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Stationary distribution

In this lecture every Markov chain M = (X0, X1, . . . ) is finite and
has the set of states S := [n] = {1, 2, . . . , n}, n ∈ N. The evolution of
M is determined by (i) the initial distribution

p = (p1, p2, . . . , pn) ∈ Rn
≥0, pi = Pr(X0 = i) ,

satisfying
∑

i pi = 1, which is the starting distribution of probabilities
on the states of M , and (ii) the stochastic transition matrix

P = (pi, j)
n
i, j=1 ∈ Rn×n

≥0

satisfying
∑

j pi,j = 1 for every i ∈ [n], which records transition prob-
abilities between the states: pi,j is the conditional probability that M
evolves in one step from the state i to the state j, so pi,j = Pr(Xt+1 =
j |Xt = i) for every t ∈ N0 if the right side is defined.

Exercise (on matrices). If in matrices A ∈ Rk×l and B ∈ Rl×m

every row sum equals 1, then so does in their product AB. �

This part of the lecture will actually be more a lecture in linear alge-
bra or linear programming than a lecture in the probabilistic method.
Our goal is to show that for any P satisfying certain obvious neces-
sary conditions there exists a unique stationary distribution p that is
moreover attractive. A distribution p is stationary if it is a fixed point
in the evolution of M ,

pP = p

for p written as a 1 × n row vector. Attractivity of p means that M
evolves towards it from any start, for every distribution q we have
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that, coordinatewise,
lim
n→∞

qP n = p .

As before we associate with P the weighted transition digraph

DP = ([n], E, h)

where e = (i, j) ∈ E iff pi,j > 0, and the edge (arrow) e has weight
h(e) = pi,j. In any digraph D = (V,E) (so E ⊂ V × V ), a walk w is
any sequence of vertices

w = (v0, v1, . . . , vn) ⊂ V, n ∈ N0 ,

such that (vi−1, vi) ∈ E for every i = 1, 2, . . . , n. If v0 = vn, we call
w a cycle. We write |w| := n for the length of a walk or a cycle.
If v0 = u and vn = v, we call w a u-v walk. It follows that in any
u-v walk w with minimum length no vertex is repeated and therefore
|w| ≤ |V | − 1. We call such w a shortest path from u to v.

We may think of M in terms of the following game in a sandbox.
The given distribution p distributes one kilogram of sand into heaps
pi at the vertices i ∈ [n] of DP , and the matrix P is a redistribution
rule. In one step we simultaneously move, according to the arrows

i• pi,j−→
j
•

of DP , for every vertex i ∈ [n] and any j ∈ [n] the fraction pi,j = h(i, j)
of the heap pi (that is, the amount pipi,j) to the vertex j. By this the
old heap pi disappears (as

∑
j pi,j = 1) but a new heap p′j is formed

at each vertex j ∈ [n]. In this way we redistribute the sand to the
vertices and get its new distribution

(p′1, p
′
2 . . . , p

′
n) =

(∑
i pipi,1,

∑
i pipi,2, . . . ,

∑
i pipi,n

)
.

The total amount of sand is indeed preserved because

n∑
j=1

n∑
i=1

pipi,j =
n∑

i=1

pi

n∑
j=1

pi,j =
n∑

i=1

pi = 1 .

If this transformation has not changed the distribution of sand, p′ = p,
the distribution p is stationary.
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The necessary conditions on P for existence of a unique stationary
distribution that is attractive, mentioned above, are (i) irreducibility
of DP and (ii) aperiodicity of DP . The former means that for every
two vertices i, j ∈ [n] there exists in DP an i-j walk, and the latter
requires that the lengths of cycles in DP be altogether coprime: the
only d ∈ N dividing all of them is d = 1. One also says that the matrix
P , or the Markov chain M , is irreducible, respectively aperiodic.

