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The axiom of choice or AC (“axiom výběru” in Czech) says that for any
surjection f : A→ B there is a mapping g : B → A such that f ◦g : B → B is
an identity on B. In other words, for every set system (Mi | i ∈ I) of nonempty
sets there is a selector map g : I →

⋃
i∈IMi with the property that g(i) ∈ Mi

for every i ∈ I. Yet equivalently, for every set S with ∅ 6∈ S there is a selector
map g : S →

⋃
S such that g(s) ∈ s for every s ∈ S.

We would like to have a function µ : exp(C)→ R≥0 assigning to any subset
of the unit circle

C = {(x, y) ∈ R2 | x2 + y2 = 1}

a nonnegative real number so that

1. µ(C) = 2π = 6.282 . . . ;

2. if A1, A2, . . . ⊂ C is a finite or infinite sequence of pairwise disjoint sets
then µ(A1 ∪A2 ∪ . . . ) = µ(A1) + µ(A2) + . . . ; and

3. for every A ⊂ C and every rotation ϕα of C, α ∈ [0, 2π), counter-clockwise
by the angle α around the origin we have µ(ϕα(A)) = µ(A).

Here, for a = (ax, ay) ∈ C and A ⊂ C, we have

ϕα(a) = (ax cosα− ay sinα, ax sinα+ ay cosα)

and ϕα(A) = {ϕα(a) | a ∈ A}. Note that if one of α or x is fixed then
the univariate map ϕα(x) is injective. Thus µ should assign to C the familiar
length, should be countably additive, and should be preserved under rotations.
The usual arc-length on C we work with in mathematical practice has all these
properties.

However, we show that AC implies that no such function µ exists. We call
an angle α ∈ [0, 2π) rational if α/π ∈ Q and denote by R the set of all rational
angles.
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Theorem 1 (Vitali, 1905) By AC, no function µ : exp(C)→ R≥0 has prop-
erties 1–3.

Proof. The properties required from µ are contradictory because there exists a
set X ⊂ C such that

{ϕα(X) | α ∈ R}

is a set partition of C: the union of these (nonempty) sets equals C and they
are pairwise disjoint. Then

2π = µ(C) = µ(
⋃
α∈R ϕα(X)) =

∑
α∈R µ(ϕα(X)) =

∑
α∈R µ(X) = 0, +∞

— a contradiction. The first equality is by property 1 of µ, the second and third
follow from property 2 and the fact that the above sets partition C, the fourth
follows from property 3, and the last equality (trivial infinite series summation)
reads = 0 for µ(X) = 0 and = +∞ for µ(X) > 0. In either case it does not
equal 2π.

To obtain X, we consider a binary relation ∼ on C, a ∼ b if and only if
a = ϕα(b) for some α ∈ R. It is an equivalence: a = ϕ0(a) proves reflexivity,
a = ϕα(b) ; ϕ2π−α(a) = b proves symmetry, and a = ϕα(b), b = ϕβ(c) ; a =
ϕα+β(c) (α + β is taken modulo 2π) proves transitivity. We apply AC on the
set

C/∼= {[a] | a ∈ C}

of equivalence classes, called blocks, that ∼ partitions C into. A block is the set
[a] = {b ∈ C | a ∼ b}. From each block we select exactly one element and collect
them in the set X ⊂ C. We show that X has the stated property. If a ∈ C
is arbitrary then a = ϕα(x) for some α ∈ R for the x ∈ [a] ∩X, thus rational
rotations of X cover the whole C. If a ∈ ϕα(X) ∩ ϕβ(X) for some α, β ∈ R
with α < β, then a = ϕα(x) = ϕβ(y) for two distinct x, y ∈ X, so x = ϕβ−α(y)
and x ∼ y. This is impossible because the elements of X are pairwise unrelated
by ∼. Thus for different α ∈ R the sets ϕα(X) do not intersect. 2

The above displayed computation shows that X cannot be assigned any length
and this subset of C is non-measurable. We will use it later for a paradoxical
decomposition of C. The theorem does not say that to define a reasonable notion
of arc-length on C is an impossible task (as we know, it can be accomplished in
a quite satisfactory manner), it only shows that we have to leave µ undefined
on some wild subsets of C.

We explain the second paradox following from AC. We let

M = {f : R→ R} = RR

be the set of all real functions defined on the real numbers. For f ∈ M and
a ∈ R we denote by f | a the restriction f | (−∞, a). An oracle is a map

V : {g : (−∞, a)→ R | a ∈ R} → R
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that assigns a real number to any real function defined on the real numbers
smaller than some a ∈ R. V guesses correctly the value f(a), for f ∈ M and
a ∈ R, if

V (f | a) = f(a) ,

and else V errs at f(a). Thus oracle attempts to guess the value of f at a only
on the basis of the values f(x) with x < a.

