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LLL

Let A,A1, . . . , An, n ∈ N, be events in a probability space. We say
that A is independent of the events A1, . . . , An, if for every set I ⊂
[n] = {1, 2, . . . , n} one has that

Pr
(
A ∩

⋂
i∈I Ai

)
= Pr(A) · Pr

(⋂
i∈I Ai

)
.

Recall that for I = ∅ we define the intersection over I as Ω. Thus if
Pr(
⋂

i∈I Ai) > 0, the independence of A of the Ais means that

Pr
(
A |
⋂

i∈I Ai

)
= Pr(A) .

A lemma similar to one in the previous lecture holds:

Exercise. If an event A is independent of the events A1, . . . , An, then
A is also independent of the events A′1, . . . , A

′
n where each A′i is either

Ai or Ai = Ω \ Ai. �

For events A1, . . . , An, n ∈ N, we say that a digraph (directed
graph)

D = ([n], E), E ⊂ [n]× [n] ,

is their dependency digraph if for every i ∈ [n] the event Ai is in-
dependent of the events {Aj | j ∈ [n], (i, j) 6∈ E}. So all events
“problematic” with respect to Ai, on which Ai may depend, have
their indices contained in the out-neighbors of i. Dependency digraph
may not be unique. We define ∆(D) to be the maximum out-degree
in D,

∆(G) := max
i∈[n]
|{j ∈ [n] | (i, j) ∈ E}| .
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We state two versions of LLL and prove a third one. Recall that
A = Ω \ A.

Theorem (LLL, general form). Let n ∈ N, x1, . . . , xn ∈ [0, 1),
A1, . . . , An be events in a probability space, and D = ([n], E) be their
dependency digraph. If for every i ∈ [n] one has that

Pr(Ai) ≤ xi
∏
j∈[n]

(i, j)∈E

(1− xj), then Pr
(⋂n

1=1Ai

)
≥

n∏
i=1

(1− xi) > 0

— with a positive probability none of the events Ai occurs.

Theorem (LLL, symmetric form). Let d, n ∈ N, p ∈ [0, 1], and
A1, . . . , An be events in a probability space with Pr(Ai) ≤ p for every
i ∈ [n] and with a dependency digraph D = ([n], E) such that ∆(D) ≤
d. Then (e = 2.71828 . . . is the Euler number)

ep(d+ 1) ≤ 1 ⇒ Pr
(⋂n

i=1Ai

)
> 0 .

LLL was motivated and illustrated by applications in Lecture 7, where
the symmetric form was deduced from the general one. For a proof
of the general form see pp. 64–65 in Alon and Spencer. However,
that proof does not deal with the issue that conditional probability
Pr(A |B) is defined only if Pr(B) > 0. We give here the proof from
the textbook
• M. Mitzenmacher and E. Upfal, Probability and Computing. Ran-
domization and Probabilistic Techniques in Algorithms and Data Anal-
ysis, Cambridge U. Press, 2017,
which is recommended literature for this course, and prove a slightly
weaker symmetric LLL with the inequality 4pd ≤ 1.

Proof. (Mitzenmacher and Upfal, pp. 148–150.) The assumptions
are as in the above symmetric LLL, except that we assume more
restrictively that

4pd ≤ 1 . (0)

We prove by induction on s = 0, 1, . . . , n− 1 that for every k ∈ [n]
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and S ⊂ [n] with |S| = s and k 6∈ S,

Pr
(
Ak |

⋂
i∈S Ai

)
≤ 2p . (∗)

For S = ∅ we define the intersection as Ω. For s = 0 the bound (∗)
holds as Pr(Ak |Ω) = Pr(Ak) ≤ p ≤ 2p. We assume that s > 0 and
that the bound (∗) holds for every S with less than s elements.

To perform the induction step we first prove by inner induction
over |S| that Pr(

⋂
i∈S Ai) > 0. For s = 1 this holds as Pr(Ai) =

1− Pr(Ai) ≥ 1− p > 0 by the assumption (0). For s > 1 we assume,
as we may, that S = {1, 2, . . . , s} and compute that

Pr(
⋂s

i=1Ai)
a=a

b
b
c
c
1=

∏s
i=1

(
Pr(
⋂i

j=1Aj)/Pr(
⋂i−1

j=1Aj)︸ ︷︷ ︸
> 0 by inner ind.