It is easy to see that (i) and (ii) are in general necessary. Consider
the non-irreducible digraph DP = ([3], E, h) with arrows 1 → 2 and
1 → 3, loops 2 → 2 and 3 → 3, and weight 1

2 on the arrows and 1
on the loops (the corresponding matrix P is stochastic). A stationary
distribution exists but is not unique, both distributions (0, 1, 0) and
(0, 0, 1) are stationary. Consider the non-aperiodic digraph DP =
([2], E, h) with only two arrows 1→ 2 and 2→ 1, weighted by 1 (the
corresponding matrix P is stochastic). There is the unique stationary
distribution (12 ,

1
2) but it is not attractive, any distribution (p, 1− p),

p ∈ [0, 1], only evolves to (1− p, p) and back.
For the proof of the theorem on stationary distribution we need

four lemmas. In the proof I follow the lecture notes of J. Sgall.

• Jiř́ı Sgall is, by the Czech mutation of Wikipedia, Czech computer
scientist and mathematician working in the areas of approximation
algorithms, online algorithms and theory of scheduling. Currently he
is the vice-dean of the School of Computer Science at the MFF UK
(and hence lecturer’s superior).

Lemma 1. If the numbers a1, . . . , ak ∈ N, k ∈ N, are altogether
coprime then there is an n0 ∈ N0 such that for every integer n ≥ n0
there exist numbers m1, . . . ,mk ∈ N0 with

n =
k∑

i=1

miai .

Proof. It is a well known result in elementary number theory that
then 1 =

∑k
i=1 riai for some numbers ri ∈ Z. We set r := maxi |ri| ∈ N

and n0 :=
∑k

i=1(ra1)ai. Adding to each of the numbers n0, n0+a1, n0+
2a1, . . . repeatedly the linear combination expressing 1, we see that
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every natural number from n0 on is an integral linear combination of
the ais with nonnegative (here even positive) coefficients. �

Exercise (on compactness). Show that every set A ⊂ N of alto-
gether coprime numbers (the only d ∈ N dividing all of the numbers
is 1) has a finite subset of altogether coprime numbers. �

Lemma 2. For every irreducible and aperiodic stochastic matrix P =
(pi,j) in Rn×n

≥0 , n ∈ N, there exists a number k ∈ N such that every
entry in the matrix P k is positive, and hence every entry in P k is at
least some δ > 0.

Proof. Recall that by a proposition in the last lecture, for every
i, j ∈ [n] the i, j-entry in P k is the sum of weights of all i-j walks in
DP with length k, where the weight of a walk in DP is the product
of weights of its edges. Thus it suffices to show that there is a k ∈ N
such that for every i, j ∈ [n] there is an i-j walk in DP with length
k. By aperiodicity of P and the above exercise on compactness there
exist cycles C1, . . . , Cr, r ∈ N, in DP with altogether coprime lengths.
For each cycle Cl we fix a vertex vl ∈ Cl. It is clear by irreducibility
of DP that for any given i, j ∈ [n] there is an i-j walk w in DP such
that |w| ≤ (r+1)(n−1) and w goes through all vertices v1, . . . , vr: we
take the shortest path from i to v1, then from v1 to v2, . . . , and finally
from vr to j. Let n0 ∈ N be the number guaranteed by Lemma 1 for
al := |Cl|, l = 1, 2, . . . , r. We take the walk w and extend it by an
appropriate detour over the cycles Cl to an i-j walk w′ in DP with
length

|w′| = k := (r + 1)(n− 1) + n0 .

�

For x = (x1, . . . , xn) ∈ Rn and x ∈ R we introduce the notation
|x|1 :=

∑
i |xi| (L1 norm), x+ := max(0, x) and x− := max(0,−x).

Then x = x+ − x−. Further,

x+ := (x+1 , x
+
2 , . . . , x

+
n )

and similarly for x−. The vectors x+ and x− have disjoint supports
(sets of indices of the nonzero entries), x = x+ − x− and |x|1 =
|x+|1 + |x−|1.
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Lemma 3. If v, w ∈ Rn
≥0, n ∈ N, are vectors with each entry at least

α ≥ 0, then
|v − w|1 ≤ |v|1 + |w|1 − 2nα .

Proof. It suffices to prove this inequality only for n = 1: if 0 ≤ α ≤
a ≤ b then b− a ≤ a+ b− 2α, which clearly holds as it is equivalent
with 2α ≤ 2a. �

Lemma 4. Let δ > 0 be a real number, M be a matrix in [δ,+∞)n×n,
n ∈ N, and with every row sum equal to 1, and let x ∈ Rn. Then the
following hold.

