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The Poisson distribution

We begin with a definition.

Definition (Poisson random variable). The Poisson random
variable, or the RV with Poisson distribution, with mean (or param-
eter) µ ≥ 0 is any discrete random variable X on a probability space
(Ω,Σ,Pr) such that X(Ω) = N0 = {0, 1, 2, . . . } and for every j ∈ N0,

Pr(X = j) =
e−µµj

j!
.

�

In particular, Pr(X = 0) = e−µ. It is easy to see that it is a correct
definition and such discrete RV exists because the probabilities of all
values sum up to 1, see Lecture 9. Indeed,

∞∑
j=0

e−µµj

j!
=

1

eµ

∞∑
j=0

µj

j!
=
eµ

eµ
= 1 ,

by the Taylor series of the exponential function. Also, the mean (ex-
pectation) of any Poisson random variable with mean µ is indeed µ,

EX =
∞∑
j=0

j · e
−µµj

j!
=

µ

eµ

∞∑
j=1

µj−1

(j − 1)!
=
µeµ

eµ
= µ .

A Poisson random variable or a random variable with Poisson dis-
tribution is a Poisson random variable with some mean µ. We have
the next nice property for these RVs.

Proposition (sum of Poissons). Suppose that X1, X2, . . . , Xn are
independent Poisson random variables. Then X := X1 +X2 + · · ·+Xn
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is a Poisson random variable. Moreover, the mean of X is the sum
of the means of the Xi.

Proof. Suppose that Xi has mean µi ∈ R and that j ∈ N0. Then
X(Ω) = N0 and

Pr(X = j)
def. of X

=
∑
ji∈N0

j1+···+jn=j

Pr(X1 = j1 ∧ · · · ∧Xn = jn)

indep. of Xi
=

∑
ji∈N0

j1+···+jn=j

n∏
i=1

e−µiµjii
ji!

algebra
=

1

eµ1+···+µnj!

∑
ji∈N0

j1+···+jn=j

(
j

j1, . . . , jn

) n∏
i=1

µjii

multin. thm.
=

e−µ1−···−µn(µ1 + · · ·+ µn)
j

j!
.

The last line follows by the multinomial theorem. The theorem says
that for any variables x1, . . . , xm and any n ∈ N0,

(x1 + x2 + · · ·+ xm)n =
∑
ki∈N0

k1+···+km=n

(
n

k1, k2, . . . , km

)
xk11 x

k2
2 . . . xkmm

where
(

n
k1,k2,...,km

)
= n!

k1!k2!...km! are multinomial coefficients. �

• Siméon D. Poisson (1781–1840) was a French mathematician, en-
gineer, and physicist. An interesting account on his life and career is
given at https://mathshistory.st-andrews.ac.uk/Biographies/
Poisson/

We describe a situation leading non-rigorously to a Poisson distribu-
tion. Imagine three-dimensional box (container) K = [0, 1]3 that has
unit volume and contains N ≈ 1020 particles moving in various di-
rections. We assume that all particles have the same speed, do not
interact among themselves, and bounce perfectly elastically from the
walls of K. The particles move “randomly”: if L ⊂ K is any small
box inside the box K with volume vol(L) (or L is a more general set
with defined volume), then any of the particles is found in L with
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“probability” vol(L)
vol(K) = vol(L). This means that if we watch any parti-

cle and its movement in K in time interval [0, t], then — if tL denotes
the amount of time the particle spends in L— limt→+∞ tL/t = vol(L).
We further assume that all particles move mutually independently:
the “events” of their occurrences in L are independent. Suppose that
L has volume proportional to 1

N , where N is the number of particles.
Given k ∈ N0, what is the “probability” that we find in L exactly k
particles? We again interpret this “probability” as the limit ratio of
the amount of time during which the evolving system has in L exactly
k particles, to the total time. We compute the “probability” with the
help of the next properties of the exponential function.

Lemma. The following hold.

1. For every x ∈ R,

lim
n→∞

(
1 +

x

n

)n
= ex .

2. More generally, if x ∈ R and (xn) ⊂ R is a sequence such that
limn→∞ xn = x, then again

lim
n→∞

(
1 +

xn
n

)n
= ex .

