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For two injections f : X — Y and g : Y — X we show by means of
two graphs that there is a bijection A : X — Y that, moreover, satisfies that
h(z) = f(z) or h(z) = g~ (). We may assume that X NY = .

Exercise. Show how to reduce the general case when X and Y may intersect
(indeed, we may have X =Y ) to the case when they are disjoint.

For V.= X UY we consider the oriented graph D = (V, f U g) (here f,g C
V x V) and the unoriented graph G = (V, E) where E C (‘2/) arises from fUg
simply by forgetting order in each pair. For (a,b) € V x V we denote the fact
that (a,b) € fUg by the arrow a — b. Then, clearly, for every a € V either
exactly one arrow leaves a and none enters it (type 1 vertex) and this arrow is
either from f or from g, or exactly one arrow both enters and leaves a (type 2
vertex) and one of these arrows is from f and the other from g. This follows
from the assumption what f and g are.

We consider a (connected) component K C V of the graph G. If a € K for
a type 1 vertex a then it follows that

K={a=v— v —vy— ...}, allv are distinct

— K is a one-way infinite oriented path. (The path starting at a cannot return
to already visited vertices and there is no vertex in K besides it because of the
arrow property of D (and the assumption on a).) If K consists of only type 2
vertices, then a similar argument (to the one in brackets) shows that K is either
an oriented finite even cycle

K={vy—vy 2va— - —=vy_-1=1v}, n€N, all vg,...,v2,_2 distinct
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or a two-way infinite oriented path
K={ —>v_9—v_1 —>vg— vy = v2— ...} allwv; are distinct .

We set M = (V,F), F C E, to be the subgraph of G with edges

F = U{{Ui,'{)i_},.l} | ¢ is an even number} .
K

Here K runs through all components of G and the vertices of K are numbered
as given above for the three types of K. It follows that M is a perfect X-
Y matching: the edges e € F' are disjoint, cover the whole V', and each e € F'
contains one vertex from X and one from Y (the f-arrows and g-arrows alternate
in every K). We order the pairs in F' by putting the elements of X first and get
the desired bijection h from X to Y. ]

We formalize the notion of a game with complete information, for the first
player f and the second player s who alternate in moves and f plays first.
We are given X, g, A, B where X is a set of all possible states of the game,
xg € X is the initial state, and A, B C X x X are the rules of the game
for f and s, respectively. A (particular) game is a sequence, finite or infinite,
xo,T1, %2, -+ € X such that

J?QAl'lBJJQAJZ?,BJM ‘e (1e JioAZ‘l, Q]‘lB.I‘Q, ‘e ) .

Thus f opened this game with the move (g, 21 ), then s made the move (x1, z2),
f answered with (x2,x3) and so on. A player p loses and p’s opponent wins if
p has no move available according to the rules. For example, s loses if f has
played aAb and bB = (). An infinite game is considered a draw. A strategy of
f (resp. s) is a subset S C A (resp. S C B). This strategy of f (resp. s) is
persistent if for any a,b,c € X,

aSbBc=3d € X : ¢Sd (resp. aSbAc=3d e X : ¢Sd).

Thus once f has played according to a persistent strategy .S, f has an answer
to any move of s and cannot lose, and similarly for s. A non-losing strategy for
f (resp. s) is a persistent strategy S such that for any a € X,

xS # 0 (resp. zgAa = Ibe X : aSh)

— the player can always enter S (and then by playing according to S cannot
lose). Finally, a winning strategy of a player p is a strategy S that ensures
victory for p no matter how the opponent plays.

Theorem 1 (Kalmar, 1928) At least one player, f or s or both, has a non-
losing strategy. Hence if infinite games are not allowed (according to the rules
A and B) then exactly one of f and s has a winning strategy.



Proof. We again apply this particular case of the Tarski—-Knaster theorem: every
inclusion-wise monotonous mapping from the power set of a set to itself has a
fixed point. Let X, zg, A, B be given. For P C X x X we set

r(P)={(z,y) e X x X |yP =0},
these are the moves that cannot be answered by any move from P, and
dpap(P)=ANnr(BNr(P)), dap: exp(X x X) = exp(X x X) .

This mapping is monotonous because r : exp(X x X) — exp(X x X) is anti-
monotonous (reverses inclusions) and is applied twice in the definition of ¢4p5.
Let S;; € X x X be a fixed point of the mapping ¢p4 (guaranteed by the T.—K.
theorem):

B ﬂ’l“(Aﬂ?”(S[[)) = ¢)BA(SII) = S[[, and let S] = Aﬂ’/‘(S][) .
Then Sy is a fixed point of ¢ 4p:
dap(Sr)=Anr(BNnr(Anr(Sr))) =AnNr(Si) =Sr.

We claim that S; is a persistent strategy for f, and Sy; for s. We show it for
s. Let aSrryAz. If 2S5 = 0 then (y,2) € AN+(Srr). But (z,y) € Sir C
r(ANr(Srr)) and y(ANr(Syr)) = 0, in contradiction with the fact that z lies
in this set.

Exercise. Prove similarly that St is a persistent strategy for f.

We conclude the proof by showing that S; is a non-losing strategy for f
or Sy is a non-losing strategy for s. Suppose that S;; is not a non-losing
strategy for s: there is an x; € X such that zgAz; and z1S;; = (. Then
(xo,21) € AN7(Srr) = Sr and Sy is a non-losing strategy for f. ]

Characterization of modular lattices

Recall that a lattice is a poset L = (L, <) such that any pair of elements
a,b € L has a supremum a V b and an infimum a A b. We call it modular if

a,byce L,a<c=aV(bAc)=(aVDb) Ac.

In every lattice we have a V (b A ¢) < (a V b) A ¢ because, in this situation,
{a,bAc} <{aVb,c}.

K C L is a sublattice if a,b € K = {aV b,a ANb} C K — we can restrict
the operations of join and meet to K. Two lattices are isomorphic if they are
isomorphic as posets (there is a bijection between their groundsets that maps one
relation to the other). We define the five-element poset Cs = ({a,b, ¢, z,y}, <)
by

b<a<c>y>xz>0b and a is incomparable to both x and y .

Cs is a lattice but not a modular one: although z < y,

zV(aAy)=zVb=uz, (xVa)ANy=cAy=y.



Theorem 2 A lattice (L, <) is modular if and only if it has no sublattice iso-
morphic to Cs.

Proof. We have already seen that if L has a sublattice isomorphic to C5 then L
is not modular. We suppose that L is not modular and find in it a copy of Cs.
Thus there are u, v, w € L such that

u<w and uV(WAwW) < (uVv)Aw.
We set
a=v,b=vAw,c=vVw, z=uVWAw) and y=(uVv)Aw.

In the next lecture we show that these five elements are distinct and induce a
copy of Cs.