1. |xM |1 ≤ |x|1 − 2δnmin(|x+|1, |x−|1).

2. If x has both positive and negative entries then xM 6= x.

3. If
∑

i xi = 0 then |xM |1 ≤ (1− δn)|x|1.

Proof. 1. We define v := x+M and w := x−M . Since the vectors
x+, x−, v and w have nonnegative entries and the row sums of M are
1, we have that |v|1 = |x+|1 and |w|1 = |x−|1. Hence |v|1 + |w|1 = |x|1.
The entries in M are at least δ and therefore we have for every i ∈ [n]
that vi ≥ δ

∑
i x

+
i = δ|x+|1 and, similarly, wi ≥ δ|x−|1. Applying

Lemma 3 with α := δmin(|x+|1, |x−|1), we get that

|xM |1 = |v − w|1
≤ |v|1 + |w|1 − 2δnmin(|x+|1, |x−|1)
= |x|1 − 2δnmin(|x+|1, |x−|1) .

2. By the assumption, min(|x+|1, |x−|1) > 0. Thus by part 1,
|xM |1 < |x|1 and xM 6= x.

3. By the assumption, |x+|1 = |x−|1 = |x|1/2. Thus by part 1,

|xM |1 ≤ |x|1 − 2δnmin(|x+|1, |x−|1) = (1− δn)|x|1 .

�

Now we can prove the main theorem.
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Theorem (on stationary distribution). Any irreducible and ape-
riodic Markov chain M with the states [n] has a unique stationary
distribution p which is moreover attractive. If P is the transition ma-
trix then for every i, j ∈ [n] one has that

pj = lim
n→∞

(P n)i,j .

Proof. Let k ∈ N and δ > 0 be as in Lemma 2. We claim that the
system

xP = x

of n homogeneous linear equations with n unknowns x1, . . . , xn has
a nontrivial solution, different from 0 = (0, . . . , 0). Indeed, if we move
the right sides to the left to get the canonical form x(P−I) = 0, where
I is the identity n× n matrix, the obtained matrix P − I is singular
because the sum of its columns is the zero column (P is stochastic).
We denote this nontrivial solution by x. From xP = x we get that also
xP k = x and see by part 2 of Lemma 4 and the exercise on matrices
that x ≥ 0 (the vector x has only nonnegative entries) or x ≤ 0. Thus
we may define the distribution

p := (
∑

i xi)
−1 · x .

We show that p is the unique stationary distribution of M . Since
xP = x, also pP = p. If q 6= p were another distribution satisfying
qP = q, we would have also

(p− q)P k = p− q .

But this contradicts part 2 of Lemma 4 because the vector p− q has
both positive and negative entries.

We show that p is attractive: for any distribution q we have coor-
rdinatewise that

lim
n→∞

qP n = p .

Then the vector q = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the i-th place
yields the formula in the statement of the theorem.

Let a be any distribution. For s = 0, 1, 2, . . . let v(s) := aP sk − p.
Stationarity of p implies that v(s) = aP sk − pP sk = (a − p)P sk and
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therefore v(s+1) = v(s)P k. By the exercise on matrices the coordinates
of each vector v(s) sum to 0. Since each entry in P k is at least δ, by
part 3 of Lemma 4 one has that

|v(s+1)|1 = |v(s)P k|1 ≤ (1− δn)|v(s)|1 .

So |v(s)|1 ≤ (1 − δn)s|v(0)|1 and |v(s)|1 → 0 for s → ∞. Here 1 − δn
is in [0, 1) because every entry in P k is at least δ > 0 and every row
sum of the n× n matrix P k is 1. Therefore

lim
s→∞

aP sk = p .

We use this result with a := qP l for any l = 0, 1, . . . , k − 1 and get
that

lim
s→∞

aP sk = lim
s→∞

qP sk+l = p .