Proof. Part 1 is a well known limit. You can deduce part 2 from
part 1 as an exercise. �

Proposition (on particles). Suppose that λ > 0 is a real number,
L ⊂ K is a small box inside the unit box K with volume vol(L) = λ/N ,
where N ∈ N is the (large) number of particles, and k ∈ N0. Then in
the above described situation,

lim
N→∞

“ Pr(L contains exactly k particles)” =
e−λλk

k!
.

Thus the number of particles in L follows in limit the Poisson distri-
bution with mean λ.

Proof. The above displayed “probability” is exactly(
N

k

)
· (λ/N)k · (1− λ/N)N−k .
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The binomial coefficient counts ways to select an unordered k-tuple
of particles of all N particles, the second factor is the “probability”
that the k-tuple lies in L, and the third factor is the “probability”
that none of the remaining N − k particles lies in L. We use inde-
pendence of occurrences of a particle in L, as well as the fact that the
“probability” of the union of disjoint “events” equals to the sum of
their “probabilities”. We rewrite the above displayed expression as

N(N − 1) . . . (N − k + 1)

Nk
· (1− λ/N)−k · (1− λ/N)N · λ

k

k!

where for k = 0 the descending product is set to 1. For N → ∞ the
first two factors go to 1. By part 1 of the previous lemma, the third
factor goes to e−λ and the limit follows. �

The above quotation marks do not look nicely but we have to write
them if we want to be consistent. Given initial positions and di-
rections of movements of the particles, the evolution of the system
is completely deterministic and involves no randomness. We proved
that for N →∞ the above expression has limit e−λλk/k! but there is
no probability space and no random variable.

J. Beck (see Lecture 9) proved in Theorem 1 in his article Deter-
ministic approach to the kinetic theory of gases, J. Stat. Phys. 138
(2010), 160–269 (the statement of the theorem takes over one page and
its proof more than fifty pages) that an overwhelming majority — in
the sense of initial positions and initial velocities1 of the particles —
of systems of N particles in the box K behave for large enough N

and sufficiently long time t of evolution in a very precise accord with
a Poisson distribution. All estimates in his Theorem 1 are (unlike
our Proposition above) explicit, there are no limits with unquantified
speed of convergence. From another Theorem 2 in the same article
he deduces (see pp. 181–182) as an illustration the next result on the
law of large numbers (closeness of a random variable to its mean) for
systems of particles.

A cubic container with side 1 meter contains a system of
N = 1027 point particles (molecules) moving in various di-

1Physical terminology: “speed” is a scalar quantity, measured in m s−1, “velocity” is a vector quantity, here an
element of R3.
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rections with the same speed 103 ms−1. The particles do not
mutually interact, there are no collisions between them (Beck
remarks that this is unrealistic, in reality mutual collisions
are frequent), and they elastically reflect from the walls of
the container. One selects in the container a subset A with
volume 0.5 m3. In the given moment the system of particles
is balanced, if the number of particles in A equals

(1± 0.001)N

2
,

i.e. deviates from the expected value N
2 with the relative error

at most one tenth of a percent. We let the system evolve for
100 years (≈ 3·109 seconds). For how long during the century
will the system be unbalanced? It follows from the estimates
in Theorem 2 that more than 99.99% of such systems (in the
sense of initial positions and initial velocities of the particles)
will be unbalanced during the century for only less than 10
seconds!

We cast the previous Proposition more generally and more rigor-
ously. Recall (from Lecture 9) that a random variable X has bi-
nomial distribution with parameters n ∈ N and p ∈ [0, 1] if X(Ω) =
{0, 1, . . . , n} and for every value k one has that Pr(X = k) =

(
n
k

)
pk(1−

p)n−k; so that X counts heads in a series of n independent tosses of
a general coin with Pr(head) = p.

Theorem (binomial → Poisson). Suppose that random variables
Xn, n ∈ N, have binomial distributions with parameters n ∈ N and
pn = λn

n ∈ [0, 1] where λn → λ for n → ∞ and a fixed real λ ≥ 0.
Then for every k ∈ N0,

lim
n→∞

Pr(Xn = k) =
e−λλk

k!
.

