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Recall PIE (the principle of inclusion and exclusion): if X1, . . . , Xn ⊆ X are
finite sets then ∣∣∣∣X\ n⋃

i=1

Xi

∣∣∣∣ =
∑
I⊆[n]

(−1)|I|
∣∣∣∣ ⋂
i∈I

Xi

∣∣∣∣
where [n] = {1, 2, . . . , n} and for I = ∅ the intersection is interpreted as X.

Exercise. Prove this identity by a double counting argument.

We introduce this notation: if K,L are graphs and D ⊆ E(K) then

inj(K,L) = #{f : V (K)→ V (L) | f inj., ∀ e ∈ E(K) : f(e) ∈ E(L)}

and injD(K,L) is

#{f : V (K)→ V (L) | f inj., ∀ e ∈ E(K) : f(e) ∈ E(L) ⇐⇒ e 6∈ D}

(“inj.” abbreviates “injective”). Thus inj(K,L) = inj∅(K,L) and injD(K,L)
counts injections from V (K) to V (L) that send edges in D outside E(L), and
the remaining edges in E(K) to E(L).

We denote by bar the complementary graph, so if H = (V, F ) then H =
(V,
(
V
2

)
\F ). We return to our graphs G and H on the same vertex set V and

with m-element edge sets E,F ⊆
(
V
2

)
(and equal decks). PIE for any fixed

subset D ⊆ E gives equality:

injD(G,H) =
∑

A⊆E\D

(−1)|A|inj((V,D ∪A), H) .

Exercise. What are the X1, . . . , Xn and X in this application of PIE?
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For integers d, 0 ≤ d ≤ m, we set

injd(G,H) =
∑

D⊆E, |D|=d

injD(G,H) .

Summing the above equalities over all D ⊆ E with d elements we get equality

injd(G,H) =
∑

B⊆E, |B|≥d

(−1)|B|−d
(
|B|
d

)
inj((V,B), H) .

Here the binomial coefficient
(|B|

d

)
just counts d-element subsets D in a fixed

set B = D ∪A. For H in place of G we have a similar equality

injd(H,H) =
∑

B⊆F, |B|≥d

(−1)|B|−d
(
|B|
d

)
inj((V,B), H) .

The lemma proved by double counting at the end of the previous lecture gives
a bijection

γ : {B ⊆ E | d ≤ |B| < m} → {B ⊆ F | d ≤ |B| < m}

with the property that always (V,B) ∼= (V, γ(B)) — for any fixed A ⊆ E,
A 6= E, we can pair A-copies in (V,E) with those in (V, F ) because their num-
bers are the same. Then, trivially, always |B| = |γ(B)| and inj((V,B), H) =
inj((V, γ(B)), H). Thus except for the last terms with B = E and B = F , the
summands on the right sides of both equalities coincide and differ at most by
order. Subtracting the two equalities we thus get

injd(G,H)− injd(H,H) = (−1)m−d
(
m

d

)
(inj(G,H)− inj(H,H)) .

For contradiction we assume that G 6∼= H. Then inj(G,H) = 0 (since G and H
have equal numbers of edges, an isomorphism between them is the same thing
as an injective homomorphism). But always inj(H,H) ≥ 1 (at least the identity
on V is an injective homomorphism from H to H). Hence

|injd(G,H)− injd(H,H)| ≥
(
m

d

)
.

Summation over d = 0, 1, . . . ,m and the binomial expansion of (1 + 1)m give

2m =

(
m

0

)
+

(
m

1

)
+ · · ·+

(
m

m

)
≤

m∑
d=0

|injd(G,H)− injd(H,H)| ≤ 2 · n! .

The last inequality follows from the triangle inequality and the equalities

m∑
d=0

injd(G,H) =

m∑
d=0

injd(H,H) = n!
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— every permutation of V lies in exactly one set of injective mappings from V
to V counted by injD(G,H), and the same for injD(H,H).

Exercise. In which one?

Now we get to contradiction quickly:

2m ≤ 2 · n! < 2(n/2)n because n! < (n/2)n for n ≥ 6

(but not for n < 6). Taking binary logarithm we get a contradiction, the
inequality

m < 1 + n(log2 n− 1)

that negates the assumed lower bound m ≥ 1 + n(log2 n− 1). Thus G ∼= H. 2

For example, every graph on n = 1024 vertices can be reconstructed from its
deck if it has at least 1+n(log2 n−1) = 9217 edges (maximally it may have more
than 500.000 edges). The previous theorem and proof are adapted Theorem 2.16
and its proof from the book

• P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University
Press, Oxford, 2004.

What are the adaptations? Besides other things, I add the bound n ≥ 6 on n
and replace the condition m > n(log2 n− 1) (this appears both in the book and
in Müller’s article), which is clearly not always negated by m < 1+n(log2 n−1),
with the correct lower bound m ≥ 1 + n(log2 n− 1).

Applications of fix-point theorems for posets

We prove the following classical result of naive set theory.

Theorem 1 (Cantor–Bernstein, 1887 and 1897) If f : X → Y and g :
Y → X are injections, then there is a bijection h : X → Y and moreover
h(x) = f(x) or h(x) = g−1(x) for every x ∈ X.

Proof. Consider the mapping F : exp(X) → exp(X) (from the power set of
X to itself) given by F (M) = X\g(Y \f(M)), for any M ⊆ X. Note that
M ⊆ N ⊆ X implies F (M) ⊆ F (N) (complementation reverts ⊆ and is applied
twice). Also, the poset (exp(X),⊆) is a complete lattice (join is

⋃
and meet is⋂

). By the Tarski–Knaster theorem, F has a fix point: a set A ⊆ X such that
F (A) = A. This means that X\A = g(Y \f(A)) and

g−1(X\A) = Y \f(A) .

We define h : X → Y by h(x) = f(x) for x ∈ A and by h(x) = g−1(x) for
x ∈ X\A. The displayed equality shows that h is everywhere defined on X and
that it is surjective. If x, y ∈ X are distinct then h(x) 6= h(y) if x, y ∈ A or if
x, y 6∈ A, because of injectivity of f and of g−1. But if x ∈ A and y ∈ X\A
then again h(x) 6= h(y) by the displayed equality (and definition of h). Thus h
is injective and is the desired bijection. 2

In the next lecture I will show you a combinatorial proof of C.–B. theorem
by directed and undirected graphs.
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