Thus limn→∞ qP
n = p. �

Example (more on the Ehrenfest model). I will write here on
the Diaconis–Shakshahani result on the mixing time in the Laplace–
Bernoulli diffusion. �

Balls and bins. Bucket sort

An intuitive probabilistic model widely used in computer science
is that of m balls and n bins, m,n ∈ N, where the balls are placed
randomly and mutually independently in the bins. One describes by
it various situations in design of randomized algorithms. One can
investigate various parameters of the (random) distribution of balls
in bins.

For example, if m ≤ n, or better if m = o(n), then one can estimate
for n → ∞ the probability Bm(n) that no bin contains two or more
balls:

Bm(n) =
m−1∏
j=1

(
1− j

n

)
≈

m−1∏
j=1

e−j/n = e−m(m−1)/2n ≈ e−m
2/2n .

The first equality here follows by placing the first ball in any of the
n bins, the second ball in any of the remaining n− 1 empty bins, the
third ball in any of the remaining n− 2 empty bins, and so on.
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Exercise. Recall that for two functions f, g : N → C the notation
f ∼ g means that limn→∞

f(n)
g(n) = 1. Show that for m = o(n) the last

≈ is indeed ∼. Show that for m = o(n2/3) the first ≈ is ∼. �

We can interpret Bm(n) as the probability that if there are n possibil-
ities for birthdays (usually n = 365) then in a group of m people on
a party no two of them have birthdays on the same day. (Assuming
that the people and their birth dates are uncorrelated; for example,
the party is not the first-day-of-the-year-baby convention.) For exam-
ple, for m ∼

√
2(log 2)n we get (by the exercise) that Bm(n) ∼ 1

2 .
As a sample result (taken from Mitzenmacher and Upfal) in the

balls and bins model we prove a probabilistic bound on the maximum
load of a bin.

Proposition (maximum load). Let m = n and Xmax be the random
variable recording the maximum number of balls in a bin (“maximum
load”). Then

Pr
(
Xmax > 3 log n

log log n

)
≤ 1

n , n ≥ n0 .

Proof. For any M ∈ N we get by the union bound that

Pr(≥M balls in bin 1) ≤
(
n

M

)(
1

n

)M

≤ 1

M !
≤
( e
M

)M
.

Thus, again by the union bound, for M ≥ 3 log n
log log n we have that

Pr(≥M balls in any bin) ≤ n

(
e log log n

3 log n

)3 log n/ log log n

≤ n

(
log(2) n

log n

)3 log n/ log(2) n

= exp(log n) exp
(
(log(3) n− log(2) n) 3 log n

log(2) n

)
= exp

(
− 2 log n+

3 log n log(3) n

log(2) n

)
≤ 1

n
, n ≥ n0 .

�
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Bucket sort. We sort n = 2m elements which are random integers
from [0, 2k) where k ≥ m. Using bucket sort we sort them in expected
time O(n). The algorithm is deterministic but the input is random.

First stage. We place the elements in n buckets b1, . . . , bn where
we put in bj the elements whose first m binary digits give number
j. Thus b1 < b2 < · · · < bn meaning that for k < l any element in
bk is smaller than any element in bl. We assume that each element
can be placed in its bucket in O(1) time. This stage therefore takes
O(n) time. Note that the random variable X recording the number
of elements in a fixed bucket has the binomial distribution B(n, 1/n)
(see Lecture 9 for its definition).

Second stage. The elements in every bucket are sorted by some
algorithm, for example bubblesort, in quadratic time. We estimate
the expected running time of the second stage. If Xj is the random
variable recording the number of elements in bj, they are sorted in
time ≤ cX2

j for some constant c > 0. Thus the expected running time
of the second stage is at most

E
(∑n

j=1 cX
2
j

)
= c

∑n
j=1 EX2

j = cnEX2
1 = cn(2− 1/n) = O(n) .

We used linearity of expectation and the formula for the second mo-
ment of a binomial distribution, computed in Lecture 9. In total, both
stages together, bucket sort runs in time O(n).

More on bucket sort. Time permitting, I write here what DEK
writes on it in TAOCP, Volume 3 (Sorting and Searching).

Thank you!

(semifinal version — more information on the Ehrenfest model and
bucket sort will be added — of January 13, 2021)
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