In this sense binomial distributions converge to a Poisson distribu-
tion.
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Proof. As in the previous Proposition, for n→∞ in

Pr(Xn = k) =

(
n

k

)(
λn
n

)k(
1− λn

n

)n−k
=
n(n− 1) . . . (n− k + 1)

nk
·
(

1− λn
n

)−k
·
(

1− λn
n

)n
· λ

k
n

k!

the first two factors go to 1, the third one goes to e−λ by part 2 of
the previous Lemma, and the fourth factor goes to λk/k!. The limit
follows. �

This is Theorem 5.5 in Mitzenmacher and Upfal where the proof is
more complicated. The previous theorem applies to the balls and bins
model with m balls and n bins: if n → ∞ and m

n → λ ≥ 0 then the
number of balls in a given bin has in limit the Poisson distribution
with mean λ.

Janson inequalities

We explain so called Janson inequalities (Alon and Spencer, pp.
115–117). They are related to LLL and strengthen it in a way, they
show that if some events B1, . . . , Bn are only mildly dependent then

Pr(
⋂n
i=1Bi) ≈

∏n
i=1(1− Pr(Bi))

— equality would hold here if Bi were independent. Before stating the
inequalities — we will not prove them, for proofs see pp. 117–119 in
Alon and Spencer — we introduce the formal setup of random subsets,
Alon and Spencer give it only in intuitive terms.

Definition (random subsets). Let U 6= ∅ be a finite set and

p = (pr ∈ [0, 1] | r ∈ U) ∈ [0, 1]U

be a |U |-tuple of constants labeled by elements in U . We say that
a pair (P,X) is a p-random subset of U if P = (Ω,Σ,Pr) is a proba-
bility space and X is a random variable on P such that the following
hold.

1. The values of X are

X(Ω) = {0, 1}U = {a = (ar | r ∈ U) | ar ∈ {0, 1}} ,
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binary |U |-tuples indexed by elements in U , and

Pr(Xr = ar = 1) = pr

for every r ∈ U .

2. For any V ⊂ U , the events {(Xr = 1) | r ∈ V } are independent.

�

We think of X as the random subset R ⊂ U obtained by putting
elements r ∈ U mutually independently in R with probabilities pr. As
in the lemmas in Lectures 8 and 9, part 2 is equivalent to independence
of any collection of events {(Xr = br) | r ∈ V } where V ⊂ U and
br ∈ {0, 1}.

Proposition (random subsets exist). For every U and p as in
the previous definition, there exists a p-random subset of U .

Proof. 1. We consider the finite probability space

P = (Ω, Σ, Pr) =
(
{0, 1}U , P

(
{0, 1}U

)
, Pr

)
where any atom {a} has probability

Pr({a}) = Pr
(
{(ar | r ∈ U)}

)
:=

∏
r∈U, ar=1

pr
∏

r∈U, ar=0

(1− pr) .

From the identity

1 =
∏
r∈U

(pr + (1− pr)) =
∑
a∈Ω

Pr({a})

it follows that this is a correct definition of a probability space, prob-
abilities of the atoms are nonnegative and sum up to 1. We define the
random variable X as the identity map, X(a) = a. Let an r ∈ U be
given. We set U ′ := U \ {r} and get that

Pr(Xr = 1) =
∑

a∈Ω, ar=1

Pr({a}) = pr
∑
a∈Ω
ar=1

∏
s∈U ′
as=1

ps
∏
s∈U ′
as=0

(1− ps)

= pr
∏
s∈U ′

(ps + (1− ps)) = pr .
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2. Let V ⊂ U be any subset. We set U ′ := U \V and compute that

Pr(
⋂
r∈V (Xr = 1)) =

∑
a∈Ω

r∈V⇒ar=1

Pr({a})

=
∏
r∈V

pr
∑
a∈Ω

r∈V⇒ar=1

∏
r∈U ′
ar=1

pr
∏
r∈U ′
ar=0

(1− pr)

=
∏
r∈V

pr
∏
r∈U ′

(pr + (1− pr))

=
∏
r∈V

Pr(Xr = 1) .

�

Let U and p be as above and R (i.e. (P,X)) be a p-random subset
of U . Let I 6= ∅ be a finite set, {Ai | i ∈ I} ⊂ P(U) be a collection of
subsets of U , and {Bi | i ∈ I} be the corresponding events in P that
Ai ⊂ R, so that Bi is the event∧

r∈Ai
(Xr = 1) =

⋂
r∈Ai

(Xr = 1) .

For i, j ∈ I we write i ∼ j if i 6= j and Ai ∩ Aj 6= ∅.

