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Markov chains, again

Here is some literature on Markov chains.
• P. Billingsley, Probability and Measure, J. Wiley, 1995 (Chapter 8).
• A. Rényi, Teorie pravděpodobnosti (Probability theory), Academia,
1972 (Kapitola VIII.8).
• W. Feller, An Introduction to Probability Theory and its Applica-
tions. Volume I, J. Wiley, 1957 (Chapters 15 and 16).

• Alfréd Rényi (1921–1970) was a Hungarian mathematician. In 1959
he created, together with P. Erdős, random graphs.

•William Feller (Vilibald Srećko Feller) (1906–1970) was a Croatian-
American probabilist who wrote the canonical two-volume textbook
on probability theory. The volumes treat, respectively, discrete and
continuous probability.

Recall that N = {1, 2, . . . } and N0 = {0, 1, . . . }. Let P = (Ω,Σ,Pr)
be a probability space. We give again definition of Markov chains;
be warned that in the literature one can encounter imprecise formu-
lations. Another, and lesser, problem is that some (especially more
practically oriented) texts blissfully ignore the question of their exis-
tence.

Definition (Markov chain). Suppose that S 6= ∅ is an at most
countable set (often S = [n]0 for n ∈ N or S = N0) and pi,j ≥ 0,
i, j ∈ S, are given real constants such that

∑
j pi,j = 1 for every i ∈ S.

Then a sequence X0, X1, X2, . . . of discrete random variables on P ,
where Xt : Ω → S, is a Markov chain (with transition probabilities
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pi,j) if for every t ∈ N and every i, j, a0, . . . , at−2 ∈ S one has that

pi,j = Pr(Xt = j |Xt−1 = i ∧Xt−2 = at−2 ∧ · · · ∧X0 = a0)

= Pr(Xt = j |Xt−1 = i)

whenever the initial conditional probability is defined, i.e. whenever
Pr(Xt−1 = i ∧Xt−2 = at−2 ∧ · · · ∧X0 = a0) > 0. �

The variable t is discrete time, S is the set of states (so the values of
any Xt are the states), finite Markov chains range in a finite set S, the
pi,j are the transition probabilities, and the αi := Pr(X0 = i) are the
initial probabilities, or the initial distribution (note that

∑
i αi = 1).

The transition probabilities are independent of time.
As a short detour we mention here that for a, b ∈ R and continuous

real random variables X and Y one defines the conditional proba-
bilities Pr(X < a |Y = b) by means of the Radon–Nikodym theorem
(Rényi, Kap. V; Billingsley, Chap. 32–34).

• Johann Radon (1887–1956) was an Austrian mathematician who
was born in Děč́ın (Tetschen), like the lecturer. There is a commemo-
rative plaquette on a house on the main square (commemorating JR,
not me). The Radon transform has application in tomography.

• Otto M. Nikodym (1887–1974) was a Polish mathematician who
lived since 1948 in the USA.

From now on S = [n]0 for some n ∈ N or S = N0, if it is not said
else. A finite or infinite real matrix (pi,j) = (pi,j)i,j∈S, pi,j ≥ 0, is
stochastic if

∑
j pi,j = 1 for every i. The following existence theorem

shows that Markov chains is a reasonable concept.

Theorem (Billingsley, Theorem 8.1). For any stochastic ma-
trix (pi,j) and any real numbers αi ≥ 0 with

∑
i αi = 1 there exist

a probability space and random variables X0, X1, . . . on it such that
the Xt form a Markov chain with initial probabilities αi and transition
probabilities pi,j.

As for the proof, for a countable set of states S one needs Lebesgue
measure on the unit interval, see Billingsley’s book. For finite S he
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suggests in Problem 8.1 in his book to construct the required proba-
bility space on the set Ω = SN0.

We present two examples of Markov chains.

Example 1 (Ehrenfest model). This model is due to T. and
P. Ehrenfest in 1907 and is also called the dog-flea model. Two dogs
D1 and D2 stand close each to the other and there are a ∈ N fleas
on them. At each time t ∈ N0 a randomly selected flea jumps on the
other dog. Let Xt be the number of fleas on the dog D1 at time t.
Thus defined Markov chain has transition probabilities, for j ∈ N0,

pj, j−1 = Pr(Xt = j − 1 |Xt−1 = j) =
j

a
(j > 0) ,

pj, j+1 = Pr(Xt = j + 1 |Xt−1 = j) =
a− j
a

and pj,k = 0 in any other case. The original interpretation is that
there are in total a ∈ N molecules in two neighboring containers,
and at each time t ∈ N0 a randomly selected molecule moves to the
other container. The Markov chain Xt then describes the evolution
of the number of molecules in the first (and in the second) container.
Obviously, there should be tendency to equalization of the numbers
of molecules (fleas) in both containers (on both dogs). I return to this
model in the next lecture. It was important in the development of
thermodynamics and statistical physics as a reply to objections to so
called H-theorem of L. Boltzmann. �

