ M ∩ L(M) and
` ∈ N . Then ` is a tangent to Gf at (b, f(b)) by Definition 7.2.1 ⇐⇒ ` is
a limit tangent to Gf at (b, f(b)) by Definition 7.2.7.

Proof. Let f , M , b and ` be as stated. Implication ⇒. We assume that there
exists f ′(b) ∈ R and that ` is given by the equation

y = f ′(b) · x+ f(b)− f ′(b)f(b) .
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Let (an) ⊂ M \ {b} have lim an = b. For cn ≡ f(an)−f(b)
an−b the line κn ≡

κ(b, f(b), an, f(an)) is given by the equation

y = cn(x− b) + f(b) = cnx+ f(b)− cnb .

By HDD we have that lim cn = f ′(b). Thus lim(f(b) − cnb) = f(b) − f ′(b)f(b)
and limκn = ` in the sense of Definition 7.2.5.

Implication ⇐. Let ` be given by the equation y = sx + t and let (an),
cn and κn be as above. We assume that for every such sequence (an) it holds
that limκn = ` in the sense of Definition 7.2.5. Thus always lim cn = s and
lim(f(b) − cnb) = f(b) − sb = t. Then by HDD we have s = f ′(b). Hence
t = f(b)− f ′(b)b and ` is a tangent to Gf at (b, f(b)). 2

• Tangents in missing points. We show how to define the tangent to the graph
of a function at a point without actually using the point. The next lemma is
clear.

Lemma 7.2.10 (a convex combination) For nonnegative real numbers r, s,
t, v, where s, v > 0, we define α ≡ s

s+v and β ≡ v
s+v . Then

r + t

s+ v
= α · r

s
+ β · t

v

is a convex combination with coefficients α and β because α, β ≥ 0 and α+β = 1.

Theorem 7.2.11 (tangents in missing points) Let b ∈ LTS(M) for a set
M ⊂ R, f ∈ F(M \ {b}) and ` ∈ N . Then the equivalence holds that f can be
extended to b by a value f(b) so that ` is a tangent to Gf at (b, f(b)) ⇐⇒ for
every two sequences (xn), (yn) ⊂ M with limxn = lim yn = b such that always
xn < b < yn we have limκ(xn, f(xn), yn, f(yn)) = ` by Definition 7.2.5.

Proof. Let b, M , f and ` be as stated. Implication ⇒. We assume that f has
been extended to b by a value f(b), that f ′(b) ∈ R exists and that the line ` is
given by the equation

y = f ′(b) · x+ f(b)− f ′(b)b .

Suppose that (xn) and (yn) are as stated. We set rn ≡ f(b)−f(xn), sn ≡ b−xn,
tn ≡ f(yn)− f(b) and vn ≡ yn− b. By Lemma 7.2.10 the slope un of the secant

`n = κ(xn, f(xn), yn, f(yn))

of Gf is a convex combination of the slopes rn
sn

and tn
vn

of the two secants
κ(xn, f(xn), b, f(b)) and κ(b, f(b), yn, f(yn)):

un = f(yn)−f(xn)
yn−xn

= rn+tn
sn+vn

= αn · rnsn + βn · tnvn ,

where αn, βn ≥ 0 and αn + βn = 1. Since lim rn
sn

= lim tn
vn

= f ′(b), by Theo-
rem 3.3.10 also limun = f ′(b). The secant `n is given by the equation

y = unx+ f(xn)− unxn .
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Since limun = f ′(b), limxn = b and lim f(xn) = f(b) (f is continuous at b
because f ′(b) ∈ R), we have that lim `n = ` in the sense of Definition 7.2.5.

Implication ¬ ⇒ ¬. Suppose that f cannot be extended to b by any value
f(b) so that ` be a tangent to Gf at (b, f(b)). This means that if we take the
only number f(b) ∈ R such that (b, f(b)) ∈ ` and if s ∈ R is the slope of the

line `, then it is not true that limx→b
f(x)−f(b)

x−b = s. We show that there are two
sequences in M that converge from different sides to b and are such that it is
not true that the limit of the corresponding secants is `.

The first case is that the extended function f is not continuous at b. Then
there are sequences (xn), (yn) ⊂ M satisfying that always xn < b < yn, that
limxn = lim yn = b, lim f(xn) = K, lim f(yn) = L, but it is not true that
K = L = f(b) (Exercise 7.2.12). If K 6= L then the slopes of secants `n ≡
κ(xn, f(xn), yn, f(yn)) go to ±∞ and the stated limit of lines does not hold. If
K = L 6= f(b) then the intersections of secants `n with the vertical line (x = b)
converge to (possibly infinite) point different from (b, f(b)). By Exercise 7.2.13
the limit lim `n, if it exists, cannot be a line going through (b, f(b)) and the
stated limit of lines again does not hold.

The remaining case is that the extended function f is continuous at b, but

it is not true that limx→b
f(x)−f(b)

x−b = s. Then there is an A ∈ R∗ \ {s} and
a sequence (xn) ⊂ M \ {b} lying on one side of b such that limxn = b and

lim f(xn)−f(b)
xn−b = A. We may assume that always xn < b, the case that always

xn > b is similar. We take any sequence (yn) ⊂M such that always yn > b and
lim yn = b. Then lim f(yn) = f(b) and we can choose from (yn) a subsequence
(ymn) such that

limn→∞
f(xn)−f(ymn )

xn−ymn
= A

(Exercise 7.2.14). Since A 6= s, the stated limit of lines again does not hold. 2

The next three exercises are the lemmas used in the previous proof, and the
fourth exercise shows that the assumption that b lies between xn and yn cannot
be omitted.

Exercise 7.2.12 If b ∈M is a two-sided limit point of M ⊂ R and f ∈ F(M)
is not continuous at b, then there exist sequences (xn), (yn) ⊂ M \ {b} con-
verging from different sides to b such that there exist limits lim f(xn) = K and
lim f(yn) = L but K 6= f(b) or L 6= f(b).

Exercise 7.2.13 Let `n, ` ∈ N , (b, c) ∈ `, lim `n = ` and (x = b) ∩ `n =
{(b, cn)}. Then lim cn = c.

Exercise 7.2.14 Suppose that (xn), (yn), (zn) and (un) are sequences such
that limxn = lim zn = b, always xn 6= b, lim yn = limun = c and lim yn−c

xn−b = A.

Then there exists a sequence (mn) ⊂ N such that lim
yn−umn

xn−zmn
= A.
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Exercise 7.2.15 The condition in Theorem 7.2.11 that always xn < b < yn
cannot be removed. Give an example of a function f ∈ F(M) with the tan-
gent ` to Gf at (b, f(b)) and of two sequences (xn), (yn) ⊂ M \ {b} such that
always xn 6= yn and that limxn = lim yn = b, but that the limit of lines
limκ(xn, f(xn), yn, f(yn)) = ` does not hold.

7.3 Arithmetic of derivatives

The derivative f 7→ f ′ is a unary operation on R. We describe its interactions
with the binary operation +, · and /. In the next section we consider interactions
with composition and inverses. Point-wise formulas for these interactions allow
infinities as values of derivatives. Global formulas use only finite values.

• Sums. We differentiate point-wisely and globally sums of two functions.

Theorem 7.3.1 ((f + g)′) Let f, g ∈ R and M ≡ M(f) ∩M(g). Then the
following hold.
1. If f ′(b) = K, g′(b) = L, b ∈ L(M) and K +L is not an indefinite expression
then (f + g)′(b) = K + L.
2. The function (f ′ + g′) |L(M) is a restriction of the function (f + g)′.

Proof. 1. Suppose that f , g, M , b, K and L are as stated, and that K + L is
not an indefinite expression. Let h ≡ f + g. Then b ∈M(h) ∩ L(M(h)) and by
Theorem 5.3.3 one has

h′(b) = limx→b
h(x)−h(b)

x−b = limx→b
f(x)−f(b)

x−b + limx→b
g(x)−g(b)
x−b = K + L .

2. Let h ≡ (f ′+g′) |L(M) and c ∈M(h) = D(f)∩D(g)∩L(M). By part 1,
(f + g)′(c) = f ′(c) + g′(c) = h(c). Hence h is a restriction of (f + g)′. 2

We illustrate part 2 by two examples. First, let f ≡ k0 | (−∞, 0] and g ≡
k0 | [0,+∞). Then f ′ + g′ is k0 | {0} which is ({0},R, {(0, 0)}), but (f + g)′ =
(k0 | {0})′ is the empty function (∅,R, ∅). Thus the restriction to L(M) cannot
be omitted. Second, let f(x) = |x| and g(x) = −|x| (both in F(R)). Then
M = R, L(M) = R∗, (f ′ + g′) |L(M) = k0 | (R \ {0}) and (f + g)′ = k0. Thus
(f ′ + g′) |L(M) may be a proper restriction of (f + g)′.

As an application of part 1 of Theorem 7.3.1 we compute one derivative. Let
f(x) ≡ sgn(x), g(x) ≡

√
x and b ≡ 0. Then M = [0,+∞) and

(sgn(x) +
√
x)′(0) = sgn′(0) + (

√
x)′(0) = +∞+ (+∞) = +∞ .

Exercise 7.3.2 (sgn(x)−
√
x)′(0) =?

Theorem 7.3.1 answers for any pair of functions f, g ∈ R the question what is
the relation between f ′, g′ and (f+g)′. It may seem unusual to someone who is
used to the slogan (f + g)′ = f ′+ g′. We therefore describe a common situation
when this slogan speaks truth. Also, we need a result working in the situation
of the proof of Theorem 7.6.3.
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Corollary 7.3.3 ((f + g)′ = f ′ + g′) Let f, g ∈ R and M ≡ M(f) ∩M(g). If
D(f) = M(f), D(g) = M(g) and M ⊂ L(M) then (f + g)′ = f ′ + g′.

Proof. Let f , g and M be as stated, and let h ≡ (f ′ + g′) |L(M). From the
assumptions on f and g it follows that M(h) = M and that h = f ′ + g′. Since
M((f + g)′) ⊂M , part 2 of Theorem 7.3.1 gives that f ′ + g′ = h = (f + g)′. 2

• Products. We derive two Leibniz formulas (LF) for the derivatives of the
products, the point-wise and global one. Gottfried W. Leibniz (1646–1716)
“was a German polymath active as a mathematician, philosopher, scientist and
diplomat who is disputed with Sir Isaac Newton to have invented calculus in
addition to many other branches of mathematics, such as binary arithmetic,
and statistics.” ([17])

Theorem 7.3.4 ((fg)′)) Let f, g ∈ R and M ≡ M(f) ∩ M(g). Then the
following hold.
1st LF If f ′(b) = K, g′(b) = L, f or g is continuous at b, b ∈ L(M) and the
expression K · g(b) + f(b) · L is defined, then (fg)′(b) = K · g(b) + f(b) · L.
2nd LF The function (f ′g + fg′) |L(M) is a restriction of the function (fg)′.

Proof. 1. Let the expression K · g(b) + f(b) · L be defined, h ≡ fg and g be
continuous at b. The case when f is continuous at b is Exercise 7.3.5. Then
b ∈M(h) ∩ L(M(h)) and

h′(b) = limx→b
f(x)g(x)−f(b)g(b)

x−b = limx→b
(f(x)−f(b))g(x)+f(b)(g(x)−g(b))

x−b .

This by the assumptions, Proposition 5.2.5 and Theorem 5.3.3 equals to

limx→b
f(x)−f(b)

x−b · limx→b g(x) + f(b) limx→b
g(x)−g(b)
x−b = Kg(b) + f(b)L .

2. Let h ≡ (f ′g + fg′) |L(M) a c ∈ M(h). Then c ∈ D(f) ∩D(g) ∩ L(M),
g is continuous at c, because g′(c) ∈ R, and by the first part we have that
(fg)′(c) = f ′(c)g(c) + f(c)g′(c) = h(c). Hence h is a restriction of (fg)′. 2

Like for sum, it is not hard to produce examples showing that the restriction to
L(M) cannot be omitted and that (f ′g+fg′) |L(M) can be a proper restriction
of (fg)′.

Exercise 7.3.5 Solve quickly the case when f is continuous at b.

The next exercise shows that the assumption of continuity of one of the
functions at b cannot be omitted.

Exercise 7.3.6 Let f, g ∈ F(R), where for x 6= 0 we set f(x) = −g(x) ≡ sgnx
and for x = 0 it is f(0) ≡ − 1

2 and g(0) ≡ 1
2 . Show that then for b ≡ 0 the

right side of the first Leibniz formula equals (+∞) · 12 + (− 1
2 ) · (−∞) = +∞, but

(fg)′(b) does not exist.
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We give a corollary with a simple form of the second Leibniz formula; we need
it later.

Corollary 7.3.7 ((fg)′ = f ′g + fg′) Let f, g ∈ R and M ≡ M(f) ∩M(g). If
D(f) = M(f), D(g) = M(g) and M ⊂ L(M) then (fg)′ = f ′g + fg′.

Proof. Let f , g and M be as stated, and let h ≡ (f ′g + fg′) |L(M). From the
assumptions on f and g it follows that M(h) = M and h = f ′g + fg′. Since
M((fg)′) ⊂M , part 2 of Theorem 7.3.4 gives that f ′g + fg′ = h = (fg)′. 2

• Ratios. We derive point-wise and global formulas for derivatives of ratios.

Theorem 7.3.8 (( fg )′)) Let f, g ∈ R and M ≡M(f)∩M(g) \Z(g). Then the
following hold.
1. If f ′(b) = K, g′(b) = L, g is continuous at b, b ∈ L(M) and the expression
K·g(b)−f(b)·L

g(b)2 is defined then ( fg )′(b) = K·g(b)−f(b)·L
g(b)2 .

2. The function f ′g−fg′
g2 |L(M) is a restriction of the function ( fg )′.

Proof. 1. Let the expression K·g(b)−f(b)·L
g(b)2 be defined, h ≡ f

g and let g be

continuous at b. Then b ∈M(h) ∩ L(M(h)) and

h′(b) = limx→b
f(x)/g(x)− f(b)/g(b)

x− b = limx→b
f(x)g(b)−f(b)g(b)+f(b)g(b)−f(b)g(x)

g(x)g(b)(x−b) .

Due to the assumptions, Proposition 5.2.5 and Theorem 5.3.3 this equals

limx→b
f(x)−f(b)

x−b limx→b
g(b)

g(x)g(b) − limx→b
f(b)

g(x)g(b) limx→b
g(x)−g(b)
x−b

= f ′(b)g(b)−f(b)g′(b)
g(b)2 .

2. Let h ≡ f ′g−fg′
g2 |L(M) and c ∈ M(h). Then c ∈ D(f) ∩D(g) ∩ L(M) \

Z(g), g is continuous at c, because g′(c) ∈ R, and by the first part we have that

( fg )′(c) = f ′(c)g(c)−f(c)g′(c)
g(c)2 = h(c). Hence h is a restriction of ( fg )′. 2

Again, the restriction to L(M) cannot in general be omitted and f ′g−fg′
g2 |L(M)

can be a proper restriction of ( fg )′.

Exercise 7.3.9 As in Exercise 7.3.6 show that the assumption of continuity of
g at b cannot be omitted.

For later use we again give a corollary with a simple form of the formula for
derivatives of ratios.

Corollary 7.3.10 (( fg )′ = f ′g−f ′g
g2 ) Let f, g ∈ R and M ≡ M(f) ∩M(g). If

D(f) = M(f), D(g) = M(g) and M ⊂ L(M) then ( fg )′ = f ′g−f ′g
g2 .
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Proof. Let f , g and M be as stated, and let h ≡ f ′g−fg′
g2 |L(M). From the

assumptions on f and g it follows that M(h) = M \Z(g) and h = f ′g−fg′
g2 . Since

M(( fg )′) ⊂M \Z(g), part 2 of Theorem 7.3.8 gives that f ′g−fg′
g2 = h = ( fg )′. 2

7.4 Composite functions and inverses

Recall that for f, g ∈ R the composite function

f(g) : {x ∈M(g) : g(x) ∈M(f)} → R

has values f(g)(x) = f(g(x)). Thus M(f(g)) ⊂ M(g) and in general this may
be a proper inclusion. Any injective f ∈ R has the inverse

f−1 : f [M(f)]→ R ,

with values f−1(y) = x ⇐⇒ f(x) = y. Hence M(f−1) = f [M(f)]. For
noninjective f the inverse is not defined.

• Composite functions. We obtain formulas for point-wise and global derivatives
of composite functions.

Theorem 7.4.1 ((f(g))′) Let f, g ∈ R and M ≡M(f(g)). Then the following
hold.
1. If f ′(g(b)) = K, g′(b) = L, g is continuous at b, b ∈ L(M) and K · L is not
an indefinite expression, then f(g)′(b) = K · L.
2. The function (f ′(g) · g′) |L(M) is a restriction of the function (f(g))′.

Proof. 1. Let f , g, M and b be as stated. We employ HDD. We assume
that the product f ′(g(b)) · g′(b) is not indefinite and that (an) ⊂ M \ {b} is
any sequence with lim an = b. Then by the assumption lim g(an) = g(b). We
partition (an) in two (possibly finite or empty) subsequences (bn) and (cn) so
that always (i.e., for every n) it holds that g(bn) = g(b) and g(cn) 6= g(b). We
show in both cases (xn) ≡ (bn) and (xn) ≡ (cn) that if (xn) is infinite then we
have the same limit

limn→∞
f(g)(xn)−f(g)(b)

xn−b = f ′(g(b)) · g′(b) .

Then also lim f(g)(an)−f(g)(b)
an−b = f ′(g(b))·g′(b) and by HDD one has that f(g)′(b) =

f ′(g(b)) · g′(b).
Let (bn) be infinite. Then lim bn = b. By HDD we have g′(b) = lim g(bn)−g(b)

bn−b =

lim g(b)−g(b)
bn−b = 0. Thus

lim f(g)(bn)−f(g)(b)
bn−b = lim f(g(b))−f(g(b))

bn−b = 0 = f ′(g(b)) · 0 = f ′(g(b)) · g′(b) .
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Let (cn) be infinite. Then lim cn = b, lim g(cn) = g(b) and by Theorem 5.3.3

and HDD again lim f(g)(cn)−f(g)(b)
cn−b = lim f(g(cn))−f(g(b))

cn−b equals to

lim
( f(g(cn))−f(g(b))

g(cn)−g(b) · g(cn)−g(b)cn−b
)

= lim f(g(cn))−f(g(b))
g(cn)−g(b) · lim g(cn)−g(b)

cn−b .

By HDD this is f ′(g(b)) · g′(b).
2. Let h ≡ (f ′(g) ·g′) |L(M) a c ∈M(h). Then c ∈M(f ′(g))∩D(g)∩L(M),

g is continuous at c, because g′(c) ∈ R, and by the first part (f(g))′(c) =
f ′(g(c)) · g′(c) = h(c). Hence h is a restriction of (f(g))′ 2

Again, the restriction to L(M) cannot be omitted and (f ′(g) · g′) |L(M) can be
a proper restriction of f(g)′.

Exercise 7.4.2 In general part 1 does not hold when the continuity of g at b is
dropped.

A corollary we use later gives a simple form of the formula for (f(g))′.

Corollary 7.4.3 ((f(g))′ = f ′(g) · g′) Let f, g ∈ R and M ≡ M(f(g)). If
D(f) = M(f), D(g) = M(g) and M ⊂ L(M) then (f(g))′ = f ′(g) · g′.

Proof. Let f , g and M be as stated, and let h ≡ (f ′(g) · g′) |L(M). From the
assumptions on f and g it follows that M(h) = M and h = f ′(g) · g′. Since
M((f(g))′) ⊂M , part 2 of Theorem 7.3.4 gives that f ′(g) · g′ = h = (f(g))′. 2

• Inverses. We take both point-wise and global derivatives of inverses, but now
we split the two formulas between the theorem and its corollary. A function
f ∈ F(M) increases, respectively decreases, at a point b ∈M if there exists a δ
such that for every x and x′ with b − δ < x < b < x′ < b + δ it holds that
f(x) < f(b) < f(x′), respectively f(x) > f(b) > f(x′).

Theorem 7.4.4 ((f−1)′) Suppose that f ∈ F(M) is injective, f ′(b) (∈ R∗)
exists and the inverse f−1 is continuous at c ≡ f(b). Then the following hold.

1. If f ′(b) ∈ R \ {0} then
(
f−1

)′
(c) = 1

f ′(b) = 1
f ′(f−1(c)) .

2. If f ′(b) = 0 and f increases, respectively decreases, at b then (f−1)′(c) = +∞,
respectively −∞.
3. If f ′(b) = ±∞ and c ∈ L(f [M ]) then (f−1)′(c) = 0.

Proof. Let f , M , b and c be as stated. We use again HDD. We take a sequence
(bn) ⊂ f [M ] \ {c} with lim bn = c and set an ≡ f−1(bn). Thus (an) ⊂ M \ {b}
and by the assumption lim an = b.

1. Let f ′(b) ∈ R \ {0}. Then c ∈ L(f [M ]) by Proposition 7.1.15. By
Theorem 5.3.3 and HDD one has

lim f−1(bn)−f−1(c)
bn−c = lim 1

f(an)−f(b)
an−b

= 1

lim
f(an)−f(b)

an−b

= 1
f ′(b) .

By HDD we have (f−1)′(c) = 1
f ′(b) .
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2. Let f ′(b) = 0. Then c ∈ L(f [M ]) by Exercise 7.1.17. Suppose that f
decreases (respectively increases) at b. Then there is an n0 such that n ≥ n0 ⇒
f(an)−f(b)

an−b < 0 (respectively · · · > 0). The previous computation and part 5 of

Proposition 3.1.4 show that (f−1)′(b) = 1
0− = −∞ (respectively · · · = +∞).

3. Let f ′(b) = ±∞ and c ∈ L(f [M ]). Then we have that (f−1)′(c) = 1
±∞ =

0 by part 1. 2

Exercise 7.4.5 What happens when f−1 is not continuous at c?

Corollary 7.4.6 (global (f−1)′) Suppose that f ∈ R is injective and set M ≡
{x ∈ f [M(f)] : f−1 is continuous at x}. Then the function 1

f ′(f−1) |M is

a restriction of the function (f−1)′.

Proof. Let h ≡ 1
f ′(f−1) |M and c ∈ M(h). Then c ∈ M(f ′(f−1)) ∩ M \

Z(f ′(f−1)), f−1 is continuous at c because c ∈ M , and by part 1 of Theo-
rem 7.4.4 it holds that (f−1)′(c) = 1

f ′(f−1(c) = h(c). Hence h is a restriction of

(f−1)′. 2

A similar remark applies here as in previous cases of global derivatives. We do
not need derivatives of inverses for the proof of Theorem 7.6.3 but for complete-
ness we still give the corollary with simple formula for (f−1)′.

Corollary 7.4.7 ((f−1)′ = 1
f ′(f−1)) Let f ∈ R be injective and M ≡ f [M(f)].

If D(f) = M(f), f−1 ∈ C and M ⊂ L(M) then (f−1)′ = 1
f ′(f−1) .

Proof. Let f and M be as stated and let h ≡ 1
f ′(f−1) . It follows from the

assumptions on f and from Corollary 7.4.6 that M(h) = M \ Z(f ′(f−1)) and
that h is a restriction of (f−1)′. Suppose that c ∈M is such that f ′(f−1(c)) = 0.
If c ∈M((f−1)′) then part 1 of Theorem 7.4.1 gives that

1 = (id |M)′(c) = (f(f−1))′(c) = f ′(f−1(c)) · (f−1)′(c) = 0 · (f−1)′(c) ,

which is impossible. Thus c 6∈ M((f−1)′) and we deduce that M((f−1)′) ⊂
M \ Z(f ′(f−1)). Hence 1

f ′(f−1) = h = (f−1)′. 2

7.5 Derivatives of Basic Elementary Functions

We take derivatives of functions in the set BEF introduced in Definition 4.3.1.

• Exponential, sine and cosine. We apply differentiation of power series.