Theorem (the Janson inequality). Let an ε > 0 be given, U and
p be as above, (P,X) be a p-random subset of U , {Ai | i ∈ I} be some
subsets of U , and {Bi | i ∈ I} be the corresponding events in P as
above. We define

∆ :=
∑
i, j∈I
i∼j

Pr(Bi ∩Bj), M :=
∏
i∈I

Pr(Bi) and µ :=
∑
i∈I

Pr(Bi) .

In ∆ we sum over I × I, M would be the probability that none of the
events Bi occurs if all Bi were independent, and µ = EX where X is
the sum of the indicator variables2 for the events Bi.

If Pr(Bi) ≤ ε for every i ∈ I then

M ≤ Pr(
⋂
i∈I Bi) ≤Me∆/2(1−ε) and Pr(

⋂
i∈I Bi) ≤ e−µ+∆/2 .

Here Pr(
⋂
i∈I Bi) = Pr(X = 0).

2Recall that the indicator RV X = XA of an event A ∈ Σ in a probability space (Ω,Σ,Pr) is defined by setting
X(ω) = 1 if ω ∈ A, and X(ω) = 0 if ω ∈ Ω \A.
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Theorem (the extended Janson inequality). Under the assump-
tions of the previous theorem and the assumption that ∆ ≥ µ,

Pr(
⋂
i∈I Bi) ≤ e−µ

2/2∆ .

• Svante Janson is a Swedish mathematician, member of the Royal
Swedish Academy of Sciences since 1994, and professor of mathemat-
ics at Uppsala University since 1987. As a child prodigy he matricu-
lated at Uppsala University at age 13 in 1968.

As an application of the first Janson inequality (estimate)

M ≤ Pr(
⋂
i∈I Bi) ≤Me∆/2(1−ε)

we refine the theorem in (Martin Tancer’s) Lecture 6 that p = p(n) =
1
n is a threshold function for triangle containment in the random
graph G(n, p). In our terminology, for any p ∈ [0, 1] the random
graph G(n, p) is the p-random subset of U where U =

(
[n]
2

)
([n] =

{1, 2, . . . , n}) and the vector p = (p, p, . . . , p) has length
(
n
2

)
.

Theorem (inside the threshold). For any real number c > 0, if
p = p(n) = c/n then

lim
n→∞

Pr(G(n, p) 6⊃ ∆) = e−c
3/6 .

Proof. To use the first Janson inequality, we set (as above) U =
(

[n]
2

)
,

p = p(n) = (c/n, c/n, . . . , c/n), I =
(

[n]
3

)
, and for any S ∈ I we

consider the triangle AS :=
(
S
2

)
⊂ U . Thus the corresponding event

BS, the event that G(n, p) ⊃ AS, has probability Pr(BS) = p3, and
we may set ε := p3 = O(1/n3). The event

⋂
S∈I BS is the event

that G(n, p) 6⊃ ∆. For S, T ∈ I, the relation S ∼ T means that
the triangles AS and AT are distinct but share an edge e. Then
Pr(BS ∩BT ) = p5 and (for n ≥ 3)

∆ =
∑
S, T∈I
S∼T

Pr(BS ∩BT ) = 3

(
n

3

)
(n− 3)︸ ︷︷ ︸

e+ S + (T \ e)

(c/n)5 = O(1/n) .
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Also,

lim
n→∞

M = lim
n→∞

∏
S∈I

(1− Pr(BS))

= lim
n→∞

(
1− (c/n)3

)n(n−1)(n−2)/6

= e−c
3/6 .

The last limit follows by writing for x ∈ (0, 1
2) the difference 1− x as

elog(1−x) = e−x+O(x2). Since e∆/2(1−ε) = eO(1/n) → 1 for n → ∞, the
first Janson inequality yields that

lim
n→∞

Pr(G(n, c/n) 6⊃ ∆) = lim
n→∞

Pr(
⋂
S∈I BS) = lim

n→∞
M = e−c

3/6 .

�

For c → 0, respectively c → +∞, the probability goes indeed to 1,
respectively to 0, as it should since 1/n is threshold edge probability
for the random graph to contain a triangle. This is taken from Alon
and Spencer, pp. 156–157.

Thank you!

(final version of January 13, 2021)
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