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Chapter 1

The Prime Number Theorem

1.1 Chebyshev’s bounds

Euclid’s proof of infinititude of primes. By Euclid, if pn is the n-th
prime then

pn+1 ≤ 1 +
n∏

j=1

pj

—the number on the right must be divisible by a prime but it cannot be
either of p1, p2, . . . , pn. By induction,

pn ≤ 22n

.

Form this it folows that

π(x) ≥
⌊
log(log x/ log 2)

log 2

⌋
≥ log log x

log 2
− 1− log log 2

log 2
.

Erdős proof of infinititude of primes. By Erdős, for every n ∈ N

√
n · 2π(n) ≥ n.

To see this inequality, write every m ∈ {1, 2, . . . , n} as m = r2s where
r, s ∈ N and s is a squarefree number. For r we have at most

√
n values

because r2 ≤ n. Every s is a product of distinct primes not exceeding x.
Therefore the number of values of s is bounded by the number of subsets of
the set S = {p | p ≤ n}, which equals 2|S| = 2π(n). The product

√
n · 2π(n) is
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the upper bound on the number of pairs r, s. Since m attains n values and
to distinct ms correspond distinct pairs r, s, the number of pairs and thus
the upper bound on it are at least n.

The inequality gives

π(n) ≥ log n

2 log 2
.

This is an order of magnitude better than Euclid’s bound but still very weak
in comparison with truth.

The upper bound of Legendre. Legendre found an inclusion-exclusion
type argument showing that π(x) = o(x), in fact π(x) = O(x/ log log x),
which we now present.

For every x ≥ 1, ∑
n≤x

1

n
≥
∫ x

1

dt

t
= log x.

Thus ∏
p≤x

(
1− 1

p

)−1

=
∏
p≤x

(
1 +

1

p
+

1

p2
+ · · ·

)
≥
∑
n≤x

1

n
≥ log x

and, for x ≥ 2, ∏
p≤x

(
1− 1

p

)
≤ 1

log x
.

For 1 ≤ y ≤ x and d ∈ N we denote [x] = {1, 2, . . . , bxc}, M(y) = {p | p ≤
y}, P (y) =

∏
p≤y p, A(y, x) = {n ∈ [x] | p|n ⇒ p > y}, and Ad(x) = {n ∈

[x] | d|n}. By the inclusion-exclusion principle,

|A(y, x)| =
∣∣∣∣[x]\

⋃
p∈M(y)

Ap(x)
∣∣∣∣ = ∑

I⊂M(y)

(−1)|I|
∣∣∣∣ ⋂

p∈I

Ap(x)
∣∣∣∣

=
∑

d|P (y)

µ(d)
⌊
x

d

⌋

where µ(·) is the Möbius function; µ(d) = µ(p1p2 . . . pk) = (−1)k for square-
free argument (which is always the case in the sum) and µ(d) = 0 else (but
µ(1) = 1). We have used the fact that for I = {p1, . . . , pk} and d = p1p2 . . . pk,⋂

p∈I

Ap(x) = Ad(x).
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The sum has 2π(y) ≤ 2y summands and bx/dc = x/d + δ with δ ∈ [0, 1). It
folows that

|A(y, x)| = x
∑

d|P (y)

µ(d)

d
+ E = x

∏
p≤y

(
1− 1

p

)
+ E

where |E| ≤ 2y. On the other hand,

|A(y, x)| ≥ π(x)− π(y) + 1

because A(y, x) contains 1 as well as every prime in the interval (y, x]. Com-
bining both relations for |A(y, x)| and using the above estimate for the prod-
uct over primes, we get the inequality

π(x) ≤ x

log y
+ E + π(y)− 1 ≤ x

log y
+ 2y + y − 1.

Setting y = log x, we get for every x ≥ 3 the estimate

π(x) ≤ x

log log x
+ xlog 2 + log x− 1 =

x(1 + o(1))

log log x

(log 2 = 0.69314 . . . < 1).

Chebyshev’s bounds. These are bounds of the form (x ≥ 2)

c1x

log x
(1 + o(1)) < π(x) <

c2x

log x
(1 + o(1))

where 0 < c1 < c2 are constants. Chebyshev proved this in 1851 with
constants c1 = log(21/231/351/530−1/30) ≈ 0.92129 and c2 = 6

5
c1 ≈ 1.10555.

We present proofs giving constants c1 = log 2 ≈ 0.69314 and c2 = log 4 =
2c1 ≈ 1.38629.

The upper bound π(x) ≤ x(1+o(1)) log 4/ log x. The upper bound for π(x)
is derived from that for

∏
p≤x p or, in the logarithmic form, for

∑
p≤x log p.

Suppose that we have proved that∏
p≤x

p ≤ (c + o(1))x

for some constant c > 1. Then for 1 ≤ y ≤ x,

yπ(x)−π(y) ≤
∏

y<p≤x

p ≤ (c + o(1))x
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and, taking logarithms, we get

π(x) ≤ x(1 + o(1)) log c

log y
+ y.

Setting y = x/(log x)2 we get the desired upper bound with constant c2 =
log c:

π(x) ≤ x(1 + o(1)) log c

log x
.

We show two approaches to obtain the bound
∏

p≤x p ≤ (c + o(1))x. The
first one gives c = 42 = 16. Improving upon it, we show that in fact

∏
p≤x p ≤

4x for every x ≥ 1. Clearly,

∏
n<p≤2n

p ≤
(

2n

n

)

because the product even divides the number
(

2n
n

)
= (2n)!/(n!)2. Since

(
2n

n

)
≤ 4n

(by the binomial expansion of (1 + 1)2n), taking logarithms we get∑
n<p≤2n

log p ≤ n log 4.

We cover (1, x] by the intervals (1, 2], (2, 4], (4, 8], . . . , (2m, 2m+1] where m ∈
N0 is such that 2m ≤ x < 2m+1. The sum of log p over primes in (2k, 2k+1] is,
by the last inequality, ≤ 2k log 4. Summing these bounds over all intervals,
we get∑

p≤x

log p ≤ (1 + 2 + 4 + · · ·+ 2m) log 4 = (2m+1 − 1) log 4 < 2x log 4.

This gives c = 42 = 16 and c2 = log 16 = 2 log 4.
A beautiful argument of Erdős and Kalmár gets rid of the factor 2 (in

the logarithmic form). We prove by induction on n that∏
p≤n

p ≤ 4n.
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For n = 1, 2 this holds. If n > 2 is even then this holds as well because∏
p≤n p =

∏
p≤n−1 p ≤ 4n−1 < 4n. If n = 2m + 1 > 1 is odd, we split the

product as ∏
p≤n

p =
∏

p≤m+1

p
∏

m+1<p≤2m+1

p.

The first product is ≤ 4m+1 by induction. The second product divides
(

2m+1
m

)
and thus it is at most

(
2m+1

m

)
≤ 1

2
22m+1 = 4m (use the binomial expansion of

(1 + 1)2m+1 and the fact that
(

2m+1
m

)
=
(

2m+1
m+1

)
). Alltogether,∏

p≤n

p ≤ 4m+1+m = 4n.

This gives the upper Chebyshev bound with c2 = log 4.

The lower bound π(x) ≥ x(1 + o(1)) log 2/ log x. We derive the lower
bound for π(x) from that for the number dn where dn is the least common
multiple of 1, 2, . . . , n. How is dn related to π(n)? A moment of reflexion
reveals that any prime p appears in the decomposition of dn in the power
equal to the highest power of p not exceeding n, that is, as pa where pa ≤ n
but pa+1 > n. Since there are π(n) primes in the decomposition, we have

dn ≤ nπ(n).

This gives

π(n) ≥ log dn

log n

and we clearly need lower bounds of the form dn ≥ (c+o(1))n. Such a bound

follows from the fact that
(

2n
n

)
divides d2n, which can be proved by means of

the identity a = bn/pc+ bn/p2c+ · · · where a ∈ N0 is the maximum number
for which pa divides n!.

We present an alternative and truly miraculous argument due to Nair [2].
For every n ∈ N,

I =
∫ 1

0
xn(1− x)n dx =

∫ 1

0

n∑
r=0

(−1)r

(
n

r

)
xr+n =

n∑
r=0

(−1)r

(
n

r

)
1

r + n + 1
.

The integral I satisfies 0 < I < (1/4)n because the integrand is positive on
(0, 1) and x(1−x) ≤ 1/4 on [0, 1]. Also, d2n+1I ∈ Z because r+n+1 ≤ 2n+1
and so every r + n + 1 divides d2n+1. Thus 1 ≤ d2n+1I < d2n+1/4

n and

d2n+1 > 4n = 22n+1/2.
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Hence dn > 2n/4 for every n ≥ 1 and we get the lower Chebyshev bound
with c1 = log 2.

Using the more general integral
∫ 1
0 xm−1(1 − x)n dx, Nair [2] proved by

similar elementary arguments that dn ≥ 2n for n ≥ 7.

1.2 A proof of the PNT

Step 1. An equivalent formulation. Consider the Chebyshev function

ϑ(x) =
∑
p≤x

log p.