Theorem 7.5.1 (derivatives of PS) Let the sequence (a0, a1, . . . ) ⊂ R sat-
isfy that lim |an|1/n = 0. Then for every number x ∈ R the series S(x) ≡∑∞
n=0 anx

n is abscon and S′(x) =
∑∞
n=0(n+ 1)an+1x

n ≡ T (x) ∈ F(R).
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Proof. Let an, S and T be as stated, and let x, c ∈ R with c 6= 0. By
Theorem 6.6.3 we know that S, T ∈ F(R) (because lim(n + 1)1/n = 1). We
estimate U =

∣∣ 1
c (S(x + c) − S(x)) − T (x)

∣∣: U ≤
∑∞
n=1 |an+1| · |

∑n
j=0(x +

c)jxn−j − (n+ 1)xn|. This with y ≡ |c|+ |x| is

≤ |c|
∑∞
n=1 |an+1| ·

∑n
j=1

∑j
i=1

(
j
i

)
yi−1yn−i

≤ |c|
∑∞
n=1 |an+1| · yn−1 ·

∑n
j=1 2j ≤ |c| ·

∑∞
n=1 |an+1| · (2y)n+1 .

For c → 0 this goes to 0. Hence S′(x) = limc→0
S(x+c)−S(x)

c =
∑∞
n=0(n +

1)an+1x
n = T (x). 2

Exercise 7.5.2 Explain the estimates of U in the proof.

Corollary 7.5.3 (expx, cosx and sinx) Thus (expx)′ = expx, (cosx)′ =
− sinx and (sinx)′ = cosx.

Proof. By the previous theorem one has

(expx)′ =
(∑

n≥0
xn

n!

)′
=
∑
n≥0

(n+1)xn

(n+1)! = expx ,

(cosx)′ =
(∑

n≥0(−1)n x2n

(2n)!

)′
=
∑
n≥0(−1)n+1 (2n+2)x2n+1

(2n+2)! = − sinx and

(sinx)′ =
(∑

n≥0(−1)n x2n+1

(2n+1)!

)′
=
∑
n≥0(−1)n (2n+1)x2n

(2n+1)! = cosx .

2

We obtain derivatives of remaining functions in BEF. By Exercise 7.1.22 we
have for every c ∈ R that k′c = k0.

• Logarithm. Since log x = (ex)−1 and (ex)′ = ex, Corollary 7.4.7 gives that

(log x)′ = 1
(ex)′◦(log x) = 1

(ex)◦(log x) = 1
x | (0, +∞) .

So (log x)′ = (k1(x)/id(x)) | (0,+∞), 1
x = k1(x)/id(x) is a different function.

Exercise 7.5.4 What is (log |x|)′?

• Real power. We leave their derivatives to an exercise.

Exercise 7.5.5 Prove the following derivatives. 1. For a > 0 it holds that
(ax)′ = ax · log a. 2. For b 6= 1 it holds that (xb)′ = bxb−1. 3. For b = 1 it holds
that (xb)′ = k1 | [0,+∞). 4. (0x)′ = k0 | (0,+∞). 5. For m ∈ Z with m 6= 0 it
holds that (xm)′ = mxm−1. 6. For m = 0 it holds that (xm)′ = k0.

• Tangent and cotangent. Same here.

Exercise 7.5.6 Show that (tanx)′ = 1
cos2 x and (cotx)′ = − 1

sin2 x
.
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• Inverse trigonometric functions. Same here.

Exercise 7.5.7 Show that (arcsinx)′ = 1√
1−x2

, that (arccosx)′ = − 1√
1−x2

,

that (arctanx)′ = 1
1+x2 and that (arccotx)′ = − 1

1+x2 . Recall that on the right
sides x is the identity function id and 1 is in fact k1.

• We summarize derivatives of functions in BEF by their definition domains.

1. The domain R. Here (expx)′ = expx, (sinx)′ = cosx, (cosx)′ = − sinx,
(arctanx)′ = 1

1+x2 and (arccotx)′ = − 1
1+x2 . For m ∈ N we have that

(xm)′ = mxm−1, for m = 0 that (xm)′ = k0 and for c ∈ R that (kc(x))′ =
k0(x).

2. The domain R \ {0}. For m ∈ Z with m < 0 it holds that (xm)′ = mxm−1.

Also, (log |x|)′ = 1
x .

3. The domain [0,+∞). For b > 1 one has that (xb)′ = bxb−1 and for b = 1

that (xb)′ = k1 | [0,+∞).

4. The domain (0,+∞). For b < 1 it holds that (xb)′ = bxb−1 and that

(log x)′ = 1
x | (0,+∞).

5. The domain R \ {kπ + π
2 : k ∈ Z}. Here (tanx)′ = 1

cos2 x .

6. The domain R \ {kπ : k ∈ Z}. Here (cotx)′ = − 1
sin2 x

.

7. The domain (−1, 1). Here (arcsinx)′ = 1√
1−x2

and (arccosx)′ = − 1√
1−x2

(with
√
x ≡ x1/2).

We give another example of a discontinuous derivative, but now with the
definition domain R. The first example is in Theorem 7.1.25.

Exercise 7.5.8 Let f ∈ F(R) be given by f ≡ x2 sin( 1
x )∪{(0, 0)} (with x ≡ id).

In other words, f(0) = 0 and f(x) = x2 sin( 1
x ) for x 6= 0. Show that D(f) = R

but that f ′ 6∈ C.

Here f = id · id · sin(k1/id) ∪ {(0, 0)}. Probably f 6∈ EF because f ′ 6∈ C.

7.6 Derivatives of Simple Elementary Functions

What about derivatives of Elementary Functions, the set of functions EF (⊂ R)?
See their Definitions 4.4.5 and 4.4.14.

Problem 7.6.1 (derivatives in EF) Prove (or disprove) that for every func-
tion f ∈ EF also f ′ ∈ EF, that is, the derivative of every elementary function
is elementary.
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This is not as clear as one might think. For example, let f(x) ≡ arcsinx and
g(x) ≡ − arcsinx, which are both elementary functions in F([−1, 1]). Then

f ′(x) = 1√
1−x2

and g′(x) = − 1√
1−x2

are elementary functions in F((−1, 1)). Is (f + g)′ elementary? Yes, it is,
because (f + g)′ = (k0 | [−1, 1])′ = k0 | [−1, 1] and

k0 | [−1, 1] =
√

1− x−
√

1− x+
√

1 + x−
√

1 + x ,

but this justification has nothing to do with f ′ and g′. Moreover, these deriva-
tives have definition domains smaller than M((f + g)′), and it is not clear how
they could be used to justify (f + g)′ ∈ EF.

We show that when the troublesome functions xb and arcsinx are dropped
from RBEF then the obtained subset SEF of EF can be by induction relatively
easily proven to be closed to derivatives.

Definition 7.6.2 (VBEF & SEF) Very Basic Elementary Functions are the
elementary functions

VBEF ≡ {kc(x) : c ∈ R} ∪ {ex, log x, sinx} .

Simple Elementary Functions, SEF, is the subset of EF obtained by replacing
in Definition 4.4.14 the starting set of functions RBEF with VBEF.

Thus Simple Elementary Functions arise from constants, exponential, logarithm
and sine by repeated addition, multiplication, division and composition.

We close this hopefully interesting chapter with the following partial result
toward affirmative solution of Problem 7.6.1.

Theorem 7.6.3 (derivatives in SEF) For every function f ∈ SEF it holds
that M(f) is an open set, D(f) = M(f) and that f ′ ∈ SEF.

Proof. Let f ∈ SEF. The proof goes by induction on the length of a generating
word of f . First recall that the identity x = id(x) ∈ SEF because it is log(ex)
and that instead of the constant function kc = kc(x) we often write just c. To
begin with, we see that every function in VBEF has the three stated properties:
M(kc) = M(ex) = M(sinx) = R and M(log x) = (0,+∞) are open sets,
(kc)

′ = k0, (ex)′ = ex, (log x)′ = 1
x | (0,+∞) = 1

x + log x+ (−1) · log x, (sinx)′ =
cosx = sin(x + π

2 ) are in SEF and each of these derivatives has the same
definition domain as the original function.

In the induction step, we have to show in the four cases when (i) f = g + h
or (ii) f = g · h or (iii) f = g/h or (iv) f = g(h) for some g, h ∈ SEF with
the three stated properties that also f has them. We make use of the facts
that every open set M ⊂ R satisfies that M ⊂ L(M) (Exercise 6.4.6) and that
open sets are closed to finite intersections (Exercise 6.4.5). Then in the case (i)
indeed M(f) = M(g + h) = M(g) ∩M(h) is open, and by Corollary 7.3.3 also
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f ′ = g′ + h′ ∈ SEF with M(f ′) = M(g′) ∩M(h′) = M(g) ∩M(h) = M(f). In
the case (ii) the proof is very similar and uses Corollary 7.3.7.

In cases (iii) and (iv) we employ the fact that EF ⊂ C (Theorem 6.6.16) and
two results on open sets and continuous functions: the zero set of a continuous
function is relatively closed (Proposition 6.4.8) and the preimage of an open set
by a continuous function is relatively open (Proposition 6.4.10). Then in the
case (iii) there is a closed set U ⊂ R such that

M(f) = M(g) ∩M(h) \ Z(h) = M(g) ∩M(h) ∩ (R \ Z(h))

= M(g) ∩M(h) ∩
(
R \ (M(h) ∩ U)

)
= M(g) ∩M(h) ∩

(
(R \M(h)) ∪ (R \ U)

)
= M(g) ∩M(h) ∩ (R \ U)

and this is an open set. By Corollary 7.3.10 also f ′ = g′h−gh′
h2 ∈ SEF and

M(f ′) = · · · = M(g) ∩M(h) \ Z(h) = M(f). Finally, in the case (iv) the set
M(f) = h−1[M(g)] is open. By Corollary 7.4.3 also f ′ = g′(h) · h′ ∈ SEF and

M(f ′) = h−1[M(g′)] ∩M(h′) = h−1[M(g)] ∩M(h)

= h−1[M(g)] = M(g(h))

= M(f) .

The theorem is proven by induction. 2

We plan to address Problem 7.6.1 again in MA 1+.
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Chapter 8

Applications of mean value
theorems

I gave the eighth lecture

https://kam.mff.cuni.cz/~klazar/MAI24_pred8.pdf

on April 11, 2024. In Section 8.1 we meet three mean value theorems, Rolle’s
Theorem 8.1.1, Lagrange’s Theorem 8.1.4 (strengthened in Theorem 8.1.6) and
Cauchy’s Theorem 8.1.7. Sections 8.2–8.4 deal with three applications. In
Section 8.2 we show by means of Rolle’s theorem that the sequence (log n) =
(0, log 2, log 3, . . . ) is not P-recurrent; Theorem 8.2.6 proves in fact a more gen-
eral result. In Sections 8.3 and 8.4 we show with the help of Lagrange’s theorem
in two effective ways that real transcendental numbers exist. Theorem 8.5.1 and
Proposition 8.5.2 deal with the relation of the sign of f ′ and monotonicity of f .
Theorems 8.5.9 and 8.5.10 are l’Hospital rules for computing limits of indefinite
functional expressions 0

0 and ∞∞ .
Proposition 8.6.3 relates the sign of (f ′)′(b) and the type of the local extreme

of f at b. In Theorem 8.6.9 we prove that any convex or concave function f
defined on a set M ⊂ R with no minimum or maximum element has on L±(M)
finite one-sided derivatives, hence f is continuous. Theorem 8.6.14 relates the
sign of f ′′ and the convexity/concavity of f (defined on an interval). Theo-
rems 8.6.20 and 8.6.21 provide necessary and sufficient conditions for existence
of inflection points. In Section 8.7 we give in twelve steps a procedure for de-
termining main geometric features of the graph of f ; step 0 places f in the
hierarchy SEL ⊂ EL ⊂ R. We exemplify the procedure on three functions:
sgnx, tanx and arcsin

(
2x
x2+1

)
.
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8.1 Three mean value theorems

These theorems concern relations between values of functions and values of their
derivatives. In this section we assume that a < b are real numbers.

• Rolle’s theorem. It is the most basic of the three mean value theorems, the
other two are deduced from it.

Theorem 8.1.1 (Rolle) Suppose that f ∈ C([a, b]), f(a) = f(b) and that for
every c ∈ (a, b) the derivative f ′(c) in R∗ exists. Then there is a c ∈ (a, b) such
that f ′(c) = 0.

Proof. If f is constant, the theorem is trivially valid. Suppose that for some
c in (a, b) we have f(c) > f(a) = f(b) (the case with . . . < . . . is similar). By
Theorem 6.4.1, f has a maximum c ∈ [a, b]. Clearly, c 6= a, b and c ∈ LTS([a, b]).
Since f ′(c) exists, Theorem 7.1.8 gives f ′(c) = 0. 2

Michel Rolle (1652–1719) was a French mathematician.

Exercise 8.1.2 Which assumption of the Rolle theorem is not satisfied for the
function |x| | [−1, 1] and the interval [−1, 1]?

This exercise inspired us to the following derivatives-free generalization of Rolle’s
theorem.

Theorem 8.1.3 (generalized RT) Let f ∈ C([a, b]) with f(a) = f(b). Then
there is a c ∈ (a, b) such that for every ε there exist d1, d2 ∈ (a, b) such that

d1 < c < d2, d2 − d1 ≤ ε and f(d1) = f(d2) .

In other words, it is possible to cut the graph by horizontal secants in two points
lying arbitrarily close to and on opposite sides of the point (c, f(c)).

Proof. If f is constant on [a, b], the result holds trivially with any c ∈ (a, b).
Else like in the proof of Theorem 8.1.1 we take, say, a maximum c ∈ (a, b) of
f(x) (for a minimum we argue similarly). There are three cases: (i) f(x) is
constantly f(c) on [c− δ, c] (⊂ [a, b]) or (ii) f(x) is constantly f(c) on [c, c+ δ]
(⊂ [a, b]) or (iii) f(x) has arbitrarily close to c both to the left and right of c
values smaller than f(c). In case (i), respectively (ii), we replace c with c − δ

2 ,

respectively c + δ
2 , and it is clear that then c has the stated property. In case

(iii) we keep c and for every given ε find by means of Theorem 6.3.1 the required
points d1 and d2. 2

• Lagrange’s theorem. This mean value theorem is used most often and has an
interesting geometric interpretation and strengthening.
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Theorem 8.1.4 (Lagrange) Suppose that f ∈ C([a, b]) and that for every c in
(a, b) the derivative f ′(c) in R∗ exists. Then there is a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let z ≡ f(b)−f(a)
b−a . Then the function g(x) ≡ f(x)−z(x−a) (∈ C([a, b]))

satisfies all assumptions of Theorem 8.1.1, especially g(a) = g(b) = f(a). Thus
for some c ∈ (a, b) one has g′(c) = f ′(c)− z = 0 and f ′(c) = z. 2

Geometrically, there is a point (c, f(c)) ∈ Gf , c ∈ (a, b), at which the tangent
to Gf is parallel to the secant κ(a, f(a), b, f(b)). Joseph-Louis Lagrange (1736–
1813) was an Italian-French mathematician, physicist, and astronomer.

Tangents to graphs are of two kinds. Let f ∈ F(M), b ∈ M and f be
differentiable at b, so that f ′(b) ∈ R exists. Let `(x) = f ′(b)(x − b) + f(b)
(∈ F(R)) be the tangent to Gf at B ≡ (b, f(b)). If there exists a δ such
that `(x) ≥ f(x) on U(b, δ) ∩M , or `(x) ≤ f(x) on U(b, δ) ∩M , we say that
`(x) is a non-cutting tangent. Otherwise, if there is no such δ, we call `(x)
a cutting tangent. For cutting tangents the graph contains, arbitrarily close to
the contact point, points both below and above the tangent. For non-cutting
tangents points in the graph sufficiently close to the contact point lie on the
same side of the tangent.

Exercise 8.1.5 Prove the following more precise version of Lagrange’s theo-
rem.

Theorem 8.1.6 (more precise Lagrange) Suppose that f ∈ C([a, b]) and
that for every c ∈ (a, b) the derivative f ′(c) in R∗ exists. Then for some c ∈ (a, b)
the tangent to Gf at (c, f(c)) is parallel to the secant κ(a, f(a), b, f(b)) and is
non-cutting.

• Cauchy’s theorem involves two functions.

Theorem 8.1.7 (Cauchy) Suppose that f, g ∈ C([a, b]), g(b) 6= g(a) and that
for every c ∈ (a, b) the derivatives f ′(c) in R∗ and g′(c) in R (so g′(c) 6= ±∞)
exist. Then there is a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

g(b)− g(a)
· g′(c) .

Proof. Let z ≡ f(b)−f(a)
g(b)−g(a) . The function h(x) ≡ f(x)−z(g(x)−g(a)) (∈ C([a, b]))

satisfies all assumptions of Theorem 8.1.1, in particular h(a) = h(b) = f(a).
Hence there is a c ∈ (a, b) with h′(c) = f ′(c)− zg′(c) = 0 and f ′(c) = zg′(c). 2

Exercise 8.1.8 Where in the proof would g′(c) = ±∞ cause problems?
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8.2 The sequence (log n) is not P-recurrent

We show with the help of Rolle’s Theorem 8.1.1 that the sequence

(log n) = (0, log 2, log 3, . . . )

is not P-recurrent. We begin by defining this class of sequences.

• P-recurrent sequences generalize C-recurrent (constantly recurrent) sequences.
These sequences (an) ⊂ R satisfy for some k ∈ N real coefficients c1, . . . , ck,
not all of them zero, for every n = k, k + 1, . . . the relations∑k

i=1 cian−i+1 = c1an + c2an−1 + · · ·+ ckan−k+1 = 0 .

A well known constantly recurrent sequence is the Fibonacci numbers

(Fn) = (1, 1, 2, 3, 5, 8, 13, . . . ) .

Exercise 8.2.1 What C recurrence do they satisfy?

In P-recurrent sequences (an) constant coefficients are generalized to polynomi-
als in n. So every C-recurrent sequence is P-recurrent.

Definition 8.2.2 (P-recurrence) A sequence (an) ⊂ R is P-recurrent if there
exist k ∈ N polynomials pi ∈ POL, i ∈ [k], not all of them zero, such that for
every integer n ≥ k we have the equality∑k

i=1 pi(n) · an−i+1 = 0 .

For instance, the sequence

(an) ≡ (n!) = (1, 2, 6, 24, 120, 720, 5040, . . . )

of factorials is P-recurrent: for every n ≥ 2 we have n! = n · (n − 1)!, that is,
1 · an + (−n) · an−1 = 0.

Exercise 8.2.3 If the inequality n ≥ k in Definition 8.2.2 is weakened to n ≥
n0, where n0 ≥ k, then we still get the same, equivalent definition of P-recurrent
sequences.

Exercise 8.2.4 If
∑k
i=1 pi(n) · an−i+1 = 0 holds just for every n ≥ n0, where

n0 ≥ k, then there exist polynomial coefficients q1(x), . . . , qk(x) for which the
recurrence holds for every n ≥ k.

See [37] for use of P-recurrent sequences in enumerative combinatorics.

• The sequence (log n) is not P-recurrent. We begin the proof with the next
proposition.
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Proposition 8.2.5 (nonzero derivative) Suppose that r(x) ∈ RAC is a ra-
tional function, that c1, . . . , ck are k ∈ N real numbers, not all zero, and that

f(x) ≡ r(x) +
∑k
i=1 ci log(x− i+ 1) .

Then the derivative f ′ is a non-zero rational function.

Proof. We may assume that ck 6= 0. Clearly, f ′(x) = r′(x) +
∑k
i=1

ci
x−i+1 . If

r(x) is a zero rational function, then so is r′(x),

limx→(k−1)+ f
′(x) = limx→(k−1)+

ck
x−k+1 = ck · (+∞) = ±∞

and f ′(x) 6= 0. If r(x) 6= 0, we write r(x) = s(x)·(x−k+1)m where s(x) ∈ RAC,
s(k − 1) 6= 0 and m ∈ Z. Then

r′(x) = s′(x) · (x− k + 1)m +ms(x) · (x− k + 1)m−1 .

If m ≥ 0 then again limx→(k−1)+ f
′(x) = ck · (+∞) = ±∞. If m < 0 then we

still have the infinite limit

lim
x→(k−1)+

f ′(x) = lim
x→(k−1)+

(x− k + 1)m−1
(
s′(x) · (x− k + 1) +ms(x) +

+ ck(x− k + 1)−m
)

= (+∞) · (0 +ms(k − 1) + 0)

= (+∞) ·ms(k − 1) = ±∞

and see that f ′(x) is nonzero. 2

In other words, rational functions that are derivatives of other rational functions
are disjoint from rational functions that are derivatives of linear combinations
of shifted logarithms.

The following theorem is actually more general than the result on (log n)
which we are proving.

Theorem 8.2.6 (finitely many zeros) Consider elementary functions f(x)
of the form

f(x) ≡ r(x) +
∑k
j=1 pj(x) log(x− j + 1)

where r(x) ∈ RAC, k ∈ N, pj(x) ∈ POL and not all polynomials pj(x) are zero.
Then Z(f) is finite, such functions always have only finitely many zeros.

Proof. For each of these functions we define its degree deg f (∈ N0) as the
minimum value of the sum ∑

j∈[k]∧pj 6=0 deg pj ,

where we minimize over all possible representations of f(x) in the displayed
form. We argue by contradiction and take a function f(x) of the considered
form with infinitely many zeros and with the minimum degree. We choose
an infinite strictly monotone sequence (an) ⊂ Z(f) (Exercise 8.2.7) and may
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assume that for every n ∈ N the interval (an, an+1), respectively (an+1, an),
is contained in M(f) (Exercise 8.2.8). We use Rolle’s Theorem 8.1.1 and get
a sequence (bn) ⊂ Z(f ′) such that

a1 < b1 < a2 < b2 < a3 < . . . , respectively a1 > b1 > a2 > b2 > a3 > . . .

(Exercise 8.2.9). Thus (bn) is injective and also f ′(x) has infinitely many zeros.
But this is a contradiction. If deg f = 0, we get a contradiction by Proposi-
tion 8.2.5 because then f ′ is a nonzero rational function which has only finitely
many zeros. If deg f > 0, we have a contradiction with the minimality of deg f
because f ′ is again a function of the considered type but deg f ′ < deg f (Exer-
cise 8.2.10). 2

Exercise 8.2.7 How do we select from the infinite set Z(f) an increasing, or
a decreasing, sequence (an)?

Exercise 8.2.8 Why can we assume that the gaps between consecutive terms
in (an) are contained in M(f)?

Exercise 8.2.9 How do we exactly apply Rolle’s theorem to f and (an) so that
we get the interleaving zeros (bn) of f ′?

Exercise 8.2.10 Why is f ′ of the considered form and why for deg f > 0 we
have deg f ′ < deg f?

The fact that the sequence (log n) is not P-recurrent is an immediate corol-
lary of Theorem 8.2.6.

Corollary 8.2.11 (on (log n)) The sequence (log n) is not P-recurrent.

Proof. If it is P-recurrent then there exist k ∈ N polynomials pj(x) ∈ POL,
j ∈ [k], not all zero, such that for every n ≥ k,∑k

j=1 pj(n) log(n− j + 1) = 0 .

But then, contrary to Theorem 8.2.6, the function

f(x) ≡
∑k
j=1 pj(x) log(x− j + 1)

has infinitely many zeros because Z(f) ⊃ {k, k + 1, . . . }. 2

Exercise 8.2.12 Generalize it to sequences (log(n+ c)) for any real c > −1.

Exercise 8.2.13 Prove by means of Rolle’s theorem the following proposition.

Proposition 8.2.14 Suppose that I ⊂ R is a nontrivial interval, f ∈ C(I),
f ′(x) ∈ R∗ exists for every x ∈ I and Z(f) is infinite. Then Z(f ′) is infinite.

This section is based on the preprint [22] of the author.
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8.3 Cantor’s transcendental numbers

We give with the help of Lagrange’s Theorem 8.1.4 an effective version of Can-
tor’s proof of the existence of transcendental numbers. We begin by defining
them.

• Algebraic and transcendental numbers. A number α ∈ C is algebraic if it is
a root of a nonzero polynomial with rational coefficients. This means that there
exist fractions a0, a1, . . . , an, n ∈ N0, such that an 6= 0 and∑n

i=0 aiα
i = a0 + a1α+ · · ·+ anα

n = 0 .

