There is no free will: almost every value of every function is predetermined by earlier values

Martin Klazar*

August 31, 2015

For $n \in \mathbb{N} = \{1, 2, ...\}$, $f : [n] = \{1, 2, ..., n\} \to \mathbb{R}$ and $a \in [n]$, we denote by $f \mid a$ the restriction of f to [a - 1] (we set $f \mid 1 = \emptyset$). Can one determine the value f(a) from $f \mid a$? More formally, for given $n \in \mathbb{N}$ a predictor P is a mapping

 $P: \{f: [a-1] \to \mathbb{R} \mid a \in [n]\} \to \mathbb{R}$

from the set of all real functions whose domains are proper initial segments of [n] to \mathbb{R} , and we say that for a given function $f : [n] \to \mathbb{R}$ and $a \in [n]$ a predictor P predicts the value f(a) if P(f | a) = f(a), and otherwise that P errs at f(a). Is there a predictor that for every function f predicts at least some of its values? Of course not, as everybody sees.

Proposition 1. Let $n \in \mathbb{N}$. Then for every predictor P there is a function $f : [n] \to \mathbb{R}$ such that P errs at f(a) for every $a \in [n]$.

Proof. For P and a = 1, 2, ..., n, we define f by induction as f(a) := P(f | a) + 1, say. Then $P(f | a) \neq f(a)$ for every $a \in [n]$.

We replace the discrete domain [n] with \mathbb{R} and consider functions $f : \mathbb{R} \to \mathbb{R}$ and for $a \in \mathbb{R}$ their restrictions $f \mid a$ to $(-\infty, a)$. A predictor P is a mapping

$$P: \{f: (-\infty, a) \to \mathbb{R} \mid a \in \mathbb{R}\} \to \mathbb{R}$$

from the set of all real functions defined before an $a \in \mathbb{R}$ to \mathbb{R} . Again, for $f : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$, a predictor P predicts the value f(a) if $P(f \mid a) = f(a)$ and it errs at f(a) if $P(f \mid a) \neq f(a)$. Unlike Proposition 1, now we have the following at first surprising and counterintuitive result that a predictor exists that for every function $f : \mathbb{R} \to \mathbb{R}$ predicts almost every value. (Note that for the class of continuous functions $f : \mathbb{R} \to \mathbb{R}$ the obvious predictor predicts for every function every value.)

Proposition 2. If we assume the axiom of choice, there exists a predictor P that for every function $f : \mathbb{R} \to \mathbb{R}$ errs only at at most countably many values.

^{*}klazar@kam.mff.cuni.cz

Proof. We denote by M the set of all functions $f : \mathbb{R} \to \mathbb{R}$. By the axiom of choice there is a well ordering (M, \prec) . For $a \in \mathbb{R}$ and $g : (-\infty, a) \to \mathbb{R}$ we define our miraculous predictor P by

$$P(g) := f_0(a)$$
 where $f_0 = \min(\{f \in M \mid f \mid a = g\})$.

the minimum taken with respect to \prec . We show that P has the stated property. Let $f \in M$ be arbitrary and

$$X = \{a \in \mathbb{R} \mid P(f \mid a) \neq f(a)\}$$

be the arguments where P did not predict correctly the value f(a). We claim that if $a, b \in X$ with a < b, $f_0 = \min(\{g \in M \mid g \mid a = f \mid a\})$, and $f_1 = \min(\{g \in M \mid g \mid b = f \mid b\})$, then $f_0 \prec f_1$. Indeed, the former set of gs contains the latter one as $(-\infty, a) \subset (-\infty, b)$, so $f_0 \preceq f_1$, but $f_0 \neq f_1$ because $f_0(a) = P(f \mid a) \neq f(a) = (f \mid b)(a) = f_1(a)$. Thus any infinite strictly descending chain $\cdots < a_2 < a_1$ in (X, <) would give an infinite strictly descending chain in (M, \prec) , which cannot be since (M, \prec) is a well ordering. Hence (X, <) is a well ordered subset of \mathbb{R} , which implies that X is finite or countable (the mapping $h : X \to \mathbb{Q}$ defined by $h(\max X) = \sup \alpha \in \mathbb{Q}$ larger than $\max X$ and, for $x \in X$ not the maximum of X, by $h(x) = \sup \alpha \in \mathbb{Q}$ between x and $\min(\{y \in X \mid y > x\})$, is an injection). \Box

So, ironicly, there is no free will when we accept the axiom of choice: if we are building a function $f : \mathbb{R} \to \mathbb{R}$ step by step by going with $a \in \mathbb{R}$ from $-\infty$ to $+\infty$, then except for at most countably many flashes of free will, at the remaining instances f(a) is completely predetermined by the earlier values f(x), x < a, and we have no choice!

Proposition 2 is due to Hardin and Taylor [2, Teorem 3.1], for further results in this spirit see Bajpai and Velleman [1].

References

- D. Bajpai and D.J. Velleman, Anonymity in predicting the future, ArXiv:1508.06865v1, 12 pages, 2015.
- [2] Ch. S. Hardin and A. D. Taylor, A peculiar connection between the axiom of choice and predicting the future, *Amer. Math. Monthly* **115** (2008), 91–96.