We prove the equivalence

π(x) =
x + o(x)

log x
⇐⇒ ϑ(x) = x + o(x), x →∞.

This follows from the estimate

ϑ(x)

log x
≤ π(x) ≤ ϑ(x)

log x
(1 + O(log log x/ log x)) +

x

(log x)2
.

The lower bound is immediate from
∑

p≤x log p ≤ π(x) log x. As for the upper
bound, from ϑ(x) ≥ ∑

y<p≤x log p ≥ (π(x)− π(y)) log y we get

π(x) ≤ ϑ(x)

log y
+ π(y) ≤ ϑ(x)

log y
+ y.

Setting y = x/(log x)2, we get the upper bound.

Step 2. Convergence of an integral implies the PNT. We prove the
implication ∫ ∞

1

ϑ(x)− x

x2
dx converges =⇒ ϑ(x) = x + o(x).

Suppose that ϑ(x) 6= x + o(x). This means that lim sup ϑ(x)/x > 1 or
lim inf ϑ(x)/x < 1. We suppose that the first case holds, the second case
being handled similarly. There exists an λ > 1 such that ∀y > 0 ∃x, x > y,
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with ϑ(x) > λx. The integral of our function over the interval [x, λx] is then
(we use that ϑ(·) is nondecreasing)∫ λx

x

ϑ(t)− t

t2
dt >

∫ λx

x

λx− t

t2
dt =

∫ λ

1

λ− u

u2
du = c > 0

where the constant c depends only on λ. So∫ r

1

ϑ(t)− t

t2
dt

does not have finite limit as r → ∞ (Cauchy condition is violated) and the
integral does not converge.

Step 3. Laplace transform of ϑ(et)e−t − 1. We shall work with the
complex functions

ζ(s) =
∞∑

n=1

1

ns
and F (s) =

∑
p

log p

ps
.

They are defined and holomorphic on Re(s) > 1. We prove that for Re(z) > 0∫ ∞

0

(
ϑ(et)

et
− 1

)
e−zt dt =

F (z + 1)

z + 1
− 1

z
.

It suffices to prove

s
∫ ∞

0
ϑ(et)e−st dt = F (s)

for Re(s) > 1; then we set s = z + 1 and subtract
∫∞
0 e−tz dt = 1/z. So

s
∫ ∞

0
ϑ(et)e−st dt = s

∫ ∞

1
ϑ(x)x−s−1 dx =

∞∑
n=1

ϑ(n) · s
∫ n+1

n
x−s−1 dx

=
∞∑

n=1

ϑ(n)(n−s − (n + 1)−s) =
∞∑

n=1

n−s(ϑ(n)− ϑ(n− 1))

=
∑
p

log p

ps
= F (s).

Step 4. Theorem of Wiener and Ikehara. Suppose f : [0,∞) → R is a
bounded function that has integral on every bounded interval [a, b] ⊂ [0,∞).
The Laplace transform

g(z) =
∫ ∞

0
f(t)e−tz dt
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of f(t) is then defined and holomorphic on Re(z) > 0. We prove convergence
of the integral in step 2 by means of the following theorem.

Theorem (Wiener and Ikehara, 1932). If the functions f(t) and g(z)
are as before and g(z) has a holomorphic extension to Re(z) ≥ 0 (i.e., to an
open set containing the right closed halfplane Re(z) ≥ 0), then the integral∫ ∞

0
f(t) dt

converges and equals g(0). (Informally, we may plug in 0 for z in the Laplace
transform of f(t).)

We postpone the proof of the theorem until step 9 and first finish the proof
of the PNT.

Step 5. Proof of the PNT. We set

f(t) = ϑ(et)e−t − 1 and g(z) = F (z + 1)(z + 1)−1 − z−1.

Function f(t) is obviously integrable on every bounded interval and it is
bounded because ϑ(et) = O(et) by the upper Chebyshev bound. Function
g(z) is a Laplace transform of f(t) by step 3. If we show that g(z) has the
required holomorphic extension, we can apply the Wiener–Ikehara theorem
and conclude that∫ ∞

0
f(t) dt =

∫ ∞

0

(
ϑ(et)

et
− 1

)
dt =

∫ ∞

1

ϑ(x)− x

x2
dx

converges. By steps 1 and 2 this proves the PNT.
Two things remain to be proved. First, that g(z) = F (z+1)(z+1)−1−z−1

has a holomorphic extension to Re(z) ≥ 0. Second, we have to prove the
Wiener–Ikehara theorem itself. We derive the extension of g(z) from two
properties of ζ(s) =

∑
n≥1 n−s.

Step 6. Meromorphic extension of ζ(s). We show that ζ(s)− (s− 1)−1

has a holomorphic extension to Re(s) > 0.
To this end we express the difference as

ζ(s)− 1

s− 1
=

∞∑
n=1

n−s −
∫ ∞

1
x−sdx =

∞∑
n=1

∫ n+1

n
(n−s − x−s) dx

=
∞∑

n=1

Fn(s).
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By invoking results on integral representations of functions or simply by
calculating the integral defining Fn(s), we obtain that every Fn(s) is an
entire function. Further,

|Fn(s)| =
∣∣∣∣s ∫ n+1

n

∫ x

n
u−s−1 du dx

∣∣∣∣ ≤ |s| max
n≤u≤n+1

|u−s−1| = |s|
nRe(s)+1

.

Hence the sum
∑

n Fn(s) converges uniformly on Re(s) > ε > 0 and defines
on Re(s) > 0 a holomorphic function extending ζ(s)− (s− 1)−1.

In fact, ζ(s)− (s− 1)−1 has an extension to entire function.

Step 7. Nonvanishing of ζ(s). We show that ζ(s) 6= 0 for Re(s) ≥ 1.
If Re(s) > 1, we use the Euler identity

ζ(s) =
∏
p

(
1− 1

ps

)−1

and get the estimate

| log(ζ(s))| =

∣∣∣∣∣∑
p

log

(
1− 1

ps

)∣∣∣∣∣ ≤∑
p

∑
n≥1

|p−ns|

=
∑
p

1

|ps| − 1
=
∑
p

1

pRe(s) − 1

≤ 2ζ(Re(s)).

If ζ(s0) = 0 for some s0 with Re(s0) > 1, then Re(log(ζ(s))) → −∞ and
| log(ζ(s))| → ∞ as s → s0, which contradicts this estimate.

It remains to deal with the line Re(s) = 1. The following argument
proving nonvanishing of ζ(s) on it is due to Mertens in 1898. For Re(s) > 1
Euler’s identity gives

log |ζ(s)| = Re
(∑

p

log(1− p−s)−1
)

= Re
(∑

p

(
p−s +

p−2s

2
+

p−3s

3
+ · · ·

))
= Re

(∑
n

ann
−s
)

where an are real nonnegative numbers (an = 1/r if n = pr and an = 0 else).
Thus for the function

G(s) = G(u + it) = ζ(u)3ζ(u + it)4ζ(u + 2it)
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where u > 1 and t ∈ R we get, using the identity cos(2x) = 2 cos2(x) − 1,
the estimate

log |G(s)| = Re
( ∞∑

n=1

ann
−u(3 + 4n−it + n−2it)

)

=
∞∑

n=1

ann
−u(3 + 4 cos(t log n) + cos(2t log n))

=
∞∑

n=1

2ann
−u(1 + cos(t log n))2

≥ 0.

Now suppose that ζ(1 + it0) = 0 and that 1 + it0 has as a zero multiplicity
k ∈ N. For u → 1+ then, for a nonzero c ∈ C,

G(u + it0) ∼ (u− 1)−3 · c(u− 1)4k · ζ(u + 2it0) = cζ(u + 2it0)(u− 1)4k−3 → 0

implying log |G(u + it0)| → −∞, which contradicts the estimate.

Step 8. Holomorphic extension of F (z + 1)/(z + 1) − 1/z. We show
that F (s) − 1/(s − 1) (recall that F (s) =

∑
p p−s log p) has a holomorphic

extension to Re(s) ≥ 1. This clearly gives holomorphic extension of

F (z + 1)

z + 1
− 1

z
=

1

z + 1

(
F (z + 1)− 1

z
− 1

)
to Re(z) ≥ 0.

Logarithmic derivative of Euler’s identity gives (Re(s) > 1)

−ζ(s)′

ζ(s)
=
∑
p

log p

ps − 1
= F (s) +

∑
p

log p

ps(ps − 1)
.

Thus

F (s)− 1

s− 1
= −

(
ζ ′(s)

ζ(s)
+

1

s− 1

)
+
∑
p

log p

ps(1− ps)
.

The expression on the right side is holomorphic on Re(s) ≥ 1. Indeed, the
sum defines a function holomorphic for Re(s) > 1/2 and, by steps 6 and
7, it is clear that ζ ′(s)/ζ(s) + 1/(s − 1) is holomorphic in a neighborhood
of every point s with Re(s) ≥ 1 with the possible exception s = 1. But
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in a neighborhood of s = 1 we have ζ(s) = (s − 1)−1 + z(s) where z(s) is
holomorphic on Re(s) > 0 (step 6). So

ζ ′(s)

ζ(s)
+

1

s− 1
=

−(s− 1)−2 + z′(s)

(s− 1)−1 + z(s)
+

1

s− 1

=
1

s− 1

(−1 + (s− 1)2z′(s)

1 + (s− 1)z(s)
+ 1

)

=
z(s) + (s− 1)z′(s)

1 + (s− 1)z(s)

is holomorphic in a neighborhood of s = 1 as well.