Exercise 8.3.1 Rational numbers and the number
√

2 are algebraic.

Exercise 8.3.2 The polynomial in the definition of an algebraic number can
always be modified so that its degree is preserved and (i) the polynomial is ra-
tional and monic (leading coefficient is 1) or (ii) the polynomial is integral (all
coefficients are integers).

Algebraic numbers for which both forms (i) and (ii) are simultaneously achiev-
able, that is, roots of monic integral polynomials, are called algebraic integers.

Exercise 8.3.3 Which fractions are algebraic integers?

Exercise 8.3.4 Is the golden ratio φ ≡ 1+
√
5

2 an algebraic integer?

Exercise 8.3.5 What is the relation of the golden ratio and the Fibonacci num-
bers?

Definition 8.3.6 (transcendental numbers) We say that a complex num-
ber is transcendental if it is not algebraic.

• Cantor’s proof of the existence of real transcendental numbers. In 1870s
G. Cantor gave a simple proof of existence of transcendental numbers. We
give it here as an exercise.

Exercise 8.3.7 (Cantor’s proof) Show that the set of algebraic numbers is
countable. Deduce from this the existence of real transcendental numbers.

• An effective version of Cantor’s proof. We give an effective, algorithmic ver-
sion of Cantor’s proof and begin with an auxiliary result. It effectivizes, by
means of Lagrange’s Theorem 8.1.4, the observation that around any nonzero
value of a continuous function there is a neighborhood on which it does not
vanish. A decimal fraction is any fraction of the form a

10k
where a ∈ Z and

k ∈ N0.
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Proposition 8.3.8 (p(x) 6= 0 on I) Let p(x) = anx
n + · · · + a1x + a0, with

n ∈ N0, ai ∈ Z and an 6= 0, be a nonzero integral polynomial and let α = a
10k

,
with a ∈ Z and k ∈ N0, be a decimal fraction such that p(α) 6= 0. Let

b ≡ (n+ 1)2 ·max(|a0|, . . . , |an|) · (|a|+ 1)n (∈ N) and l ≡ kn+ b (∈ N) .

Then
∀x ∈

[
α, α+ 10−l

] (
p(x) 6= 0

)
.

Proof. Let p(x) and α be as stated. Since α has denominator 10k and p(x)
is integral, the assumption that p(α) 6= 0 gives that |p(α)| ≥ 10−kn. For every
x ∈ [α, α+ 1] we have by Lagrange’s Theorem 8.1.4 some y ∈ (α, x) such that

p(x) = p(α) + p′(y) · (x− α) .

Now |p′(y)| ≤ b = (n + 1)2 · max(|a0|, . . . , |an|) · (|a| + 1)n (Exercise 8.3.9). If

x− α ≤ 10−l = 10−kn−b < 10−kn

b then

|p(x)| ≥ |p(α)| − |p′(y)| · (x− α) > 10−kn − b · 10
−kn

b = 0 ,

as stated. 2

Exercise 8.3.9 Explain the estimate of the derivative.

Theorem 8.3.10 (Cantor’s transcendents) We describe an algorithm

A : N→ {0, 1, . . . , 9}

such that the number

κ ≡
∞∑
n=1

A(n) · 10−n (∈ R)

is not a root of any nonzero integral polynomial and therefore is transcendental.

Proof. We start from an algorithm B : N→
⋃∞
n=1 Zn ≡ Z such that

B[N] = {(a0, . . . , an) ∈ Z : n ∈ N0 ∧ an 6= 0}

—B lists all nonzero integral polynomials as tuples of their coefficients. We
write

B(m) = pm(x) =
∑nm

j=0 aj,mx
j ,

with nm ∈ N0, aj,m ∈ Z and anm,m 6= 0. A constructs a sequence of decimal
fractions

α1 = z1
10k1

= 0
100 = 0, α2 = α1 + z2

10k2
, α3 = α2 + z3

10k3
, . . . ,

with kj ∈ N0, such that k1 = 0 < k2 < . . . , for every j ∈ N it holds that
zj ∈ {0, 1, . . . , 10kj−kj−1 − 1} (with k0 ≡ 0) and for every m ∈ N,

∀x ∈
[
αm, αm + 10−km

] (
p1(x)p2(x) . . . pm−1(x) 6= 0

)
.
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Suppose that m ∈ N and that A already generated α1, . . . , αm (for m = 1
the displayed condition is void and holds trivially). To obtain αm+1, A calls
B, considers the polynomial pm(x) and takes a k ∈ N such that k > km and
10k−km > deg pm. Then there is a j ∈ {0, 1, . . . , 10k−km−1} such that pm(αm+
j

10k
) 6= 0, and A takes one. A applies Proposition 8.3.8 with p(x) = pm(x) and

α = αm + j
10k

, and gets the l ∈ N. Then A computes

km+1 ≡ max(k, l), zm+1 ≡ j · 10km+1−k and αm+1 ≡ αm + zm+1

10km+1
.

Thus if zj denotes the kj − kj−1-tuple of decimal digits of zj (for example,
if kj − kj−1 = 5 and zj = 27 then zj = 0, 0, 0, 2, 7,) then A actually computes
the sequence of digits

A(1), A(2), · · · = z1 z2 . . . .

It follows that

κ ≡
∑∞
n=1A(n) · 10−n =

⋂∞
m=1

[
αm, αm + 10−m

]
and so pm(κ) 6= 0 for every m ∈ N. 2

In MA 1+ we hope to generalize the construction of κ so that κ will not be
a zero of any nonzero function in EFQ (⊂ EF). The latter functions are the
elementary functions generated by rational constants kα(x), α ∈ Q.

8.4 Liouville’s transcendental numbers

The French mathematician and physicist Joseph Liouville (1809–1882) was the
first who proved, in 1844, that transcendental numbers exist. We explain his
proof in this section. It is constructive, not complicated and produces simpler
examples of transcendental numbers than Theorem 8.3.10. J. Liouville proved
that irrational algebraic numbers cannot be too closely approximated by frac-
tions. The corollary is that every irrational real number with excellent rational
approximations, for example every irrational sum of very quickly converging
series with rational summands, is transcendental.

• Liouville’s inequality. Lagrange’s Theorem 8.1.4 is again an important tool in
the proof of the next theorem.

Theorem 8.4.1 (Liouville’s inequality) Let α ∈ R \ Q be an irrational al-
gebraic number. Then there is an n ∈ N and a real constant c > 0 such that for
every fraction p

q ∈ Q with q ∈ N we have∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qn
.
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Proof. Suppose that α is as stated and that f(x) is a nonzero integral polyno-
mial with minimum degree deg f (∈ N) such that f(α) = 0. Let n ≡ deg f and
I ≡ [α − 1, α + 1]. If p

q ∈ Q \ I then |α − p
q | ≥ 1 ≥ 1

qn . In p
q ∈ I then p

q 6= α
and by Lagrange’s Theorem 8.1.4 there is a real number x lying between α and
p
q such that (recall that f(α) = 0)

f(α)− f(pq ) = f ′(x)(α− p
q ), hence

∣∣α− p
q

∣∣ =
|f( p

q )|
|f ′(x)| .

The crucial fact is that f(pq ) 6= 0. If f(pq ) = 0 then g(x) ≡ f(x)
x− p

q
would be

a rational polynomial with g(α) = 0 (Exercise 8.4.2) but deg g = deg f − 1, in
contradiction with the choice of f(x). Thus f(pq ) 6= 0 and, as we know, this

implies that |f(pq )| ≥ 1
qn . We take a real number d > 0 such that |f ′(y)| ≤ 1

d

for every y ∈ I (Exercise 8.4.3). Then∣∣α− p
q

∣∣ ≥ d
qn

and we get Liouville’s inequality with the constant c ≡ min(1, d). 2

Exercise 8.4.2 Why is α a root of g(x)?

Exercise 8.4.3 Where does the constant d come from?

• Liouville’s transcendental numbers. Here is an example of a real transcenden-
tal number constructed by Liouville’s method.

Corollary 8.4.4 (λ is transcendental) The real number

λ ≡
∞∑
n=1

1

10n!
= 0.110001000000000000000001000 . . .

is transcendental.

Proof. The number λ is irrational because it does not have eventually periodic
decimal expansion (Exercise 8.4.5). For m ∈ N we set∑m

n=1
1

10n! ≡ zm
10m! ≡ zm

qm
(∈ Q) ,

zm, qm ∈ N and qm ≥ 2. Then |λ− zm
qm
| ≤ 1

10(m+1)!
1

1−10−(m+1)! <
2

qm+1
m

. It is easy

to see that for any n ∈ N and any c > 0, for sufficiently large m the fraction
zm
qm

violates Liouville’s inequality in Theorem 8.4.1 (Exercise 8.4.6). Thus λ is
transcendental. 2

Exercise 8.4.5 Show that every rational number has an eventually periodic
decimal expansion.
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Exercise 8.4.6 Explain in detail why fractions zm
qm

violate for large m any Li-
ouville’s inequality.

Exercise 8.4.7 What is the complexity of the natural algorithm L that com-
putes the decimal expansion of λ?

Exercise 8.4.8 Prove that for every k ∈ N, k ≥ 2, the number
∑
n≥1 k

−n! is
transcendental.

8.5 Monotonicity and l’Hospital rules

We show with the help of Lagrange’s Theorem 8.1.4 how intervals of monotonic-
ity of a function can be determined from its derivative. We also prove l’Hospital
rules; one computes by them limits of indefinite expressions 0

0 and ∞∞ .

• Derivatives and intervals of monotonicity of functions. For any set M ⊂ R,

M0 ≡ {a ∈M : ∃ δ
(
U(a, δ) ⊂M

)
}

denotes its interior. The interior of an interval I ⊂ R is the open interval I0 ⊂ I
obtained from I by deleting its endpoints.

Theorem 8.5.1 (monotonicity 1) Suppose that f ∈ C(I), where I ⊂ R is
a nontrivial interval, and that for every c ∈ I0 there exists f ′(c) in R∗. Then
the following implications hold.

∀ c ∈ I0 ∩D(f)
(
f ′(c) ≥ 0

)
⇒

(
x, y ∈ I ∧ x < y ⇒ f(x) ≤ f(y)

)
,

∀ c ∈ I0 ∩D(f)
(
f ′(c) ≤ 0

)
⇒

(
x, y ∈ I ∧ x < y ⇒ f(x) ≥ f(y)

)
,

∀ c ∈ I0 ∩D(f)
(
f ′(c) > 0

)
⇒

(
x, y ∈ I ∧ x < y ⇒ f(x) < f(y)

)
and

∀ c ∈ I0 ∩D(f)
(
f ′(c) < 0

)
⇒

(
x, y ∈ I ∧ x < y ⇒ f(x) > f(y)

)
.

In words, if f ′ is nonnegative on I0 ∩D(f) then f weakly increases on I, and
similarly in the other three cases.

Proof. We only prove the last part, other proofs are similar. Let f ′(c) < 0 for
every c ∈ I0 and x < y be in I. By Theorem 8.1.4 there is a z ∈ (x, y) (⊂ I0)

such that f(y)−f(x)
y−x = f ′(z) < 0. From y − x > 0 we get f(x) > f(y). Hence f

decreases on I. 2

In Proposition 8.5.5 it is shown that on I0 the infinite values f ′(c) = ±∞ cannot
have different signs than the finite values f ′(c) ∈ R.
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Proposition 8.5.2 (monotonicity 2) Suppose that f ∈ F(M) and that the
respective one-sided derivative of f at b in R∗ exists. Then the following impli-
cations hold.

f ′−(b) < 0 ⇒ ∃ δ
(
f [P−(b, δ)] > {f(b)}

)
,

f ′−(b) > 0 ⇒ ∃ δ
(
f [P−(b, δ)] < {f(b)}

)
,

f ′+(b) < 0 ⇒ ∃ δ
(
f [P+(b, δ)] < {f(b)}

)
and

f ′+(b) > 0 ⇒ ∃ δ
(
f [P+(b, δ)] > {f(b)}

)
.

Moreover, each of the four sets f [· · · ] is nonempty. In words, if f ′−(b) is negative
(possibly −∞) then there is a δ such that for every x ∈M ∩ P−(b, δ) the value
f(x) (and there is one) is smaller than f(b), and similarly in the other three
cases.

Proof. We only prove the last part, other proofs are similar. So suppose that
f ∈ F(M), b ∈M ∩ L+(M) and that f ′+(b) (∈ R∗) exists and is positive. Then
there is a δ such that

x ∈ P+(b, δ) ∩M ⇒ f(x)−f(b)
x−b > 0, hence f(x) > f(b) .

The set f [P+(b, δ)] is nonempty because b ∈M is a right limit point of M . 2

Exercise 8.5.3 Can we say more strongly that each of the four sets f [· · · ] is
infinite?

Exercise 8.5.4 Prove the following proposition.

Proposition 8.5.5 If a < b are in R, f ∈ C([a, b]), for every c ∈ (a, b) there
exists f ′(c) in R∗ and every finite derivative f ′(c) ≥ 0, then every infinite
derivative f ′(c) = +∞. The same holds for ≥ replaced with ≤ and +∞ with
−∞.

Exercise 8.5.6 (anti-monotonicity 1) Describe a function f ∈ F(Q∩ [0, 1])
such that D(f) = M(f) and f ′ = 1 on D(f), but f does not increase on M(f).

• Limit extensions of derivatives. Again, a < b are real numbers. In the
following proposition we have the same assumptions as in Theorem 8.1.4.

Proposition 8.5.7 (extending the derivative) Suppose that f ∈ C([a, b])
and that for every c ∈ (a, b) the derivative f ′(c) in R∗ exists. Then a and b
are in L(D(f)),

lim
x→a

f ′(x) = f ′(a) and lim
x→b

f ′(x) = f ′(b) ,

if these limits exist.
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Proof. By Theorem 8.1.4 for every c ∈ (a, b) we have (a, c) ∩ D(f) 6= ∅ and
(c, b)∩D(f) 6= ∅, thus a, b ∈ L(D(f)). Let limx→b f

′(x) = K and an ε be given.
Then there is a δ such that f ′[(b− δ, b)] ⊂ U(K, ε). By Theorem 8.1.4 for every

x ∈ (b− δ, b) there is a y ∈ (x, b) such that f(x)−f(b)
x−b = f ′(y) ∈ U(K, ε). Hence

f ′(b) = K. Similarly for f ′(a). 2

Exercise 8.5.8 Show that under the assumptions of the previous proposition
it is possible that the derivative f ′(a) exists but the limit limx→a f

′(x) does not
exist.

• Two l’Hospital rules. These concern limits limx→A
f(x)
g(x) of types 0

0 and ±∞±∞ .

The idea is to compute the limit by means of the algebraic transformation

f(x)
g(x) = f(x)/x

g(x)/x .

We begin with a simple version for any definition domain.

Theorem 8.5.9 (LHP 1) Let b ∈ L(M(f/g)) ∩ M(f) ∩ M(g) and f(b) =
g(b) = 0. Then the equality

lim
x→b

f(x)

g(x)
=
f ′(b)

g′(b)
(∈ R∗)

holds, if the right-hand side is defined.

Proof. We assume that the derivatives f ′(b) and g′(b) (∈ R∗) exist and that
f ′(b)
g′(b) is not an indefinite expression. Then by Theorem 5.3.3 we have

limx→b
f(x)
g(x) = limx→b

f(x)−f(b)
x−b

g(x)−g(b)
x−b

=
limx→b

f(x)−f(b)
x−b

limx→b
g(x)−g(b)

x−b

= f ′(b)
g′(b) . 2

For example, limx→0
sin x
x = cos 0

k1(0)
= 1

1 = 1 and limx→0
exp x−1

x = exp 0
k1(0)

= 1
1 = 1.

Theorem 8.5.10 (LHP 2) Suppose that b < c are in R, f, g ∈ F((b, c)), that
for every x ∈ (b, c) the derivatives f ′(x) ∈ R and g′(x) ∈ R \ {0} exist and that
1. limx→b f(x) = limx→b g(x) = 0 or
2. limx→b g(x) = ±∞. Then the equality

lim
x→b

f(x)

g(x)
= lim
x→b

f ′(x)

g′(x)
(∈ R∗) ,

holds, if the right-hand side is defined.

Proof. 1. Suppose that limx→b
f ′(x)
g′(x) = K and that an ε is given. With f(b) =

g(b) ≡ 0 we have f, g ∈ C([b, c)). Theorem 8.1.1 implies that g 6= 0 on (b, c).

There is a δ such that ( f
′

g′ )[(b, b + δ)] ⊂ U(K, ε). By Cauchy’s Theorem 8.1.7
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for every x ∈ (b, b+ δ) there is a y ∈ (b, x) such that f(x)
g(x) = f(x)−f(b)

g(x)−g(b) = f ′(y)
g′(y) is

in U(K, ε). Hence limx→b
f(x)
g(x) = K.

2. We prove this part later by integrals. 2

For instance, by part 2 for every ε > 0 the limit limx→0 x
ε log x equals

limx→0
log x
x−ε = limx→0

1/x
−εx−ε−1 = limx→0

1
−εx−ε = 1

−∞ = 0 .

Marquis Guillaume de l’Hospital (1661–1704) published in 1696 the histori-
cally first textbook of differential calculus Analyse des Infiniment Petits pour
l’Intelligence des Lignes Courbes.

Exercise 8.5.11 Show that the theorem holds also for the definition domains
(c, b), P (b, δ) and U(±∞, δ).

• A counter-example to LHP 2. In the spirit of Exercise 8.5.6 we show that the
assumption in LHP 2 that M(f) = M(g) is an interval is substantial. For any
interval I ⊂ R we set IQ ≡ I ∩Q.

Theorem 8.5.12 (a counter-example to LHP 2) There exist functions f
and g in F((0, 1)Q) with D(f) = D(g) = (0, 1)Q, limx→0 f(x) = limx→0 g(x) = 0
and such that

lim
x→0

f ′(x)

g′(x)
= 1, but lim

x→0

f(x)

g(x)
= 0 .

Proof. Let (cn) ⊂ (0, 1) be any sequence of irrational numbers such that
c0 ≡ 1 > c1 > c2 > · · · > 0, lim cn = 0 and lim cn−1

cn
= 1. For n ∈ N and

α ∈ (cn, cn−1)Q we define f(α) ≡ c2n+α−cn and g(α) ≡ α. Thus Gf consists of
short pierced segments beginning on the parabola y = x2 and each with slope 1,
and g(x) = id(x) | (0, 1)Q. It is clear that f ′ = g′ = k1 | (0, 1)Q (Exercise 8.5.13)

and therefore limx→0
f ′(x)
g′(x) = limx→0

1
1 = 1. For α ∈ (cn, cn−1)Q we have

0 < f(α)
g(α) ≤

c2n+cn−1−cn
cn

= cn + cn−1

cn
− 1→ 0 (n→∞) .

Therefore limx→0
f(x)
g(x) = 0. 2

Exercise 8.5.13 Why are the derivatives of f and g constantly 1?

8.6 Applications of second-order derivatives

We begin with the definition of higher-order derivatives. Then we turn to ap-
plications of second-order derivatives.

• Derivatives of order k ∈ N0. We simply iterate the derivative operation in
Definition 7.1.20. Recall that R = {f : M → R : M ⊂ R}.
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Definition 8.6.1 (f (k)(x)) Let k ∈ N. We define a unary operation f (k) on
R,

R 3 f 7→ f (k) ≡ (. . . ((f ′)′)′ . . . )′ ∈ R ,

by applying the derivative k times. We call it the derivative of order k. We set

f (0) ≡ f and write f ′ for f (1), f ′′ for f (2) and f ′′′ for f (3).

For example, (x sinx)′′ = (sinx + x cosx)′ = 2 cosx − x sinx. We know that
the notation f ′(b), b ∈ R, is a little ambiguous because it may refer to ±∞.
Similarly for k ∈ N0 and b ∈ R, the value f (k+1)(b) is, if defined, in R, but
(f (k))′(b) is, if defined, in R∗. If b ∈M(f (k+1)) then f (k+1)(b) = (f (k))′(b).

Exercise 8.6.2 Determine the two sequences in R that are given as
(
(sinx)(n)

)
and

(
( 1
x )(n)

)
, n ∈ N0.

• Second-order derivatives and extremes. We give the well-known criterion for
the type of the local extreme of f at b in terms of the sign of (f ′)′(b).

Proposition 8.6.3 ((f ′)′ and local extremes) Let f ∈ R. Suppose that

U(b, δ) ⊂ D(f), f ′(b) = 0 and that (f ′)′(b) in R∗ exists .

Then for (f ′)′(b) < 0 (respectively (f ′)′(b) > 0) the function f has at b a strict
local maximum (respectively minimum).

Proof. Let f , b and δ be as stated and let (f ′)′(b) > 0 (the case with (f ′)′(b) < 0
is similar). By parts 2 and 4 of Proposition 8.5.2 there is a θ < δ such that
for every x ∈ P−(b, θ) (respectively x ∈ P+(b, θ)) we have f ′(x) < 0 = f ′(b)
(respectively f ′(x) > 0 = f ′(b)). By Theorem 8.5.1 the function f decreases on
[b− θ, b] and increases on [b, b+ θ]. Hence f has at b a strict local minimum. 2

Exercise 8.6.4 Show that under the assumptions of the previous proposition
and with f ′′(b) = 0, it is possible that f does not have at b a local extreme.

• Convexity and concavity of (graphs of) functions. Visually speaking, convex
graphs are bulging downward and concave graphs upward.

Definition 8.6.5 (convex and concave) A function f ∈ F(M) is convex
(respectively concave) iff for all a < b < a′ in M we have f(b) ≤ sb + c (re-
spectively f(b) ≥ sb + c), where y = sx + c is the secant κ(a, f(a), a′, f(a′)) of
Gf . If these inequalities hold as strict, we speak of strict convexity, respectively
strict concavity, of f .

So f is strictly convex iff the middle point (b, f(b)) of Gf always lies below
the secant that passes through the extreme points (a, f(a)) and (a′, f(a′)) of
Gf . For convex f , the point (b, f(b)) may lie also on the secant. Similarly for
concavity.
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Exercise 8.6.6 Function f(x) = x2 is strictly convex. Function f(x) = |x| is
convex, but not strictly convex. Function f(x) = log x is strictly concave.

Exercise 8.6.7 (Strict) convexity and (strict) concavity are preserved under
restrictions of functions.

Exercise 8.6.8 A function f is (strictly) convex ⇐⇒ −f is (strictly) concave.

Convexity and concavity force one-sided derivatives in existence. We say
that a set M ⊂ R is end-free if it has neither minimum nor maximum.

Theorem 8.6.9 (existence of f ′±) Let f ∈ F(M) be convex, respectively con-
cave, on a nonempty and end-free set M ⊂ R. Then, with equal signs, for every
b ∈ M ∩ L±(M) there exists finite one-sided derivative f ′±(b) ∈ R, and both
functions f ′− and f ′+ are weakly increasing, respectively weakly decreasing.

Proof. We prove that convex f has at every point b ∈ M ∩ L−(M) finite
left-sided derivative f ′−(b) ∈ R, and that the function f ′− weakly increases; the
other three cases are treated similarly. By part 1 of Theorem 5.3.1, the limit

limx→b−
f(x)−f(b)

x−b ≡ f ′−(b)

exists and is finite: for any a ∈M with a < b, the function g(x), defined by

[a, b) ∩M 3 x 7→ f(x)−f(b)
x−b ,

weakly increases and g(x) ≤ f(b′)−f(b)
b′−b for every x ∈ [a, b) ∩M and any fixed

b′ ∈ M with b′ > b (such b′ exists because M has no maximum). These two

properties of g(x) easily follow from the convexity of f if we recall that f(x)−f(b)
x−b

is the slope of the secant κ(x, f(x), b, f(b)) of Gf , and similarly for f(b′)−f(b)
b′−b .

