Matematické struktury
 tutorial 4 on March 13, 2017: finishing the proof of Müller's theorem and a proof of the Cantor-Bernstein theorem by a fix-point theorem

Martin Klazar*

March 15, 2017

Recall PIE (the principle of inclusion and exclusion): if $X_{1}, \ldots, X_{n} \subseteq X$ are finite sets then

$$
\left|X \backslash \bigcup_{i=1}^{n} X_{i}\right|=\sum_{I \subseteq[n]}(-1)^{|I|}\left|\bigcap_{i \in I} X_{i}\right|
$$

where $[n]=\{1,2, \ldots, n\}$ and for $I=\emptyset$ the intersection is interpreted as X.
Exercise. Prove this identity by a double counting argument.
We introduce this notation: if K, L are graphs and $D \subseteq E(K)$ then

$$
\operatorname{inj}(K, L)=\#\{f: V(K) \rightarrow V(L) \mid f \operatorname{inj} ., \forall e \in E(K): f(e) \in E(L)\}
$$

and $\operatorname{inj}_{D}(K, L)$ is

$$
\#\{f: V(K) \rightarrow V(L) \mid f \text { inj. }, \forall e \in E(K): f(e) \in E(L) \Longleftrightarrow e \notin D\}
$$

("inj." abbreviates "injective"). Thus $\operatorname{inj}(K, L)=\operatorname{inj}_{\emptyset}(K, L)$ and $\operatorname{inj}_{D}(K, L)$ counts injections from $V(K)$ to $V(L)$ that send edges in D outside $E(L)$, and the remaining edges in $E(K)$ to $E(L)$.

We denote by bar the complementary graph, so if $H=(V, F)$ then $\bar{H}=$ $\left(V,\binom{V}{2} \backslash F\right)$. We return to our graphs G and H on the same vertex set V and with m-element edge sets $E, F \subseteq\binom{V}{2}$ (and equal decks). PIE for any fixed subset $D \subseteq E$ gives equality:

$$
\operatorname{inj}_{D}(G, \bar{H})=\sum_{A \subseteq E \backslash D}(-1)^{|A|} \operatorname{inj}((V, D \cup A), H)
$$

Exercise. What are the X_{1}, \ldots, X_{n} and X in this application of PIE?

[^0]For integers $d, 0 \leq d \leq m$, we set

$$
\operatorname{inj}_{d}(G, \bar{H})=\sum_{D \subseteq E,|D|=d} \operatorname{inj}_{D}(G, \bar{H})
$$

Summing the above equalities over all $D \subseteq E$ with d elements we get equality

$$
\operatorname{inj}_{d}(G, \bar{H})=\sum_{B \subseteq E,|B| \geq d}(-1)^{|B|-d}\binom{|B|}{d} \operatorname{inj}((V, B), H)
$$

Here the binomial coefficient $\binom{|B|}{d}$ just counts d-element subsets D in a fixed set $B=D \cup A$. For H in place of G we have a similar equality

$$
\operatorname{inj}_{d}(H, \bar{H})=\sum_{B \subseteq F,|B| \geq d}(-1)^{|B|-d}\binom{|B|}{d} \operatorname{inj}((V, B), H)
$$

The lemma proved by double counting at the end of the previous lecture gives a bijection

$$
\gamma:\{B \subseteq E|d \leq|B|<m\} \rightarrow\{B \subseteq F|d \leq|B|<m\}
$$

with the property that always $(V, B) \cong(V, \gamma(B))$ - for any fixed $A \subseteq E$, $A \neq E$, we can pair A-copies in (V, E) with those in (V, F) because their numbers are the same. Then, trivially, always $|B|=|\gamma(B)|$ and $\operatorname{inj}((V, B), H)=$ $\operatorname{inj}((V, \gamma(B)), H)$. Thus except for the last terms with $B=E$ and $B=F$, the summands on the right sides of both equalities coincide and differ at most by order. Subtracting the two equalities we thus get

$$
\operatorname{inj}_{d}(G, \bar{H})-\operatorname{inj}_{d}(H, \bar{H})=(-1)^{m-d}\binom{m}{d}(\operatorname{inj}(G, H)-\operatorname{inj}(H, H)) .
$$