Step 9. A proof of the Wiener–Ikehara theorem. We assume that,
for Re(z) > 0,

g(z) =
∫ ∞

0
f(t)e−tz dt,

where the real function f(t) is defined and bounded for t ≥ 0 (and integrable
on bounded intevals), and that g(z) has a holomorphic extension to Re(z) ≥
0. We prove that then ∫ ∞

0
f(t) dt

must converge and be equal to g(0). The proof presented here is due to
Newman in 1980 ([3]).

For real T > 0 we set

gT (z) =
∫ T

0
f(t)e−zt dt.

This is an entire function of z. (Why? Morera’s theorem says that if h : Ω →
C is continuous on an open set Ω and has zero integral over the boundary
of every rectangle lying in Ω, then h(z) is holomorphic on Ω. It is easy to
check this condition for gT (z). Or see [1, chapter 17.2].) We want to prove
that limT→∞ gT (0) = g(0). Let R > 0 be real and C be the domain

C = C(R) = {z ∈ C : |z| < R & Re(z) > −δ}

where δ = δ(R) > 0 is so small that g(z) has a holomorphic extension to C
(such δ > 0 exists because of the compactness of the segment [−iR, iR]). By
the Cauchy theorem,

g(0)− gT (0) =
1

2πi

∫
∂C

g(z)− gT (z)

z
dz
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where ∂C is the D-shaped boundary curve of C, oriented counterclockwise.
Newman’s ingenious trick was to simplify estimation of the last integral

by introducing in it an appropriate integration kernel G(z): by the Cauchy
theorem, we have also

g(0)− gT (0) =
1

2πi

∫
∂C

g(z)− gT (z)

z
G(z) dz

provided that G(z) is holomorphic on C and G(0) = 1. We take

G(z) = G(z, R, T ) =

(
1 +

z2

R2

)
ezT ,

where R, T > 0 are real parameters having the aforementioned meaning.
This G(z) is clearly entire and G(0) = 1. Its task is to tame the integrand
on the circle K given by |z| = R; on K we have∣∣∣∣∣G(z)

z

∣∣∣∣∣ =
∣∣∣∣∣ezT (z + z)

R2

∣∣∣∣∣ = 2eRe(z)T · |Re(z)|
R2

.

We show that

I =
∫

∂C

g(z)− gT (z)

z
G(z) dz → 0

as T →∞. To this end we split the integral I in three summands. Denoting
∂C− the arc of the curve ∂C lying in Re(z) ≤ 0 and similarly for K− and
∂C+, we write

I =
∫

∂C−

g(z)

z
G(z) dz −

∫
∂C−

gT (z)

z
G(z) dz +

∫
∂C+

g(z)− gT (z)

z
G(z) dz

=
∫

∂C−

g(z)

z
G(z) dz −

∫
K−

gT (z)

z
G(z) dz +

∫
∂C+

g(z)− gT (z)

z
G(z) dz

= I1 − I2 + I3.

In I2 we could replace ∂C− with K− without changing the integral because
the integrand is holomorphic in Re(z) < 0. We show that every Ii → 0 as
T →∞.

Step 9.1. Bounding I2 and I3.
Step 9.2. Bounding I1.

1.3 Remarks
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Chapter 2

Shnirel’man’s theorem

One of the oldest unsolved problems in number theory and in all of mathe-
matics is Goldbach’s conjecture from 1742. It states that every even number
bigger than 2 is a sum of two prime numbers. Assuming that the conjecture
holds, it follows (via subtraction of 3) that every odd number bigger than 5
is a sum of three prime numbers. Since 2 and 3 are primes and 5 = 2 + 3,
Goldbach’s conjecture has the corollary that every natural number bigger
than 1 is a sum of at most three primes. In 1930, L.G. Shnirel’man (1905–
1938) proved a weaker form of this corollary with the number of summands
bounded by a bigger constant h (his proof gave h = 8 · 105).

Theorem (Shnirel’man, 1930). There exists an h ∈ N such that every
natural number bigger than 1 is a sum of at most h prime numbers.

We devote this chapter to the proof of Shnirel’man’s remarkable result.
In section 2.1 we introduce Shnirel’man’s density σ(A) of subsets A ⊂ N and
prove the main result that every set A with σ(A) > 0 is an additive basis, that
is, every n ∈ N is a sum of a bounded number of summands from A. This
by itself does not imply that prime numbers (with 1 added) form an additive
basis because they have zero Shnirel’man’s density. However, the set {1}∪2P
consisting of 1 and sums of two primes has positive Shnirel’man’s density.
Thus, since σ({1}∪2P ) > 0, {1}∪2P is an additive basis and Shnirel’man’s
theorem follows (it is an easy matter to get rid of the 1 summands). But how
to prove that σ({1}∪2P ) > 0? Interestingly, this lower bound follows rather
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easily by means of the Cauchy-Schwarz inequality from the upper bound

r(n) � n

(log n)2

∏
p|n

(
1 +

1

p

)

where r(n) is the number of prime solutions p, q of the equation n = p + q.
Hence we need to prove this upper bound on r(n). With all due respect to
the previous considerations, only now the proof starts at earnest. In section
2.2 we introduce a tool for obtaining such estimates, Selberg’s sieve, and
apply it to r(n) to get the desired upper bound. In section 2.3 we finish the
proof of Shnirel’man’s theorem by deducing σ({1}∪ 2P ) > 0 from the upper
bound on r(n) In Section 4 we prove a technical lemma needed to complete
the proof of the bound in Selberg’s sieve.

2.1 Shnirel’man’s density

For a set A ⊂ N0 and n ∈ N0 we let A(n) denote the cardinality |A ∩
{1, 2, . . . , n}|, so A(0) = 0. Shnirel’man’s density σ(A) of A is

σ(A) = inf
n∈N

A(n)

n
.

The following properties of σ(A) follow easily from the definition.

• 0 ≤ σ(A) ≤ 1.

• A(n) ≥ σ(A)n for every n ≥ 0.

• σ(A) > 0 if and only if 1 ∈ A and there are constants c > 0 and n0 ∈ N
such that A(n)/n > c for every n > n0. In particular, σ(A) = 0 if
1 6∈ A.

• For A ⊂ N we have σ(A) = 1 if and only if A = N.

For A, B ⊂ N0 we define

A + B = {a + b : a ∈ A, b ∈ B}

and similarly for more summands. For A ⊂ N0 and h ∈ N we write briefly

hA = A + A + · · ·+ A (h summands).

15



We say that a set A ⊂ N is an additive basis if there is an h ∈ N such that
every number n ∈ N can be expressed as a sum of at most h elements of
A. The smallest such h is then called the order of the basis. Equivalently,
A ⊂ N is an additive basis if there is an h ∈ N such that h({0} ∪ A) = N0.

Another simple but important property of σ(A) is the following.

• If A, B ⊂ N0 satisfy σ(A)+σ(B) ≥ 1 and 0 ∈ A∩B then A+B = N0.
In particular, if σ(A) ≥ 1/2 then 2({0}∪A) = N0 and A is an additive
basis of order at most 2.

Indeed, for n ∈ N0 the sum of cardinalities of the sets A ∩ {0, 1, . . . , n} and
{n − b : b ∈ B, 0 ≤ b ≤ n} is at least σ(A)n + 1 + σ(B)n + 1 ≥ n + 2.
But these sets are subsets of the (n + 1)-element set {0, 1, . . . , n} and must
therefore intersect, which gives representation n = a + b with a ∈ A, b ∈ B.

Shnirel’man discovered that, more generally, A is an additive basis when-
ever σ(A) > 0. This follows from an inequality (also due to him) relating
σ(A + B) to σ(A) and σ(B).

Lemma. If A, B ⊂ N0 satisfy 0 ∈ A ∩B, then

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B).

Proof. Let n ∈ N0 be arbitrary and 0 = a0 < a1 < . . . < ak ≤ n be the
elements of the set A ∩ {0, 1, . . . , n}. The elements

{ai : 1 ≤ i ≤ k}, {ai + b : 0 ≤ i ≤ k − 1, b ∈ B, 1 ≤ b ≤ ai+1 − ai − 1}

and
{ak + b : b ∈ B, 1 ≤ b ≤ n− ak}

lie in (A+B)∩{1, 2, . . . , n} and are all mutually distinct. Denoting σ(A) = α
and σ(B) = β, this implies

(A + B)(n) ≥ A(n) +
k−1∑
i=0

B(ai+1 − ai − 1) + B(n− ak)

≥ A(n) + β
k−1∑
i=0

(ai+1 − ai − 1) + β(n− ak)

= A(n) + β(n− k) = A(n)− βA(n) + βn ≥ (1− β)αn + βn

= (α + β − αβ)n.
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So σ(A + B) ≥ α + β − αβ. 2

Theorem (Shnirel’man, 1930). Every set A ⊂ N with σ(A) > 0 is an
additive basis.