• Tatiana Ehrenfest (Kiev, 1876–Leiden, 1964), née Afanasjeva, was
a Russian–Dutch mathematician and physicist working in statistical
mechanics. Since 1904 she was the wife of P. Ehrenfest.
• Paul Ehrenfest (1880–1933) was an Austrian–Dutch physicist.
• Ludwig Boltzmann (1844–1906) was an Austrian philosopher and
physicist who founded statistical physics and defined entropy. Sadly,
both men (PE and LB) ended their lives by suicide.

Example 2 (random walk on Zk). Random variables X0, X1, . . .
of this Markov chain range in the set S := Zk, k ∈ N, of lattice points
(points with integral coordinates) in the Euclidean space Rk. Two
points a, b ∈ Zk are neighbors if they have (Euclidean) distance 1.
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Each point a ∈ Zk has exactly 2k neighbors. The transition probabil-
ities are

pa,b = Pr(Xt = b |Xt−1 = a) =

{
1/2k . . . a and b are neighbors ,

0 . . . else

— one moves from a point to any of its neighbors with the same prob-
ability. One can imagine excitation of an atom in a crystal moving
randomly around, or a drunkard wandering aimlessly in the net of
streets and avenues in New York, etc. �

Pólya’s theorem

Pólya’s theorem describes long-time behavior of the previous random
walk on Zk. For the proof we need the next simple lemma.

Lemma (the 1st Borel–Cantelli lemma). Suppose that (Ω,Σ,Pr)
is a probability space and An ∈ Σ, n ∈ N, are events in it such that∑

n Pr(An) < +∞. Then

Pr(lim sup An) = 0 ,

where

lim sup An :=
∞⋂
k=1

∞⋃
n=k

An ∈ Σ

is the event that infinitely many of the events An occur.

Proof. For every m ∈ N we clearly have that lim sup An ⊂
⋃

n≥mAn.
Thus, by the union bound,

Pr(lim sup An) ≤
∑
n≥m

Pr(An) .

Tails of any convergent series go to 0, thus Pr(lim sup An) = 0. �

• Émile Borel (1871–1956) was a French measure theorist, probabilist
and politician. In 1925 he served as the minister of marine under the
premier Paul Painlevé who was also a mathematician.
• Francesco P. Cantelli (1875–1966) was an Italian mathematician,
born in Palermo, who started his career in astronomy and celestial
mechanics.
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We start the general part of the proof of Pólya’s theorem. I follow
Billingsley’s book, thus notation and wording is often his. We fix
S = N0 and a Markov chain X0, X1, . . . with all initial probabilities
αi > 0. We denote by Pi probabilities conditional on X0 = i ∈ N0:
for any event A,

Pi(A) := Pr(A |X0 = i) .

Thus, as we know from an exercise in the previous lecture,

Pi(Xt = it, 1 ≤ t ≤ n) = pi,i1 pi1,i2 . . . pin−1in .

Therefore for any i, ik, jk ∈ N0 we have that

Pi(X1 = i1, . . . , Xm = im, Xm+1 = j1, . . . , Xm+n = jn)

= Pi(X1 = i1, . . . , Xm = im) · Pim(X1 = j1, . . . , Xn = jn) .

Suppose that I is a set (finite or infinite) of m-long sequences of states,
J is a set of n-long sequences of states, and every sequence in I ends in
j. Adding both sides of the previous equation for (i1, . . . , im) ranging
over I and (j1, . . . , jn) ranging over J gives

Pi((X1, . . . , Xm) ∈ I, (Xm+1, . . . , Xm+n) ∈ J) (1)

= Pi((X1, . . . , Xm) ∈ I) · Pj((X1, . . . , Xn) ∈ J) .

Here it is essential that each sequence in I ends in j.
Let

f
(n)
i,j := Pi(X1 6= j, . . . , Xn−1 6= j, Xn = j)

be the probability of a first visit to j at time n when we start in i,
and let

fi,j := Pi

(⋃∞
n=1 the event that Xn = j

)
=

∞∑
n=1

f
(n)
i,j

be the probability of an eventual visit.