)
prob. of A

=
s∏

i=1

Pr(
⋂i−1

j=1Aj)− Pr(Ai ∩
⋂i−1

j=1Aj)

Pr(
⋂i−1

j=1Aj)

cond. prob.
=

∏s
i=1(1− Pr(Ai |

⋂i−1
j=1Aj) (1)

induction (∗)
≥

∏s
i=1(1− 2p)

(0)
> 0 .

We return to the induction step for the bound (∗) and set S1 :=
{j ∈ S | (k, j) ∈ E} and S2 := S \ S1. If S2 = S then the event Ak

is independent of the events {Aj | j ∈ S} (by the definition of the
digraph D and by the previous exercise) and we get

Pr(Ak |
⋂

j∈S Aj) = Pr(Ak) ≤ p ≤ 2p ,

the bound (∗).
Let |S2| < s. We introduce the notation FS :=

⋂
j∈S Aj, and simi-

larly for FS1
and FS2

. So FS = FS1
∩ FS2

and

Pr(Ak |
⋂

i∈S Ai) =
Pr(Ak ∩ FS)

Pr(FS)
.

Recall that Pr(FS) > 0 by the inner induction, and similarly Pr(FS2
) >

0. We have

Pr(Ak ∩ FS) = Pr(Ak ∩ FS1
∩ FS2

) = Pr(Ak ∩ FS1
|FS2

)Pr(FS2
)

and
Pr(FS) = Pr(FS1

∩ FS2
) = Pr(FS1

|FS2
)Pr(FS2

) .
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Thus

Pr(Ak |FS) =
N

J
:=

Pr(Ak ∩ FS1
|FS2

)

Pr(FS1
|FS2

)
.

We estimate N from above and J from below. In

N = Pr(Ak ∩ FS1
|FS2

) ≤ Pr(Ak |FS2
) = Pr(Ak) ≤ p

the first inequality follows from the monotonicity of probability, the
next equality from the definition of S2 and D (and the previous exer-
cise), and the last inequality is assumed. Since |S2| < |S| = s, we get
that

J
def
= Pr(FS1

|FS2
)

def
= Pr(

⋂
i∈S1

Ai |
⋂

j∈S2
Aj)

de Morgan
= Pr(

⋃
i∈S1

Ai |
⋂

j∈S2
Aj)

union bound
≥ 1−

∑
i∈S1

Pr(Ai |
⋂

j∈S2
Aj)

induction (∗)
≥ 1−

∑
i∈S1

2p

|S1|≤d
≥ 1− 2pd

(0)

≥ 1/2 .

Thus the inequality (∗) is proven,

Pr(Ak |
⋂

i∈S Ai) = Pr(Ak |FS) =
N

J
≤ p

1/2
= 2p .

Finally,

Pr(
⋂n

i=1Ai) =
∏n

i=1

(
1− Pr(Ai |

⋂i−1
j=1Aj)

)
≥
∏n

i=1(1− 2p) > 0

— the first equality is equality (1) for s = n, the next inequality
follows from inequality (∗), and the last inequality is due to 2p < 1
which follows from (0). �

The LLL appeared in a 1975 article by P. Erdős and L. Lovász.

• László Lovász is a Hungarian mathematician, specializing in com-
binatorics, and computer scientist. Of his books one has to mention
Combinatorial Problems and Exercises, AMS, 2007 (previous editions
in 1979 and 1993) and Large Networks and Graph Limits, AMS, 2012.
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A nice application of LLL that you saw in Lecture 7 is as follows.
For any k, d ∈ N with e(d+ 1) ≤ 2k−1, if X is a finite set of finite sets
such that |Y | ≥ k for every Y ∈ X and

∀Y ∈ X : |{Z ∈ X | Z ∩ Y 6= ∅}| ≤ d+ 1 ,

then
∃χ :

⋃
X → [2] : Y ∈ X ⇒ |χ(Y )| > 1 .