Proof. We rewrite the inequality in the lemma as

1− σ(A + B) ≤ (1− σ(A))(1− σ(B)).

Iterating, we get 1−σ(hA) ≤ (1−σ(A))h. Since σ(A) > 0, we have σ(hA) ≥
1/2 for sufficiently big h. Then, by the above observation, 2({0}∪hA) = N0

and A is an additive basis of order at most 2h. 2

2.2 Bounding r(n) via Selberg’s sieve

We prove the promised upper bound on the number r(n) counting expressions
of n as a sum of two primes. First we state and prove, modulo one technical
lemma, an upper bound due to A. Selberg (1917) that applies in rather
general situations. Using this Selberg’s sieve, we obtain the upper bound for
r(n).

We have a finite set (or a finite sequence with possible repetitions) A ⊂ N
and a real number z > 0 and we want to estimate from above the quantity

S(A, z) = |{a ∈ A | p|a ⇒ p ≥ z}|

that counts numbers in A having no prime factor smaller than z. For d ∈ N
we denote

Ad = |{a ∈ A | d|a}|,
the number of multiples of d in A. Suppose that g : N → (0, 1] is a
completely multiplicative function, which means that g(1) = 1 and g(ab) =
g(a)g(b) for every a, b ∈ N, that moreover satisfies 0 < g(n) < 1 for n > 1.
We define rd ∈ Z by

Ad = g(d)|A|+ rd.

If the quantities g(d)|A| approximate Ad well, that is, the errors rd are small,
at least in average, one has a good upper bound on S(A, z):

Theorem (Selberg, 1947). In the above notation,

S(A, z) <
|A|∑

k<z g(k)
+

∑
µ(f) 6=0,f<z2

3ω(f)|rf .
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Proof. We rewrite the definition of S(A, z) so that it does not mention
prime numbers. Let D = D(z) be the set of squarefree natural numbers
smaller than z. Then

S(A, z) = |{a ∈ A | ∀d ∈ D : (a, d) = 1}.

Hence, if λd for d ∈ D are any real numbers satisfying only the condition
λ1 = 1, we have the bound

S(A, z) ≤
∑
a∈A

( ∑
d∈D,d|a

λd

)2

=
∑
a∈A

( ∑
d∈D,d|a

λd

)( ∑
e∈D,d|a

λd

)

because each a in A counted by S(A, z) contributes 1 and each remaining
a contributes nonnegative amount. Changing the summation order, we get
(recall that [e, d] is the smallest common multiple of e and d)

S(A, z) ≤
∑

e,d∈D

λeλd

∑
a∈A,[e,d]|a

1

=
∑

e,d∈D

λeλd(g([e, d])|A|+ r[e,d])

= |A|
∑

e,d∈D

g([e, d])λeλd +
∑

e,d∈D

r[e,d]λeλd.

We see that values of the quadratic form

G(xd : d ∈ D) =
∑

e,d∈D

g([e, d])xexd =
∑

e,d∈D

g(e)g(d)xexd

g((e, d))

(we have used [e, d](e, d) = ed and the multiplicativity of g) play an important
role.

Lemma. For the given completely multiplicative function g and the set of
squarefree numbers D = D(z), there exist real numbers λ∗d such that λ∗1 = 1,
|λ∗d| ≤ 1 for all d ∈ D, and

G(λ∗d : d ∈ D) <
1∑

k<z g(k)
.
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We defer proof of the lemma in Section 2.4. With the selection λd = λ∗d,
the upper bound on S(A, z) turns in

S(A, z) <
|A|∑

k<z g(k)
+

∑
e,d∈D

|r[e,d].

In order to bound the last sum, we consider the equality f = [e, d] where
e, d ∈ D. Since e, d < z are squarefree, so is f and f < z2. If f is fixed
and f = p1p2 . . . pk for k distinct primes, the number of pairs e, d ∈ N (we
may drop the condition e, d ∈ D since we are proving an upper bound) for
which f = [e, d] equals to the number of ways to write {1, 2, . . . , k} as A∪B
for a pair of sets A, B. These pairs are in 1-1 correspondence with colorings
of {1, 2, . . . , k} by three colors—one color for the elements in A\B, another
color for the elements in B\A, and the third color for the elements in A∩B—
and are therefore counted by 3k = 3ω(f). Summing over squarefree f < z2,
we get ∑

e,d∈D

|r[e,d]| ≤
∑

µ(f) 6=0,f<z2

3ω(f)|rf .

2

Now we bound r(n). Let n ∈ N be even. We set

A = (m(n−m) : 1 ≤ m ≤ n− 1)

and z = n1/8. It follows that r(n) is the number of terms a of the sequence
A with Ω(n) = 2 and that

r(n) ≤ 2z + S(A, z) = 2n1/8 + S(A, n1/8).

For a squarefree d ∈ N, Ad is the number of solutions of the congruence

m(n−m) ≡ 0 (mod d)

in the set 1 ≤ m ≤ n − 1. For d = p1 . . . paq1 . . . qb, where the primes pi

divide n and the primes qi do not divide n, the congruence has 2b solutions
in congruence classes modulo d. Indeed, by the Chinese remainder theorem,
the congruence is equivalent to the system

m ≡ 0 ∨m ≡ n (mod p) p ∈ {p1, . . . , pa, q1, . . . , qb}
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where for p = pi the two corresponding conguences coincide while for p = qi

they are distinct (and have no common solution) and the 2b possible selections
of the right sides in the system 1-1 correspond to 2b solutions of the original
congruence. Fixing a congruence class c modulo d, we have at least b(n −
1)/dc and at most d(n − 1)/de solutions to m ≡ c (mod d) in the set
1 ≤ m ≤ n− 1. We see that

2b
⌊
n− 1

d

⌋
≤ Ad ≤ 2b

⌈
n− 1

d

⌉
.

We set, for any d ∈ N,

g(d) =
2b

d
where b is the sum of exponents in the prime decomposition of d of those
prime factors that do not divide n. The above estimate of Ad shows that for
squarefree d the error rd in

Ad = g(d)|A|+ rd = g(d)(n− 1) + rd

satisfies
|rd| ≤ 2b ≤ 2ω(d).

It is easy to see that g(d) is completely multiplicative and that 0 < g(d) < 1
for d > 1 because n is even.

Theorem. There is a constant c > 0 such that for every n ≥ 2 we have

r(n) = #(solutions to n = p + q) <
cn

(log n)2

∏
p|n

(
1 +

1

p

)
.

Proof. By Selberg’s sieve, we have (z = n1/8)

r(n) ≤ 2n1/8 + S(A, n1/8) ≤ 2n1/8 +
n− 1∑
k<z g(k)

+
∑

µ(k) 6=0,k<z2

3ω(k)|rk.

As for the last sum, the above estimate on |rd| shows that∑
µ(k) 6=0,k<z2

3ω(k)|rk| ≤
∑

µ(k) 6=0,k<z2

6ω(k) =
∑

µ(k) 6=0,k<z2

(
2ω(k)

)log2 6

≤
∑

µ(k) 6=0,k<z2

klog2 6 (2ω(k) ≤ k for squarefree k)

≤ z2 · z2 log2 6 = n(2+2 log2 6)/8

< n9/10.
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Thus the last sum of errors |rk| is negligible.
We need a lower bound on

∑
k<z g(k). Let d(k) be the number of divisors

of k, dn(k) be the number of divisors of k that are coprime with n, and Pn

be the set of numbers composed only of primes dividing n:

∏
p|n

(
1− 1

p

)−1

=
∑

k∈Pn

1

k
.

Let si be the exponents in the prime decomposition of k of the prime factors
not dividing n. Then

g(k) =
2s1+s2+···

k
≥
∏

(si + 1)

k
=

dn(k)

k
.

We have ∑
k<z g(k)∏

p|n(1− 1/p)
≥

∑
k<z

dn(k)

k

∑
l∈Pn

1

l

=
∑
k<z

dn(k)
∑

k|t, t/k∈Pn

1

t

=
∞∑

t=1

1

t

∑
k<z, k|t, t/k∈Pn

dn(k)

≥
∑
t<z

1

t

∑
k|t, t/k∈Pn

dn(k).

To evaluate the inner sum, we split t = t1t2 where t1 ∈ Pn and (t2, n) =
1. Then k runs through the numbers it2 with i|t1 and the sum contains
d(t1) summands, each of which equals d(t2). Thus the inner sum equals
d(t1)d(t2) = d(t) (since (t1, t2) = 1 and d(·) is multiplicative). So

|A|∑
k<z g(k)

< n ·
∏

p|n(1− 1/p)−1∑
t<z d(t)/t

.

Replacing (1−1/p)−1 with 1+1/p in the product costs only a constant factor:

∏
p|n

(
1− 1

p

)−1

=
∏
p|n

(
1 +

1

p

)∏
p|n

(
1− 1

p2 − 1

)
�
∏
p|n

(
1 +

1

p

)
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because the product
∏

p(1+ (p2− 1)−1) converges. Dirichlet’s asymptotics in
the divisor problem implies that

D(x) =
∑
t<x

d(t) = x log x + O(x).