As for the monotonicity of f ′−, for every b < b′ in M ∩ L−(M) we get the
inequality f ′−(b) ≤ f ′−(b′) again from the convexity of f : for every x, y ∈ M
with x < b < y < b′ we have two inequalities between slopes

f(x)−f(b)
x−b ≤ f(y)−f(b)

y−b ≤ f(y)−f(b′)
y−b′ ,

hence f(x)−f(b)
x−b ≤ f(y)−f(b′)

y−b′ and this inequality is preserved in the limit transi-

tions x→ b− and y → (b′)−. 2

But for concave (convex) f the ordinary derivative f ′(b) may not always exist
because we may have f ′−(b) 6= f ′+(b), for example for |x| at 0.

Corollary 8.6.10 (implied continuity) Let M ⊂ R be a nonempty end-free
set and f ∈ F(M) be convex or concave. Then f ∈ C(M).
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Proof. We show that f is right-continuous at every b ∈ M ; left-continuity is
proven in a very similar way. Then by Exercise 5.2.11, f is continuous at b. If
b ∈ M but is not the right limit point of M , the function f is right-continuous
at b trivially. If b ∈ M ∩ L+(M) then by the previous theorem there exists
f ′+(b) ∈ R. By Exercise 7.1.18, then f is right-continuous at b. 2

Exercise 8.6.11 Prove the next proposition.

Proposition 8.6.12 (at endpoints) Let M ⊂ R, b = max(M), b ∈ L−(M)
and let f ∈ F(M) be convex or concave. Then there exist the one-sided, possibly
infinite, derivative f ′−(b). The same holds if we replace max with min and the
sign − with +.

Exercise 8.6.13 Is it true that if I ⊂ R is a nontrivial interval and f ∈ F(I)
is convex or concave, then f is continuous?

• Convexity, concavity and (f ′)′. Convex and concave parts of the graph of
a function can be determined by means of its second-order derivative.

Theorem 8.6.14 (f ′′ vs. convex, concave) Suppose that f ∈ C(I), where I
is a nontrivial interval, D(f) ⊃ I0 and that for every c ∈ I0 there exists (f ′)′(c)
in R∗. Then the following implications hold.

∀ c ∈ I0 ∩M(f ′′)
(
f ′′(c) ≥ 0

)
⇒ f is convex ,

∀ c ∈ I0 ∩M(f ′′)
(
f ′′(c) > 0

)
⇒ f is strictly convex ,

∀ c ∈ I0 ∩M(f ′′)
(
f ′′(c) ≤ 0

)
⇒ f is concave and

∀ c ∈ I0 ∩M(f ′′)
(
f ′′(c) < 0

)
⇒ f is strictly concave .

We prove this theorem with the help of the next lemma whose proof we leave
to the reader.

Exercise 8.6.15 Prove the next lemma.

Lemma 8.6.16 (on slopes) Let (a, a′), (b, b′) and (c, c′) be in R2, a < b < c

and b′−a′
b−a ≤

c′−b′
c−b . Then the point (b, b′) lies below or on the line κ(a, a′, c, c′).

Three analogous claims hold when the ≤ is replaced with any of the three in-
equalities {<,≥, >}.

Proof of Theorem 8.6.14. Let f and I be as stated and let f ′′ ≥ 0 on
I0 ∩M(f ′′), the other three cases can be treated similarly. Let a < b < c be in
I. By Theorem 8.1.4 there exist numbers y ∈ (a, b) and z ∈ (b, c) such that

s = f(b)−f(a)
b−a = f ′(y) and t = f(c)−f(b)

c−b = f ′(z) .

By Theorem 8.5.1 f ′ weakly increases on I0 as (f ′)′ ≥ 0. From y < z it follows
that s = f ′(y) ≤ f ′(z) = t. By Lemma 8.6.16 the point (b, f(b)) lies below or
on the line κ(a, f(a), c, f(c)). Hence f is convex by Definition 8.6.5. 2

• Inflection points. In these points the graph of a function crosses the tangent.
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Definition 8.6.17 (inflection points) Let f ∈ F(M), b ∈M ∩LTS(M), `(x)
be the tangent line to Gf at (b, f(b)) and z ∈ {−1, 1}. If there is a δ such that

x ∈ P−(b, δ) ∩M ⇒ zf(x) ≤ z`(x) and x ∈ P+(b, δ) ∩M ⇒ zf(x) ≥ z`(x) ,

we call (b, f(b)) an inflection point of Gf . If the inequalities hold as strict, we
call it a strict inflection point of Gf .

Compare inflection points with cutting and non-cutting tangents of Section 8.1.

Exercise 8.6.18 The origin (0, 0) is a strict inflection point of the graph of
f(x) = x3.

Exercise 8.6.19 Which points of the graph of the constant function k1(x) are
its inflection points?

Theorem 8.6.20 (no inflection) Suppose that f ∈ R, D(f) ⊃ U(b, δ) and
that (f ′)′(b) ∈ R∗ \ {0}. Then (b, f(b)) is not an inflection point of Gf .

Proof. Let (f ′)′(b) > 0, the case with (f ′)′(b) < 0 is similar. Let ` be the
tangent to Gf at (b, f(b). By Proposition 8.5.2 there is a θ ≤ δ such that for
every x ∈ P−(b, θ) and every x′ ∈ P+(b, θ) we have

f ′(x) < f ′(b) < f ′(x′) . (1)

Let x ∈ P−(b, θ), x′ ∈ P+(b, θ) and let s and t be the respective slopes of the
secants

κ(x, f(x), b, f(b)) and κ(b, f(b), x′, f(x′))

of Gf . Inequalities (1) and Theorem 8.1.4 give that s < f ′(b) < t. Thus both
points (x, f(x)) and (x′, f(x′)) lie above `. The condition in Definition 8.6.17 is
not satisfied. 2

Next we obtain a sufficient condition for the existence of an inflection point.

Theorem 8.6.21 (∃ inflection) Let f ∈ R, M(f ′′) ⊃ U(b, δ) and z ∈ {−1, 1}.
If zf ′′[P−(b, δ)] ≥ {0} and zf ′′[P+(b, δ)] ≤ {0} then (b, f(b)) is an inflection
point of Gf . If these inequalities hold strictly then (b, f(b)) is a strict inflection
point of Gf .

Proof. Let f , b, δ and z be as stated. We assume that for every x ∈ P−(b, δ)
and x′ ∈ P+(b, δ) we have f ′′(x) ≤ 0 and f ′′(x′) ≥ 0, the other three cases are
treated similarly. We have M(f ′) ⊃ U(b, δ) and denote the tangent to Gf at
(b, f(b)) by `. By Theorem 8.5.1 the derivative f ′ weakly decreases on [b− δ, b]
and weakly increases on [b, b + δ], for every x ∈ [b − δ, b) and x′ ∈ (b, b + δ] we
have f ′(x) ≥ f ′(b) ≤ f ′(x′). Theorem 8.1.4 implies that

f(b)−f(x)
b−x ≥ f ′(b) ≤ f(x′)−f(b)

x′−b .
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Thus the slopes of κ(x, b, f(x), f(b)) and κ(b, x′, f(b), f(x′)) are at least the slope
f ′(b) of `. So (x, f(x)) lies below or on `, and (x′, f(x′)) above or on `. Hence
(b, f(b)) is an inflection point. 2

8.7 Drawing the graph of a function

We describe twelve steps for determining the main geometric features of the
graph of an (elementary) function. But first we define asymptotes.

• Asymptotes. The graph of a function gets arbitrarily close to these lines.

Definition 8.7.1 (vertical asymptotes) If for f ∈ F(M) and b ∈ L−(M)
we have limx→b− f(x) = ±∞, we call the line x = b a left vertical asymptote
(of f). Right vertical asymptotes are obtained by replacing the two signs − by
two signs +.

Exercise 8.7.2 The axis y is both a left and right vertical asymptote of f(x) =
1
x . It is a right vertical asymptote of f(x) = log x.

Definition 8.7.3 (asymptotes at infinity) Let s, b ∈ R, f ∈ F(M) and
±∞ ∈ L(M). If

lim
x→±∞

(f(x)− sx− b) = 0 ,

we call the line y = sx+ b (∈ N ) an asymptote (of f) at ±∞ (equal signs).

Exercise 8.7.4 The line y = sx + b is an asymptote of a function f at ±∞
⇐⇒ limx→±∞

f(x)
x = s and limx→±∞(f(x)− sx) = b (equal signs).

Exercise 8.7.5 Find the asymptote of f(x) = 1
x at +∞ and at −∞.

Definition 8.7.1 and Exercise 8.7.4 imply that asymptotes are unique.

• Geometry of graphs of elementary and other functions. Recall (from Defi-
nition 4.4.14) that an elementary function can be obtained from the constant
functions kc(x) = c with c ∈ R and the functions expx, log x, sinx, arcsinx and
xb with b ∈ (0,+∞) \N by repeated (binary) addition, multiplication, division,
and composition. Let f ∈ EF, but the steps below can be applied to any f ∈ R.
We determine the following main geometric features of Gf .

0. Elementary? We begin with determining if f ∈ EF. If it is the case, we
determine if f ∈ SEF. Memberships of f in these sets of functions have bearing
on M(f), the continuity of f and on D(f).

1. Definition domain. We find M(f) (⊂ R). If f ∈ EF, we start from
M(ex) = M(sinx) = M(kc) = R, M(xb) = [0,+∞), M(log x) = (0,+∞)
and M(arcsinx) = [−1, 1], and then apply the relations M(f + g) = M(fg) =
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M(f) ∩M(g), M(f/g) = M(f) ∩M(g) \ Z(g) and M(f(g)) = {x ∈ M(g) :
g(x) ∈M(f)}.

2. Is f of a special type? Even (f(−x) = f(x)), odd (f(−x) = −f(x)),
c-periodic (f(c+ x) = f(x)), . . . ?

Exercise 8.7.6 Precisely define these types of functions.

3. Derivatives and continuity. We determine the derivative f ′ of f and find
the sets {a ∈ M(f) : ∃ f ′(a) ∈ R∗} and {a ∈ M(f) : f is continuous at a}.
Recall that EF ⊂ C by Theorem 6.6.16 and that D(f) = M(f) if f ∈ SEF by
Theorem 7.6.3.

4. One-sided limits. We find one-sided limits of f at points of discontinuity
and at the elements of L(M(f)) \M(f). For example, limx→−∞ expx = 0 and
limx→+∞ expx = +∞.

5. Intersections with coordinate axes and the image. We determine the set
{x ∈M(f) : f(x) = 0} = Z(f) and the value f(0), and find f [M(f)] (⊂ R).

6. One-sided derivatives. For points a ∈ M(f) where f ′(a) does not exist we
compute one-sided derivatives f ′−(a) and f ′+(a). Proposition 8.5.7 can help. For
instance, it implies that (|x|)′−(0) = −1 and (|x|)′+(0) = 1, but these values are
easily computed directly.

7. Monotonicity and extremes. We find inclusion-wise maximal subsets of M(f)
where f is monotone. If these are intervals, we can usually use Theorem 8.5.1.
We find local and global extremes of f . Now Theorems 6.4.1 and 7.1.8, and
Proposition 8.6.3 are relevant.

8. Convexity and concavity. We find inclusion-wise maximal subsets of M(f)
where f is convex or concave. If these are intervals, we can usually use Theo-
rem 8.6.14.

9. Inflections. We find points of inflection in Gf . Now Theorems 8.6.20 and
8.6.21 are relevant.

10. Asymptotes. We find asymptotes of f . Now Definitions 8.7.1 and 8.7.3,
and Exercise 8.7.4 are relevant.

11. Sketching the graph. By hand, the computer or the Internet we sketch Gf .

• Example 1. Let f(x) ≡ sgnx. Recall that signum has value −1 for x < 0, 1
for x > 0 and sgn 0 = 0. 0. sgnx 6∈ EF. 1. M(sgnx) = R. 2. Signum is an
odd function. 3. Signum is continuous at every x 6= 0 and sgn′(x) = 0 for every
x 6= 0. At zero signum is discontinuous and sgn′(0) = +∞. 4. We have the one-
sided limits limx→0− sgnx = −1 and limx→0+ sgnx = 1. Also, limx→−∞ sgnx =
−1 and limx→+∞ sgnx = 1. 5. Signum intersects both coordinate axes at the
origin (0, 0) and has image {−1, 0, 1}. 6. Since sgn′(x) exists for every x ∈ R,
there is nothing to compute; sgn′−(x) = sgn′+(x) = sgn′(x). 7. We see directly
from the definition of signum that it weakly increases on R, that x is its global

147



minimum iff x < 0, and that x is its global maximum iff x > 0. It has no
strict extremes. 8. The maximal interval of convexity of sgnx is (−∞, 0], and
[0,+∞) is the maximal interval of concavity. 9. Signum has no strict inflection
point but has inflection at every point (x, sgnx) with x 6= 0. At (0, 0) signum
does not have tangent. 10. Signum has no vertical asymptotes. The axis x,
that is the line y = 0, is the asymptote of sgnx at both −∞ and +∞. 11.

. . . ◦

•

◦ . . .(0, 1)

(0, 0)

(0,−1)

• Example 2. Let f(x) ≡ tanx = sin x
cos x = sin x

sin(x+π/2) . 0. tanx ∈ SEF. 1.

M(tanx) =
⋃
n∈Z(πn − π

2 , πn + π
2 ) = R \ {nπ + π

2 : n ∈ Z}. 2. Tangent
is π-periodic because sin(π + x) = − sinx and cos(π + x) = − cosx. It is an
odd function because sine is odd and cosine is even. 3. Tangent is continuous
and D(tanx) = M(tanx) by Theorems 6.6.16 and 7.6.3. We have (tanx)′ =

1
cos2 x . 4. For n ∈ Z let bn ≡ πn + π

2 . Then limx→b−n tanx = +∞ and
limx→b+n tanx = −∞. The limits of tanx at ±∞ do not exist. 5. Gf intersects
the axis y at (0, 0), and the axis x at the points (bn − π

2 , 0) = (πn, 0), n ∈ Z.
Theorem 6.3.1 and the above infinite limits show that the image tan[M(tan)] =
tan[ (bn − π, bn) ] = R. 6. D(tanx) = M(tanx), there is nothing to compute.
7. Since (tanx)′ = 1

cos2 x > 0 on the definition domain, tangent increases
on every interval (πn − π

2 , πn + π
2 ). Thus tangent has no extremes. 8. We

have (tanx)′′ = 2 sin x
cos3 x , with M((tanx)′′) = M(tanx) by Theorem 7.6.3. Since

(tanx)′′ < 0 on (πn− π
2 , πn) and (tanx)′′ > 0 on (πn, πn+ π

2 ), tangent is strictly
concave on (πn − π

2 , πn], and strictly convex on [πn, πn + π
2 ). 9. Due to the

above sign of tan′′ x the inflection points are exactly (bn− π
2 , 0) = (πn, 0), n ∈ Z,

and are strict. 10. The limits in step 4 show that every line x = bn = πn+ π
2 ,

n ∈ Z, is both right and left vertical asymptote of tanx. At ±∞ there is no
asymptote. 11. https://www.desmos.com/calculator.

• Example 3. Let f(x) ≡ arcsin
(

2x
1+x2

)
. We follow the lecture notes [8, pp.

193–194]. 0. f(x) ∈ EF \ SEF. 1. M(f) = R because M(arcsinx) = [−1, 1]
and 2|x| ≤ 1+x2 for every x ∈ R as x2±2x+1 = (x±1)2 ≥ 0. 2. The function
f(x) is odd because the functions sinx, arcsinx, and 2x

1+x2 are odd. It is not
periodic. 3. The function f(x) is continuous by Theorem 6.6.16. The formulas
for derivatives of arkus sine, of composite functions and of ratios give that on
the set

D(f) = {x ∈ R : 2x
1+x2 6= ±1} = R \ {−1, 1} = M(f) \ {−1, 1}

we have

f ′(x) = 1√
1−(2x/(1+x2))2

· 2·(1+x
2)−2x·2x

(1+x2)2 = 2 · (1−x
2)/(1+x2)2

|(1−x2)/(1+x2)| = 2 · 1−x2

|1−x2| ·
1

1+x2 ,

so that f ′(x) = 2·sgn(1−x2)
1+x2 . In step 6 we will see that neither f ′(−1) nor f ′(1)

exist. 4. Clearly, limx→−∞ f(x) = limx→+∞ f(x) = arcsin 0 = 0 because
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2x
1+x2 → 0 for x → ±∞. 5. Gf intersects both axes exactly at the origin
(0, 0). Shortly we will see that f [M(f)] = f [R] = [−π2 ,

π
2 ]. 6. It is clear

that limx→1± f
′(x) = ∓1. So Proposition 8.5.7 gives that f ′±(1) = ∓1. Since

f(x) is odd, f ′±(−1) = ±1. 7. Since f ′ < 0 on (−∞,−1), f ′ > 0 on (−1, 1)
and f ′ < 0 on (1,+∞), Theorem 8.5.1 implies that f decreases on (−∞,−1],
increases on [−1, 1] and decreases on [1,+∞). Also f(x) < 0 for x < 0 and
f(x) > 0 for x > 0 (and f(0) = 0). Considering these (maximal) intervals of
monotonicity, the above zero limits and the fact that f is odd we see that f
has at x = −1 the strict global minimum with f(−1) = −π2 , at x = 1 the strict
global maximum with f(1) = π

2 and that there are no other local extremes.
Hence, using Theorem 6.3.1, we get the above image f [M(f)]. 8. We have

f ′′(x) = −4x·sgn(1−x2)
(1+x2)2 ,

with M(f ′′) = R \ {−1, 1}. Since f ′′ < 0 on (−∞,−1), f ′′ > 0 on (−1, 0),
f ′′ < 0 on (0, 1) and f ′′ > 0 on (1,+∞), Theorem 8.6.14 implies that f is strictly
concave on (−∞,−1], strictly convex on [−1, 0], strictly concave on [0, 1] and
strictly convex on [1,+∞). These intervals of convexity and concavity are clearly
maximal. 9. By the sign of f ′′ and since the second derivatives f ′′(±1) do not
exist, by Theorems 8.6.20 and 8.6.21 the point (0, 0) is the only inflection point
of Gf (at (−1, F (−1)) and (1, F (1)) tangents do not exist). 10. By the limits
in step 4 the line y = 0 = 0x+ 0 is an asymptote of f(x) both at −∞ and +∞.
There are no vertical asymptotes. 11. https://www.desmos.com/calculator.

Exercise 8.7.7 Draw the graph of the Riemann function r(x). Recall that
r(x) ∈ F(R), r(α) = 0 for α ∈ R \ Q and r(pq ) = 1

q for p
q ∈ Q in lowest

terms (then q ∈ N).

Exercise 8.7.8 Draw the graph of the function f(x) ≡ xx (= ex log x).
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Chapter 9

Taylor expansions.
Primitives

9.1 Taylor polynomials
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Appendix A

Solutions to exercises

Question marks ??? mean that no solution is known to the author.

1 Paradoxes. Real numbers

Exercise 1.1.1 Now the sequence of partial sums is (sn) = (a1, b1, c1, a2, b2, c2, . . . )
where, with dn ≡

∑n
i=1

1
2i(2i−1)

, one has that an ≡ dn−1+ 1
2n−1

, bn ≡ dn−1+ 1
2n−1

+ 1
2n

and cn ≡ dn. It is clear that lim sn is a positive real number or +∞.

Exercise 1.1.2 Let (ai,j)
∞
i,j=1 have entries ai,j ≥ 0. We show that the total sum by

rows R =
∑∞
i=1

∑∞
j=1 ai,j equals to the supremum

A = sup
(
{
∑

(i,j)∈I ai,j | I ⊂ N2 is finite}
)
,

taken in (R∗, <). The same equality holds for the total sum by columns. Clearly,
A ≤ R. Let c < R be arbitrary. Then there is an m such that c <

∑m
i=1

∑∞
j=1 ai,j .

Thus there exist n1, . . . , nm in N such that c <
∑m
i=1

∑ni
j=1 ai,j . Hence R ≤ A and

R = A.

Exercise 1.2.1 alpha, beta, capital gamma, gamma, capital delta, delta, epsilon,
zeta, eta, capital theta, theta, vartheta, iota, kappa, capital lambda, lambda, mu, nu,
capital xi, xi, omicron, capital pi, pi, rho, capital sigma, sigma, tau, capital upsilon,
upsilon, capital phi, phi, varphi, chi, capital psi, psi, capital omega, omega. Capitals
not listed are identical with the Latin alphabet, for example A for α, H for η etc.

Exercise 1.2.2 The order is the standard one of the Latin alphabet: a, b, c, d, . . . ,
x, y and z.

Exercise 1.2.3 The left side is F iff (ϕ is T and ψ is F). Which is the same as that
¬ψ is T and ¬ϕ is F which is the same as that the right side is F.

Exercise 1.2.4 If there is no element a in the domain of ϕ(x) such that ϕ(a) holds,
it means that for every a in this domain the proposition ϕ(a) does not hold and the
proposition ¬ϕ(a) holds. The other proposition holds for a similar reason.

Exercise 1.2.6 Using the set-theoretic axiom of foundation we forbid such sets, be-
cause no physical collection is a member of itself, but allowing their existence does
not lead to any contradiction. Set theories allowing such sets are considered and
investigated.
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Exercise 1.2.8 The answer depends on equalities between elements of this set. If
they are all distinct then the set has five distinct elements. If a = b = 2 = {∅, {∅}}
then, since usually a 6= {a} by the axiom of foundation, the set has only two distinct
elements.

Exercise 1.2.10 xn = ∅.

Exercise 1.2.12 P ≡ {n ∈ N : n > 1 ∧ ∀ l,m ∈ N
(
lm = n⇒ (l = 1 ∨m = 1)

)
}.

Exercise 1.2.13 If M ∈M then M 6∈M . If M 6∈M then M ∈M .

Exercise 1.2.15 (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ) ⇐⇒ (ϕ ⇐⇒ ψ) is a tautology.

Exercise 1.2.16 It follows from the axiom of extensionality. A and B are disjoint by
the definition iff they have no common element which means iff their intersection is ∅.

Exercise 1.2.17
⋂
∅ is the proper class of all sets.

Exercise 1.2.18 No, for example if A and B are disjoint then |A \B| = |A|.

Exercise 1.2.19 P(∅) = {∅} and |P({1, 2, . . . , n})| = 2n, n = 0 included.

Exercise 1.2.20 We prove only the first formula, the proof for the second one is
similar. An element x is in the left side iff x ∈ A but x 6∈ C for every C ∈ B which
holds iff for every C ∈ B it holds that x ∈ A \ C which holds iff x is in the right side.

Exercise 1.2.22 In general the set (X,Y ) is for X = Y the one-element set {{X}} =
{{Y }} and for X 6= Y it is the two-element set with the elements {X} (one-element
set) and {X,Y } (two-element set). From this we get the stated equivalence by repeated
use of the axiom of extensionality.

Exercise 1.2.24 It follows from the axiom of extensionality, from the previous exercise
and from the fact that any ordered k-tuple A has |A| = k elements.

Exercise 1.3.4 Implication ⇐ is trivial. Suppose that (A,B, f) and (C,D, g) are
congruent, so that f = g and f is a functional relation between A and B, as well as
between C and D. For any a ∈ A there is a b ∈ B such that (a, b) ∈ f . But also
(a, b) ∈ C ×D, so that a ∈ C. Hence A ⊂ C. In the same way C ⊂ A. Hence A = C.

Exercise 1.3.5 Neither equality in general holds.

Exercise 1.3.6 iff X = Y .

Exercise 1.3.7 For injectivity, constantness and identicalness it is true, for surjectivity
and bijectivness not.

Exercise 1.3.8 It is not. Both symbols may appear at the same time only when f is
injective, but then their meanings agree.

Exercise 1.3.9 Since f−1 : f [X] → X is bijective, we have (f−1)−1 : X → f [X].
Hence for f [X] 6= Y the functions (f−1)−1 and f differ as sets. They are always
congruent. But ((f−1)−1)−1 : f [X]→ X. Hence ((f−1)−1)−1 and f−1 are even equal
as sets.

Exercise 1.3.10 They are.

