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In the middle of the article of Andrews and Freitas [1, p. 146] one finds,
along with a great number of more sophisticated identities, the (formal power
series) identity

∞∑
n=0

(
1−

∞∏
k=n+1

(1− qk)
)

=

∞∑
n=1

qn

1− qn
. (1)

The right side equals, after expansion of geometric series, to
∑
n≥1 τ(n)qn where

τ(n) denotes the number of divisors of n. It is easy to interpret combinatorially
the coefficient of qn on the left side and thus we get the partition identity stated
in the title: ∑

0<λ1<···<λk,
∑
λi=n

(−1)k+1λ1 = τ(n)

(λi are integers). The right side in fact counts partitions of n with all parts
equal each to the other. For example, the 15 partitions of n = 12 into distinct
parts,

(12), (11, 1), (10, 2), 93, 921, 84, 831, 75, 741, 732, 651, 642, 6321, 543 and 5421,

generate the sum 12− 1− 2− 3 + 1− 4 + 1− 5 + 1 + 2 + 1 + 2− 1 + 3− 1 = 6,
which indeed counts the six divisors 1, 2, 3, 4, 6 and 12 of 12.

A hint for a proof of (1) is given in [1, p. 146], to apply [1, Lemma 2.2 on p.
140] to certain functions f(x) and g(x) ≡ 1 (we mention f(x) below) and then let
x→ 1, which seems to indicate an analytic proof. We could not understand the
hint as it seems that the purported application of Lemma 2.2 only returns useless
tautology that if f(x) =

∑
n≥0 fnx

n then f(x) =
∑
n≥0 fnx

n; it seems to us
that Lemma 2.2 is completely irrelevant to the proof, certainly to the one we are
going to present. Nevertheless, the identity is beautiful, both combinatorially
and for power series, and worth an effort. Our aim was to work out for ourselves
a rigorous, purely formal proof of (1). Even though we will substitute 1 for the
formal variable x, the proof we give is still purely formal in the sense that it
only uses formal convergence of power series, i.e., a non-archimedean norm, as
opposed to analytic proofs that work with archimedean norms.

Let

cn = cn(q) =
1

(q)n
=

1

(1− q)(1− q2) . . . (1− qn)
, c0 = 1.
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Thus, clearly,
(1− qn)cn = cn−1, n ≥ 1.

From this trivial (but crucial—everything stems from it) identity it follows easily
by induction that

cn =
1 + qc1 + q2c2 + · · ·+ qn−1cn−1

1− qn
. (2)

Now we make a longer leap—we claim that

∞∑
n=0

xn

(q)n
=

1

(x)∞
(3)

where

(a)n = (1− a)(1− aq) . . . (1− aqn−1) and (a)∞ =

∞∏
k=0

(1− aqk).

Indeed, the right side F (x, q) satisfies the functional equation

F (x, q) = (1− x)−1F (xq, q) = (1 + x+ x2 + . . . )F (xq, q)

and so if F (x, q) =
∑
n≥0 dnx

n then the coefficients dn are forced to satisfy the
recurrence relation

dn = qndn + qn−1dn−1 + · · ·+ qd1 + d0.

Since it coincides with (2) and d0 = c0 = 1, we see that dn = cn and the
identity (3) follows. (It is the simplest form of the q-binomial theorem.) A
simple rearrangement gives

∞∑
n=0

(
1− (q)∞

(q)n

)
xn =

1

1− x
− (q)∞

(x)∞
(4)

—on the right side we get the function f(x) of [1]. For x = 1 the left side of
(4) gives the left side of (1) and it remains to show that for x = 1 the right side
of (4) produces the right side of (1). In the present form its value for x = 1 is
undefined.

We rigorously justify cancellation of the factor 1−x on the right side of (4).
The identities (4) and (3) live in (C[[q]])[[x]], the ring of formal power series in
x whose coefficients are formal power series in q with complex coefficients. We
consider formal convergence in C[[q]], i.e., the non-archimedean metric coming
from the norm ‖f(q)‖ = 2−ord(f) (where ord(f) is the smallest n such that qn

has in f(q) nonzero coefficient and ord(0) = +∞). We consider the subring R
of (C[[q]])[[x]],

R = {
∑
n≥0 anxn ∈ (C[[q]])[[x]] | ‖an‖ → 0, n→∞}.
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This is indeed a subring and even differential one—if f ∈ R then all derivatives
f ′, f ′′, . . . (with respect to x) remain in R. Note that the power series in (3) is
not in R while that in (4) lies in R; this is the important effect of the simple
rearrangement. We have a ring homomorphism from R to C[[q]],

f(x) = a0 + a1x+ a2x
2 + . . . 7→ f(1) = a0 + a1 + a2 + . . . ;

this is well defined since the series a0 +a1 +a2 + . . . formally converges in C[[q]].
Once we realize this, the following claim is expected but for completeness

we prove it.

Claim. Any f(x) ∈ R such that f(1) = 0 has factorization

f(x) = (x− 1)g(x)

where g(x) ∈ R and g(1) = f ′(1).

Proof. Let f(x) = a0 + a1x+ a2x
2 + . . . . Then

f(x) = f(x)− f(1)

= (a0 + a1x+ a2x
2 + a3x

3 + . . . )− (a0 + a1 + a2 + a3 + . . . )

= a1(x− 1) + a2(x2 − 1) + a3(x3 − 1) + . . .

= (x− 1)(a1 + a2(x+ 1) + a3(x2 + x+ 1) + . . . )

= (x− 1)g(x)

where the infinite series sum due to formal convergence in C[[q]] and g(x) =∑
n≥0(

∑
m>n am)xn. It is easy to see that g(x) ∈ R and differentiating f(x) =

(x− 1)g(x) and setting x = 1 we get f ′(1) = g(1). 2

In fact, one has in R the full Taylor series expansion

f(x) =

∞∑
n=0

f (n)(1)(x− 1)n

n!

but we need only the beginning f(x) = f(1) + f ′(1)(x− 1) +O((x− 1)2).
Using the claim we can calculate the value of the power series in (4) for x = 1

also by means of the right side. The right side can be written as (1− x)−1h(x)
for some h(x) ∈ R with h(1) = 0, and so by the claim the power series in (4)
for x = 1 also equals to −h′(1). Namely, it equals to(

1

1− x

(
1− (q)∞

(xq)∞

))
x=1

= −
(

1− (q)∞
(xq)∞

)′
x=1

=

(
(q)∞

(xq)∞

)′
x=1

.

We set

Sn = Sn(x) =
1− qn

1− xqn
.
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Leibniz rule for infinite products gives(
(q)∞

(xq)∞

)′
x=1

=

( ∞∏
n=1

Sn

)′
x=1

=

( ∞∏
n=1

Sn

∞∑
k=1

S′k
Sk

)
x=1

=

∞∑
k=1

S′k(1)

as Sn(1) = 1. Since

S′k(1) =
qk

1− qk
,

we are done—we proved that the power series in (4) for x = 1 equals also to the
right side of (1) and thus we established identity (1).
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