This by Abel’s partial summation gives

∑
t<z

d(t)

t
=

D(z)

z
−
∫ z

1
D(t)(1/t)′ dt

=
(log z)2

2
+ O(log z)

=
(log n)2

128
+ O(log n).

We conclude that

r(n) ≤ 2n1/8 + S(A, n1/8) ≤ |A|∑
k<z g(k)

+ O(n9/10) � n

(log n)2

∏
p|n

(
1 +

1

p

)
.

2

2.3 Conclusion of the proof

Let X = {1} ∪ 2P be the set consisting of 1 and sums of two primes. Using
the upper bound on r(n) = # (solutions of p + q = n) obtained in the
previous section, we prove that X(n) = |X∩{1, 2, . . . , n}| > cn for all n ∈ N
for an absolute constant c > 0. This gives σ(X) > 0. Assuming this result,
the theorem in section 2.1 tells us that X is an additive basis of order at
most h. Thus every n ∈ N is a sum of at most 2h summands, each of which
is 1 or a prime number. To get rid of the 1 summands for n > 1, we take
n > 2 (for n = 2 Shnirel’man’s theorem holds) and write

n = 2 + (n− 2) = 2 + a1 + · · ·+ ak

where ai ∈ {1} ∪ P and k ≤ 2h. If no ai = 1, n is expressed as a sum of
k + 1 primes. If ai = 1 for exactly one i, we delete this ai and the first 2
and replace them by 3. If ai = 1 for more than one i, we delete all 1’s and
replace them by smaller number of 2’s and 3’s with the same sum (convince
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yourself that this is possible). In all cases we obtain an expression of n as a
sum of at most k + 1 ≤ 2h + 1 primes.

Now we obtain the desired lower bound on X(n). We prove that (2P )(n) >
cn for every n ≥ 4 for a constant c > 0. Let n ≥ 4 be arbitrary. By the
Cauchy–Schwarz inequality,( n∑

m=4

r(m)
)2

≤
( n∑

m=4,r(m)>0

12
)( n∑

m=4

r(m)2
)

= (2P )(n) ·
( n∑

m=4

r(m)2
)

and we have

X(n) > (2P )(n) ≥ (
∑n

m=4 r(m))2∑n
m=4 r(m)2

.

The sum in the numerator counts all pairs of primes p, q such that p + q ≤ n
and therefore, for n ≥ 4,

n∑
m=4

r(m) ≥ π(n/2)2 � n2/(log n)2.

By the upper bound on r(m) proved in the theorem in section 2.3, the sum
in the denominator satisfies

n∑
m=4

r(m)2 �
n∑

m=4

m2

(log m)4

∏
p|m

(
1 +

1

p

)2

≤ n2

(log n)4

n∑
m=4

∏
p|m

(
1 +

1

p

)2

.

As for the last sum,
n∑

m=4

∏
p|m

(
1 +

1

p

)2

≤
n∑

m=4

(∑
d|m

1

d

)2

=
n∑

m=4

(∑
d|m

1

d

)(∑
e|m

1

e

)

=
∑
d,e

1

de

n∑
m=4,d|m,e|m

1 ≤ n
∑
d,e

1

de[d, e]

≤ n
∑
d,e

1

(de)3/2
(since [d, e] ≥ max(d, e) ≥

√
de)

= n
( ∞∑

d=1

1

d3/2

)2

� n.

Thus, for n ≥ 4,

(2P )(n) � (n2/(log n)2)2

n3/(log n)4
� n.

This finishes the proof of Shnirel’man’s theorem.
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2.4 Lemma on numbers λ∗d

It remains to prove the lemma on numbers λ∗d used in derivation of Selberg’s
sieve. Recall that z > 0,

D = D(z) = {n ∈ N | µ(n) 6= 0, n < z}

is the set of squarefree numbers smaler than z,

g : N → (0, 1]

is a completely multiplicative function satisfying g(1) = 1 and 0 < g(n) < 1
for n > 1, and G is a quadratic form in |D| variables λd corresponding to the
elements d ∈ D, defined by

G(λd : d ∈ D) =
∑

d1,d2∈D

g(d1)λd1g(d2)λd2

g((d1, d2))
.

For l ∈ N we define

f(l) =
∑
d|l

µ(d)

g(l/d)
=

1

g(l)

∑
d|l

µ(d)g(d) =
1

g(l)

∏
p|l

(1− g(p)) > 0.

Note that f(l) is multiplicative (f(ab) = f(a)f(b) whenever (a, b) = 1) and
that by Möbius inversion formula

1

g(k)
=
∑
d|k

f(d).

For d ∈ D we set

αd =
∑

l, dl∈D

1

f(l)
.

In the next lemma we define the numbers λ∗d and in the parts 1, 3, and 4 we
prove all their required properties. In the proof we use the notation, for a
condition C,

〈C〉 =

{
1 C holds
0 C does not hold.

Lemma. For d ∈ D, let

λ∗d =
µ(d)αd

f(d)g(d)α1

.

Then
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1. λ∗1 = 1 and |λ∗d| ≤ 1 for every d ∈ D.

2. For every k ∈ D we have
∑

d∈D〈k|d〉 · g(d)λ∗d = µ(k)/(α1f(k)).

3. G(λ∗d : d ∈ D) = (α1)
−1.

4. α1 =
∑

k∈D f(k)−1 ≥ ∑
k<z g(k).

Proof. 1. Since µ(1) = g(1) = f(1) = 1, λ∗1 = 1. For any d ∈ D we have

α1 =
∑
k∈D

1

f(k)
=
∑

l

〈l|d〉
∑
k∈D

〈(k, d) = l〉
f(k)

=
∑

l

〈l|d〉
f(l)

∑
m

〈ml ∈ D & (m, d/l) = 1〉
f(m)

≥
∑

l

〈l|d〉
f(l)

∑
m

〈md ∈ D〉
f(m)

=
∑
m

〈md ∈ D〉
f(m)

∑
l

〈l|d〉
f(l)

=
αd

f(d)

∑
l

〈l|d〉f(d/l)

=
αd

f(d)g(d)

where in the last transformation we used the above expression for 1/g(k).
Thus |λ∗d| = αd/(f(d)g(d)α1) ≤ 1.
2. Let k ∈ D. Then

∑
d∈D

〈k|d〉g(d)λ∗d =
∑
d∈D

〈k|d〉g(d)
µ(d)αd

f(d)g(d)α1

=
1

α1

∑
l

〈kl ∈ D〉µ(kl)αkl

f(kl)

=
µ(k)

α1f(k)

∑
l

〈kl ∈ D〉µ(l)

f(l)

∑
m

〈klm ∈ D〉
f(m)

=
µ(k)

α1f(k)

∑
l

〈kl ∈ D〉µ(l)
∑
m

〈klm ∈ D〉
f(lm)

=
µ(k)

α1f(k)

∑
n

〈kn ∈ D〉
f(n)

∑
l

〈l|n〉µ(l)

=
µ(k)

α1f(k)
(by the property

∑
l|n µ(l) = δ1,n).
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3.

G(λd : d ∈ D) =
∑

di∈D

g(d1)λd1g(d2)λd2

g((d1, d2))

=
∑

di∈D

∑
k|di

f(k)g(d1)λd1g(d2)λd2 (above expression for 1/g(k))

=
∑
k∈D

f(k)
∑

di∈D

〈k|d1 & k|d2〉g(d1)λd1g(d2)λd2

=
∑
k∈D

f(k)
( ∑

d∈D

〈k|d〉g(d)λd

)2
.

For λd = λ∗d we get, using part 2,

G(λ∗d : d ∈ D) =
∑
k∈D

f(k)

(
µ(k)

α1f(k)

)2

=
1

α2
1

∑
k∈D

1

f(k)
=

1

α1

.

4.

α1 =
∑
k∈D

1

f(k)
=

∑
k∈D

g(k)
∏
p|k

(1− g(p))−1

=
∑
k∈D

g(k)
∏
p|k

(1 + g(p) + g(p2) + · · ·)

=
∑
k∈D

g(k)
∑

l

〈p|l ⇒ p|k〉g(l)

=
∑
k,l

〈k ∈ D & (p|l ⇒ p|k)〉g(kl)

=
∑
m

g(m)
∑
k

〈k ∈ D & k|m & (p|(m/k) ⇒ p|k)〉

≥
∑
m<z

g(m)

because for m < z the last inner sum is always ≥ 1 (set k to be the product
of all prime factors of m). 2

2.5 Remarks
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Chapter 3

Roth’s theorem on arithmetic
progressions

Two famous theorems were proved by Klaus Roth (1925). The first one ([7]),
which weighted most in awarding him the Fields medail in 1958, asserts that
for every real irrational algebraic number α and every ε > 0 the inequality∣∣∣∣∣α− p

q

∣∣∣∣∣ < 1

q2+ε

has only finitely many solutions in rational numbers p/q ∈ Q. Here we will be
interested in other Roth’s theorem that concerns arithmetic progressions of
length 3. Let r3(n) be the maximum size of a subset A ⊂ [n] = {1, 2, . . . , n}
which contains no proper arithmetic progression of length 3, that is, there
does not exist a triple a, a + d, a + 2d of elements in A with d > 0. In 1952
Roth proved in [5] (see also [6]) that r3(n)/n → 0 as n →∞. An equivalent
formulation of this result is as follows.

