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For two injections f : X → Y and g : Y → X we show by means of
two graphs that there is a bijection h : X → Y that, moreover, satisfies that
h(x) = f(x) or h(x) = g−1(x). We may assume that X ∩ Y = ∅.

Exercise. Show how to reduce the general case when X and Y may intersect
(indeed, we may have X = Y ) to the case when they are disjoint.

For V = X ∪ Y we consider the oriented graph D = (V, f ∪ g) (here f, g ⊆
V × V ) and the unoriented graph G = (V,E) where E ⊆

(
V
2

)
arises from f ∪ g

simply by forgetting order in each pair. For (a, b) ∈ V × V we denote the fact
that (a, b) ∈ f ∪ g by the arrow a → b. Then, clearly, for every a ∈ V either
exactly one arrow leaves a and none enters it (type 1 vertex) and this arrow is
either from f or from g, or exactly one arrow both enters and leaves a (type 2
vertex) and one of these arrows is from f and the other from g. This follows
from the assumption what f and g are.

We consider a (connected) component K ⊆ V of the graph G. If a ∈ K for
a type 1 vertex a then it follows that

K = {a = v0 → v1 → v2 → . . . }, all vi are distinct

— K is a one-way infinite oriented path. (The path starting at a cannot return
to already visited vertices and there is no vertex in K besides it because of the
arrow property of D (and the assumption on a).) If K consists of only type 2
vertices, then a similar argument (to the one in brackets) shows that K is either
an oriented finite even cycle

K = {v0 → v1 → v2 → · · · → v2n−1 = v0}, n ∈ N, all v0, . . . , v2n−2 distinct
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or a two-way infinite oriented path

K = {· · · → v−2 → v−1 → v0 → v1 → v2 → . . . }, all vi are distinct .

We set M = (V, F ), F ⊆ E, to be the subgraph of G with edges

F =
⋃
K

{{vi, vi+1} | i is an even number} .

Here K runs through all components of G and the vertices of K are numbered
as given above for the three types of K. It follows that M is a perfect X-
Y matching: the edges e ∈ F are disjoint, cover the whole V , and each e ∈ F
contains one vertex from X and one from Y (the f -arrows and g-arrows alternate
in every K). We order the pairs in F by putting the elements of X first and get
the desired bijection h from X to Y . 2

We formalize the notion of a game with complete information, for the first
player f and the second player s who alternate in moves and f plays first.
We are given X,x0, A,B where X is a set of all possible states of the game,
x0 ∈ X is the initial state, and A,B ⊆ X × X are the rules of the game
for f and s, respectively. A (particular) game is a sequence, finite or infinite,
x0, x1, x2, · · · ∈ X such that

x0Ax1Bx2Ax3Bx4 . . . (i.e. x0Ax1, x1Bx2, . . . ) .

Thus f opened this game with the move (x0, x1), then s made the move (x1, x2),
f answered with (x2, x3) and so on. A player p loses and p’s opponent wins if
p has no move available according to the rules. For example, s loses if f has
played aAb and bB = ∅. An infinite game is considered a draw. A strategy of
f (resp. s) is a subset S ⊆ A (resp. S ⊆ B). This strategy of f (resp. s) is
persistent if for any a, b, c ∈ X,

aSbBc⇒ ∃ d ∈ X : cSd (resp. aSbAc⇒ ∃ d ∈ X : cSd) .

Thus once f has played according to a persistent strategy S, f has an answer
to any move of s and cannot lose, and similarly for s. A non-losing strategy for
f (resp. s) is a persistent strategy S such that for any a ∈ X,

x0S 6= ∅ (resp. x0Aa⇒ ∃ b ∈ X : aSb)

— the player can always enter S (and then by playing according to S cannot
lose). Finally, a winning strategy of a player p is a strategy S that ensures
victory for p no matter how the opponent plays.

Theorem 1 (Kalmár, 1928) At least one player, f or s or both, has a non-
losing strategy. Hence if infinite games are not allowed (according to the rules
A and B) then exactly one of f and s has a winning strategy.
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Proof. We again apply this particular case of the Tarski–Knaster theorem: every
inclusion-wise monotonous mapping from the power set of a set to itself has a
fixed point. Let X,x0, A,B be given. For P ⊆ X ×X we set

r(P ) = {(x, y) ∈ X ×X | yP = ∅} ,

these are the moves that cannot be answered by any move from P , and

φAB(P ) = A ∩ r(B ∩ r(P )), φAB : exp(X ×X)→ exp(X ×X) .

This mapping is monotonous because r : exp(X ×X) → exp(X ×X) is anti-
monotonous (reverses inclusions) and is applied twice in the definition of φAB .
Let SII ⊆ X×X be a fixed point of the mapping φBA (guaranteed by the T.–K.
theorem):

B ∩ r(A ∩ r(SII)) = φBA(SII) = SII , and let SI := A ∩ r(SII) .

Then SI is a fixed point of φAB :

φAB(SI) = A ∩ r(B ∩ r(A ∩ r(SII))) = A ∩ r(SII) = SI .

We claim that SI is a persistent strategy for f , and SII for s. We show it for
s. Let xSIIyAz. If zSII = ∅ then (y, z) ∈ A ∩ r(SII). But (x, y) ∈ SII ⊆
r(A ∩ r(SII)) and y(A ∩ r(SII)) = ∅, in contradiction with the fact that z lies
in this set.

Exercise. Prove similarly that SI is a persistent strategy for f .

We conclude the proof by showing that SI is a non-losing strategy for f
or SII is a non-losing strategy for s. Suppose that SII is not a non-losing
strategy for s: there is an x1 ∈ X such that x0Ax1 and x1SII = ∅. Then
(x0, x1) ∈ A ∩ r(SII) = SI and SI is a non-losing strategy for f . 2

Characterization of modular lattices

Recall that a lattice is a poset L = (L,≤) such that any pair of elements
a, b ∈ L has a supremum a ∨ b and an infimum a ∧ b. We call it modular if

a, b, c ∈ L, a ≤ c⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c .

In every lattice we have a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c because, in this situation,
{a, b ∧ c} ≤ {a ∨ b, c}.

K ⊆ L is a sublattice if a, b ∈ K ⇒ {a ∨ b, a ∧ b} ⊆ K — we can restrict
the operations of join and meet to K. Two lattices are isomorphic if they are
isomorphic as posets (there is a bijection between their groundsets that maps one
relation to the other). We define the five-element poset C5 = ({a, b, c, x, y},≤)
by

b < a < c > y > x > b and a is incomparable to both x and y .

C5 is a lattice but not a modular one: although x < y,

x ∨ (a ∧ y) = x ∨ b = x, (x ∨ a) ∧ y = c ∧ y = y .
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Theorem 2 A lattice (L,≤) is modular if and only if it has no sublattice iso-
morphic to C5.

Proof. We have already seen that if L has a sublattice isomorphic to C5 then L
is not modular. We suppose that L is not modular and find in it a copy of C5.
Thus there are u, v, w ∈ L such that

u ≤ w and u ∨ (v ∧ w) < (u ∨ v) ∧ w .

We set

a = v, b = v ∧ w, c = v ∨ w, x = u ∨ (v ∧ w) and y = (u ∨ v) ∧ w .

In the next lecture we show that these five elements are distinct and induce a
copy of C5.
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