Definition. A state i is called persistent (or recurrent) if the Markov
chain starting at i is certain sometime to return to i: fi,i = 1. The
state is called transient in the opposite case: fi,i < 1. �

Suppose that n1, . . . , nk are integers satisfying 1 ≤ n1 < · · · < nk
and consider the event that the chain visits j at times n1, . . . , nk but
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not in between. This event is determined by the conditions that X1 6=
j, . . . , Xn1−1 6= j, Xn1

= j, Xn1+1 6= j, . . . , Xn2−1 6= j, Xn2
= j, . . . ,

Xnk−1+1 6= j, . . . , Xnk−1 6= j, and Xnk
= j. Repeated application of

(1) shows that the Pi-probability of this event is

F := f
(n1)
i,j f

(n2−n1)
j,j f

(n3−n2)
j,j . . . f

(nk−nk−1)
j,j .

We add this over the k-tuples n1, . . . , nk by the nested summation

∞∑
n1=1

∑
n2

n2>n1

∑
n3

n3>n2

· · ·
∑
nk

nk>nk−1

F ,

and by the above definition of fi,j get that the Pi-probability of Xn = j

for at least k different values of n is fi,jf
k−1
j,j (we always consider the

first k visits and these are unique). Letting k → ∞ therefore gives
the formula

Pi(Xn = j i.o.) =

{
0 if fj,j < 1 ,
fi,j if fj,j = 1

where “i.o.” abbreviates “infinitely often”.
In more details (Billingsley is laconic), the event A that X0 = i and

Xn = j i.o. is for any k contained in the event Ak that X0 = i and
Xn = j for at least k different values of n. This gives the first case of
the formula. In the second case we use that the events Ak are nested,
A1 ⊃ A2 ⊃ . . . , have the same probability Pr(Ak) = fi,j, and A is
their intersection. From

A =
∞⋂
k=1

Ak = A1 \
∞⋃
k=1

(Ak \ Ak+1)

we get that indeed

Pr(A) = Pr(A1)−
∞∑
k=1

(Pr(Ak)− Pr(Ak+1)) = fi,j −
∞∑
k=1

0 = fi,j .

Setting i = j in the formula gives

Pi(Xn = i i.o.) =

{
0 if fi,i < 1 ,
1 if fi,i = 1 .

(2)
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For n ∈ N0 and states i, j we denote by p
(n)
i,j the probability of

transition from i to j in n steps,

p
(n)
i,j := Pi(Xn = j) .

Thus p
(1)
i,j = pi,j, p

(0)
i,j = 0 for i 6= j and p

(0)
i,i = 1.

Theorem (Billingsley, Theorem 8.2). The above defined transient
and persistent (recurrent) states are characterized by the following
conditions.

1. Transience of a state i is equivalent to Pi(Xn = i i.o.) = 0 and to∑
n p

(n)
i,i < +∞.

2. Persistence (recurrence) of a state i is equivalent to Pi(Xn =

i i.o.) = 1 and to
∑

n p
(n)
i,i = +∞.

Proof. By the first Borel–Cantelli lemma,
∑

n p
(n)
i,i < +∞ implies

Pi(Xn = i i.o.) = 0, which by (2) in turn implies the transience
fi,i < 1. The entire theorem will be proved if it is shown that fi,i < 1

implies
∑

n p
(n)
i,i < +∞.

We look at the first passages through a state j. By (1) (used on
the third line),

p
(n)
i,j = Pi(Xn = j)

=
n−1∑
s=0

Pi(X1 6= j, . . . , Xn−s−1 6= j, Xn−s = j, Xn = j)

=
n−1∑
s=0

Pi(X1 6= j, . . . , Xn−s−1 6= j, Xn−s = j)Pj(Xs = j)

=
n−1∑
s=0

f
(n−s)
i,j p

(s)
j,j .

Therefore, by changing order of summation in the next finite double
sum,

n∑
t=1

p
(t)
i,i =

n∑
t=1

t−1∑
s=0

f
(t−s)
i,i p

(s)
i,i =

n−1∑
s=0

p
(s)
i,i

n∑
t=s+1

f
(t−s)
i,i ≤

n∑
s=0

p
(s)
i,i fi,i .
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Rearranging the obtained inequality and using that p
(0)
i,i = 1, we get

that (1 − fi,i)
∑n

t=1 p
(t)
i,i ≤ fi,i. If fi,i < 1, we get for every n ∈ N the

bound
n∑

t=1

p
(t)
i,i ≤

fi,i
1− fi,i

.