Exercise 1.3.11 Let f and g be injective and f(g)(x) = f(g)(y). Then f(g(x)) =
f(g(y)) and g(x) = g(y). Then x = y and f(g) is injective. Let g : X → Y and f : Y →
B be onto and b ∈ B. Since f is onto, there is a y ∈ Y such that f(y) = b. Since g
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is onto, there is an x ∈ X such that g(x) = y. Thus f(g)(x) = f(g(x)) = f(y) = b
and f(g) is onto. If g : X → Y and f : A → B are nonempty and surjective, and for
example Y ∩A = ∅ then f(g) : ∅ → B is not onto.

Exercise 1.3.12 Both the range of f(g(h)) on the left side and the range of f(g)(h)
on the right side equals to the range R of f . It suffices to show that f(g(h)) = f(g)(h)
as sets. This is true, both sets are equal to the set of pairs (x, y) ∈ M(h) × R such
that there exist a ∈M(g) & b ∈M(f) such that h(x) = a, g(a) = b and f(b) = y.

Exercise 1.3.13 We set Y ≡ h[X], (X,Y, g) ≡ (X,Y, h) and f ≡ idY .

Exercise 1.3.14 If f is a bijection then g ≡ f−1 has the required properties. Let
g : Y → X be as stated. Since g(f)(x) = x, the function f is injective. Since
M(f(g)) = Y , the function f is onto.

Exercise 1.3.15 Exactly when the definition domain is an empty or one-element set.

Exercise 1.3.16
⋃
i∈NAi and

⋂
i∈N0

Ai.

Exercise 1.3.19 Let R be an equivalence relation on A 6= ∅ (for A = ∅ everything
trivially holds) and [a]R be an equivalence block. Clearly, a ∈ [a]R so that the elements
in A/R are nonempty and

⋃
A/R = A. Let a, b ∈ A, [a]R ∩ [b]R 6= ∅ and c ∈ [a]R.

Hence there is a d ∈ [a]R ∩ [b]R. From cRa, aRd and dRb we get by transitivity of R
that cRb and therefore c ∈ [b]R. Hence [a]R ⊂ [b]R. The opposite inclusion is proven
in the same way and [a]R = [b]R. Thus the elements of A/R are pairwise disjoint.

If b, c ∈ [a]R then bRa and cRa, so that (since R is an equivalence relation) also
bRc. If bRc, b ∈ [a]R and c ∈ [a′]R then bRa, cRa′, so that aRa′. Hence [a]R = [a′]R
and b, c lie in a common block.

Exercise 1.3.20 Let X be a partition of Y 6= ∅ and R ≡ Y/X. For y ∈ Y we take
a block Z ∈ X with y ∈ Z. So yRy and R is reflexive. For y, y′ ∈ Y with yRy′

there is a block Z ∈ X such that y, y′ ∈ Z. So also y′Ry and R is symmetric. Let
y, y′, y′′ ∈ Y with yRy′ a y′Ry′′. Thus there exist blocks Z,Z′ ∈ X such that y, y′ ∈ Z
and y′, y′′ ∈ Z′. But then Z ∩ Z′ 6= ∅ and therefore Z = Z′. Hence yRy′′ and R is
transitive.

It follows from the definition that x, y ∈ Z ∈ X iff x(Y/X)y.

Exercise 1.3.21 Let R, A 6= ∅ and B be as stated. We prove the first equality. We
know that C ≡ A/R is a partition of A, thus S ≡ A/C is an equivalence relation on
A. We show that S = R. Let a, b ∈ A. Then aSb iff there is a block D ∈ C such that
a, b ∈ D. As we know from Exercise 1.3.19, a, b lie in a common block of C iff aRb.
Hence S = R.

We prove the second equality. We know that S ≡ A/B is an equivalence relation
on A. Thus C ≡ A/S is a partition of A. We show that C = B. Again, a, b ∈ A lie
in a common block of C iff aSc. This is the case iff a, b lie in a common block of B.
Hence C = B.

Exercise 1.4.2 Always a ≤ a because a = a. The transitivity of ≤ follows from the
transitivity of < and the same is true for trichotomy.

Exercise 1.4.3 Neither a < b∧ a = b nor b < a∧ a = b holds because < is irreflexive.
Nor a < b ∧ b < a holds because the transitivity of < produces a contradiction with
irreflexivity.

Exercise 1.4.4. When m and n are maxima of B, then both n ≤ m and m ≤ n.
Hence m = n. For minima the same argument works.
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Exercise 1.4.5 Let (A,<) be a LO and B = {b1, b2, . . . , bn} ⊂ A, |B| = n, be
a nonempty finite set. For i = 1, 2, . . . , n we compare by the trichotomy of < the
element bi with the previous elements b1, . . . , bi−1. This yields a permutation π of [n]
such that bπ(1) < bπ(2) < · · · < bπ(n). Then bπ(1) = min(B) and bπ(n) = max(B).

Exercise 1.4.7 This follows from uniqueness of maxima and minima.

Exercise 1.4.8 Let c = sup(B). Then c is an upper bound of B. Let a < c. Since
c is the minimum upper bound of B, the element a is not an upper bound of B and
there exists the stated b. In the other way, let c have the stated properties. They say
that c is the smallest upper bound of B, so that c = sup(B).

Similarly one proves the equivalence that c ∈ A is an infimum of B iff c ≤ b for
every b ∈ B & for every a ∈ A with c < a there is a b ∈ B such that b < a.

Exercise 1.5.1 Reflexivity and symmetry of ∼ are clear. We prove transitivity. Let
a/b ∼ c/d and c/d ∼ e/f . Thus ad = bc and cf = de. But then adf = bcf = bde and
adf = bde. The d 6= 0 can be canceled (Z is an integral domain) and af = be. Hence
a/b ∼ e/f .

Exercise 1.5.3 Let α ∈ Q. We get the protofraction pα ∈ α by bringing any protofrac-
tion m

n
∈ α to lowest terms. The function α 7→ pα is the desired bijection. It is bijective

and unique because two different elements in Zz are 6∼. We prove it. If k
l
, m
n
∈ Zz are

in lowest terms and k
l
∼ m

n
then kn = ml. Thus any prime power dividing k divides

m and vice versa. By the Fundamental Theorem of Arithmetic it holds that k = m.
Hence also l = n.

Exercise 1.5.5 If 0X and 0′X are additively neutral elements then commutativity of
addition yields that 0X = 0X + 0′X = 0′X + 0X = 0′X . Similarly for multiplicatively
neutral elements. If α + β = 0X and α + γ = 0X then due to associativity and
commutativity of addition we have that γ = (α+ β) + γ = (α+ γ) + β = β. Similarly
for multiplicative inverses.

Exercise 1.5.6 We define T ≡ 〈{0, 1}, 0T , 1T ,+, ·〉 by 0T ≡ 0, 1T ≡ 1 and setting
the operations + and · to be the addition and multiplication in Z modulo 2. This is
a field, by a theorem in number theory that more generally addition and multiplication
in Z modulo a prime produce a field. This two-element field is unique, up to an
isomorphism, which can be seen as follows. Clearly, 0 + 0 = 0 + 0T = 0 and 1 + 0 =
0 + 1 = 1. The additive inverse to 1 must be 1 and so 1 + 1 = 0. For multiplication
the values 1 · 0 = 0 · 1 = 0 and 1 · 1 = 1 are clear. By distributivity, 0 · 0 = 0 · (1 + 1) =
0 · 1 + 0 · 1 = 0 + 0 = 0.

Since we require that in any field F we have 0F 6= 1F , one-element field does not
exist. But if you like mathematical mysticism, see [16].

Exercise 1.5.8 If 0T < 1T then using repeatedly the axiom of shift we get arbitrarily
many elements: 0T < 1T < 1T +1T < 1T +1T +1T < . . . . If 1T < 0T we similarly get
arbitrarily many elements · · · < 1T + 1T + 1T < 1T + 1T < 1T < 0T . In fact, always
the former case occurs.

Exercise 1.5.10 0 · 1 = 0 6= 1 = 1 · 1.

Exercise 1.5.11 For any protofraction a
b

it holds that a
b
∼ −a−b .

Exercise 1.5.13 Let α = [a/b]∼ ∈ Q be arbitrary. Then α ≤ [(|a| + 1)/1]∼. Thus
α ≤ m ≡ [(|a| + 1)/1]∼ and m can be also viewed as an element of N. Since m =
1Q + 1Q + · · ·+ 1Q with m summands, QOF is Archimedean.
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Exercise 1.5.15 In any nonempty LO (A,<), H(∅) = A. Thus sup(∅) = min(A),
if this minimum exists. If B ⊂ A is not bounded from above then H(B) = ∅ and
min(H(B)) is not defined. So neither is sup(B).

Exercise 1.5.16 If FOF = 〈F, . . . 〉 is a complete ordered field and A ⊂ F is nonempty
and bounded from below then inf(A) = − sup(−A) where −A = {−x : x ∈ A}.

Exercise 1.5.17 Let TOF = 〈T, . . . 〉 be a complete ordered field. We set N (⊂ T ) to
be the set of all finite sums of 1T s. Then 1T ∈ N and we show that N is not bounded
from above. If it were, we could take a ≡ sup(N). But then there would be a b ∈ N
such that a − 1T < b (it can be proven that a − 1T < a). Adding 1T we get by the
axiom of shift that a < b+ 1T . But b+ 1T ∈ N and we have a contradiction. Thus N
is not bounded from above and this produces the stated upper bounds.

Exercise 1.5.20 If a
b

with coprime a, b ∈ Z and b 6= 0 were a solution, we would
get the equality an + an−1a

n−1b + · · · + a1ab
n−1 + a0b

n = 0. Thus p divides an. It
follows that p divides a and that p2 divides an−ia

n−ibi for every i = 0, 1, . . . , n − 1
(where an = 1). Thus p2 divides a0b

n. It follows that p divides b, which contradicts
the coprimality of a and b.

Exercise 1.5.22 For fractions s, r > 0 with s2 > 2 the inequality (s − r)2 > 2 holds

if s2 − 2 > 2sr− r2. Thus, for example, for every positive r < s2−2
2s

. For fractions r, s
with s2 < 2, s > 0 and r ∈ (0, 1) (then r2 < r) the inequality (s + r)2 < 2 holds if

2sr + r2 < 2− s2. Thus, for example, for every positive r < min({1, 2−s2
2s+1
}).

Exercise 1.6.1 Reflexivity and symmetry of ∼ are trivial. Transitivity easily follows
from the triangle inequality.

Exercise 1.6.2 It suffices to show that if sequences (an) and (bn) in C are congruent
by the definition, then they satisfy the formally stronger condition. Suppose that for
every large n it holds that |an− bn| ≤ 1

2k
. Since (an) is Cauchy, for every large m and

n it holds that |am − an| ≤ 1
2k

. By the triangle inequality for every large m and n we
have that |am − bn| ≤ |am − an|+ |an − bn| ≤ 1

2k
+ 1

2k
= 1

k
.

Exercise 1.6.10 It is easy to check that for every two fractions a and b it holds that
f(a− b) = f(a)− f(b), f(a · b) = f(a) · f(b) and that a < b iff f(a) < f(b).

Exercise 1.6.11 For z = 0 the inequality x < y turns in the equality xz = 0 = yz.

Exercise 1.6.13 If an, b ∈ Q, n ∈ N, are such that a1 ≤ a2 ≤ · · · ≤ b then (an) is
Cauchy. The proof is very similar to that of the theorem.

Exercise 1.6.15 Let α ∈ R be arbitrary. Then α = [an]∼ for some (an) ∈ C. Since
(an) is bounded (and QOF is Archimedean), there is an m ∈ N such that for every n
one has that an ≤ m. Thus in ROF it holds that α ≤ m. But m = 1R + 1R + · · ·+ 1R
with m summands 1R. Hence ROF is Archimedean.

Exercise 1.7.2 Suppose that X is a nonempty finite set (for ∅ it holds trivially
with empty map f = ∅). Using the axiom of choice we chose elements f(1) ∈ X,
f(2) ∈ X\{f(1)}, f(3) ∈ X\{f(1), f(2)}, . . . as long as the remaining set is nonempty.
Since X is finite, we cannot obtain an injecion from N to X. In some step m ∈ N we
exhaust all elements in X and get a bijection f : [m] → X. The values f(n) ∈ X for
n > m are added arbitrarily.

Exercise 1.7.3 We found this bijection in the previous proof.
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Exercise 1.7.6 The function f : N → Z given by f(1) = 0, f(2) = 1, f(3) = −1,
f(4) = 2, f(5) = −2, f(6) = 3, . . . is bijective.

Exercise 1.7.8 Y = ∅.

Exercise 1.7.9 Suppose that f : P(X)→ X is an injective map. We take the inverse
f−1 : f [P(X)] → P(X) and set Y ≡ {x ∈ f [P(X)] | x 6∈ f−1(x)} (⊂ X). For the

element f(Y ) = y (∈ X) we get from y
?
∈ Y the familiar contradiction.

Exercise 1.7.12 This is clear.

Exercise 1.7.15 These pairs (apart of the positive and negative zero) are uniquely
determined by the digits before the maximal run of nines (or zeros).

Exercise 1.7.18 We redirect the values of the function f lying outside Y in Y , which
gives f0. The bijection g is clear. The function h is surjective by Exercise 1.3.11.

2 Existence of limits

Exercise 2.1.1 There is a positive real number epsilon such that for every positive
real number delta there exist in M two real numbers a and b such that a and b are
closer than delta, but the functional values f(a) and f(b) have distance at least epsilon.

Exercise 2.1.2 We treat the case n = 2, for larger n one uses induction. Let a, b ∈ R.
If they have the same sign or one of them is 0 then |a + b| = |a| + |b|. Else |a + b| ≤
max({|a|, |b|}) ≤ |a|+ |b|.

Exercise 2.1.4 +∞, −∞, −∞ and undefined.

Exercise 2.1.5 We extended the LO (R, <) by adding infinities so that−∞ 6< −∞ and
+∞ 6< +∞, Thus the extended relation < is irreflexive. Transitivity and trichotomy
are clear.

Exercise 2.1.7 These sets are ∅ and {−∞}.

Exercise 2.1.11 Neighborhoods of points and infinities are intervals and hence convex
sets.

Exercise 2.1.12 For A,B ∈ R we may take any ε < B−A
2

. If A = −∞ and B = +∞,
we may take any ε. If A = −∞ and B ∈ R, we may take any ε < 1

|B|+1
.

Exercise 2.1.13 This is immediate from the definition of neighborhoods.

Exercise 2.1.14 This is again immediate from the definition of neighborhoods.

Exercise 2.1.16 x ≤ ε ⇒ x < 2ε and x < ε ⇒ x ≤ ε.

Exercise 2.1.19 Except V4 all other properties are robust.

Exercise 2.1.20 We only prove 3, the proofs for 1 and 2 are similar. Suppose that X
is as stated, that (an) and (bn) differ for only finitely many n and that (an) ∈

⋂
X.

Thus for every Y ∈ X it holds that (an) ∈ Y . Since Y is robust, it holds also for (bn).
Hence (bn) ∈

⋂
X and

⋂
X is robust.

Exercise 2.1.21 Clearly,
3√n−

√
n

4√n = n−1/6−1

n−1/4 → 0−1
0+

= −1
0+

= −∞, due to positivity

of n−1/4.

Exercise 2.2.2 Reflexivity follows from setting mn = n. Transitivity is clear when
one views subsequences as obtained by omitting terms in original sequences.
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Exercise 2.2.3 For example, (0, 1, 0, 1, . . . ) a (1, 0, 1, 0, . . . ).

Exercise 2.2.7 Let (bn) and (an) be the stated sequences and let an ε be given. Thus
there is an n0 such that n ≥ n0 ⇒ an ∈ U(L, ε). Then there is an n1 such that n ≥ n1

⇒ mn ≥ n0. Then for every n ≥ n1 we have that bn = amn ∈ U(L, ε) and lim bn = L.

Exercise 2.2.8 It is easy to see that the sequence (mn) ⊂ N witnessing (bn) �∗ (an)
has an increasing subsequence.

Exercise 2.2.9 The coefficient of the monomial ajbn−j is the number of ways how
to obtain it: we chose j factors a+ b in the product (a+ b)n from which we pick the
number a, and pick b from the remaining n − j factors. There are

(
n
j

)
ways to do it

because there are
(
n
j

)
subsets of [n] with j elements.

Exercise 2.2.11 Negate existence of the limit n1/n → 1.

Exercise 2.3.1 If such c exists then for every n it holds that −c ≤ an ≤ c and
(an) is bounded both from below and from above. Suppose that (an) is bounded by
the definition, so that d ≤ an ≤ c for every n and some numbers d and c. Then
|an| ≤ max({|d|, |c|}) for every n.

Exercise 2.3.2 The last three concerning boundedness.

Exercise 2.3.5. For example, suppose that (an) weakly increases for every n ≥ m and
that bn = an for every n ≥ n0. Then (bn) weakly increases for every n ≥ max({m,n0}).

Exercise 2.3.6 For example, if (an) weakly decreases then for every n the implication
am > an ⇒ m < n holds. Hence (an) goes down. Similarly for weakly increasing
sequences.

Exercise 2.3.7 Consider, for example, the sequence (1, 0, 2, 1, 3, 2, 4, 3, 5, . . . ). It goes
up but no tail is monotone.

Exercise 2.3.8 A sequence (an) ⊂ R is quasi-monotone iff

∀ l ∃m
(
n > m⇒ an ≥ al

)
∨ ∀ l ∃m

(
n > m⇒ an ≤ al

)
.

Exercise 2.3.11 Suppose for example that (an) goes up starting from n = m and
that bn = an for every n ≥ n0. Then (bn) goes up from n = max({m,n0}).

Exercise 2.3.13 The generalization says that in any (finite or infinite) LO (X,<)
every sequence (an) has a monotone subsequence. The same proof works.

Exercise 2.3.16 It is easy to see that the limit c of this subsequence satisfies the
inequalities a ≤ c ≤ b.

Exercise 2.3.18 Suppose that (an) is Cauchy and (bn) is such that bn = an for
n ≥ n0. If for a given ε for every m,n ≥ n1 it holds that |am− an| ≤ ε, then for every
m,n ≥ max({n0, n1}) it holds that |bm − bn| ≤ ε. Hence (bn) is Cauchy.

Exercise 2.3.19 Let (an) be Cauchy. Then there is an n0 such that for every m,n ≥
n0 one has that |am − an| ≤ 1. By the ∆-inequality it holds for every n that |an| ≤
1 + max({|a1|, . . . , |an0 |}). Hence (an) is bounded.

Exercise 2.3.21 Take for example the sequence (1, 1.4, 1.41, 1.414, . . . ) of truncations
of the decimal expansion of the number

√
2.
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Exercise 2.3.22 We used in the proof the B.–W. theorem whose proof uses the
theorem on limits of monotone sequences. For this theorem we need the existence of
suprema, respectively infima, of corresponding sets of real numbers.

Exercise 2.3.23 black

Exercise 2.3.24 Then one would have had to go to a library or to a bookshop to check
the corresponding dictionary. Another option was to ask somebody from Slovakia.

Exercise 2.3.26 Let us show that f(n) is superadditive. Let m,n ∈ N, a1 . . . af(m) be
a word over [m] satisfying (i) and (ii) and with the maximum length, and b1 . . . bf(n)
be the analogous word over {m+ 1, . . . ,m+ n}. Then the word

u = a1 . . . af(m)b1 . . . bf(n)

over [m+ n] satisfies (i) and (ii), so that f(m) + f(n) ≤ f(m+ n). How do we know
that u avoids abba? This is due to the fact that the word abba cannot be split, it
cannot be written as a concatenation of two words over disjoint alphabets.

Exercise 2.3.27 We argue as in the previous exercise. Again, the key point is that
abab cannot be split.

Exercise 2.3.28 But aabb can be split, aabb = aa bb. Thus the previous argument
using Fekete’s lemma cannot be used, at least not in the simplest way.

Exercise 2.3.29 We show that for every fixed k the function rk(n) is subadditive. If
A ⊂ Z contains no AP of length k we say that A is acceptable. Let m,n ∈ N and
A ⊂ [m+ n] be an acceptable set with the maximum size |A| = rk(m+ n). We easily
see that the sets

A′ = [m] ∩A and A′′ = {x ∈ [n] | x+m ∈ A}

are acceptable — acceptability is inherited by subsets and is preserved by shifts. Hence
rk(m+ n) = |A| = |A′|+ |A′′| ≤ rk(m) + rk(n).

3 Arithmetic of limits. AK series

Exercise 3.1.1 Since | − b| = |b|, it suffices to prove the first inequality. We apply to
a = (a+ b) + (−b) the standard ∆-inequality and rearrange the result.

Exercise 3.1.3 1. Let |an| ≤ d for every n, L = −∞ and a c < 0 be given. It is clear
that for every large n one has that bn ≤ c − d. Thus for every large n we have that
an + bn ≤ d+ c− d = c. Hence an + bn → −∞. The case that L = +∞ is similar.

2. Let |an| ≤ d for every n, bn → 0 and an ε be given. Clearly we have for every
large n that |bn| ≤ ε

d
. So for every large n it holds that |anbn| ≤ d · ε

d
= ε. Hence

anbn → 0.
3. Let an, c, L = +∞ and bn be as stated and let a d > 0 be given. One has for

every large n that bn ≥ d
c
. So for every large n it holds that anbn ≥ c · d

c
= d. Hence

anbn → +∞ = L. The other case is similar.
4. Let |an| ≤ d for every n, bn → ±∞ and an ε be given. For every large n we

have that |bn| ≥ d
ε
. So for every large n we have that

∣∣an
bn

∣∣ = |an| · 1
|bn| ≤ d 1

d/ε
= ε.

Hence an
bn
→ 0.

5. Let an, c and bn be as stated and a d > 0 be given. For every large n one has
that 0 < bn ≤ c

d
. So for every large n we have that an

bn
≥ c

c/d
= d. Hence an

bn
→ +∞.
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6. Let an, c, L = −∞ and bn be as stated and let a d < 0 be given. For every
large n one has that bn ≤ dc. So for every large n we have that bn

an
≤ dc

c
= d. Hence

bn
an
→ −∞ = L. The other case is treated similarly.

Exercise 3.1.5 1. For A ∈ R we take an,1 ≡ n, bn,1 ≡ −n+A. For A = +∞ we take
an,1 ≡ n, bn,1 ≡ −

√
n. For A = −∞ we take an,1 ≡

√
n, bn,1 ≡ −n.

2. For A ∈ R\{0} we take an,2 ≡ sgn(A)
n

, bn,2 ≡ n|A|. For A = 0 we take an,2 ≡ 0,
bn,2 ≡ n. For A = +∞ we take an,2 ≡ 1

n
, bn,2 ≡ n2. For A = −∞ we take an,2 ≡ − 1

n
,

bn,2 ≡ n2.
3. For A ∈ R we take an,3 ≡ A

n
, bn,3 ≡ 1

n
. For A = ±∞ we take an,3 ≡ 1

n
,

bn,3 ≡ ± 1
n2 (equal signs).

4. For A ∈ R \ {0} we take an,4 ≡ An, bn,4 ≡ n. For A = 0 we take an,4 ≡ n,
bn,4 ≡ n2. For A = ±∞ we take an,4 ≡ ±n2, bn,4 ≡ n (equal signs).

Exercise 3.2.1 This inequality is equivalent to the inequality (
√
a−
√
b)2 ≥ 0.

Exercise 3.2.3 This follows from the identity |an − 0| = ||an| − 0| (= |an|).

Exercise 3.3.2 The set {((an), (bn)) : ∃n0 ∀m,n ≥ n0

(
am < bn

)
} (of pairs of

sequences) is a proper subset of the set {((an), (bn)) : ∃n0 ∀n ≥ n0

(
an < bn

)
}. In

MA 1+ we show that the former set is much smaller than the latter.

Exercise 3.3.4. For example (an) ≡ ( 1
n

) and (bn) ≡ (0, 0, . . . ).

Exercise 3.3.5. Let (an), (bn), K and L be as stated. We take a number c such that
K < c < L. By Exercise 2.1.11 there is an ε such that U(K, ε) < U(c, ε) < U(L, ε).
Then we take any two numbers a, b ∈ U(c, ε) such that a < b. For every large m and
n we have that am ∈ U(K, ε) and bn ∈ U(L, ε). Hence am ≤ a and b ≤ bn.