In words, every set system X in which each edge has k and more
elements and intersects at most d other edges, has a proper vertex
coloring with two colors (the vertices can be colored by two colors
so that no edge is monochromatic). LLL ensures existence of such
coloring, but can we efficiently — by a polynomial-time algorithm —
find one? The first efficient algorithmic LLL was found by J. Beck
in 1991. His results, and of others, were much improved and gen-
eralized by R. A. Moser and G. Tardos in 2010 (see their preprint
arXiv:0903.0544 and the Wikipedia article Algorithmic Lovász local
lemma). For their article A constructive proof of the general Lovász
Local Lemma, Journal of the ACM 57(2), 11:1–11:15 (2010) they
were awarded the 2020 Gödel Prize.

• József Beck is a Hungarian mathematician who is a professor of
mathematics at the Rutgers University in the USA. He should not
be confused with the Polish politician Józef Beck (1894–1944). His
results in mathematical foundations of the kinetic theory of gases and
in rigorous statistical physics are fundamental (see Lecture 13).

• “Robin Moser obtained his PhD in 2012 from the Swiss Federal
Institute of Technology in Zurich (. . . ) Since 2013, he has worked
developing trading software and as a quantitative analyst for Circular
Capital in the Basel area in Switzerland.” (from the citation to the
2020 Gödel Prize).

• Gábor Tardos is a Hungarian mathematician, currently a professor
at Central European University.

Review of RVs (random variables)
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We review random variables1, especially discrete ones. Recall that
a real-valued function

X : Ω→ R
on a probability space (Ω,Σ,Pr) is a random variable, if for every
a ∈ R one has that

{ω ∈ Ω | X(ω) ≤ a} ∈ Σ .

Following the custom in probability theory we write this set (event)
briefly as {X ≤ a} or as (X ≤ a) or just as X ≤ a. We use this
compact notation also for other events defined in terms of values of
random variables.

Exercise. Show that the above definition is equivalent to the variant
with the strict inequality X(ω) < a. Hint: see the proof of the next
proposition. �

In probability theory and in this course we work with sums and
products of random variables, so we better check that these are again
random variables.

Proposition (sums and products of RVs). If X and Y are ran-
dom variables on a probability space (Ω,Σ,Pr), then their (pointwise)
sum and product

X + Y and XY

are again random variables on the same probability space.

Proof. We show that for every a ∈ R the set {X + Y < a} ∈ Σ,
which by the previous exercise proves that X+Y is a RV. This follows
at once from the fact that (Ω,Σ) is a σ-algebra, from the assumption
that X and Y are random variables, and from the expression

{X + Y < a} =
⋃

b, c∈Q
b+c<a

{X < b} ∩ {Y < c} .

The proof for the product function XY is similar (but a little bit
more complicated because of signs of products of two numbers) and
we leave it to the reader. �

1We do not review everything, for indicator RVs and linearity of expectation see Lecture 2, and for the inequalities
of Markov and of Čebyšev (Chebyshev) see Lectures 4 and 5, respectively.
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Exercise. Prove that if f : R→ R is a continuous function and X is
a random variable on a probability space then also Y := f ◦X = f(X)
is a random variable on the same probability space. �

We say that random variables X1, X2, . . . , Xn are independent, if
for every a1, . . . , an ∈ R and every set I ⊂ [n] we have that

Pr
(⋂

i∈I Xi ≤ ai
)

=
∏

i∈I Pr(Xi ≤ ai) .

If (Ω,Σ,Pr) is a probability space and U is any set, then a map
X : Ω→ U is a discrete random variable if the image

X(Ω) = {X(ω) | ω ∈ Ω} ⊂ U

is an at most countable set (i.e. a finite or a countable set) and

∀ y ∈ U : X−1(y) = {ω ∈ Ω | X(ω) = y} ∈ Σ .

Thus we define general RVs as real-valued functions, but discrete RVs
may have any values.

Exercise. Show that every real discrete RV X : Ω → R is a RV by
the initial definition. �

In our course we deal most of the time only with discrete RVs. It is
easy to see that if

C = {ci ∈ [0, 1] | i ∈ I}
is an at most countable collection of constants, then a discrete ran-
dom variable X on some probability space (Ω,Σ,Pr) exists such that
X(Ω) = I and Pr(X = i) = ci for every i ∈ I if and only if

∑
i∈I ci = 1.

