
Lecture 10. The Law of Iterated Logarithm. Randomized

primality testing. Markov chains and 2-SAT

Martin Klazar

December 8, 2020

The Law of Iterated Logarithm

is a fundamental result in classical probability theory concerning
infinitely many independent coin tosses, and a follow-up of the results
concluding the last lecture. These are infinitely many events An,
n ∈ N, in a probability space P = (Ω,Σ,Pr) such that for every finite
set I ⊂ N,

Pr
(⋂

n∈I An

)
=
(

1
2

)|I|
.

We learned in Lecture 8 that it takes an uncountable probability
space P (with uncountable set Ω) to accommodate infinitely many
such events. We associate with each An its modified indicator RV

Xn(ω) =

{
1 . . . ω ∈ An

−1 . . . ω ∈ Ω \ An .

Theorem (LIL). Suppose that An, n ∈ N, are independent coin
tosses, Xn are their respective modified indicator RVs and Sn := X1 +
X2 + · · ·+ Xn. Then for any ε > 0,

Pr
(

Sn√
(n/2) log(log n)

> 1 + ε for infinitely many n
)

= 0

and

Pr
(

Sn√
(n/2) log(log n)

> 1− ε for infinitely many n
)

= 1 .

Thus if we perform infinitely many independent tosses of a fair coin
(we can do it in our minds but not in reality), count +1 point for
each head and −1 point for each tail, then we encounter almost surely

1

the event that infinitely often after n tosses the score is larger than
0.99

√
(n/2) log(log n), but we encounter almost never the event that

infinitely often after n tosses the score is > 1.01
√

(n/2) log(log n).
Deviations from the expected zero score are unavoidable to certain
degree, but no larger deviation, larger by any little bit, occurs.

The LIL is due to A. Ja. Chinčin in 1924 and A. N. Kolmogorov in
1929.

• Aleksandr Ja. Chinčin (1894–1959) was a Soviet mathematician
working in probability theory and in number theory. He wrote the
beautiful book Three Pearls of Number Theory (first published in Rus-
sian in Moscow and Leningrad in 1947) on van der Waerden’s theorem,
Mann’s theorem and an elementary solution of Waring’s problem. In
the age of Wikipedia it suffices to mention just these three keywords.

• Andrej N. Kolmogorov (1903–1987) was, to quote Wikipedia, a So-
viet mathematician who made significant contributions to the math-
ematics of probability theory, topology, intuitionistic logic, turbu-
lence, classical mechanics, algorithmic information theory and com-
putational complexity. He is the author of the currently accepted and
widely used formalization of probability theory, published in 1933 in
his treatise Grundbegriffe der Wahrscheinlichkeitsrechnung (Funda-
mental notions of the probability calculus).

Randomized primality testing

In the longish statement of the next theorem — we will not prove it —
we describe a randomized primality test, due to M. O. Rabin and
D. E. Knuth, and its properties.

Theorem (probable primes). There is an algorithm

A(n, x) : {(n, x) ∈ N2 | n > 1 and is odd, 1 < x < n} → {0, 1} ,
described below, with the variables k, n, q, y ∈ N, j ∈ N0 and the failure
parameter x ∈ N, and with the output 0 interpreted as “n is definitely
not prime” and 1 as “n is probably prime”. The algorithm A has the
following steps.

1. Main input: an odd number n = 1 + 2kq > 1, q odd, to be tested
for primality.

2

2. Input the failure parameter x ∈ N, 1 < x < n.

3. Exponentiation: j := 0 and take the y ∈ [n] such that y ≡ xq

modulo n.

4. Done? [now y ≡ x2jq modulo n.] If j = 0 and y = 1, or if
y = n− 1, output “n is probably prime” and terminate.

5. Increase j: j := j + 1. If j < k, set y := y2 modulo n, y ∈ [n],
and go to step 4.

6. Not prime: output “n is definitely not prime” and terminate.

This algorithm terminates on every input (n, x) in time polynomial in
log n.
God’s view: If n is prime, then for every x the algorithm correctly
outputs “n is probably prime”. If n is composite, then for some less
than n−2

4 numbers x with 1 < x < n, known to me, the algorithm
fails and outputs “n is probably prime”, but for other values of x it
correctly outputs “n is definitely not prime”.
User’s view: The answer of the algorithm “n is definitely not prime”
is always correct, for any x. The other answer “n is probably prime”
may be incorrect for some less than n−2

4 numbers x with 1 < x < n

but unfortunately I do not know which are these x.