Reversal of this implication is: if for every n0 and every real numbers a < b there
exist m and n with m,n ≥ n0 such that am > a or bn < b, then K ≥ L.

Exercise 3.3.8 Any singleton {a} is such an interval.

Exercise 3.3.11 Let lim an = −∞, bn ≤ an for every large n and let a c < 0 be given.
Then for every large n one has that bn ≤ an ≤ c. Thus bn ≤ c and lim bn = −∞. The
case of the limit +∞ is similar.

Exercise 3.4.2 By part 1 of Theorem 2.2.5 every sequence has a subsequence that
has a limit.

Exercise 3.4.7 For every n ≥ 2 it is true that τ(n) ≥ 2 because 1 and n always divide
n. For infinitely many n, namely for the prime numbers, the equality holds.

Exercise 3.4.8 One can reduce parts 3 and 4 to parts 1 and 2 by means of the identity
lim inf an = − lim sup(−an).

Exercise 3.4.9 We let m run in N and in the m-th step the m-th segment of the
sequence (an) runs through the numbers −m, −m+ 1

m
, −m+ 2

m
, . . . , m.

Exercise 3.4.10 Such sequence does not exist because L(an) ∩ R is always a closed
set.

Exercise 3.4.11 L(an) = {0,+∞}.

Exercise 3.5.2 Suppose that the constant c witnesses that
∑
x∈X rx is an AK series

and that Z ⊂ Y is finite. Then
∑
x∈Z |rx| ≤ c because Z ⊂ X.
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Exercise 3.5.7 The sets Z′1, . . . , Z
′
n−1 and Z′′n are pairwise disjoint and their union is

X0. Thus if x runs bijectively through all elements of X0, it runs bijectively through
all elements of the sets Z′1, . . . , Z′n−1, Z′′n .

Exercise 3.5.8 In the equality
∑
x∈X0

rx =
∑n−1
i=1

∑
x∈Z′i

rx +
∑
x∈Z′′n

rx.

Exercise 3.5.9 Reflexivity is witnessed by the identity bijection, symmetry by the
inverse bijection and transitivity by the composition of two bijections.

Exercise 3.5.10 Let R =
∑
x∈X rx and R′ =

∑
x∈Y sx be congruent AK series. If X

and Y are finite, the equality of their sums is trivial. Suppose that they are infinite and
that f : X → Y is a bijection proving that R ∼ R′. Let g : N → X be any bijection.
Then S(R′) = lim

∑n
i=1 sf(g)(i) = lim

∑n
i=1 rg(i) = S(R) because f(g) is a bijection

from N to Y .

Exercise 3.5.11 Suppose that the constant c witnesses that R is an AK series and that
Y ⊂ X is a finite set. Then

∑
x∈Y |arx| ≤ |a| · c. Hence aR is an AK series. For finite

X the identity for sums is trivial and we may assume that X is infinite. Let f : N→ X
be any bijection. Then S(aR) = lim

∑n
i=1 arf(i) = a lim

∑n
i=1 rf(i) = aS(R).

Exercise 3.5.13 Let a, R =
∑
x∈X rx and R′ =

∑
x∈Y sx be as stated and f : X → Y

be a bijection witnessing that R ∼ R′. Then for every x ∈ X it holds that rx = sf(x).
Hence also arx = asf(x) and aR ∼ aR′.

Exercise 3.5.15 Let Q =
∑
x∈X rx, Q′ =

∑
x∈X′ r

′
x, R =

∑
x∈Y sx and R′ =∑

x∈Y ′ s
′
x be as stated and let f : X → X ′, g : Y → Y ′ be bijections witnessing that

Q ∼ Q′ and R ∼ R′. Thus for every x ∈ X and y ∈ Y we have that rx = r′f(x) and
sy = s′g(y). Let Z ≡ X × {0} ∪ Y × {1} and W ≡ X ′ × {0} ∪ Y ′ × {1}. We consider
Q + R =

∑
z∈Z tz and Q′ + R′ =

∑
z∈W t′z. We define the bijection h : Z → W by

h(z) ≡ (f(x), 0) if z = (x, 0), and by h(z) ≡ (g(y), 1) if z = (y, 1). Then it follows that
for every z ∈ Z we have that tz = t′h(z). Hence Q+R ∼ Q′ +R′.

Exercise 3.5.17 We proceed as in the previous exercise, with the modifications that
Z ≡ X × Y , W ≡ X ′ × Y ′ and that the bijection h : X × Y → X ′ × Y ′ is given by
h((x, y)) ≡ (f(x), g(y)). Then for every (x, y) ∈ X × Y we have that rxsy = r′f(x)s

′
g(y)

because rx = r′f(x) and sy = s′g(y). Hence Q ·R ∼ Q′ ·R′.

Exercise 3.5.19 For R =
∑
x∈X rx, R′ =

∑
y∈Y sy and R′′ =

∑
z∈Z tz the bijection

sends (x, 0) to ((x, 0), 0), ((y, 0), 1) to ((y, 1), 0) and ((z, 1), 1) to (z, 1).

Exercise 3.5.20 For R and R′ as in the previous exercise the bijection sends (x, y)
to (y, x).

Exercise 3.5.21 For R, R′ and R′′ as in Exercise 3.5.19 the bijection sends (x, (y, z))
to ((x, y), z).

Exercise 3.5.23 In general this identity does not hold.

4 Infinite series. Elementary functions

Exercise 4.1.1 As the next solution shows, if we change in a series
∑
an finitely

many summands and get
∑
a′n then there is an m and a c such that for every n ≥ m

it holds that s′n = sn + c. Then lim sn exists and is finite iff lim s′n exists and is finite.

Exercise 4.1.2 Let
∑
an and

∑
bn be convergent series and let there be an m such

that bn = an for n 6= m and bm = am + c with c 6= 0. Let (sn) and (tn) be
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respective partial sums. Then tn = sn for n < m and tn = sn + c for n ≥ m, so
that

∑
bn = lim tn = c+ lim sn = c+

∑
an.

Exercise 4.1.3 Partial summands weakly increase (resp. decrease) for n ≥ n0.

Exercise 4.1.4 Since sn = n, we have that lim sn = +∞.

Exercise 4.1.7 The first equality follows from the definition of partial sums, the
second one from AL of sequences, the third one from the assumption and from the
limit of a subsequence, and the fourth one is trivial.

Exercise 4.1.8 Due to the monotonicity it holds that lim an = L. All subsequences
have this limit and hence L = +∞.

Exercise 4.1.9 Let (sn) and (tn) be partial sums of both series. There is a c such
that for every n ≥ n0 we have sn ≥ tn + c. Since lim(tn + c) = +∞ the one-cop
theorem shows that also lim sn = +∞.

Exercise 4.1.12 Let n ≥ 2. We assume that 1 + 1
2

+ · · · + 1
n

= m ∈ N and deduce
a contradiction. Following the hint we write every denominator j = 1, 2, . . . , n in
the form j = a(j) · 2b(j) where a(j) ∈ N is odd and b(j) ∈ N0. For j0 = 2k, where
k ∈ N is the largest number with 2k ≤ n, this expression takes the form j0 = 1 · 2k.
For every j ∈ [n] \ {j0} it holds that b(j) < k. Hence 1 + 1

2
+ · · · + 1

n
= a+b

a·2k , where
a ≡ a(1)a(2) . . . a(n) ∈ N is an odd number and b ∈ N is even, be cause it is the sum
of n− 1 even numbers. The numerator a+ b is therefore odd and the power 2k ≥ 2 in
the denominator cannot be canceled. Thus the quality a+b

a·2k = m is impossible. The

same argument shows that for no n ≥ 2 we have that hn = k
l

with odd l.

Exercise 4.1.13 ???

Exercise 4.1.15 One changes the series
∑
an to

∑
(−an).

Exercise 4.1.20 This is a special case of Corollary 3.5.5.

Exercise 4.1.23 This follows from the equality qm + qm+1 + · · · = qm · (1 + q + · · · ).

Exercise 4.1.24 Every converging one, so iff q ∈ (−1, 1).

Exercise 4.1.28 This is immediate from the divergence of the harmonic series.

Exercise 4.1.29 Iff s > 1, again by CCC.

Exercise 4.2.1 Let M and A be as stated and let 1 hold, so that A ∈ L(M) by
the given definition. We chose for every n an an ∈ P (A, 1

n
) ∩M and get a sequence

(an) ⊂ M \ {A} such that lim an = A. Hence 2 holds. For every m there is an ε
such that a1, . . . , am 6∈ U(A, ε). So we can choose from (an) an injective subsequence
and 3 holds. Suppose that 3 holds and let (bn) ⊂ M be an injective sequence with
lim bn = A. For given n we have bm ∈ U(A, 1

n
) for every large m. From these for only

one m it holds that bm = A, hence P (A, 1
n

) ∩M 6= ∅ and 4 holds. It is clear that
4⇒ 1.

Exercise 4.2.3 Suppose that M with ∅ 6= M ⊂ R is finite and let x ∈ R be arbitrary.
We take an ε that is smaller than the minimum distance between x and an element of
M \ {x} (if M \ {x} = ∅, we set ε ≡ 1). Then P (x, ε) ∩M = ∅ and x is not a limit
point of M . Since M is bounded, neither −∞ nor +∞ is a limit point of M .

Exercise 4.2.4. Let M ⊂ R be infinite. If it is not bounded then −∞ or +∞ is in
L(M). Suppose that M is bounded. It is infinite and so we chose from M with the
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help of AC an injective sequence (an) ⊂ M . Using Proposition 2.3.12 we chose from
(an) a monotone subsequence (bn). Since (bn) is bounded, we have the finite limit
b ≡ lim bn. Since (bn) ⊂ M and bn 6= b for every n, by Exercise 4.2.1 we see that
b ∈ L(M).

Exercise 4.2.5 This is immediate from part 2 of Proposition 4.2.2.

Exercise 4.2.8. L(N) = {+∞}.

Exercise 4.2.12 For instance A = 0, M = {± 1
n
| n ∈ N}, X = { 1

n
| n ∈ N}, f = 0 on

M \X and f = 1 on X.

Exercise 4.2.14 We have chosen an element from any set {x ∈ P (K, 1/n) ∩ M :
f(x) 6∈ U(L, ε)}, n ∈ N.

Exercise 4.2.15. 1. Due to the transformation (x < 0, hence x = −|x|) x√
1+x2−1

=

1

−
√

1/x2+1−1/|x|
we get for x→ −∞ the limit 1

−
√

1/(+∞)+1−0
= −1.

2. The transformation 1√
1+x−

√
x

=
√

1 + x +
√
x gives for x → +∞ the limit√

1 + (+∞) +
√

+∞ = +∞.
3 a 4. These limits are trivial, the first does not exist and the second equals 0.

Exercise 4.3.2 As many as real numbers, kc 7→ c is a bijection from the set of
constants to R.

Exercise 4.3.3 We take an m such that m ≥ 2|x|. Then for every n ≥ m we have
that |xn/n!| ≤ (|x|m/m!) · (1/2)n−m = (2|x|)m/m! · (1/2)n. Then we use geometric
series.

Exercise 4.3.6 1. exp 0 = 1 is trivial and the rest follows from the exponential
identity. 2. For x < y we have that ey− ex = ex(ey−x−1) > 0, due to the exponential
identity. 3. For x > n it holds that ex > n, so that limx→+∞ ex = +∞. Also,
limx→−∞ ex = 1

limx→+∞ ex
= 1

+∞ = 0.

Exercise 4.3.8 For contradiction let
∑
j≥0

1
j!

= n
m

with n,m ∈ N. Following the

hint we get that r ≡
∑
j>m

m!
j!

= n · (m − 1)! − · · · ∈ N. This is impossible because

0 < r ≤ 1
m+1

∑∞
j=0

1
(m+2)j

= m+2
(m+1)2

< 1.

Exercise 4.3.9 1. log 1 = 0 follows from exp 0 = 1. By flipping the graph over the
line y = x we get from the increasing function expx the increasing function log x. For
x, y > 0 we have by the exponential identity the equality exp(log x+ log y) = x · y, so
that log x+ log y = log(xy). 2. These limits are again obtained by flipping the graph
of the exponential over y = x. 3. This follows from part 4 of the previous proposition.

Exercise 4.3.13 We begin with ax, a > 0. For x = 0 we have that exp(x log a) =
exp 0 = 1. For x ∈ N it holds that exp(x log a) = exp(log a+ · · ·+log a), with x factors
log a. By the exponential identity this equals exp(log a) · . . . · exp(log a) = a · . . . · a,
with x factors a. For every x ∈ N it holds due to the exponential identity that
exp((−x) log a) = 1

exp(x log a)
. Thus ax agrees with xm. We continue with xb. Let b ∈ N,

x > 0. Then again exp(b log x) = exp(log x+ · · ·+log x) = exp(log x) · . . . ·exp(log x) =
x · . . . · x, with b factors x. Also 0b = 0 = 0 · . . . · 0. Let b = 0 and x > 0. Then xb = 1.
Let b ∈ Z with b < 0 and x > 0. Then we again get by the exponential identity that
xb = 1

x−b . Hence xb agrees with xm. Finally, 0x = 0 for x ∈ N also agrees with xm.
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Exercise 4.3.14 By Definition 4.3.11 one has that ex = exp(x log e). Since e = exp 1,
it equals to expx.

Exercise 4.3.16 With A ≡ 1 + x, B ≡ 1 + x+ x2, C ≡ 1 + x3 and D ≡ 1 + x2 + x4,
for which by the hint AD = BC ≡ E, we should show that (Ay +By)x · (Cx +Dx)y =
(Ax + Bx)y · (Cy + Dy)x. Equivalently, that Exy(1 + (B

A
)y)x(1 + (C

D
)x)y = Exy(1 +

(A
B

)x)y(1 + (D
C

)y)x. But this holds because B
A

= D
C

and C
D

= A
B

, and multiplication is
commutative.

Exercise 4.3.17 For A = 0 we set an ≡ 1
nn and bn ≡ 1

n
. For 0 < A < 1 we set

an ≡ An and bn ≡ 1
n

. For A = 1 we set an = bn ≡ 1
n

. For 1 < A < +∞ we set
an ≡ 1

An and bn ≡ − 1
n

. For A = +∞ we set an ≡ 1
nn and bn ≡ − 1

n
. No, it could not,

ab < 0 only for b ∈ Z \ {0}.

Exercise 4.3.18 Proceed as in Exercise 4.3.3.

Exercise 4.3.20 1. The runner runs one lap in time 2π and gets in the same position.
2. This is the behavior of the y-coordinate of the runner in the first quarter of the lap.
3. The track is symmetric according to the y-axis, and according to the origin (0, 0).
4. The counter-clockwise rotation of S around the origin by π

2
is equivalent to the

exchange of the coordinate axes. The second relation says that the points on S have
distance 1 from the origin. 5. Search for pictures for “geometric proof of summation
formulae for sinus and cosinus”.

Exercise 4.3.22 Relate the three power series for the exponential, cosine and sine.

Exercise 4.3.23 We know from the properties of cosine and sine what zeros they
have.

Exercise 4.3.24 This follows from the properties of sine and cosine and from the fact
(proven in lecture 6) that continuous functions attain all intermediate values.

Exercise 4.3.25 The proof is similar to the previous one.

Exercise 4.4.2 This follows from the commutativity, associativity and distributivity
of the operations + and · on R and from the fact that the operation of intersection of
two sets enjoys these properties too: M ∩N = N ∩M , (M ∩N) ∩ P = M ∩ (N ∩ P )
and M ∩ (N ∩P ) = (M ∩N)∩ (M ∩P ). In R the number 0, respectively 1, is neutral
in addition, respectively multiplication, and always R ∩M = M . No function f ∈ R
with M(f) 6= R has additive or multiplicative inverse.

Exercise 4.4.4 The functions f − g and f + f−1 · g have equal values and also equal
definition domains: M(f) ∩M(g) = M(f) ∩ (R ∩M(g)).

Exercise 4.4.6 |x| = (x · x)1/2.

Exercise 4.4.7 It is the empty function ∅.

Exercise 4.4.8 Yes, by the previous exercise. But also, for example, x1/2 + (−x −
1)1/2 = ∅.

Exercise 4.4.9 g = k−1 · f .

Exercise 4.4.11 For instance f(x) ≡
√

sin(πx) +
√
− sin(πx) and g(x) ≡ 1

sin(π/x)
;

here π is kπ and x is the identity id.

Exercise 4.4.12 For a > 0 we have the expression ax = exp(x log a). For b ∈ N
we have the expression xb = x · x · . . . · x | [0,+∞) (Proposition 4.4.10). For b = 0
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we have the expression x0 = k1 | (0,+∞) (Proposition 4.4.10). For b ∈ Z with b < 0
and x > 0 we have the expression xb = exp(b log x). For 0x we have the expression
0x = k0 | (0,+∞). The expression of the functions xm, m ∈ Z, from other BEF is
clear.

Exercise 4.4.16 For instance arcsinx, |x| or arcsin(sinx).

Exercise 4.5.3 Suppose that p 6= k0 has the canonical from
∑n
j=0 ajx

j . We show by
induction on deg p = n that |Z(p)| ≤ n. For n = 0 it holds, then p = ka0 with a0 6= 0
and p has no zero. Let n > 0. If p has no zero, the inequality holds. Let p(a) = 0 for
some a ∈ R. Then we divide the polynomial p in its canonical form with remainder
by the polynomial x − a = idR − ka and get the expression p = (x − a)q, for some
polynomial q with degree n− 1. For every b 6= a with p(b) = 0 we have that q(b) = 0.
Induction gives that |Z(p)| = 1 + |Z(p) \ {a}| ≤ 1 + |Z(q)| ≤ 1 + (n− 1) = n.

Exercise 4.5.4 Proposition 4.4.3 shows that it remains to prove the existence of
additive inverses and the defining property of integral domains. The inverses exist
due to Exercise 4.4.9 and because every polynomial has the definition domain R. By
multiplying two polynomials with canonical forms (hence nonzero) we see that the
result has a canonical form and thus is nonzero.

Exercise 4.5.9 For f1 = f2 = g1 ≡ k1 (= 1) and g2 ≡ id (= x) the function f1/f2
g1/g2

is

id |R \ {0} and the function f1g2
f2g1

is id.

Exercise 4.5.12 Reflexivity and symmetry of ∼ are clear. We prove transitivity. Let
r ∼ s and s ∼ t. We take these rational functions in canonical forms: r = a

b
, s = c

d
and

t = e
f

. By the assumption r = s on M(r) ∩M(s) = R \ Z(bd) and s = t on R \ Z(df).
Thus r = t on R \ (Z(bd) ∪ Z(df)) = (R \ Z(bf)) \ Z(d) = (M(r) ∩M(t)) \ Z(d). By
the continuity of r and t in every point x ∈M(r) ∩M(t) ∩Z(d) the functions r and t
are equal also on M(r) ∩M(t). Hence r ∼ t.

Exercise 4.5.13 Let r, s, r′, s′ ∈ RAC \ {∅}. It is not hard to see, using continuity of
rational functions, that r ∼ r′ and s ∼ s′ imply that also r+s ∼ r′+s′ and r ·s ∼ r′ ·s′.
Thus we can add and multiply the whole equivalence blocks. Commutativity and
associativity of addition and multiplication and the distributive law in R(x) follow from
the arithmetic in R. For the existence of inverses we need equivalence blocks. The block
[r]∼ = [p/q]∼ has the additive inverse [(−p)/q]∼ because the sum is [k0/q]∼ = [k0]∼.
Similarly, [r]∼ = [p/q]∼ 6= [k0]∼ (so p 6= k0) has the multiplicative inverse [q/p]∼
because the product is [pq/qp]∼ = [k1]∼.

5 Limits of functions. Asymptotic notation

Exercise 5.1.1 Let b ∈ L−(M). For every n ∈ N we chose from P−(b, 1/n) ∩M
a point an and get the required sequence (an). If b 6∈ L−(M) then for some ε we have
that P−(b, ε)∩M = ∅ and the required sequence does not exist. For L+(M) the proof
is similar.

Exercise 5.1.2 The first two implications follow from the fact that any one-sided
deleted neighborhood is contained in the ordinary one. We prove the third implication.
Let b be a limit point of M . Then there is a sequence (an) ⊂ M \ {b} such that
lim an = b. It has a subsequence (amn) such that for every n it holds that amn > b
or for every n it holds that amn < b. Thus b is a one-sided limit point of M . 4. For
instance 0 ∈ L([0, 1)) but 0 6∈ L−([0, 1)).

Exercise 5.1.3 For example, it is the set N ⊂ R.
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Exercise 5.1.4 See the solution of Exercise 4.2.4.

Exercise 5.1.6 1. Here a is a limit point of M . Thus, as we know, it is the left or right
limit point of M . 2. This follows from the inclusion P (a, δ) ⊂ P−(a, δ′) ∪ P+(a, δ′′)
for δ = min({δ′, δ′′}). 3. If limx→a f(x) = A, it suffices to take ε so small that U(A, ε)
and U(K, ε), or U(A, ε) and U(L, ε), are disjoint and we get a contradiction.

Exercise 5.1.8 The proof is similar to the proof of Proposition 4.2.10.

Exercise 5.1.10 The proof is similar to the proof of Theorem 4.2.13.

Exercise 5.1.12 This follows from the equality f [P±(b, δ)] = (f | I±(b))[P (b, δ)].

Exercise 5.2.2 Iff there is a sequence (bn) ⊂M(f) such that lim bn = b, but lim f(bn)
does not exist or is not equal to f(b). Or, by Exercise 5.2.10, iff there is a sequence
(bn) ⊂M(f) with lim bn = b such that lim f(bn) = A 6= f(b).

Exercise 5.2.4 The solution of the inequalities |x−b| < δ, respectively |f(x)−f(b)| <
ε, is exactly U(b, δ), respectively U(f(b), ε). Non-strict inequalities are equivalent, it
suffices to decrease δ or ε a little.

Exercise 5.2.6 If b ∈ M \ L(M), there is a δ such that U(b, δ) ∩M(f) = {b}. The
only sequences in M(f) with the limit b are then eventually constant sequences (an)
with an = b for n ≥ n0. Then lim f(an) = f(b) which agrees with continuity of f in
such point b (trivially or by Proposition 5.2.9).

Exercise 5.2.7 If b ∈ M is isolated, it is not limit and there is a ε such that M ∩
P (b, ε) = ∅. Then M ∩U(b, ε) = {b}. If b ∈M is not isolated, it is limit and for every
ε we have that M ∩ P (b, ε) 6= ∅. Hence for every ε we have that M ∩ U(b, ε) 6= {b}.

Exercise 5.2.8 This follows from the definition of isolated points.

Exercise 5.2.10 This is immediate from Heine’s definition of pointwise continuity
and from part 3 of Theorem 2.2.5.

Exercise 5.2.11 Let f be continuous in b ∈ M(f) and let an ε be given. Then
for some δ it holds that f [U(b, δ)] ⊂ U(f(b), ε). Thus f [U−(b, δ)] ⊂ U(f(b), ε) and
f [U+(b, δ)] ⊂ U(f(b), ε) because U−(b, δ) and U+(b, δ) is contained in U(b, δ). So f is
both left- and right-continuous in b.

Let f be both left- and right-continuous in b ∈M(f) and let an ε be given. Then
there exist δ′ and δ′′ such that f [U−(b, δ′)] ⊂ U(f(b), ε) and f [U+(b, δ′)] ⊂ U(f(b), ε).
We set δ ≡ min({δ′, δ′′}). We get that f [U(b, δ)] ⊂ U(f(b), ε), because U(b, δ) ⊂
U−(b, δ′) ∪ U+(b, δ′′). Hence f is continuous in b.

Exercise 5.2.13 Every number in M is positive because x is irrational. U(x, 1),
which is an interval of length 2, contains only finitely many fractions with bounded
denominators. Hence M is a finite set. But U(x, 1) contains at least one integer and
so M 6= ∅.

