Matematické struktury
 tutorial 5 on March 20, 2017: a graph-theoretic proof of the Cantor-Bernstein theorem, Kalmár's theorem on games and a characterization of modular lattices

Martin Klazar*

March 21, 2017

For two injections $f: X \rightarrow Y$ and $g: Y \rightarrow X$ we show by means of two graphs that there is a bijection $h: X \rightarrow Y$ that, moreover, satisfies that $h(x)=f(x)$ or $h(x)=g^{-1}(x)$. We may assume that $X \cap Y=\emptyset$.

Exercise. Show how to reduce the general case when X and Y may intersect (indeed, we may have $X=Y$) to the case when they are disjoint.

For $V=X \cup Y$ we consider the oriented graph $D=(V, f \cup g)$ (here $f, g \subseteq$ $V \times V)$ and the unoriented graph $G=(V, E)$ where $E \subseteq\binom{V}{2}$ arises from $f \cup g$ simply by forgetting order in each pair. For $(a, b) \in V \times V$ we denote the fact that $(a, b) \in f \cup g$ by the arrow $a \rightarrow b$. Then, clearly, for every $a \in V$ either exactly one arrow leaves a and none enters it (type 1 vertex) and this arrow is either from f or from g, or exactly one arrow both enters and leaves a (type 2 vertex) and one of these arrows is from f and the other from g. This follows from the assumption what f and g are.

We consider a (connected) component $K \subseteq V$ of the graph G. If $a \in K$ for a type 1 vertex a then it follows that

$$
K=\left\{a=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots\right\}, \quad \text { all } v_{i} \text { are distinct }
$$

- K is a one-way infinite oriented path. (The path starting at a cannot return to already visited vertices and there is no vertex in K besides it because of the arrow property of D (and the assumption on a).) If K consists of only type 2 vertices, then a similar argument (to the one in brackets) shows that K is either an oriented finite even cycle

$$
K=\left\{v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{2 n-1}=v_{0}\right\}, \quad n \in \mathbb{N}, \text { all } v_{0}, \ldots, v_{2 n-2} \text { distinct }
$$

[^0]or a two-way infinite oriented path
$$
K=\left\{\cdots \rightarrow v_{-2} \rightarrow v_{-1} \rightarrow v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots\right\}, \text { all } v_{i} \text { are distinct } .
$$

We set $M=(V, F), F \subseteq E$, to be the subgraph of G with edges

$$
F=\bigcup_{K}\left\{\left\{v_{i}, v_{i+1}\right\} \mid i \text { is an even number }\right\} .
$$

Here K runs through all components of G and the vertices of K are numbered as given above for the three types of K. It follows that M is a perfect X Y matching: the edges $e \in F$ are disjoint, cover the whole V, and each $e \in F$ contains one vertex from X and one from Y (the f-arrows and g-arrows alternate in every K). We order the pairs in F by putting the elements of X first and get the desired bijection h from X to Y.

We formalize the notion of a game with complete information, for the first player f and the second player s who alternate in moves and f plays first. We are given X, x_{0}, A, B where X is a set of all possible states of the game, $x_{0} \in X$ is the initial state, and $A, B \subseteq X \times X$ are the rules of the game for f and s, respectively. A (particular) game is a sequence, finite or infinite, $x_{0}, x_{1}, x_{2}, \cdots \in X$ such that

$$
x_{0} A x_{1} B x_{2} A x_{3} B x_{4} \ldots\left(\text { i.e. } x_{0} A x_{1}, x_{1} B x_{2}, \ldots\right) .
$$

Thus f opened this game with the move $\left(x_{0}, x_{1}\right)$, then s made the move $\left(x_{1}, x_{2}\right)$, f answered with $\left(x_{2}, x_{3}\right)$ and so on. A player p loses and p 's opponent wins if p has no move available according to the rules. For example, s loses if f has played $a A b$ and $b B=\emptyset$. An infinite game is considered a draw. A strategy of f (resp. s) is a subset $S \subseteq A$ (resp. $S \subseteq B$). This strategy of f (resp. s) is persistent if for any $a, b, c \in X$,

$$
a S b B c \Rightarrow \exists d \in X: c S d \text { (resp. } a S b A c \Rightarrow \exists d \in X: c S d) .
$$

Thus once f has played according to a persistent strategy S, f has an answer to any move of s and cannot lose, and similarly for s. A non-losing strategy for f (resp. s) is a persistent strategy S such that for any $a \in X$,

$$
x_{0} S \neq \emptyset\left(\text { resp. } x_{0} A a \Rightarrow \exists b \in X: a S b\right)
$$

- the player can always enter S (and then by playing according to S cannot lose). Finally, a winning strategy of a player p is a strategy S that ensures victory for p no matter how the opponent plays.