For contradiction we assume that $G \not \approx H$. Then $\operatorname{inj}(G, H)=0$ (since G and H have equal numbers of edges, an isomorphism between them is the same thing as an injective homomorphism). But always $\operatorname{inj}(H, H) \geq 1$ (at least the identity on V is an injective homomorphism from H to H). Hence

$$
\left|\operatorname{inj}_{d}(G, \bar{H})-\operatorname{inj}_{d}(H, \bar{H})\right| \geq\binom{ m}{d} .
$$

Summation over $d=0,1, \ldots, m$ and the binomial expansion of $(1+1)^{m}$ give

$$
2^{m}=\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{m} \leq \sum_{d=0}^{m}\left|\operatorname{inj}_{d}(G, \bar{H})-\operatorname{inj}_{d}(H, \bar{H})\right| \leq 2 \cdot n!
$$

The last inequality follows from the triangle inequality and the equalities

$$
\sum_{d=0}^{m} \operatorname{inj}_{d}(G, \bar{H})=\sum_{d=0}^{m} \operatorname{inj}_{d}(H, \bar{H})=n!
$$

- every permutation of V lies in exactly one set of injective mappings from V to V counted by $\operatorname{inj}_{D}(G, \bar{H})$, and the same for $\operatorname{inj}_{D}(H, \bar{H})$.
Exercise. In which one?
Now we get to contradiction quickly:

$$
2^{m} \leq 2 \cdot n!<2(n / 2)^{n} \text { because } n!<(n / 2)^{n} \text { for } n \geq 6
$$

(but not for $n<6$). Taking binary logarithm we get a contradiction, the inequality

$$
m<1+n\left(\log _{2} n-1\right)
$$

that negates the assumed lower bound $m \geq 1+n\left(\log _{2} n-1\right)$. Thus $G \cong H$.
For example, every graph on $n=1024$ vertices can be reconstructed from its deck if it has at least $1+n\left(\log _{2} n-1\right)=9217$ edges (maximally it may have more than 500.000 edges). The previous theorem and proof are adapted Theorem 2.16 and its proof from the book

- P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Oxford, 2004.
What are the adaptations? Besides other things, I add the bound $n \geq 6$ on n and replace the condition $m>n\left(\log _{2} n-1\right)$ (this appears both in the book and in Müller's article), which is clearly not always negated by $m<1+n\left(\log _{2} n-1\right)$, with the correct lower bound $m \geq 1+n\left(\log _{2} n-1\right)$.

Applications of fix-point theorems for posets

We prove the following classical result of naive set theory.
Theorem 1 (Cantor-Bernstein, 1887 and 1897) If $f: X \rightarrow Y$ and g : $Y \rightarrow X$ are injections, then there is a bijection $h: X \rightarrow Y$ and moreover $h(x)=f(x)$ or $h(x)=g^{-1}(x)$ for every $x \in X$.

Proof. Consider the mapping $F: \exp (X) \rightarrow \exp (X)$ (from the power set of X to itself) given by $F(M)=X \backslash g(Y \backslash f(M))$, for any $M \subseteq X$. Note that $M \subseteq N \subseteq X$ implies $F(M) \subseteq F(N)$ (complementation reverts \subseteq and is applied twice). Also, the poset $(\exp (X), \subseteq)$ is a complete lattice (join is \bigcup and meet is \bigcap). By the Tarski-Knaster theorem, F has a fix point: a set $A \subseteq X$ such that $F(A)=A$. This means that $X \backslash A=g(Y \backslash f(A))$ and

$$
g^{-1}(X \backslash A)=Y \backslash f(A) .
$$

We define $h: X \rightarrow Y$ by $h(x)=f(x)$ for $x \in A$ and by $h(x)=g^{-1}(x)$ for $x \in X \backslash A$. The displayed equality shows that h is everywhere defined on X and that it is surjective. If $x, y \in X$ are distinct then $h(x) \neq h(y)$ if $x, y \in A$ or if $x, y \notin A$, because of injectivity of f and of g^{-1}. But if $x \in A$ and $y \in X \backslash A$ then again $h(x) \neq h(y)$ by the displayed equality (and definition of h). Thus h is injective and is the desired bijection.

In the next lecture I will show you a combinatorial proof of C.-B. theorem by directed and undirected graphs.

[^0]: *klazar@kam.mff.cuni.cz