Exercise 5.3.2 Let f ∈ F(M). For b ∈ L−(M) and f that weakly decreases on
P−(b, δ) we replace supremum with infimum. For b ∈ L+(M) and f that weakly
increases, respectively weakly decreases, on P+(b, δ) we take infimum, respectively
supremum. For +∞ ∈ L(M) and f that weakly decreases on U(+∞, δ) we replace
supremum with infimum. For −∞ ∈ L(M) and f that weakly increases, respectively
weakly decreases, on U(−∞, δ) we take infimum, respectively supremum.

165



Exercise 5.3.4 M(f/g) = M(f) ∩M(g) \ Z(g) and there is a δ such that Z(g) ∩
U(A, δ) = ∅.

Exercise 5.3.5 This is a particular case of part 3 of the theorem with f = k1.

Exercise 5.3.8 1. The previous proof of the theorem is easily modified, for K < L
there is an ε and real numbers a, b such that U(K, ε) < {a} < {b} < U(L, ε). 2. Again
the reversal of an implication.

Exercise 5.3.10 The ordinary limits are only changed to one-sided. The proofs are
basically reductions to ordinary limits by means of Proposition 5.1.13.

Exercise 5.4.3 Let a sequence (an) ⊂ M(f(g)) \ {A} have lim an = A. By Heine’s
definition of limits of functions (HDLF), lim g(an) = K. Suppose that condition 1
holds. Then for the n with g(an) = K we have that f(g)(an) = f(g(an)) = f(K) =
L. If there are infinitely many n such that g(an) 6= K then for the corresponding
subsequence (amn) we have by HDLF that lim f(g(amn)) = L. Thus lim f(g)(an) = L
and HDLF says that limx→A f(g)(x) = L. Suppose that condition 2 holds. Then,
deleting from (g(an)) finitely many terms, we may assume that (g(an)) ⊂M(f)\{K}.
By HDLF, lim f(g(an)) = L. Again by HDLF, limx→A f(g)(x) = L. The case that
none of the conditions holds is resolved via Heine’s definition of limits of functions
already in the original proof.

Exercise 5.4.6 We use Theorem 5.4.1 withe outer function 1
x

, inner function g, A ≡ A
and K ≡ B. Since 1

x
is continuous, condition 1 is satisfied.

Exercise 5.5.2 Reflexivity and symmetry of
.
= is easy to see. We prove the tran-

sitivity. Let f
.
= g and g

.
= h. Then M(f)∆M(g) and M(g)∆M(h) are finite sets.

If x ∈ M(f) and x 6∈ M(h) then either x 6∈ M(g) (but x ∈ M(f)) or x ∈ M(g)
(but x 6∈ M(h)). Similarly if x ∈ M(h) and x 6∈ M(f). Thus the set M(f)∆M(h)
is finite because it is a subset of the union of two finite sets. In the similar vein if
x ∈M(f)∩M(h) and f(x) 6= h(x) then either x 6∈M(g), or x ∈M(g) but f(x) 6= g(x)
or g(x) 6= h(x). We see that {x ∈M(f) ∩M(h) : f(x) 6= h(x)} is finite.

Exercise 5.5.5 It is not. In [25] one has that N = {0, 1, 2, . . . }. If g(n) ≡ n and
f(n) ≡ 0 then by our definition trivially g = O(f) (on N) because M(g/f) = ∅. But
g(n) = n ≤ cf(n) + c = c does not hold for every n ∈ N for any constant c.

Exercise 5.5.6 1. Yes. 2. No (problem near 0). 3. No (problem near ±∞). 4. Yes.
5. No (problem near 0). 6. Yes.

Exercise 5.5.8 If y = f0
g0

(x) ∈ f0
g0

[N ] but y 6∈ f
g

[N ] then x ∈ M(f0) \ M(f) or
x ∈M(g0) \M(g) or (x ∈M(g0)∩M(g) but g0(x) 6= g(x) = 0) or (x ∈M(g0)∩M(g)
but g0(x) 6= g(x)) or (x ∈M(f0) ∩M(f) but f0(x) 6= f(x)). The set of corresponding
x is a subset of a finite union of finite sets and is therefore finite.

Exercise 5.5.11 1. Yes. 2. Yes. 3. No. 4. No. 5. Yes. 6. Yes.

Exercise 5.5.14 Let f , g, h, N and A be as stated. 1. We assume that, for a constant
c ≥ 0, for every x ∈M(f)∩M(h)∩N\Z(h) it holds that | f

h
(x)| ≤ c, and the same holds

with g in place of f . Hence it holds for every x ∈ M(f) ∩M(g) ∩M(h) ∩ N \ Z(h)
that | f+g

h
(x)| ≤ | f

h
(x)| + | g

h
(x)| ≤ 2c. 2. For f we have a bound as previously

and for every x ∈ M(g) ∩ N it holds that |g(x)| ≤ c. Hence it holds for every
x ∈ M(f) ∩M(g) ∩M(h) ∩ N \ Z(h) that | fg

h
(x)| = | f

h
(x)| · |g(x)| ≤ c2. 3. This is

similar to 2. 4. We have that limx→A
f
h

(x) = 0 and limx→A
g
h

(x) = 0. Hence the limit
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limx→A
f+g
h

(x), which is defined because A is a limit point of M((f + g)/h), equals

limx→A
f
h

+ limx→A
g
h

= 0 + 0 = 0. 5. Similarly, from limx→A
f
h

(x) = 0 and a bound

that |g(x)| ≤ c for every x ∈M(g)∩P (A, θ) we easily deduce that also limx→A
fg
h

(x) =
0. 6. This is similar to 5. 7. Like in part 4 we get from the assumptions on f , g, h and
A that limx→A

f+g
h

(x) = limx→A
f
h

(x) + limx→A
g
h

(x) = 1 + 0 = 1. 8. We get from

the assumptions on f , g, h and A that limx→A
fg
h

(x) = limx→A
f
h

(x) · limx→A g(x) =
1 · 1 = 1. 9. This is similar to 8.

Exercise 5.5.16 For k ∈ N with k ≤ x the number of pairs (m,n) ∈ N2 with mn = k
equals τ(k).

Exercise 5.5.17 Because limx→1+ x
1/3 log x = 0.

Exercise 5.5.18 No problem in our definition of big O, only we get no upper bound
on THH(1).

Exercise 5.5.21 This is an application of Proposition 5.5.13.

Exercise 5.5.24 Moving the denominator expx − 1 to the right, we get for n ∈ N0

that the coefficient
∑n−1
k=0

Bk
k!
· 1
(n−k)! of xn equals 0 for n 6= 1, and 1 for n = 1. So for

n = 1 we get that B0 = 1, and for n ≥ 2 that Bn−1 = − 1
n

∑n−2
k=0

(
n
k

)
Bk.

The second claim follows from the identity f(−x) = f(x) for the formal power
series f(x) ≡ x

ex−1
+ x

2
.

6 Continuous functions

Exercise 6.1.2 Use Proposition 5.2.9, every point of the definition domain is isolated.

Exercise 6.1.3 For every x ∈ R, δ and ε we have ka[U(x, δ)] = {a} ⊂ U(ka(x), ε) =
U(a, ε).

Exercise 6.1.4 For every a ∈ R and given ε it suffices to set δ = ε because x[U(a, δ)] =
U(a, δ).

Exercise 6.1.6 Let N be dense in M & a ∈ M . Using the axiom of choice we take
for every n a point bn in N ∩ U(a, 1/n) and get a sequence (bn) ⊂ N with lim bn = a.
If (bn) ⊂ N has lim bn = a ∈ M then for every δ for every large n it holds that
bn ∈ U(a, δ).

Exercise 6.1.7 Let a < b be in R. We take n ∈ N so large that 2
√
2

n
< b−a. It follows

that for some m ∈ Z we have m
n
∈ (a, b), and that for some m ∈ Z \ {0} we have

m
√
2

n
∈ (a, b). Thus every nontrivial interval contains both a fraction and an irrational

number. Hence both Q and R \Q is dense in R.

Exercise 6.1.8 Let 0 ≤ a < b ≤ 1 and n ∈ N be maximum such that 1
n
≥ a+b

2
. Then

the nontrivial interval (max({a, 1
n+1
}), a+b

2
) is contained in (a, b) and is disjoint to N .

Exercise 6.1.11 Let b ∈ M and an ε be given. We can take a large enough k such
that if any x ∈ R has the same first k digits as b then x ∈ U(b, ε). Let α ∈ Q be the
finite decimal expansion formed by these first k digits of b. Then α = an for some n
and certainly Xn = {bn} 6= ∅. Thus bn ∈ N and bn ∈ U(b, ε).

Exercise 6.2.2 The function s is onto N because every natural number is a product
of an odd number and a power of two. These expressions are unique: if (2k−1)2l−1 =
(2m− 1)2n−1 then l = n (else 2 would divide an odd number) hence also k = m and
s is injective.
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Exercise 6.2.4 By Exercise 6.1.2 constants are continuous. Clearly, ka = kb implies
that a = b.

Exercise 6.2.5 An injection from R to C(M) is again given by constant functions.
We define an injection from C(M) to R as for M = R, we only take instead of Q an
at most countable set N ⊂M dense in M , and we eventually replace the range N of r
and the first component N of the definition domain of s by a nonempty initial segment
of N.

Exercise 6.3.2 Let a < c < b s a, c ∈ f [I]. Then by Theorem also c ∈ f [I]. Hence
f [I] is an interval.

Exercise 6.3.4 We prove that for every two continuous functions f, g : [0, 1] → R
satisfying f(0) = g(1) = 0 and f(1) = g(0) = 1 there is a t ∈ (0, 1) such that
f(t) = g(t). We set h ≡ f − g : [0, 1]→ R and use the theorem on intermediate values.

Exercise 6.4.2 Their continuity is easy to show. Neither function has maximum
because for every x ∈ [0, 1) and every y ∈ (x, 1) we have f(y) > f(x) and g(y) > g(x).

Exercise 6.4.4 Theorem 6.4.3⇒ Theorem 6.4.1, as will soon be shown. Any compact
set is bounded and closed and therefore has both the smallest and the largest element.

Exercise 6.4.5 1. Obvious from the definition. 2. Let b ∈
⋃
A. Then b ∈ A for

some A ∈ A. Thus there is a δ such that U(b, δ) ⊂ A ⊂
⋃
A. 3. Let A be finite and

b ∈
⋂
A. Thus for every A ∈ A there exists a number δA such that U(b, δA) ⊂ A.

Then with δ ≡ min({δA : A ∈ A}) we have that U(b, δ) ⊂
⋂
A. 4 and 5 follow from

2 and 3 by the de Morgan formulas. 6. If a ∈ U(b, δ) then U(a, δ − |a− b|) ⊂ U(b, δ).

Exercise 6.4.6 This is clear from the fact that if b ∈ M then U(b, δ) ⊂ M for some
δ, and therefore P (b, θ) ⊂M for every θ ≤ δ.

Exercise 6.4.12 C is closed because it is an intersection of closed sets. It is uncount-
able because it is exactly the set of those points in [0, 1] whose 3-adic expansions use
only digits 0 and 2. C has “length” 0 because 1− 1

3
− 2

9
− 4

27
− 8

81
− · · · = 0.

Exercise 6.4.14 [a, b] \ P (c, δ) = [a, b] ∩ (R \ ((c− δ, c) ∪ (c, c+ δ))) which is a closed
and bounded set.

Exercise 6.5.1 Let f : M → R be uniformly continuous, c ∈ M and an ε be given.
We take for this ε the δ guaranteed by uniform continuity. Then certainly f [U(c, δ)] ⊂
U(f(c), ε), so that f is continuous in c.

Exercise 6.5.3 If (an), (bn) ⊂ M for a compact set M , we have convergent subse-
quences (akn) and (bmn). For simpler notation we denote them again by (an) and
(bn).

Exercise 6.5.4 Let an ≡ 1
n

and bn ≡ 2
π(2n−1)

. Then lim(an−an+1) = lim(bn−bn+1) =

0 but for every n one has that f(an+1)− f(an) = 1 and f(bn+1)− f(bn) = 2.

Exercise 6.5.5 For example f ≡ 0 on [0, 1√
2
] ∩Q and f ≡ 1 on [ 1√

2
, 1] ∩Q.

Exercise 6.5.7 This proof is taken from [23]. Let M ⊂ Q and f be as stated. It follows
that f [M ] is bounded. Using completeness of R (with respect to at most countable
real sets) we set b′ ≡ inf(f [M ]). By the definition of infimum there is a (bounded)
sequence (bn) ⊂ M such that b′ = lim f(bn). By Theorem 2.3.15 there exist b ∈ R
and a subsequence (bmn) of (bn) such that limn→∞ bmn = b. Hence b ∈ M . By
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Theorem 6.5.6 we have the extended value f(b) = b′ because (f(bmn)) is a subsequence
of (f(bn)). Since b′ is a lower bound of f [M ], we get that f(b) = b′ ≤ f(a) for every
a ∈M .

Exercise 6.6.2 It follows from the arithmetic of continuity, from the definition of
polynomials and rational functions, and from continuity of constants and identity.

Exercise 6.6.4 In the difference an(x+c)n−anxn we use the binomial theorem, cancel
anx

n and take out c. The triangle inequality gives that |an
∑n
i=1

(
n
i

)
ci−1xn−i| is at

most |an|
∑n
i=1

(
n
i

)
|c|i−1|x|n−i. We replace the numbers |c| and |x| by |x|+ |c| which

is not smaller. We take out its n− 1-th power and the sum of binomial coefficients is
≤ 2n.

Exercise 6.6.5 It suffices to show that for every c > 0 we have that lim cn

n!
= 0. The

sequence ( c
n

n!
) is nonnegative and, for large n, decreasing. Therefore it has the limit

d ≥ 0 and there is an m such that d = inf({ c
n

n!
: n ≥ m}). Suppose for the contrary

that d > 0. Then for large enough n ≥ m one has that d(n+1)
c

> cn

n!
. Hence d > cn+1

(n+1)!
,

which is a contradiction, and d = 0.

Exercise 6.6.10 Let b ∈ M(f(g)) and let an ε be given. There is a δ such that
f [U(g(b), δ)] ⊂ U(f(g)(b), ε). There is a θ such that g[U(b, θ)] ⊂ U(g(b), δ). Hence
f(g)[U(b, θ)] ⊂ . . . ⊂ U(f(g)(b), ε) and f(g) is continuous in b according to the defini-
tion.

Exercise 6.6.12 The function f given as f(x) = x on (0, 1) and with the value
f(2) = 1 is continuous and increasing but the inverse f−1 : (0, 1] → (0, 1) ∪ {2} is
not continuous in 1. The function f with the values f(0) = 1 and f(n) = 1 − 1

n
for

n ∈ N has the closed definition domain N0 ⊂ R and is injective and continuous, but
the inverse f−1 : {1− 1

n
| n ∈ N} ∪ {1} → N0 is not continuous in 1.

Exercise 6.6.13 log x is continuous by each of parts 2–4 of the theorem, arccosx and
arcsinx by each of parts 1, 2 and 4, and arctanx and arccotx by each of parts 2–4.

7 Derivatives

Exercise 7.1.2 By means of Corollary 5.4.4.

Exercise 7.1.5 It is an instance of Proposition 5.1.7.

Exercise 7.1.6 Let f ∈ F(M) and b ∈ M ∩ L±(M). Then we have the equivalence
that f ′±(b) = L ⇐⇒ (f | I±(b))′(b) = L (equal signs). It is in fact an instance of
Proposition 5.1.13.

Exercise 7.1.7 The first claim follows easily from definitions. 0 is a limit point of the
interval (0, 1) but it is not its two-sided limit point.

Exercise 7.1.9 It does not, the endpoints of the interval [0, 1] are not its two-sided
limit points.

Exercise 7.1.12 They are different, the function on the left side is defined at b, the
one on the right side is not. But this is the only point where they differ.

Exercise 7.1.13 Clearly sgn′−(0) = limx→0−
−1−0
x−0

= +∞. Similarly sgn′+(0) = +∞.

By part 2 of Exercise 7.1.5 we have that sgn′(0) = +∞.

Exercise 7.1.14 Clearly (|x|)′−(0) = limx→0−
−x−0
x−0

= −1 and similarly for the right-
sided derivative.
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Exercise 7.1.16 For example sgnx has sgn′(0) = +∞ and sgn 0 = 0 is not a limit
point of the image {−1, 0, 1}.

Exercise 7.1.17 The function f is continuous in b.

Exercise 7.1.18 If f ∈ R and f ′−(b) ∈ R then f is left-continuous at b, and similarly
for the right side. Proofs are the same as for Proposition 7.1.11.

Exercise 7.1.19 The one-sided derivative (
√
x)′−(0) is not defined because 0 is not

a left limit point of the definition domain [0,+∞) of
√
x. Other one-sided derivatives

are equal to the ordinary derivatives.

Exercise 7.1.22 For every x 6= b we have that kc(x)−kc(b)
x−b = 0

x−b = 0. Hence k′c = k0.

Exercise 7.1.23 We have for every a that limx→a
x+c−(a+c)

x−a = 1.

Exercise 7.1.24 This is what Proposition 7.1.11 says.

Exercise 7.1.26 This is exactly the assumption that an − bn = o(bn) (n→∞).

Exercise 7.2.2 This follows from the limit limx→b
f(x)−f(b)

x−b = f ′(b).

Exercise 7.2.3 For a > 0 this equation is y = x
2
√
a

+
√
a
2

. In a = 0 the function
√
x

is not differentiable.

Exercise 7.2.4 Every pair (s, t) determines a unique non-vertical line y = sx+ t, and
these two correspondences are inverses of one another.

Exercise 7.2.6 The system sa+ t = b & sa′ + t = b′, with given a, a′, b and b′, and
unknowns s and t, has a unique solution whose s component is given by the stated
formula.

Exercise 7.2.8 We assume that the line ` given by y = sx + t is a limit tangent to
Gf in (b, f(b)). We take any sequence (bn) ⊂ M(f) \ {b} such that bn → b. Let the
line κ(bn, f(bn), b, f(b)) be given by y = snx + tn. Then sn → s, tn → t and always
snb+ tn = f(b). Hence f(b) = snb+ tn → sb+ t, sb+ t = f(b) and (b, f(b)) ∈ `.

Exercise 7.2.12 Let b, M and f be as stated. By Heine’s definition (H) of pointwise
continuity of functions and Theorem 2.2.5 we can take a sequence (an) that converges
to b from one side and for which lim f(an) 6= f(b). Then it suffices to take any sequence
(bn) that converges to b from the other side and for which the limit lim f(bn) exists.

Exercise 7.2.13 Let `n and ` be given by respective equations y = snx + tn and
y = sx+ t. By the assumption we have that lim sn = s and lim tn = t. But c = sb+ t
and cn = snb+ tn, so that lim cn = lim(snb+ tn) = · · · = sb+ t = c.

Exercise 7.2.14 Let dn be the infimum of the ε such that yn−c
xn−b ∈ U(A, ε). We may

clearly assume that always yn 6= c or that A = 0. One then easily defines by induction
an increasing sequence (mn) ⊂ N such that always

yn−umn
xn−zmn

∈ U(A, dn + 1
n

). We are

done because lim dn = 0.

Exercise 7.2.15 We take b ≡ 0, M ≡ R, f(x) ≡ x2 sin( 1
x

) for x 6= 0, f(b) =
f(0) ≡ 0, xn ≡ 2

(4n−1)π
and yn ≡ 2

(4n−3)π
(n ∈ N). Then f ′(0) = 0, but the secant

κ(xn, f(xn), yn, f(yn)) has a slope
y2n+x2n
yn−xn � n−2 · n2, so ≥ c > 0 for every n.

Exercise 7.3.2 (sgn(x)−
√
x)′(0) = limx→0

1−
√
x

x
= limx→0+

1
x

= +∞.
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Exercise 7.3.5 Use that fg = gf .

Exercise 7.3.6 We easily see that f ′(0) = +∞, g′(0) = −∞, (fg)(x) = −1 for x 6= 0
and that (fg)(0) = − 1

4
. Hence (fg)′−(0) = +∞, (fg)′+(0) = −∞ and (fg)′(0) does

not exist.

Exercise 7.3.9 We change the value of f in 0 to f(0) = 1
2
. Then f ′(0)g(0)−f(0)g′(0)

g(0)2
=

((+∞) · 1
2
− 1

2
· (−∞))/ 1

4
= +∞, but (f/g)(x) = −1 for x 6= 0 and (f/g)(0) = 1. So

(f/g)′(0) again does not exist.

Exercise 7.4.2 With g not continuous in b the formula (f(g))′(b) = f ′(g(b)) · g′(b)
need not hold in the sense that the right side may be defined but the left side may be
undefined. We set f(x) ≡ x2, take g(x) as the modified signum with the value g(0) = 1

2

and b ≡ 0 (M = R ⊂ L(M) = R∗). Then f ′(g(b)) = (2x)( 1
2
) = 1, g′(b) = +∞ and the

right side is 1 · (+∞) = +∞, but f(g)(x) = 1 for every x 6= 0 and f(g)(0) = 1
4
, so that

(f(g))′(b) does not exist.

Exercise 7.4.5 Then the formula (f−1)′(c) = 1
f ′(f−1(c))

may not hold, in the sense

that the right side may be defined, but the left side may be undefined. For example
for f(x) ≡ x − 1 on (−∞, 0), f(0) ≡ 0 and f(x) ≡ x + 1 on (0,+∞), which is the
injectivized signum, and c ≡ 0, the right side equals 1

f ′(f−1(c))
= 1

f ′(0) = 1
+∞ = 0, but

the left side is undefined because 0 6∈ L(M(f−1)) = L((−∞,−1) ∪ {0} ∪ (1,+∞)).

Exercise 7.5.2 In the first inequality we have for n = 0 that 1
c
(an(x+c)n−anxn) = 0

and for n ≥ 1 we get an
∑n−1
j=0 (x + c)jxn−1−j . Then n is replaced with n + 1. In

the second inequality, we use the transformation
∑n
j=0(x + c)jxn−j − (n + 1)xn =

c
∑n
j=1

∑j
i=1

(
j
i

)
ci−1xn−i (by the binomial Theorem), where n ≥ 1. Then we use the

∆-inequality and replace both |c| and |x| with the quantity y = |c|+ |x|. In the third
inequality, we take yn−1 out and the sum of binomial coefficients is ≤ 2j . In the fourth
inequality,

∑n
j=1 2j ≤ 2n+1.

Exercise 7.5.4 (log |x|)′ = 1
x

(∈ F(R \ {0})).

Exercise 7.5.5 1. The derivative (ax)′ = (exp((x log a))′ = · · · = ax · log a follows
from Corollaries 7.4.3 and 7.5.3 and the derivative (kc · idR)′ = kc. 2. We get this
derivative for b < 1 and x > 0 (because (xb)′(0) = +∞) by differentiating the function
exp(b log x) by means of Corollaries 7.4.3 and 7.5.3, the derivative of logarithm, the
derivative (kc · idR)′ = kc and the definition of xb. For b > 1 we easily get from the
definition that (xb)′(0) = 0. 3. This is immediate from the definition of xb. 4. This is
immediate from the definition of 0x. 5. We use Corollary 7.3.7, the definition of xm

and the derivative id′R = k1. 6. We use the derivative k′1 = k0.

Exercise 7.5.6 The derivative of tanx = sin x
cos x

follows from the derivatives (sinx)′ =
cosx and (cosx)′ = − sinx, identity sin2 x+cos2 x = k1 and Corollary 7.3.10. Similarly
for cotx.

Exercise 7.5.7 The derivative of inverse sine follows from the derivative (sinx)′ =
cosx, relation cos | (−π

2
, π
2

) =
√

1− (sin | (−π
2
, π
2

))2 and Corollary 7.4.7. Similarly for
the other three derivatives.

Exercise 7.5.8 We get f ′(x) = (2x sin( 1
x

)−cos( 1
x

))∪{(0, 0)} which is a discontinuous
function. The value f ′(0) = 0 is easily calculated from the definition of derivative.

8 Applications of mean value theorems
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Exercise 8.1.2 The derivative at 0 does not exist.