Theorem 3.0.1 (Roth 1952) For every δ > 0 there is an n0 ∈ N such
that if n > n0 and A ⊂ [n] is any set with |A| > δn elements, then A must
contain a proper arithmetic progression of length 3.

In Sections 3.2 and 3.3 we give an analytic proof of Roth’s theorem using
so called circle method. In Section 3.4 and 3.5 we give a completely different
combinatorial proof by means of extremal graph theory. More comments and
references on Roth’s theorem follow in Section 3.5.
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3.1 An analytic proof

For real t we consider the function (i =
√
−1 is the imaginary unit)

e(t) = exp(2πit)

that maps R to the unit circle in C. Properties of the exponential function
tell us that

e(t)e(u) = e(t + u), e(t)m = e(mt) for m ∈ Z, and e(t) = e(−t) = 1/e(t).

For integers m ∈ Z we have the fundamental identity

∫ 1

0
e(mt) dt = 〈m = 0〉 =

{
1 if m = 0
0 if m 6= 0

because m = 0 gives
∫ 1
0 e(0) dt =

∫ 1
0 1 dt = 1 and m 6= 0 gives

∫ 1

0
e(mt) dt =

[
1

2πim
exp(2πimt)

]1
0

=
1− 1

2πim
= 0.

Let f, g ∈ C[z, z−1] be two Laurent polynomials, that is to say

f(z) =
∑
k∈Z

akz
k and g(z) =

∑
k∈Z

bkz
k

with ak, bk ∈ C and only finitely many nonzero aks and bks. The properties
of e(t) imply that∫ 1

0
f(e(t))g(e(t)) dt =

∑
j,k

ajbk

∫ 1

0
e((j − k)t) dt =

∑
j

ajbj.

For f(z) = g(z) we get the Parseval identity∫ 1

0
|f(e(t))|2 dt =

∑
j

|aj|2.

Finally, we have the Cauchy–Schwarz inequality

∫ 1

0
|f(e(t))g(e(t))| dt ≤

(∫ 1

0
|f(e(t))|2 dt

)1/2 (∫ 1

0
|g(e(t))|2 dt

)1/2

,

28



which of course holds in far more general situations than just for Laurent
polynomials.

For a set A ⊂ [n] we denote

fA(z) =
∑
a∈A

za =
n∑

k=1

〈k ∈ A〉zk

and
p3(A) = #{(a, a + d, a + 2d) ∈ A3 | d ≥ 0}.

The function p3(A) counts arithmetical progressions of length 3 in A, includ-
ing the degenerate ones (a, a, a) with d = 0. Thus

p3(A) = |A|+ #(proper APs of length 3 in A)

and p3(A) = |A| ≤ n if A contains no proper AP of length 3. Notice that
the parametrization x = a, y = a + 2d, z = a + d gives equivalent formula

p3(A) = #{(x, y, z) ∈ A3 | x + y = 2z}.

This and the fundamental identity give the integral reprezentation

p3(A) =
∫ 1

0
fA(e(t))2 · fA(e(−2t)) dt.

To handle this integral, we return to combinatorics. The following result
(we leave its proof as an exercise) is sometimes called the Fekete lemma.

Lemma. Let (an)n≥1 be a sequence of nonnegative real numbers satisfying
am+n ≤ am + an for all m, n ≥ 1 or am+n ≥ am + an for all m, n ≥ 1. Then
the limit

L = lim
n→∞

an

n

exists (in the former case it may be L = ∞). Moreover, an/n ≥ L for all
n ≥ 1 in the former case and an/n ≤ L for all n ≥ 1 in the latter case.

It is easy to see that

r3(m + n) ≤ r3(m) + r3(n)

for all m,n ≥ 1: If A ⊂ [m + n] contains no AP of length 3 and |A| =
r3(m + n), then the sets A ∩ [n] and A ∩ [m + 1, m + n] contain no AP
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of length 3 and their sizes, which sum up to r3(m + n), are thus bounded
by r3(m) and r3(n), respectively (if the latter set is shifted to lie in [n], no
arithmetical progression in it is created). By Fekete lemma, there exists a
constant

d3 = lim
n→∞

r3(n)

n
∈ [0, 1]

and r3(n) ≥ d3n for all n ≥ 1. Roth’s theorem amounts to proving that
d3 = 0.

We have used certain combinatorial properties of sets free of APs of length
3 and it will be useful to state them explicitly. If A contains no AP of length
3, then

• any subset B ⊂ A contains no AP of length 3 as well and

• any affine image αA + β = {αa + β | a ∈ A}, where α ∈ Q and β ∈ Z,
contains no AP of length 3 as well.

These two properties are crutial for dealing with r3(n). They are valid for
the class of sets free of APs of length k ≥ too.

Let An ⊂ [n] be a set witnessing r3(n) (A contains no AP of length 3 and
has size r3(n)) and let

gn(z) = d3z + d3z
2 + · · ·+ d3z

n.

Then

fAn(1)− gn(1) = |An| − d3n = r3(n)− d3n = o(n) as n →∞.

The key step is to prove that this remains true when 1 is replaced with any
z on the unit circle |z| = 1.

Proposition 3.1.1 In the above notation, for n → ∞ we have, uniformly
on the unit circle |z| = 1, that

fAn(z)− gn(z) = o(n).

This means that for every ε > 0 there is an n0 = n0(ε) such that for every
n > n0 we have

max
|z|=1

|fAn(z)− gn(z)| < εn.
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We defer the proof in the next section. Note that one has the weaker trivial
bound

max
|z|=1|

fAn(z)− gn(z)| ≤ max(d3, 1− d3)n.

Using the Proposition, we conclude the proof of Roth’s theorem. We take
a sequence of sets An ⊂ [n] as before (i.e., witnessing the values r3(n)), set

f(z) = fAn(z) =
∑

a∈An

za and g(z) = gn(z) = d3

n∑
k=1

zk,

and write
f(z) = g(z) + (f(z)− g(z)) = g(z) + h(z).

By the integral formula for p3(A),

n ≥ |An| = p3(An) =
∫ 1

0
f(e(t))2 · f(e(−2t)) dt

=
∫ 1

0
(g(e(t)) + h(e(t)))2 · (g(e(−2t)) + h(e(−2t))) dt

=
∫ 1

0
g(e(t))2 · g(e(−2t)) dt + seven integrals

= d3
3

∫ 1

0
g0(e(t))

2 · g0(e(−2t)) dt + seven integrals

where g0(z) = z + z2 + · · ·+ zn and each of the seven integrals has the form∫ 1

0
a(e(t)) · b(e(t)) · c(e(−2t)) dt

with a(z), b(z), c(z) ∈ {g(z), h(z)} and at least one of a(z), b(z), c(z) equal to
h(z).

Since g0(z) = z + z2 + · · ·+ zn = f[n](z), the first integral is equal to

p3([n]) = n + (n− 2) + (n− 4) + · · ·+ (n− 2bn/2c)
= bn/2c(dn/2e − 1) + n

= n2/4 + O(n).

We show that each of the remaining seven integrals is o(n2). We demostrate
it on the case b(z) = h(z), the other cases are virtually identical. By the
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Proposition, h(e(t)) = o(n) uniformly in t ∈ [0, 1] and so∣∣∣∣∫ 1

0
a(e(t)) · h(e(t)) · c(e(−2t)) dt

∣∣∣∣ ≤
∫ 1

0
|h(e(t))| · |a(e(t)) · c(e(−2t))| dt

= o(n)
∫ 1

0
|a(e(t)) · c(e(−2t))| dt.

By the Cauchy-Schwarz inequality this is at most

o(n)
(∫ 1

0
|a(e(t))|2 dt

)1/2 (∫ 1

0
|c(e(−2t))|2 dt

)1/2

.

Since a(z) and c(z−2) are Laurent polynomials with at most n nonzero coef-
ficients which all lie in [0, 1], the Parseval identity tells us that each of the
two integrals is ≤ n. Thus∣∣∣∣∫ 1

0
a(e(t)) · h(e(t)) · c(e(−2t)) dt

∣∣∣∣ ≤ o(n)
√

n
√

n = o(n2).

Alltogether, we conclude that

n ≥ |An| = p3(An) = d3
3n

2/4 + o(n2).

This forces d3 = limn→∞ r3(n)/n = 0, which proves Roth’s theorem.

3.2 Proof of the uniform bound on the unit

circle

In this section we prove Proposition 3.1.1 on the uniform behaviour of
∑

a∈An
za−

d3
∑n

k=1 zk on the unit circle. We begin with four lemmas.
For a polynomial p(z) = a0 + a1z + · · ·+ anz

n and 0 ≤ m ≤ n we define
pm(z) = a0 + a1z + · · ·+ amzm; thus pn(z) = p(z).