Exercise. Prove that if n is a prime number then for any x ∈ N
with 1 < x < n the algorithm A outputs correctly that “n is probably
prime”. �

As we said, the algorithm is due to Rabin and Knuth, in cca 1977,
and the above steps 1–6 are (with a small modification) as on p. 395
in TAOCP, Volume 2. I have to mention here that a deterministic
polynomial-time test of primality, more complicated than the above
algorithm (and therefore not really used in practice), was found in
2004 by M. Agrawal, N. Kayal and N. Saxena.

• Michael O. Rabin is an Israeli computer scientist. He was born in
Breslau in Germany, which is today Wroc law in Poland.

• Donald E. Knuth is an American computer scientist. He is the
author of the computer typesetting program TeX (in a variant of it,

3

LaTeX, all these lectures are written) and of the series of books The
Art of Computer Programming, of which the volumes 1, 2, 3 and 4A
have been already published.

The algorithm A shows its usefulness when it runs several times on
the same main input n but different numbers x, which we formalize
as follows. For every r ∈ N we have the algorithm Ar with input
(n, x1, . . . , xr), where (n, xi) are r inputs of A, and the same output
{0, 1} as A. The output is determined by

Ar(n, x1, . . . , xr) := min(A(n, x1), A(n, x2), . . . , A(n, xr))

— we run A r times on the inputs (n, x1), . . . , (n, xr) and output 0
(“n is definitely not prime”) iff in at least one of the runs we get A-
output 0, and else we output 1 (“n is probably prime”). Let In :=
{2, 3, . . . , n− 1}. By the properties of A given in the above theorem
we see that Ar runs in time polynomial in log n (with the implicit
constant depending of course on r) and has the fraction of inputs on
which it fails

|{(x1, . . . , xr) ∈ Irn | Ar fails on (n, x1, . . . , xr)}|
|Irn| = (n− 2)r

<

(
1

4

)r

(Ar fails on (n, x1, . . . , xr) iff A fails on each (n, x1), . . . , (n, xr)). This
deterministic inequality is usually interpreted probabilistically, one
says something like: so by running A on n and sufficiently many
random numbers x, 1 < x < n, we can make the probability of failure
of the algorithm as close to 0 as we wish. The problem with it is what
do the “random numbers x” rigorously (not poetically) mean: we can
input in A only numbers, not probability distributions. For example,
why not let A run simply on n and x = 2, 3, . . . , r + 1? I leave this
problem at that and move to the next topic.

Markov chains

• Andrej A. Markov (1856–1922), after whom Markov chains are
named, was a Russian mathematician. His son A. A. Markov (1903–
1979) with identical name was a notable logician who introduced so
called normal algorithms, a formalization of the notion of an algo-
rithm.

4

Suppose that pi,j ≥ 0, i, j ∈ N0, are real numbers such that
∑

j pi,j = 1
for every i ∈ N0. We say that a sequence of discrete RVs X0, X1, . . .
such that Xt ∈ N0 forms a Markov chain M (with transition probabil-
ities pi,j) if for every t ∈ N and every ak ∈ N0,

Pr(Xt = at |Xt−1 = at−1 ∧Xt−2 = at−2 ∧ · · · ∧X0 = a0)

= Pr(Xt = at |Xt−1 = at−1)

= pat−1, at

(the ∧ are really ∩) whenever the initial conditional probability is
defined, i.e. whenever

Pr(Xt−1 = at−1 ∧Xt−2 = at−2 ∧ · · · ∧X0 = a0) > 0 .

Thus M is a process with very short memory: it only remembers what
happened in the previous step but not what happened before. Since
I was giving this basic definition incorrectly in my oral lectures1, I re-
peat it again next time. Then I also discuss the question of existence
of Markov chains.

So for i, j ∈ N0 we call the probabilities pi,j = Pr(Xt = j |Xt−1 = i)
(the right side may not be defined) the transition probabilities. The
values of Xt in N0, or in [n]0 = {0, 1, . . . , n} for finite Markov chains,
are the states. We collect the transition probabilities in the transition
matrix

P = (pi, j) ∈ [0, 1]N0×N0 or P = (pi, j) ∈ [0, 1][n]0×[n]0 .

Exercise. Why do these matrices have every row sum 1? Because
they were so defined. Why were they so defined? �

The distribution of M at time t ∈ N0 is described by the 1 × N0 or
1× (n + 1) row vector

p(t) =
(
pi(t) | i ∈ N0 or i ∈ [n]0

)
where pi(t) := Pr(Xt = i). The entries in p(t) sum up to 1 (these are
probabilities of events partitioning Ω).