For a real discrete random variable X : Ω → R on a probability
space (Ω,Σ,Pr) its expected value (expectation, mean) EX is defined
as the sum of the series

EX :=
∑

c∈X(Ω)

c · Pr(X = c)

if the series absolutely converges, else EX does not exist.2 Recall that
absolute convergence of a series

∑
i∈I ai, where each ai ∈ R and I is

2The expectation of a general RV X is defined as the integral EX :=
∫
Ω X(ω) dPr. Since it takes some effort to

say in this generality what precisely the
∫

is, we mention it here only in footnote.
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an at most countable set, means that there is a constant c > 0 such
that for every finite set J ⊂ I,∑

i∈J

|ai| < c .

If this condition holds and I is countable (the case of finite I is trivial),
then for any ordering I = (i1, i2, . . . ) of I in a sequence (i.e. each
in ∈ I and every i ∈ I appears exactly once in the sequence) the limit∑

i∈I

ai := lim
n→∞

(ai1 + ai2 + · · ·+ ain) ∈ R

exists, does not depend on the ordering, and is called the sum of the
series.

It is not hard to see that independence of real discrete random
variables X1, . . . , Xn is equivalent to satisfaction, for every ci ∈ R and
every set I ⊂ [n], of the equality

Pr
(⋂

i∈I Xi = ci
)

=
∏

i∈I Pr(Xi = ci) .

One can prove the next theorem the proof but we skip its proof (it is
a result on absolutely convergent series).

Theorem (on independent discrete RVs). Let X1, X2, . . . , Xn be
independent real discrete RVs such that each mean EXi exists. Then
the product

X := X1X2 . . . Xn

is a real discrete RV, its mean EX exists, and

EX =
n∏

i=1

EXi .

See Lecture 2 or Matoušek and Vondrák (see below) for the case when
n = 2 and the Xi have finite ranges.

We conclude our review of RVs with an example of a concrete and
important distribution. A distribution of a discrete random variable
X is the list of probabilities

(Pr(X = y) | y ∈ X(Ω)) .
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Example (binomial distribution). We say that a discrete RV X
has the binomial distribution with parameters n ∈ N and p ∈ [0, 1],
and write X = B(n, p), if X(Ω) = [n]0 := {0, 1, . . . , n} and

Pr(X = i) =

(
n

i

)
pi(1− p)n−i .

It is a consistent definition as by the binomial theorem these nonneg-
ative numbers sum up to (p + (1− p))n = 1. Such RV X is realized,
for example, in the probability space of 2n series of n independent
flips of a coin with Pr(head) = p, as the number of heads obtained
in a particular series. We compute the mean of B(n, p), its second
moment, and its variance. By the definition of expectation and the
binomial theorem,

EX =
n∑

i=0

i ·
(
n

i

)
pi(1− p)n−i =

n∑
i=1

i · n
i

(
n− 1

i− 1

)
pi(1− p)n−i

= pn
n∑

i=1

(
n− 1

i− 1

)
pi−1(1− p)n−1−(i−1) = pn · (p+ (1− p))n−1

= pn .

This is a computation of somebody who is unaware of the probabilistic
method. We know it and notice that the X realized by n flips of the
coin is a sum X = X1+X2+· · ·+Xn of random variables Xi, where Xi

is the indicator RV of the event of head in the i-th flip, and compute
more easily by linearity of expectation that indeed

EX =
n∑

i=1

EXi = nEX1 = n(1 · p+ 0 · (1− p)) = np .

Similarly, now using also independence of the Xis and the fact that
X2

i = Xi,

EX2 = E(X1 + · · ·+Xn)2

lin. of exp.
=

n∑
i=1

EX2
i + 2

∑
i<j

E(XiXj)

ind. of Xi and Xj
= nEX1 + n(n− 1)EX1 · EX2

= np+ n(n− 1)p2 = np(1 + (n− 1)p) .
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Thus Var(X) = EX2 − (EX)2 = np(1− p). �

Chernoff bounds

After these preparations (which were necessary so that the next ex-
position be rigorous and complete) we can finally turn to Chernoff
bounds. I follow the lecture notes J. Matoušek and J. Vondrák, The
Probabilistic Method, 71 pp., which are available on-line.