Lemma 3.2.1 Suppose that p(z) = a0 + a1z + · · · + anz
n is a polynomial,

numbers u, ζ ∈ C lie on the unit circle, and |pm(ζ)| ≤ M holds for all
0 ≤ m ≤ n with a constant M > 0. Then

|p(u)| ≤ M(n|u− ζ|+ 1).
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Proof. If z is a variable and ζ ∈ C is nonzero, we have the identity

p(z)

1− z/ζ
=

n−1∑
m=0

pm(ζ)(z/ζ)m +
p(ζ)(z/ζ)n

1− z/ζ
,

which follows by expanding the left side in geometric series:

p(z)
∑
n≥0

(z/ζ)n = a0 + (a0 + a1ζ)(z/ζ) + (a0 + a1ζ + a2z
2)(z/ζ)2 + · · · .

Hence, because |u| = |ζ| = 1,

|p(u)| ≤ |1− u/ζ|
n−1∑
m=0

|pm(ζ)| · |(u/ζ)m|+ |p(ζ)| · |(u/ζ)n|

= |ζ − u|
n−1∑
m=0

|pm(ζ)|+ |p(ζ)|

≤ |ζ − u| · nM + M.

2

Lemma 3.2.2 For every u ∈ C lying on the unit circle and every N ∈ N
there is an ω lying on the unit circle and such that ωa = 1 for some a ≤ N
(ω is the a-th root of unity) and

|u− ω| < 2π

a(N + 1)
.

Proof. Consider the N + 1 numbers 1, u, u2, . . . , uN on the unit circle. Its
length is 2π and therefore two of the numbers lie within arc distance at most
2π/(N + 1). Thus |uj − ui| < 2π/(N + 1) for some 0 ≤ i < j ≤ N and
|ua − 1| < 2π/(N + 1) where 0 < a = j − i ≤ N . Consider the a-th roots
of the number ua. These are vertices of a regular a-gon R inscribed in the
unit circle; one vertex w coincides with u and another vertex v is close to 1,
|v − 1| < 2π/a(N + 1). We rotate R around the origin so that v is moved
to 1 and obtain a regular a-gon R′ whose vertices are a-th roots of unity.
Vertex w is rotated to a number ω which is an a-th root of unity and satisfies
|u− ω| < 2π/a(N + 1). 2

We extend the function r3(n) to positive real numbers by setting r3(x) =
r3(dxe). We know that r3(x)−d3x = o(x) but it is not clear whether r3(x)−
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d3x is monotonous. It would be convenient to have a monotonous quantity
and therefore we define

R(x) = max
1≤t≤x

r3(t)− d3t.

Lemma 3.2.3 R(x) ≥ 0, is nondecreasing and R(x) = o(x) as x →∞

Proof. The first two properties are clear from the definition. We show that
R(x) = o(x). Given ε > 0, we take x0 such that t > x0 implies r3(t)−d3t < εt
and then an x1 > x0 such that x0/x1 < ε. Then for x > x1 we have R(x) =
r3(t0)− d3t0 for some t0 ∈ [1, x]. If t0 > x0, R(x) = r3(t0)− d3t0 < εt0 ≤ εx.
If t0 ≤ x0, R(x) = r3(t0)− d3t0 ≤ r3(t0) ≤ t0 ≤ x0 < εx1 < εx. 2

Let An ⊂ [n] be a set of size r3(n) not containing any AP of length 3 and

q(z) = fAn(z)− gn(z) =
n∑

k=1

(〈k ∈ An〉 − d3)z
k.

Recall that for 0 ≤ m ≤ n, qm(z) is the initial sum of q(z) obtained by
replacing the upper summation index n by m.

Lemma 3.2.4 If n ∈ N and ω ∈ C is an a-th root of unity, i.e. ωa = 1,
then for every 0 ≤ m ≤ n

|qm(ω)| < 2aR(n/a) + R(n).

Proof. For a, b, m ∈ N we denote α(b, a, m) and β(b, a, m) the number of
elements in An ∩ [m], respectively in [m], which are congruent to b modulo
a. Note that

a∑
b=1

α(b, a, m) = |An ∩ [m]| and
a∑

b=1

β(b, a, m) = m.

Also,

|An∩ [m]| = r3(n)−|An∩ [m+1, n]| ≥ r3(n)− r3(n−m) ≥ d3n− r3(n−m).
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Now, because ωc = ωb whenever c ≡ b modulo a, we can write

|qm(z)| =

∣∣∣∣∣
a∑

b=1

ωb(α(b, a, m)− d3β(b, a, m))

∣∣∣∣∣
≤

a∑
b=1

|α(b, a, m)− r3(m/a) + r3(m/a)− d3β(b, a, m)|

≤
a∑

b=1

(r3(m/a)− α(b, a, m)) +
a∑

b=1

(r3(m/a)− d3β(b, a, m)),

where we have used that r3(m/a) ≥ α(b, a, m) because the set {c ∈ An | c ≤
m & c ≡ b (mod a)}, counted by α(b, a, m), can be affinely mapped to
[bm/ac], and that r3(m/a) = r3(dm/ae) ≥ d3dm/ae ≥ d3β(b, a, m). Thus

|qm(z)| ≤ 2ar3(m/a)− |An ∩ [m]| − d3m

≤ 2ar3(m/a)− d3n + r3(n−m)− d3m

= 2a(r3(m/a)− d3m/a) + (r3(n−m)− d3(n−m))

≤ 2aR(n/a) + R(n)

due to the monotonicity of R(x). 2

Proof of Proposition 3.1.1. Let ε > 0 be given. We want to estimate

|q(z)| =
∣∣∣∣∣

n∑
k=1

(〈k ∈ An〉 − d3)z
k

∣∣∣∣∣
when n is big and z, |z| = 1, is arbitrary. We take an n0 ∈ N such that
x ≥ n0 implies R(x) < εx and then an n1 ∈ N such that x ≥ n1 implies
R(x) < (ε/n0)x (Lemma 3.2.3). Let n > n1 and z ∈ C be an arbitrary
number on the unit circle. We set N = bn/n0c and use Lemma 3.2.2:

|z − ω| < 2π

a(N + 1)

for some a-th root of unity ω, where 1 ≤ a ≤ N . By Lemma 3.2.1, applied
with M = 2aR(n/a) + R(n) (Lemma 3.2.4),

|q(z)| ≤ (2aR(n/a) + R(n)) · (1 + n|z − ω|)
< (2aR(n/a) + R(n)) · (1 + 2πn0/a).

35



We distinguish two cases. If a ≤ n0, then using R(n/a) ≤ R(n) < (ε/n0)n
we get

|q(z)| ≤ R(n) · (2a + 1)(1 + 2πn0/a)

≤ R(n) · (3a + 6πn0)

< (ε/n0)n · 22n0

= 22εn.

If the remaining case n0 ≤ a ≤ N we have n/a ≥ n/N ≥ n0 and R(n/a) <
εn/a. Thus

|q(z)| ≤ (2aR(n/a) + R(n)) · (1 + 2π)

≤ (2aεn/a + εn) · (1 + 2π)

≤ 3εn(1 + 2π)

< 22εn.

2

3.3 A graph-theoretical proof

A graph G is a pair
G = (V, E)

where V is a finite set of vertices and E ⊂
(

V
2

)
is a set of two-element subsets

of V , called edges. A triangle T in G is a triple of vertices {a, b, c} such that
every pair {a, b}, {a, c}, and {b, c} is an edge of G. A set of triangles in G is
edge-disjoint if every two triangles from the set are either disjoint or intersect
only in one vertex, that is, they do not share an edge.

Theorem 3.3.1 (triangle removal lemma) For every δ > 0 there is an
n0 ∈ N such that the following holds. If n > n0 and G is a graph on n vertices
that contains m edge-disjoint triangles T1, T2, . . . , Tm where m > δn2, then
G must contain a triangle distinct from all triangles Ti.

Note that always m ≤
(

n
2

)
/3 < n2/6 because the edge sets of T1, . . . , Tm are

disjoint. The theorem says that if G has, in the order of magnitude, so many
edge-disjoint triangles, then for big enough n there must be three of them
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whose vertex sets pairwise intersect so that the three intersections do not
coincide in one vertex. In the next Section we establish Theorem 3.3.1 in a
stronger form by proving that in fact G must contain � n3 triangles. Let us
see now how Theorem 3.3.1 implies Roth’s theorem.

Corollary 3.3.2 For every δ > 0 there is an n0 ∈ N such that the following
holds. If n > n0 and X ⊂ [n]× [n] is a set satisfying |X| > δn2, then X must
contain a proper equilateral right-angle triangle, that is, a triple of elements
(a, b), (a + d, b), and (a, b + d) where d is not zero.