For example, it is easy to define an oracle for the class of functions C(R) in
place of M , i.e. for all continuous functions from R to R. We define

V : {g : (−∞, a)→ R | a ∈ R, lim
x→a−0

g(x) ∈ R} → R

by setting V (g) to be the value of the mentioned limit. Then V (f | a) = f(a)
for every a ∈ R and every f ∈ C(R) by continuity of f at a, and so this oracle
guesses correctly every value of every continuous function. Of course, this is
almost a triviality. For another example, or rather a non-example, of an oracle
consider the class of functions

N = {f : N→ R} = RN

where N = {1, 2, . . . } are the natural numbers. Now it is easy to see that for
every candidate oracle

V : {g : [n− 1]→ R | n ∈ N} → R

that assigns a real number to any real function defined on an initial segment
[n − 1] = {1, 2, . . . , n − 1} of the natural numbers (for n = 1 there is just one
such function, g = ∅), there is a function f ∈ N such that

V (f |n) = V (f | [n− 1]) 6= f(n)

for every n ∈ N — V errs at every value of f . Just set inductively

f(n) := V (f |n) + 1, n ∈ N ,

say (recall that f |n = f | [n−1] and that f | 1 = ∅ where the inductive definition
of f starts).

For the classes of functions C(R) and N we have answered the question for
an oracle easily, the former class has a trivial oracle that guesses correctly every
value of every function and for the latter class every oracle has to err at every
value of some function. What can be said in the original setting for the class
M of all real functions?

Theorem 2 (Hardin and Taylor, 2008) By AC, there is an oracle V that
for every f ∈M correctly guesses almost every value f(a), with at most count-
ably many exceptions a ∈ R.
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At least to me, this is quite a counterintuitive result. One may interpret it as
a refutation of free will: if one builds a function f : R → R step by step by
moving a ∈ R from −∞ to +∞, then except for at most countably many flashes
of free will, at almost all instances a (recall that R is uncountable) the value
f(a) is predetermined by the earlier values f(x) with x < a and one has no
choice! For the proof we need yet another (fourth) formulation of the axiom of
choice:

Every set A can be well-ordered, there is a linear ordering ≤ on
A such that every nonempty subset B ⊂ A has a least element, a
unique element b ∈ B satisfying b ≤ c for every c ∈ B which we
denote min≤(B) .

Proof. We invoke the axiom of choice and linearly well-order M by �. For
a ∈ R and g : (−∞, a)→ R we define our miraculous oracle by

V (g) = f0(a) where f0 = min
�

({f ∈M | f | a = g}) .

We show that V has the stated property. For an arbitrary f ∈ M we take the
set

X = {a ∈ R | V (f | a) 6= f(a)}
of arguments where V errs and show that it is well-ordered in the standard
linear ordering (R,≤) of the real numbers. Since every well-ordered subset in
(R,≤) is at most countable (finite or infinite countable), as we prove at the end,
we are done.

For our f and a ∈ R, let Aa = {g ∈ M | g | a = f | a} and fa = min�(Aa),
so V (f | a) = fa(a) by the definition of V . If a, b ∈ R with a < b then fa � fb
because Aa ⊃ Ab. Now if a ∈ X, b ∈ R with a < b then even fa ≺ fb because

fa(a) = V (f | a) 6= f(a) = (f | b)(a) = fb(a)

shows that fa 6= fb. If X were not well-ordered in (R,≤) it would contain an
infinite descending chain a1 > a2 > . . . . By the previous result this would give
an infinite descending chain fa1 � fa2 � . . . in (M,�), which is impossible by
the well-ordering of M . So X is well-ordered by ≤.

It remains to prove that every (nonempty) subset Y ⊂ R, well-ordered by
≤, is at most countable. We produce an injection z : Y → Q. For a ∈ Y we set

z(a) = some α ∈ Q ∩ (a, min
≤

({b ∈ Y | b > a})) .

If a happens to be the maximum of Y , we define the minimum as +∞. Thus
z(a) is a fraction in the gap between a and the successor of a in Y , or a fraction
after a if a has in Y no successor. It is immediate from the definition that
z(a) 6= z(b) for a < b in Y . Q is countable, so Y is also countable or finite. 2

We return to the set X ⊂ C whose rational rotations partition the unit
circle C. In the next lecture I will prove the following result and mention
related paradoxes and relevant literature.
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Proposition 3 Let D be a (disjoint) copy of C, for example D = {(x, y) ∈
R2 | (x− 3)2 + y2 = 1}. Under the axiom of choice there exist a partition

C =

∞⋃
n=1

An and rigid motions ψn : R2 → R2

such that ψn(An) form the partition

C ∪D =

∞⋃
n=1

ψn(An) .

“Rigid motion” is a translation combined with a rotation (around a point).
The proposition thus states that under the assumption of AC there exists a
puzzle with countably many pieces which one can assemble in one way in the
unit circle C and in another way (after moving the pieces in the plane without
deformations and changes in size) in two disjoint copies of C. Something from
nothing is created! Try to prove Proposition 3 by yourself, it is not hard.
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