Theorem 1 (Kalmár, 1928) At least one player, f or s or both, has a nonlosing strategy. Hence if infinite games are not allowed (according to the rules A and B) then exactly one of f and s has a winning strategy.

Proof. We again apply this particular case of the Tarski-Knaster theorem: every inclusion-wise monotonous mapping from the power set of a set to itself has a fixed point. Let X, x_{0}, A, B be given. For $P \subseteq X \times X$ we set

$$
r(P)=\{(x, y) \in X \times X \mid y P=\emptyset\},
$$

these are the moves that cannot be answered by any move from P, and

$$
\phi_{A B}(P)=A \cap r(B \cap r(P)), \phi_{A B}: \exp (X \times X) \rightarrow \exp (X \times X)
$$

This mapping is monotonous because $r: \exp (X \times X) \rightarrow \exp (X \times X)$ is antimonotonous (reverses inclusions) and is applied twice in the definition of $\phi_{A B}$. Let $S_{I I} \subseteq X \times X$ be a fixed point of the mapping $\phi_{B A}$ (guaranteed by the T.-K. theorem):

$$
B \cap r\left(A \cap r\left(S_{I I}\right)\right)=\phi_{B A}\left(S_{I I}\right)=S_{I I}, \quad \text { and let } S_{I}:=A \cap r\left(S_{I I}\right)
$$

Then S_{I} is a fixed point of $\phi_{A B}$:

$$
\phi_{A B}\left(S_{I}\right)=A \cap r\left(B \cap r\left(A \cap r\left(S_{I I}\right)\right)\right)=A \cap r\left(S_{I I}\right)=S_{I}
$$

We claim that S_{I} is a persistent strategy for f, and $S_{I I}$ for s. We show it for s. Let $x S_{I I} y A z$. If $z S_{I I}=\emptyset$ then $(y, z) \in A \cap r\left(S_{I I}\right)$. But $(x, y) \in S_{I I} \subseteq$ $r\left(A \cap r\left(S_{I I}\right)\right)$ and $y\left(A \cap r\left(S_{I I}\right)\right)=\emptyset$, in contradiction with the fact that z lies in this set.
Exercise. Prove similarly that S_{I} is a persistent strategy for f.
We conclude the proof by showing that S_{I} is a non-losing strategy for f or $S_{I I}$ is a non-losing strategy for s. Suppose that $S_{I I}$ is not a non-losing strategy for s : there is an $x_{1} \in X$ such that $x_{0} A x_{1}$ and $x_{1} S_{I I}=\emptyset$. Then $\left(x_{0}, x_{1}\right) \in A \cap r\left(S_{I I}\right)=S_{I}$ and S_{I} is a non-losing strategy for f.

Characterization of modular lattices

Recall that a lattice is a poset $L=(L, \leq)$ such that any pair of elements $a, b \in L$ has a supremum $a \vee b$ and an infimum $a \wedge b$. We call it modular if

$$
a, b, c \in L, a \leq c \Rightarrow a \vee(b \wedge c)=(a \vee b) \wedge c
$$

In every lattice we have $a \vee(b \wedge c) \leq(a \vee b) \wedge c$ because, in this situation, $\{a, b \wedge c\} \leq\{a \vee b, c\}$.
$K \subseteq L$ is a sublattice if $a, b \in K \Rightarrow\{a \vee b, a \wedge b\} \subseteq K$ - we can restrict the operations of join and meet to K. Two lattices are isomorphic if they are isomorphic as posets (there is a bijection between their groundsets that maps one relation to the other $)$. We define the five-element poset $C_{5}=(\{a, b, c, x, y\}, \leq)$ by

$$
b<a<c>y>x>b \text { and } a \text { is incomparable to both } x \text { and } y .
$$

C_{5} is a lattice but not a modular one: although $x<y$,

$$
x \vee(a \wedge y)=x \vee b=x,(x \vee a) \wedge y=c \wedge y=y
$$

Theorem 2 A lattice (L, \leq) is modular if and only if it has no sublattice isomorphic to C_{5}.

Proof. We have already seen that if L has a sublattice isomorphic to C_{5} then L is not modular. We suppose that L is not modular and find in it a copy of C_{5}. Thus there are $u, v, w \in L$ such that

$$
u \leq w \text { and } u \vee(v \wedge w)<(u \vee v) \wedge w
$$

We set

$$
a=v, b=v \wedge w, c=v \vee w, x=u \vee(v \wedge w) \text { and } y=(u \vee v) \wedge w .
$$

In the next lecture we show that these five elements are distinct and induce a copy of C_{5}.

[^0]: *klazar@kam.mff.cuni.cz