Proof. Let n > n0 and X ⊂ [n] × [n] with |X| > δn2 be given. We
define an appropriate graph G = (V, E) on the set V of horizontal, vertical
and skew lines in [n] × [n]. A horizontal (vertical) line is an n-element set
{(m,n) | m ∈ [n]} where n ∈ [n] (a set {(m, n) | n ∈ [n]} where m ∈ [n])
and a skew line is a set {(m, n) | m, n ∈ [N ], m + n = p} where p ∈ [2, 2n].
Thus |V | = 4n− 1. Two lines k, l form an edge in E if and only if k ∩ l ∈ X.
Note that a triangle in G is formed by three lines, one horizontal, one vertical
and one skew, which pairwise intersect in points lying in X. It may happen
that the three intersections coincide in one point v ∈ X (so the three lines
go through the common point v). We denote such triangle as Tv. Triangles
Tv are edge-disjoint because two lines intersect in at most one point, and we
have exactly |X| > δn2 of them. By Theorem 3.3.1, G contains a triangle T
that is distinct from all Tv, v ∈ X. The lines in T must intersect in three
distinct points, which form the desired proper equilateral right-angle triangle
in X. 2

Corollary 3.3.3 For every δ > 0 there is an n0 ∈ N such that if n > n0 and
A ⊂ [n] satisfies |A| > δn, then A contains a proper arithmetic progression
of length 3.

Proof. Let n > n0 and A ⊂ [n] with |A| > δn be given. Consider the set
X ⊂ [n]× [n] defined by

(a, b) ∈ X ⇐⇒ a + 2b ∈ A.

Since for fixed c ∈ A the number of solutions of a + 2b = c for a, b ∈ [n] is at
least bn/2c − 1, we have

|X| ≥
∑
c∈A

bn/2c − 1 = |A|(bn/2c − 1) > δn2/2− 2δn.
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By the previous corollary, for big enough n the set X contain a triple (a, b),
(a+ d, b), and (a, b+ d) with d 6= 0. Hence the proper arithmetic progression
a + 2b, a + d + 2b, a + 2b + 2d with difference d lies in A. 2

3.4 Szemerédi’s regularity lemma

We first introduce ε-regular pairs and prove that a tripartite graph in which
each two parts form an ε-regular pair contains many triangles (counting
lemma). Then we state the regularity lemma and prove by means of it and
by means of the counting lemma Theorem 3.3.1. In conclusion we prove the
regularity lemma.

Let G = (V, E) be a graph and X, Y ⊂ V be two disjoint sets. We denote
by e(X,Y ) the number of edges in G joining X and Y , and by d(X,Y ) the
density of these edges:

d(X, Y ) =
e(X,Y )

|X| · |Y |
.

We say that (X, Y ) is an ε-regular pair if for every subset X1 ⊂ X and
Y1 ⊂ Y satisfying |X1| ≥ ε|X| and |Y1| ≥ ε|Y | one has

|d(X1, Y1)− d(X, Y )| < ε.

For x ∈ X we denote

ΓY (x) = {y ∈ Y | {x, y} ∈ E},

the set of neighbors of x in Y . Clearly, |ΓY (x)| = e({x}, Y ).

Lemma 3.4.1 Let (X, Y ) be an ε-regular pair with edge density d = d(X,Y )
in a graph G = (V, E) and let X1 ⊂ X and Y1 ⊂ Y be subsets satisfying|X1| ≥
ε|X| and |Y1| ≥ ε|Y |. Then there exists a vertex x ∈ X1 such that

|ΓY1(x)| > (d− ε)|Y1|.

The same is true with the inequality < (d + ε)|Y1|.

Proof. If this were not true, then |ΓY1(x)| ≤ (d − ε)|Y1| would hold for
every x ∈ X1 and we would get

e(X1, Y1) =
∑

x∈X1

|ΓY1(x)| ≤ (d− ε)|X1| · |Y1|
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and d(X1, Y1) ≤ d − ε, contradicting the regularity of the pair (X,Y ). The
proof of the other inequality is similar. 2

Proposition 3.4.2 (counting lemma) If G = (U ∪ V ∪W, E) is a tripar-
tite graph (edges go only between the sets U and V , U and W , and V and
W ) with all three pairs (U, V ), (U,W ), and (V, W ) ε-regular, then, denoting
the edge densities by κ = d(U, V ), λ = d(U,W ), and µ = d(V, W ),

#triangles in G > (κλµ− 5ε− ε3)|U | · |V | · |W |.

Proof. The proposition holds trivially if one of the densities is smaller than
2ε (then κλµ − 5ε − ε3 < 2ε − 5ε − ε3 < 0). We will therefore assume that
κ, λ, µ ≥ 2ε. Let

U1 = {u ∈ U | |ΓV (u)| ≤ (κ− ε)|V |}.

By the previous lemma, we must have |U1| < ε|U |. The same is true, by
Lemma 3.4.1, for the subset U2 defined by the condition

|ΓW (u)| ≤ (λ− ε)|W |.

Thus the set U0 = U\(U1∪U2) satisfies |U0| ≥ (1−2ε)|U | and if u ∈ U0 then

|ΓV (u)| > (κ− ε)|V | and |ΓW (u)| > (λ− ε)|W |.

Because κ − ε, λ − ε ≥ ε and the pair (V, W ) is ε-regular, for every u ∈ U0

we have
e(ΓV (u), ΓW (u)) > (µ− ε)|ΓV (u)| · |ΓW (u)|.

This is a lower bound on the number of triangles with one vertex in u be-
cause every edge joining ΓV (u) and ΓW (u) forms together with u a triangle.
Summing over U0, we get the lower bound

#triangles in G >
∑

u∈U0

e(ΓV (u), ΓW (u)) > (µ− ε)
∑

u∈U0

|ΓV (u)| · |ΓW (u)|

> (µ− ε)|U0| · (κ− ε)|V | · (λ− ε)|W |
> (1− 2ε)(κ− ε)(λ− ε)(µ− ε)|U | · |V | · |W |
> (κλµ− 3ε− ε3 − 2ε)|U | · |V | · |W |,

which proves the stated bound. 2

The following decomposition of sufficiently large graphs in ε-regular pairs
is one of the most important results in graph theory.
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Theorem 3.4.3 (Szemerédi’s regularity lemma) For every ε > 0 and
every m ∈ N, there exists an M ∈ N with the property that in every graph
G = (V, E) on more than M vertices the vertex set V can be partitioned as

V = V1 ∪ V2 ∪ . . . ∪ Vr

so that (i) m ≤ r ≤ M , (ii) the cardinalities |Vi| differ among themselves

at most by 1, and (iii) with the exception of at most ε
(

r
2

)
pairs, the pairs

(Vi, Vj), 1 ≤ i < j ≤ r, are ε-regular.

We postpone the proof. Given a parameter h > 0 and a partition of V
described in the regularity lemma, we say that an edge e in G is h-good
with respect to the partition, if e joins two parts Vi and Vj such that the
pair (Vi, Vj) is ε-regular and d(Vi, Vj) ≥ h. Remaining edges of G are called
h-bad; we bound their number.

Lemma 3.4.4 The number of h-bad edges is at most

2(1/m + ε + h)n2.

Proof. An edge e is h-bad iff it lies inside one part Vi or joins two distinct
parts Vi and Vj such that the pair (Vi, Vj) is not ε-regular or d(Vi, Vj) < h.
Thus the number of h-bad edges is at most

r

(
dn/re

2

)
+ ε

(
r

2

)
dn/re2 + h

(
r

2

)
dn/re2.

From n/r > M/M = 1 we have dn/re ≤ 2n/r. This and r ≥ m imply the
stated bound. 2

Proof of Theorem 3.3.1. We prove that if G = (V, E) is a graph on n
vertices containing > δn2 edge-disjoint triangles Ti and n is big (depending
on δ > 0), then

#triangles in G > κn3

for some constant κ > 0 depending only on δ. Thus for big n there are many
more triangles in G than the at most n2/6 edge-disjoint triangles Ti.

Let δ > 0 be given. We fix sufficiently small ε > 0 and sufficiently large
m ∈ N such that

2(1/m + ε + (6ε + ε3)1/3) < δ.
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Let M ∈ N be the constant corresponding to these ε and m in the regularity
lemma and let G = (V, E) be any graph that has n > M vertices and
contains > δn2 edge-disjoint triangles Ti. We consider the partition V =
V1 ∪ V2 ∪ . . . ∪ Vr, m ≤ r ≤ M , ensured by the regularity lemma and delete
from G all h-bad edges, where h = (6ε + ε3)1/3. By Lemma 3.4.4 and by the
selection of ε and m, the resulting graph G′ must still contain at least one
triangle Ti (their edge sets are disjoint and to get rid of all of them, we have
to delete more than δn2 edges). But G′ consists only of h-good edges and it
follows that there must be three parts Vi, Vj, and Vk, 1 ≤ i < j < k ≤ r,
in the partition of V such that all three pairs (Vi, Vj), (Vi, Vk), and (Vj, Vk)
are ε-regular and their edge densities are ≥ h. By Proposition 3.4.2, the
tripartite graph H induced by G on Vi ∪ Vj ∪ Vk satisfies that

#triangles in H > (h3 − 5ε− ε3)|Vi| · |Vj| · |Vk|
> εbn/rc3

> (ε/8M3)n3.

Thus the theorem holds with κ = ε/8M3. 2

3.5 Remarks
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