1I was parroting, after some textbooks, that “A sequence of random variables X0, X1, X2, . . . is a Markov chain
if . . . ”. This is the wrong way to begin the definition. Transition probabilities pi,j have to be given first, in general
they cannot be determined from the Xt because the corresponding conditional probabilities may not be defined.
Imprecisely formulated definitions of Markov chains in this style appear not so rarely in the literature.

5

We claim that for every t ∈ N the vector p(t) is related to the vector
p(t− 1) via the multiplication of (possibly infinite) matrices

p(t) = p(t− 1)P = p(t− 1) · P .

Indeed, for any j ∈ N0 we compute that

(p(t))1, j = pj(t) = Pr(Xt = j)

=
∑
i

Pr(Xt = j ∧Xt−1 = i)

=
∑

i,Pr(Xt−1=i)>0

Pr(Xt = j ∧Xt−1 = i)

=
∑

i,Pr(Xt−1=i)>0

Pr(Xt = j |Xt−1 = i) · Pr(Xt−1 = i)

=
∑

i,Pr(Xt−1=i)>0

pi, j · pi(t− 1)

=
∑
i

pi(t− 1) · pi, j = (p(t− 1) · P)1, j .

Watch carefully how the problem that conditional probability may
not be defined was dealt with. So after m ∈ N0 steps (units of time)
the distribution p(t) of M evolves in the distribution

p(t + m) = p(t) · Pm .

Suppose that X0, X1, . . . is a Markov chain with transition matrix
P = (pi,j) and that t ∈ N0 and m ∈ N. We claim that

(Pm)i, j = Pr(Xt+m = j |Xt = i)

whenever the right side is defined. This can be proved by induction
on m: for m = 1 we are done by the definition of P , and the induction
step m m+1 follows by a computation similar to the one displayed
above.

Exercise. Also, for every t ∈ N0 and any states a0, a1, . . . , at,

Pr(X0 = a0)pa0,a1pa1,a2 . . . pat−1,at

= Pr(Xt = at ∧Xt−1 = at−1 ∧ · · · ∧X0 = a0) .

�

6

Clearly it will be useful to have a combinatorial interpretation of
entries in powers of matrices. Let m ∈ N0 and A ∈ Rn×n, n ∈ N,
be any matrix. We assign to A the weighted directed graph DA =
([n], E, h), E ⊂ [n]2 and h : E → R, defined by

e = (i, j) ∈ E ⇐⇒ Ai, j 6= 0, and h(e) = h(i, j) := Ai, j .

For u, v ∈ [n] a u-v walk w in DA with length m ∈ N0 is any sequence
of vertices w = (v0, v1, . . . , vm) ⊂ [n] such that v0 = u, vm = v and
(vi−1, vi) ∈ E for every i = 1, 2, . . . ,m. We define its weight h(w) by

h(w) :=
m∏
i=1

h(vi−1, vi) =
m∏
i=1

Avi−1, vi .

If m = 0 we set h(w) = 1. The proof of the next proposition is easy
and therefore is left as an exercise.

Proposition (walks and powers). For every m ∈ N0, n ∈ N, every
matrix A ∈ Rn×n, and any indices/vertices i, j ∈ [n],

(Am)i, j =
∑
w is

an i-j walk
in DA with

length m

h(w)

where the empty sum, which appears for instance if m = 0 and i 6= j,
is defined as 0.

2-SAT problem and Markov chains
(This final part of L10 will not be examined, as of January 13 it is in

an unconvincing state; I rework it later.)

Suppose that x1, . . . , xn are Boolean variables, ranging in {0, 1},
and F = F (x1, . . . , xn) is a Boolean 2-SAT formula of the form

F (x1, . . . , xn) =
k∧

j=1

(yj ∨ zj)

where each yj, zj ∈ {x1, . . . , xn, x1, . . . , xn}. Here xi negates the vari-
able xi, each disjunction yj ∨ zj is a clause of F , the yj, zj for j =

7

1, 2, . . . , k are literals, and the “2” means that each clause contains ex-
actly two literals. The 2-SAT problem asks to decide efficiently if there
exists a satisfying assignment xi ∈ {0, 1} such that F (x1, . . . , xn) = 1
for it, and if it exists then to find it efficiently. For example, for n = 4
and

F = (x4 ∨ x1) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3)

we have F (1, 1, 1, 1) = 0, but a satisfying assignment for this formula
exists because, for instance, F (1, 0, 0, 1) = 1.

The randomized 2-SAT algorithm for the 2-SAT problem in Mitzen-
macher and Upfal, p. 171, has the following four steps.