• Jiř́ı Matoušek (1963–2015) was a Czech mathematician and com-
puter scientist specializing in the area of computational and discrete
geometry. He contributed to many other areas like discrepancy, alge-
braic topology or linear programming. He was lecturer’s colleague in
the Department of Applied Mathematics of MFF UK.

• Jan Vondrák is a Czech theoretical computer scientist, alumnus
of the Department of Applied Mathematics of MFF UK, and today
an associate professor at the Stanford University in the USA. The
Iranian-American mathematician Maryam Mirzakhani (1977–2017),
the first female Fields medal laureate (in 2014), was his wife.

• Herman Chernoff (born 1923) is, by the Wikipedia, an American
applied mathematician, statistician and physicist.

By Chernoff (or Hoeffding) type bounds one understands estimates of
(very small) probability of (large) deviation from mean of a RV formed
as a sum of independent, or almost independent, RVs. Matoušek and
Vondrák note that the next result, the only one of this type we prove
here (see Appendix A in Alon and Spencer for many more of them),
is much older.

Theorem (S. Bernštejn, 1924). Let n ∈ N, Xi ∈ {−1, 1} for
i = 1, 2, . . . , n be independent discrete RVs which attain the values −1
and 1 with equal probability 1

2, and let X := X1 + X2 + · · · + Xn be
their sum. Then for every real t ≥ 0 one has that

Pr(X ≥ t) ≤ e−t
2/2n and Pr(X ≤ −t) ≤ e−t

2/2n .
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Proof. We prove only the first bound, the second follows by symme-
try; but see the exercise below. We set Y := euX for some real u ≥ 0
to be specified later. By the previous proposition and the exercise
after it, this is a RV. Now Pr(X ≥ t) = Pr(Y ≥ eut). By Markov’s
inequality,

Pr(Y ≥ eut) ≤ EY
eut

.

But

EY = Eeu(X1+···+Xn) =
n∏

i=1

EeuXi =

(
eu + e−u

2

)n

≤ enu
2/2 .

In the second equality we used the basic property of the exponential
function and the assumption that the Xi (and hence the euXi) are
independent. The third equality follows from the assumption on dis-
tribution of Xi and the last inequality follows from the Taylor series
of ex. Thus

Pr(Y ≥ eut) ≤ e−ut+nu2/2 .

Setting u = t
n we get that

Pr(X ≥ t) ≤ e−t
2/n+t2/2n = e−t

2/2n .

�

Exercise. Prove that in the previous theorem one has in fact for
every t ≥ 0 equal probabilities

Pr(X ≥ t) = Pr(X ≤ −t) .

�

• Sergej N. Bernštejn (1880–1968) was a Russian and Soviet mathe-
matician who contributed to the areas of partial differential equations,
differential geometry, probability theory, and approximation theory.

An obvious application of the theorem is to independent coin tosses,
because this is what the RVs Xi are (more precisely, the independent
coin tosses corresponding to them are X−1

i (1), i = 1, 2, . . . , n). For
n ∈ N the RV X records the score after n independent flips of a fair
coin, if each head counts for +1 point and each tail for −1 point.
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What is the chance that the score deviates much from 0? By the
theorem we get that, for example,

Pr(|X| ≥ n/4) ≤ 2e−n/32 or Pr(|X| ≥ 10
√
n) ≤ 2e−50 .

These are much, much stronger bounds than what one can get from
Čebyšev’s (Chebyshev’s) inequality. We start the next lecture by
a result that quantifies deviations like this for infinitely many coin
tosses. We conclude the present lecture by presenting from Matoušek
and Vondrák another Chernoff type bound, without proof.

Theorem. Let X1, X2, . . . , Xn be independent RVs with Xi ∈ [0, 1]
(these need not be discrete RVs), X =

∑
iXi, and σ2 = Var(X) =∑

i Var(Xi). Then for any real t ≥ 0,

Pr(X ≥ EX + t) < e
− t2

2(σ2+t/3) and Pr(X ≤ EX − t) < e
− t2

2(σ2+t/3) .

Thank you!

(final version of January 13, 2021)

12