Thus the series
∑

n p
(n)
i,i converges. �

We start the specific part of the proof of Pólya’s theorem. In the
following I use the asymptotic notation � and � as synonymous to
the O(· · · ) notation; in physics it often has the o(· · · ) meaning.

Lemma. The following three results hold.

1. If α1, . . . , αk ≥ 0 are real numbers with
∑k

i=1 αi = 1 then

k∑
i=1

α2
i ≤ max

1≤i≤k
αi .

2. If a > b ≥ 0 are integers with a ≥ b+ 2 then

a! · b! > (a− 1)! · (b+ 1)! .

3. Let m ∈ N. Then for n = 3m, n = 3m + 1 and n = 3m + 2 we
have, respectively,

n!

m!3
� 3n

n
,

n!

(m+ 1)! ·m!2
� 3n

n
and

n!

(m+ 1)!2 ·m!
� 3n

n
.

4. For every n ∈ N0,

n∑
u=0

(
n

u

)(
n

n− u

)
=

(
2n

n

)
.

Proof. Do it as (easy) exercises. In part 3 use the Stirling (asymp-
totic) formula

n! ∼
√

2πn
(n
e

)n
as n→∞ .

�
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Theorem (G. Pólya, 1921). In the above Example 2 of the random
walk on Zk, all states (points in Zk) are persistent (recurrent) if k = 1
or k = 2, and all are transient if k ≥ 3.

Proof. (After Billingsley, case k = 3 modified.) The probability p
(n)
a,a

(of a return to the point a in n steps) is the same for all a; we set

a
(k)
n := p

(n)
a,a. Clearly, a

(k)
2n+1 = 0 because transition to a neighbor of

a point a ∈ Zk flips the parity of the sum of coordinates. We only
consider cases k = 1, 2 and 3, the case k ≥ 4 is similar to (but in
notation more complicated than) the case k = 3.

Let k = 1: we are on the line, in Z. We have that

a
(1)
2n =

(
2n

n

)
1

22n
=

(2n)!

n!2
· 1

22n
.

Plugging in the Stirling formula we get that a
(1)
2n ∼ (πn)−1/2. So∑

n a
(1)
n = +∞ and all states are persistent by the previous theorem.

Let k = 2: we are in the plane, in Z2. Now a return to the starting
point in 2n steps means equal numbers of steps east and west as well
as equal numbers north and south:

a
(2)
2n =

n∑
u=0

(2n)!

u!2(n− u)!2
· 1

42n
=

1

42n

(
2n

n

) n∑
u=0

(
n

u

)(
n

n− u

)
=

1

42n

(
2n

n

)2

∼ 1

πn
(4 of the Lemma and the Stirling f.) .

Again,
∑

n a
(2)
n = +∞ and every state is persistent.

Let k = 3: we are in the space, in Z3. Now we get (u, v ∈ N0)

a
(3)
2n =

1

62n

∑
u+v≤n

(2n)!

u!2v!2(n− u− v)!2

=

(
2n

n

)
4−n

∑
u+v≤n

[
1

3n

(
n

u, v, n− u− v

)]2
.

The numbers in the [. . . ]s sum up to 1 because 3n = (1 + 1 + 1)n =∑
u+v≤n

(
n

u,v,n−u−v
)

by the multinomial theorem. By parts 1 and 2 of
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the Lemma we get that (x, y, z ∈ N0)∑
···

[· · · ]2 ≤ max
x+y+z=n

1

3n

(
n

x, y, z

)
=

1

3n

(
n

x0, y0, z0

)
where (m ∈ N) (x0, y0, z0) equals (m,m,m) if n = 3m, (m+ 1,m,m)
if n = 3m+ 1, and (m+ 1,m+ 1,m) if n = 3m+ 2. By part 3 of the
Lemma, (

n

x0, y0, z0

)
� 3n

n
.

Since, as we know,
(
2n
n

)
· 4−n ∼ cn−1/2 for a constant c > 0, we get the

bound
a
(3)
2n � n−1/2n−1 = n−3/2 .

Thus
∑

n a
(3)
n < +∞ and by the previous theorem all states (points)

are transient. �

This theorem was proved (not exactly in this way, of course) in the
article G. Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung
betreffend die Irrfahrt im Straßennetz, Math. Ann. 84 (1921), 149–
160.

• George (György) Pólya (1887–1985) was a Hungarian–American
mathematician who worked mainly in complex analysis, but also — as
we have seen — in probability theory and in combinatorics (Pólya’s
enumeration method). He is known for his book How to solve it
discussing heuristics for solving mathematical problems. The book
was published in Czech translation by MATFYZPRESS.

Thank you!

(final version of January 13, 2021)
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