1. Start with an arbitrary assignment S0 : {x1, . . . , xn} → {0, 1}.

2. Repeat up to 2mn2 times, m ∈ N, terminating if all clauses are
satisfied:

(a) Choose arbitrary clause that is not satisfied.

(b) Choose uniformly at random one of the literals in the clause
and switch the value of its variable.

3. If a satisfying assignment has been found, return it.

4. Else, return that F is unsatisfiable.

We analyze it, after Mitzenmacher and Upfal (pp. 171–174).
Let S : {x1, . . . , xn} → {0, 1} be a fixed satisfying assignment for

F and Xi be the RV recording the number of variables in the current
assignment that have after step i the same value as in S. Clearly
Pr(Xi+1 = 1 |Xi = 0) = 1 and for j ∈ [n− 1],

Pr(Xi+1 = j + 1 |Xi = j) ≥ 1

2
and Pr(Xi+1 = j − 1 |Xi = j) ≤ 1

2
.

X0, X1, . . . is not necessarily a Markov chain. We define a Markov
chain Y0, Y1, . . . with states [n]0 by Y0 := X0, Pr(Yi+1 = 1 |Yi = 0) =
1, and for j ∈ [n− 1],

Pr(Yi+1 = j + 1 |Yi = j) =
1

2
and Pr(Yi+1 = j − 1 |Yi = j) =

1

2
.

8

It follows that

E
(

time to reach n in the process Xt,
starting from the distribution X0

)
≤ E(. . . Yt . . .) =

∞∑
t=0

t · Pr(Yt = n) .

We can think of the Markov chain Yt also as a random walk on the
undirected path with vertices [n]0 and edges {i, i − 1}, i ∈ [n]; from
each vertex we go with the same probability to its neighbor (i = 0
and i = n have just one neighbor, any other vertex i has two). Let
Zj ∈ N0, for j ∈ [n − 1], be the RV recording the number of steps it
takes to reach by the walk the endvertex n from the vertex j. From
the vertex j we go with equal probability 1

2 either to j − 1 or to j.
Hence

EZj = E
(

1
2(1 + Zj−1) + 1

2(1 + Zj+1)
)
.

If hj := EZj, we have by linearity of expectation that

hj = 1
2(hj−1 + hj+1) + 1 .

We have got the system of linear equations (j ∈ [n− 1])

h0 = h1 + 1, hj =
hj−1 + hj+1

2
+ 1, hn = 0 .

Lemma. The above equation imply that for any j ∈ [n− 1]0 one has
the relation hj = hj+1 + 2j + 1. Hence

h0 = h1 + 1 = h2 + 1 + 3 = · · · = 0 +
n−1∑
i=0

(2i + 1) = n2 .

Proof. By induction on j. For j = 0 the relation holds by the first
equation in the system. For j ≥ 1 we have by the second equation in
the system and by induction that

hj+1 = 2hj − hj−1 − 2 = 2hj − (hj + 2j − 1)− 2 = hj − 2j − 1 ,

which is the relations for j. �

Thus we have the following

9

Corollary. If a 2-SAT formula with n variables has a satisfying
assignment and if the above 2-SAT algorithm runs until it finds a sat-
isfying assignment, then

E
(

the number of steps until the
algorithm finds a satisfying assignment

)
≤ n2 .

Theorem. The 2-SAT algorithm always returns a correct answer if
F is unsatisfiable. If F is satisfiable, then with probability at least
1 − 2−m algorithm returns a satisfying assignment. Else it incorrect
returns that F is unsatisfiable

Proof. The case when there is no satisfying assignment is clear. Let
F be satisfiable. We divide executions of the algorithm in m segments
with length 2n2. The Corollary implies that

E
(

no satisfying assignment
found in the i-th segment

∣∣ no satisfying assignment found
in the segments 1, 2, . . . , i− 1

)
<

1

2

because if Z is the RV recording the number of steps from the start
of the i-th segment until the algorithm finds a satisfying assignment,
then EZ ≤ n2 by the Corollary, and therefore by Markov’s inequality

Pr(Z > 2n2) ≤ EZ
2n2

=
n2

2n2
=

1

2
.

Hence
Pr
(

the algorithm fails to find a satisfying
assignment after m segments

)
≤ (1/2)m

and the theorem is proven. �

We conclude with the remark that the 2-SAT problem is solvable in
polynomial time, but the analogous 3-SAT problem is NP-complete.

Thank you!

(semifinal version — the last part is to be rewritten — of January 13,
2021)

10