Exercise 8.1.5 In the proof of Rolle’s theorem, f has at c global minimum or max-
imum, which implies that the corresponding horizontal tangent is non-cutting. Thus
also in Lagrange’s theorem the tangent to the graph, taken at the point of a global
extreme of the auxiliary function g, is non-cutting.

Exercise 8.1.8 If f(a) = f(b) and g′(c) = ±∞ then the product z · g′(c) = 0 · (±∞)
and is indefinite.

Exercise 8.2.1 Fn − Fn−1 − Fn = 0.

Exercise 8.2.3 Add the dummy zero coefficients pk+1(x) = 0, . . . , pn0(x) = 0.

Exercise 8.2.4 Multiply the coefficients pi(x) by the polynomial (x − k)(x − k −
1) . . . (x− n0 + 1).

Exercise 8.2.7 First we select an injective sequence. Then we use Proposition 2.3.12.

Exercise 8.2.8 The denominator of r(x) has finitely many zeros {z1 < z2 < · · · < zl}
in (k − 1,+∞), and a gap (zi−1, zi), i ∈ [l + 1], where z0 = k − 1 and zl+1 = +∞,
between them contains a tail (ar, ar+1, . . . ) of (an).

Exercise 8.2.9 Suppose that (an) decreases. Then we can apply to [an+1, an] and f
Rolle’s theorem, because f is differentiable on [an+1, an] and f(an+1) = f(an) = 0.
We get a point bn ∈ (an+1, an) with f ′(bn) = 0. Similarly for increasing (an).

Exercise 8.2.10 Clearly, r′(x) ∈ RAC. Suppose that pj(x) 6= 0. Then we have

(pj(x) log(x− j+ 1))′ = p′j(x) log(x− j+ 1) +
pj(x)

x−j+1
. The latter summand is absorbed

in r′(x). If deg pj = 0, the former summand disappears. If deg pj > 0, then in the
former summand we have deg p′j = deg pj − 1.

Exercise 8.2.12 We just replace the function log(x− j + 1) with log(x− j + 1 + c).

Exercise 8.2.13 Proceed as in the proof of Theorem 8.2.6.

Exercise 8.3.1 Any fraction α = a
b

is a root of x− α and of bx− a. The number
√

2
is a root of x2 − 2 = 0.

Exercise 8.3.2 We get form (i) by dividing the polynomial by the leading coefficient.
We get form (ii) by multiplying it by the product of denominators of its coefficients.

Exercise 8.3.3 Exactly the integers Z.

Exercise 8.3.4 It is, φ2 − φ+ 1.

Exercise 8.3.5 We have the (Binet) formula Fn = 1√
5

(
φn−ψn

)
where ψ is the other

root of x2 − x+ 1.

Exercise 8.3.7 Every nonzero complex polynomial with degree d ∈ N0 has at most
d (complex) roots; in fact exactly d when they are counted with multiplicities. Since
the set of integer polynomials is countable, the set of algebraic numbers is also count-
able because it is a countable union of finite sets. But the set R of real numbers is
uncountable (Corollary 1.7.17 and Theorem 1.7.19) and therefore also the set of real
transcendental numbers is uncountable, in particular nonempty.

Exercise 8.3.9 |(
∑n
j=0 ajx

j)′(x)|, where x ∈ [α, α + 1 with α = a
10k

for a ∈ Z and

k ∈ N0, is by the triangle inequality at most
∑n
j=0 j|aj |(|a| + 1)j−1. This is at most
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(n+1)2 max(. . . )(|a|+1)n. We replace n by n+1 in order to have only positive factors
in the bound, and n− 1 by n in order to have nonnegative exponents.

Exercise 8.4.2 In the division g(x) = f(x)

x− p
q

the polynomial f(x) loses one multiplicity

of the root p
q
, but α 6= p

q
as it is irrational.

Exercise 8.4.3 The constant d exists because f ′ is continuous and I is compact.

Exercise 8.4.5 Let a
b

with a ∈ Z and b ∈ N be any fraction. We may assume that
a ∈ N. Recall the school algorithm for computing the decimal expansion of a

b
, for

example 1
7

= 1 : 7 = 0.142 . . . , with the residues 1, 3, 2, 6, . . . . Once a residue repeats,
the residues and the expansion start to repeat.

Exercise 8.4.6 Let n ∈ N and c > 0 be arbitrary. We take m ∈ N large enough so
that 2

q
(m+1)/2
m

< c and m+1
2
≥ n. Then |λ − zm

qm
| < 2

qm+1
m

= 2

q
(m+1)/2
m

· 1

q
(m+1)/2
m

< c
qnm

and Liouville’s inequality is violated.

Exercise 8.4.7 Algorithm L determines for every input n ∈ N if n = m! for some
m ∈ N. If it is the case, then L outputs the digit L(n) = 1, and else it outputs 0. In
more detail, L multiplies the numbers 1, 2, . . . ,m as long as m! ≤ n. Since m! ≥ 2m−1,
L knows the digit L(n) at the latest for m ≤ log2(n+ 2) + 1 ≤ log2(6n). Multiplying
two numbers ≤ n takes time O(log2(n + 1)2) = O(log2(6n)2). Thus L computes the
decimal digit L(n) (∈ {0, 1}) in time O(log2(6n)3), which is time polynomial in the
size (number of digits) of n. This (probably) cannot be achieved by the algorithm A
in Theorem 8.3.10. In any case, the description of A is much more complex than that
of L.

Exercise 8.4.8 The proof is very similar to the proof of Corollary 8.4.4.

Exercise 8.5.3 We cannot. The signum function sgnx shows, for b ≡ 0, that these
sets may have just one element.

Exercise 8.5.4 Let a, b and f be as stated, in particular every finite derivative
f ′(c) ≥ 0 for every c ∈ (a, b), and let d ∈ (a, b) be such that f ′(d) = −∞. Then by
Proposition 8.5.2 there exist points d0 and d1 such that a < d0 < d < d1 < b and
f(d0) > f(d) > f(d1). But by Theorem 8.1.4 we have f(d1)−f(d0)

d1−d0
= f(e) ≥ 0 for some

e ∈ (d0, d1). Hence f(d0) ≤ f(d1), which is a contradiction.

Exercise 8.5.6 For example, f(x) = x on Q∩ [0, 1√
2
) and f(x) = x−2 on Q∩ ( 1√

2
, 1].

Exercise 8.5.8 Take, for example, f(x) ≡ k0(x) | [a, b] and for any sequence a < a1 <
a2 < · · · < b with lim an = b deform the flat Gf around every point (an, f(an)) =
(an, 0) in an appropriate small upward bump. Thus a function g ∈ F([a, b]) arises
that satisfies the assumptions of the proposition. Each bump is so low that still
g′(b) = f ′(b) = 0, but at the same time it is so steep that, say, g′(an) = 1 for every n.

The bumps are also so narrow that g′
(an+an+1

2

)
= 0. Then g′(b) = 0 but limx→b g

′(x)
does not exist.

Exercise 8.5.11 We move from the interval (b−δ, b) to the interval (b, b+δ) by means
of the map x 7→ 2b−x. The definition domain P (b, δ) is the union (b− δ, b)∪ (b, b+ δ).
We move from the interval U(+∞, δ) = ( 1

δ
,+∞) to the interval (0, δ) by means of the

map x 7→ 1
x

.

Exercise 8.5.13 Because of the definitions of f(x), g(x) and the derivative.
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Exercise 8.6.2 The former sequence is 4-periodic: (sinx, cosx,− sinx,− cosx). The
n-th term of the latter sequence is ( 1

x
)(n) = (−1)nn!x−n−1.

Exercise 8.6.4 Consider f(x) ≡ x3 and b ≡ 0.

Exercise 8.6.6 The strict convexity of x2 follows from Theorem 8.6.14 because
(x2)′′ = 2 > 0. The claim about |x| is clear from the graph which is a union of
two half-lines. The strict concavity of log x follows from Theorem 8.6.14 because
(log x)′′ = −x−2 < 0.

Exercise 8.6.7 This is logically clear from the definition.

Exercise 8.6.8 This is clear from the definition by applying the symmetry (x, y) 7→
(x,−y) of the plane.

Exercise 8.6.11 The argument, based on Theorem 5.3.1, is the same as in the proof
of Theorem 8.6.9. Only the upper bound is now not available.

Exercise 8.6.13 It is not true because the one-sided derivative at the endpoint may
be infinite, and then continuity at the point is not guaranteed. For example, the
function f ∈ F([0, 1]), given as f(x) = 0 for x 6= 1 and f(1) = 1, is convex.

Exercise 8.6.15 It follows that (c, c′) lies above or on the line going through the first
two points. Thus the second point (b, b′) lies below or on the line going through the
first point (a, a′) and the third point (c, c′).

Exercise 8.6.18 Indeed, the tangent at (0, 0) is the x-axis.

Exercise 8.6.19 Every point of the graph is an inflection point.

Exercise 8.7.2 These functions have one-sided limits ±∞ at 0.

Exercise 8.7.4 Let limx→+∞(f(x)− sx− b) = 0. By adding the limit limx→+∞ b = b
we get that limx→+∞(f(x)− sx) = b. Dividing by the limit limx→+∞ x = +∞ we get

that limx→+∞( f(x)
x
− s) = 0, thus limx→+∞

f(x)
x

= s.

Suppose that (limx→+∞
f(x)
x

= s and) limx→+∞(f(x)− sx) = b. Subtracting from
the latter limit the limit limx→+∞ b = b, we get that limx→+∞(f(x)− sx− b) = 0.

Exercise 8.7.5 It is the axis x.

Exercise 8.7.6 f ∈ F(M) is even, resp. odd, if M = −M (= {−x : x ∈ M}) and
for every x ∈ M we have f(−x) = f(x), resp. f(−x) = −f(x). The function f is
c-periodic (c ∈ R) if M = M ± c (= {x ± c : x ∈ M}) and for every x ∈ M we have
f(x+ c) = f(x).

Exercise 8.7.7 0. r(x) 6∈ EF. 1. M(r) = R. 2. r(x) is an even and 1-periodic
function; the only periods are integers. 3. From Proposition 5.2.12 we know that
r(x) is continuous exactly at irrational numbers. We show that r′(α) does not exist
for any α ∈ R. For rational α = m

n
in lowest terms, r(α) = 1

n
and r(x) = 0 for x

arbitrarily close to α both from the left and the right. This gives differential ratios at
α going to +∞ on the left, and to −∞ on the right, of α. If α is irrational then these
zero values of r(x) give diff. ratios at α equal to 0 and arbitrarily close to α. But
by the theorem of Dirichlet there exist infinitely many different fractions m

n
in lowest

terms such that |α− m
n
| < 1

n2 . These fractions give at α diff. ratios in absolute value

> 1/n

1/n2 = n → +∞. 4. It is not hard to see that limx→α r(x) = 0 for every α ∈ R.
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5. The function r(x) intersects the axis x exactly in the points (α, 0) for irrational α,
and the axis y in the point (0, 1). 6.

Exercise 8.7.8 0. f(x) ∈ SEF. 1. M(f(x)) = · · · = M(log x) = (0,+∞) because
f(x) ∈ EF. 2. This function is not of a special form. 3. Now f(x) ∈ C and D(f) =
M(f) because f(x) ∈ SEF. The derivative is f ′(x) = (1 + log x)f(x) = (1 + log x)xx.
4. limx→0 f(x) = · · · = 1 because limx→0 x log x = 0. Clearly, limx→+∞ f(x) = +∞.
5. Here Gf is disjoint to both coordinate axes. 6. Since f(x) ∈ SEF, we have
D(f) = M(f) and there is nothing to compute. 7. We equate the f ′ found in part 3
to 0 and get that f ′ < 0 on (0, 1

e
) and f ′ > 0 on ( 1

e
,+∞). Thus the maximal sets

of monotonicity of f are the intervals (0, 1
e
] and [ 1

e
,+∞). On the former f decreases

and on the latter it increases. At x = 1
e
f has a strict global minimum with the value

1/e1/e. It follows that this is the only extreme of f . In particular, there is no local
maximum: if x ∈ (0, 1

e
] then f(y) > f(x) for every y ∈ (0, x), and if x ∈ [ 1

e
,+∞)

then f(y) > f(x) for every y ∈ (x,+∞). 8. We have f ′′(x) = ( 1
x

+ (1 + log x)2)xx.
Since f ′′ > 0 on (0,+∞), f is convex on its definition domain. 9. It follows (from
the previous part) that f has no inflection. 10. It is clear that f has no vertical

asymptotes. Since limx→+∞
f(x)
x

= +∞, by Exercise 8.7.4 f does not have asymptote
at +∞. 11. https://www.desmos.com/calculator.

9 Taylor expansions. Primitives
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[14] A. Erdélyi, Asymptotic Expansions, Dover Publications, Inc., U.S.A. 1956

176
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Index

Page number in italic refers to the definition of a notion or to a theorem with proof.

AK series, 50

binary sum of, +, 53

congruent, 52

factorized, 54

product of, ·, 53
S, 50

scalar multiple of, 52

subseries, 50

sum, S(·), 50, 51
aleph ℵ, 3

algebraic integer, 134

algebraic number, 134

almost equal functions,
.
=, 88

Apéry, Roger, 62

arccosine, arccosx, 70

arccotangent, arccotx, 70

Archimedes of Syracuse, 15

arcsine, arcsinx, 70

arctangent, arctanx, 70

arithmetic progression, 41

asymptote

at infinity, 146

left vertical, 146

right vertical, 146

asymptotic expansion, ≈, 92

asymptotic notation, 87–93

asymptotic equality, ∼, 89

Oε, 88

big O, f = O(g) (on N), 88

error form, 88

�, Ω(·), 88
little o, f = o(g) (x→ A), 89

ω(·), 89
�, 88

Θ(·), �, 88

asymptotic relation, 88

asymptotic scale, 92
axiom

of choice, AC, 7, 50, 65, 81, 96,
100, 103, 155, 167

of extensionality, 5, 7, 152
of foundation, 6, 151, 152
of induction, 17
of positivity, 15
of shift, 15
schema of comprehension, 6

Bachmann, Paul, 90
Basic Elementary Functions BEF, 65,

65–70
Bernays, Paul, 7
Bernoulli number, Bk, 92
Bernoulli, Jacob, 92
Bernstein, Felix, 96
Binet, Jacques P. M., 172

formula, 172
binomial theorem, 35
Blumberg, Henry, 96
Bolzano, Bernard, 23
bounded set in LO

D(B), 13
from above, 13
from below, 13
H(B), 13
lower bound, 13
upper bound, 13

Bourbaki, Nicolas, v, 176

C-recurrent sequence, 131
Cantor set, 102
Cantor’s proof of ∃ of transc.

numbers, 134
Cantor, Georg, 18, 27, 134
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Cauchy, Augustin-Louis, 18, 39
class, 4, 7

proper, 7
S, 50
T, 54

closure of a set, 103
compactness, 99
completeness of LO, 17
congruence

of functions, 9
of objects, 9
on C, 18
on RAC \ {∅}, 77
on S, 52
on Z, 14

conjunction ∧, 3
constants kc(x), 66
continuity of functions

in a point, 80
Heine’s definition, 81
left-, 82
locality, 81
right-, 82

on a set, 95
uniform, 102

convex set in R, 47
convexity and concavity, 142

strict, 142
coprime numbers, 14
corresponding sign, 30
cosine, cosx, 69
cotangent, cotx, 70

decimal fraction, 134
Dedekind, Richard, 18
definitoric equality, ≡, 3
derivative of a function

at a point, 110
differentiability, 110
Heine’s definition, HDD, 110
left-sided, 111
locality, 110
right-sided, 111

D(f), 113
global, f ′, 113
of order k, 142

Dirichlet, Peter L., 91, 174
discontinuity of f in a point, 80
disjunction ∨, 3
divisor problem, 91

domain of propositional form, 3
Doyle, Arthur Conan, 71

Elementary Functions, EF, 71, 72,
70–73

closed to derivatives?, 126
ellipsis . . . , 4
empty word, 10
enumerative combinatorics, 93, 131
equal signs, 29
equality of f and g on X, 11
equivalence ⇐⇒ , 3
Euler’s constant γ, 58

irrational?, 58
Euler’s formula, 69
Euler’s number e = 2.71 . . . , 67

irrationality of, 67
Euler, Leonhard, 62, 93
exponential function expx, 66

exponential identity, 66
properties of, 66

extended reals R∗, 29
change of sign −(·), 30
comparison <, 29
division /, 29
product ·, 29
subtraction −, 30
sum +, 29

extremal combinatorics, v, 40

Fekete, Michael, 40
Fibonacci numbers, 131
field, 14

additive inverse, 15
multiplicative inverse, 15
neutral element, 15
R(x), 77

formula, 6
Fraenkel, Adolf, 7
Fraktur, 2
function, 9

argument, 9
bijective, 10
bounded, 88
C, 95
c-periodic, 147
C(M), 95
composition f(g), 11
constant, 10
continuous on a set, 95
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kernel, 96
decreases, 98
decreases at a point, 122
definition domain, 9
discontinuous, 95
even, 147
extension, 11
F(M), 63
identical idX , 10
identity, id(x), 71
image of, 10
image of a set f [C], 10
increases, 98
increases at a point, 122
injective, 10
inner, 11
inverse f−1, 10
maximum of, 99
M(f), 9
minimum of, 99
monotone, 83
odd, 147
operation, 10
outer, 11
preimage of a set f−1[C], 10
R, 63

composition, f(g) or f ◦ g, 70
difference, −, 71
inverse, f−1, 71
product, ·, 70
ratio, division, /, 70
restriction, f |X, 70
sum, +, 70

range, 9
restriction

of another function, 11
to a set f |C, 11

sequence (an) ⊂ X, 10
surjective, onto, 10
UC, 102
UC(M), 102
unary operation, 10
value, 9
weakly decreasing, 83
weakly increasing, 83
word, 10
Z(f), 63

GB set theory, 7
generating word, 71

Gödel, Kurt, 7
golden ratio, φ, 134
graph, 93

connected, 93
edges, 93
vertices, 93

graph of f , 9
secant, 115

Greek alphabet, 2

Hadamard, Jacques, 90
Hardy, Godfrey H., 38
harmonic number, hn, 58, 92
Harvey, David, 91
HDD, 110
Heine, Eduard, 65
van der Hoeven, Joris, 91
Holmes, Sherlock, 71
de l’Hospital, Guillaume, 141
Huxley, Martin N., 91

identity function, id(x), 71
iff, 3
implication ⇒, 3
indefinite expression, 29, 118

power, 35
independent signs, 29
infimum in LO, 13
infinities −∞, +∞, 29
inflection point, 145

strict, 145
integer, 14
integer part of a number

lower, 33
upper, 33

integral domain, 74
interior of a set, 138
interval, 31

I(a, b), 47
I±(b), 80
nontrivial, 48
open, 101

isolated point, 82

Karacuba, Anatolij A., 91
Kuratowski, Kazimierz, 8

Lagrange, Joseph-Louis, 130
λ = 0.11000100 . . . , 137
Landau, Edmund, 90
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Leibniz formulas, 119
first, 119
second, 119

Leibniz, Gottfried W., 119
≤ is safer than <, 22, 47
limit of a function, 63

arithmetic, 84
composite, 85, 85–87
Heine’s definition, 65
locality, 64
monotone, 83
one-sided, 79, 78–80
uniqueness, 64
vs. order, 84

limit of a sequence, 32
finite, 32
infinite, 32
nontrivial, 35
n
√
n→ 1, 36

of a recurrent one, 45–46
1
n
→ 0, 33

the arithmetic of, 42–45
3
√
n−
√
n→ −∞, 33

trivial, 35
uniqueness, 33
versus order, 46–48

limit point
left, 79
LTS(M), 79
L−(M), 79
L+(M), 79
of a sequence, 48
L(an), 48

of a set, 62
L(M), 62

right, 79
two-sided, 79

linear order, LO, 12
Liouville, Joseph, 136
logarithm log x, 67

properties of, 67

Matoušek, Jǐŕı, ii, iv
maximum of a function

global, 100
local, 100
strict, 100

maximum of a set in LO, 13
Mertens, Franz, 66
minimum of a function

global, 100
local, 100
strict, 100

minimum of a set in LO, 13
de Moivre, Abraham, 93
monoid, 71
De Morgan, Augustus, 8
De Morgan formulas, 8

NCLE, 112
negation ¬, 3
neighborhood

deleted, 62
left, 78
left deleted, 78
of a point, 32
of an infinity, 32
properties, 32
right, 78
right deleted, 78

Newton, Isaac, 119
non-vertical lines, N , 115

κ(A,A′), 115
limits, 115
parametrization by R2, 115
slope, 115

number of divisors τ(n), 49
number π, 69

odd root, 67
ordered field, 15

Archimedean, 15
ordered k-tuple 〈A1, . . . , Ak〉, 8
ordered pair of sets (A,B), 8
ordered triple of sets (A,B,C), 8
Oresme, Nicolas, 58

P-recurrent sequence, 131
paradox

of decimal expansions, 26
of infinite sums, 2
of infinite tables, 2
Russel’s, 6, 7

π(x), 90
Poincaré, Henri, 92
Polynomials, POL, 73

canonical form, 73
degree, 74
zero polynomial, 73

property of sequences, 33
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robust, 33
proposition, 3
propositional form, 3
protofraction, 14

lowest terms, 14

quantifier
existential ∃, 3
general ∀, 3

Rational Functions, RAC, 74
rational numbers, fractions Q, 14

addition +, 16
comparison <, 16
multiplication ·, 16

real exponentiation ab

algebraically, 68
analytically, 67
base, 67
exponent, 67

real numbers R, 18
decimal expansion, 25

associated, 26
digit, 25
mostly-nine, 25
R, 25
successor, 25

order <, 19
product ·, 19
rational ones a, 22
sum +, 19
unity 1R, 19
zero 0R, 19

Really Basic Elementary Functions,
RBEF, 72

(binary) relation, 9
equivalence, 12

block, 12
functional, 9
irreflexive, 12
on a set, 9
reflexive, 12
symmetric, 12
transitive, 12
trichotomic, 12

reverse mathematics, 27
Riemann’s function, 82
Riemann, Bernhard, 60
ring, 15
Rolle, Michel, 129

Russel, Bertrand, 6

secant, 115
semiring, 54
sequence

bounded, 36
bounded from above, 36
bounded from below, 36
Cauchy

of fractions, 18
real, 39

convergent, 32
decreases, 36
divergent, 32
eventually constant, 32
geometric, 45
goes down, 37
goes up, 37
increases, 36
liminf, 48
limsup, 48
monotone, 36
quasi-monotone, 37
RN, 33
strictly monotone, 36
subadditive, 40
subsequence, 34

tail, 34
superadditive, 40
weakly decreases, 36
weakly increases, 36

series, 56
abscon, 60
converges, 57
diverges, 57
geometric, 61

quotient, 61
harmonic, 58
NCC, 57
partial sum, 57
reordering, 57
Riemannian, 59
sum, 57
summand, 56
zeta ζ(s), 61

set, 4
at most countable, 24
bounded, 102
closed, 100
closure of, M , 103
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compact, 99
comprehension, 6
countable, 24
dense, 95
element, ∈, 4
elliptical list of elements,

{p, q, . . . }, 5
empty, ∅, 4
end-free, 143
finite, 24
hereditarily at most countable,

18
hereditarily finite, HF, 5
infinite, 24
list of elements with . . . ,

{p, q, . . . , r}, 4
list of elements, {b, a, a, c}, 4
number of elements | · |, 7
open, 100
partition, 12

block, 12
relatively closed, 100
relatively open, 101
singleton, 47
sparse, 95
uncountable, 24

set operation
difference \, 7
intersection ∩, 7
intersection of A, 7
power set P(·), 7
product ×, 9
sum of A, 7
symmetric difference, ∆, 87
union ∪, 7

set relation
disjointness, 7
equality =, 7
subset ⊂, 7

set system, 11
intersection, 11
sum (union), 11

signum, sgnx, 73
Simple Elementary Functions, SEF,

110, 126
sine, sinx, 69
slope, 115
Stirling, James, 92
supremum in LO, 13
SUSP(f), 112

Szemerédi, Endre, 41, 91

tangent (line)
cutting, 130
limit, 115
non-cutting, 130
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