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Abstract

We give a minimalistic proof of the theorem in the title.

The Theorem

We prove from first principles the fundamental property of holomorphic func-
tions. Then we add a few comments.

Theorem. For every function f : C→ C such that f ′(z) ∈ C exists for every
z ∈ C there are complex numbers (a0, a1, . . . ) ⊂ C such that

f(z) =

∞∑
n=0

anz
n

holds for every z ∈ C.

By the assumption, for any z ∈ C there is a value f ′(z) ∈ C such that for every

ε > 0 there is a δ > 0 such that | f(z)−f(u)z−u −f ′(z)| < ε whenever 0 < |z−u| < δ.
The conclusion says that for every z ∈ C, a0 + a1z + · · · + anz

n → f(z) as
n→∞. A function f : U → C on an open set U is holomorphic (on U) if f ′(z)
exists for every z ∈ U . U will denote a nonempty open subset of C. An entire
function is holomorphic on C. Theorem asserts that every entire function is a
sum of power series.

The proof

Let a, b ∈ C, a 6= b, be a pair of points and f : U → C be a continuous
function such that U contains the segment S = Sa,b = {ϕ(t) = a + t(b −
a) | t ∈ [0, 1]} spanned by a and b. A partition P of S is a tuple of points
P = (a0, a1, . . . , ak) on S with ai = ϕ(ti) for some 0 = t0 < t1 < · · · < tk = 1.
An equipartition P has ti = i/k, i = 0, 1, . . . , k, so ai − ai−1 = (b − a)/k. We
set ‖P‖ = max1≤i≤k |ai − ai−1|. Cauchy’s sum (corresponding to P and f) is
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R(P, f) =
∑k

i=1 f(ai)(ai − ai−1). If P1, P2, . . . is a sequence of partitions of S
such that ‖Pn‖ → 0, we define the integral of f over S as

Ia,b(f) = lim
n→∞

R(Pn, f) .

Below we prove that the limit exists and does not depend on the choice of Pn;
for Pn one may take equipartitions with k = n.

By a rectangle R ⊂ C we mean an axis-parallel rectangle with nonzero height
and width. We take its vertices as a quadruple a, b, c, d ∈ C, ordered counter-
clockwise starting from the lower left corner a. If f : U → C is continuous and
the boundary ∂R of R lies in U , we define the integral of f over ∂R as

IR(f) = Ia,b(f) + Ib,c(f) + Ic,d(f) + Id,a(f) .

We begin by deriving some properties of Ia,b(f) and IR(f).

Proposition 1. Let f, g : U → C be continuous functions, S = Sa,b ⊂ U be a
segment, and R be a rectangle with ∂R ⊂ U . The limit defining Ia,b(f) always
exists and is independent of the choice of the partitions Pn. Further we have
the following properties.

1. If α, β ∈ C then Ia,b(αf + βg) = αIa,b(f) + βIa,b(g) and similarly for
IR(·).

2. |Ia,b(f)| ≤ maxz∈S |f(z)|·|b−a| and |IR(f)| ≤ maxz∈∂R |f(z)|·p(R) where
p(R) is the perimeter of R.

3. One has Ia,b(f) = −Ib,a(f) and if c ∈ S, c 6= a, b, then Ia,b(f) = Ia,c(f) +
Ic,b(f).

Proof. It suffices to show that for every ε > 0 there is a δ > 0 such that if P1

and P2 are partitions of S with ‖P1‖, ‖P2‖ < δ then |R(P1, f)− R(P2, f)| < ε.
Let first P1 ⊂ P2, P1 = (a0, a1, . . . , ak) and ‖P1‖ < δ. Then there are partitions
Qi of Si = Sai−1,ai , i = 1, 2, . . . , k, (using points in P2) such that R(P2, f) =∑k

i=1R(Qi, f). Denoting by h the function that is constantly f(ai) on Si we
have mi := |f(ai)(ai − ai−1) − R(Qi, f)| = |R(Qi, h − f)| ≤ maxz∈Si

|f(ai) −
f(z)| · |ai− ai−1|. Since continuity on a compact set implies uniform continuity,
for small δ we have |f(ai)−f(z)| < ε/|b−a| for every z ∈ Si and i = 1, 2, . . . , k.

Thus mi < ε |ai−ai−1|
|b−a| and |R(P1, f)−R(P2, f)| ≤ m1 + · · ·+mk < ε. If P1 and

P2 are incomparable by inclusion, we take the partition P3 = P1∪P2 and apply
the previous result on the pairs P1, P3 and P2, P3.

1. This follows from the linearity of R(P, f) in f .
2. This follows from the bound |R(P, f)| ≤ maxz∈S |f(z)| · |b − a| (we used

it already), which follows from
∑

i |ai − ai−1| = |ak − a0| = |b − a| by the
collinearity of ai.

3. This follows from the corresponding identities for Cauchy’s sums, which
are immediate. 2

Proposition 2 (Cauchy’s theorem). Let f : U → C be a continuous
function and R ⊂ C be a rectangle.
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1. If ∂R ⊂ U and f is linear then IR(f) = 0.

2. If R ⊂ U (the whole R lies in U , not just the boundary) and f is holo-
morphic then IR(f) = 0.

Proof. For brevity we often omit in this proof the argument (f) in IR(f) and
similar expressions.

1. Let f(z) = αz+β and the vertices of R be a, b, c, d. If P is an equipartition

of Sa,b then R(P, f) =
∑k

i=1(αai + β)(ai − ai−1) = α
∑k

i=1(a+ i(b− a)/k)(b−
a)/k + β(b − a) = α(a(b − a) + ( 1

2 + 1
2k )(b − a)2) + β(b − a). Hence k → ∞

gives Ia,b = α(b2 − a2)/2 + β(b− a) = g(b)− g(a) where g(z) = αz2/2 + βz. So
IR = Ia,b + Ib,c + Ic,d + Id,a = (g(b) − g(a)) + (g(c) − g(b)) + (g(d) − g(c)) +
(g(a)− g(d)) = 0.

2. We divide R in four congruent rectangles R1, . . . , R4 (by joining the
midpoints of the opposite sides of R) and conclude that for some j ∈ {1, 2, 3, 4},
|IRj
| ≥ |IR|/4. This follows from the triangle inequality and the identity IR =

IR1
+ · · · + IR4

(which follows from the definition of IRi
by using part 3 of

Proposition 1). Clearly, p(Rj) = p(R)/2. Iterating this division we obtain
nested rectangles R = R0 ⊃ R1 ⊃ . . . such that |IRn | ≥ |IR|/4n and p(Rn) =
p(R)/2n. We take the point z0 ∈ U given by

{z0} =

∞⋂
n=0

Rn .

Since f ′(z0) exists, for given ε > 0 for large enough n and z ∈ Rn one has
f(z) = f(z0) + f ′(z0)(z − z0) + ∆(z)(z − z0) with |∆(z)| < ε. Let g(z) =
f(z0) + f ′(z0)(z − z0) and h(z) = ∆(z)(z − z0). Then f = g + h and (by part
1 of Proposition 1) IRn(f) = IRn(g) + IRn(h) = IRn(h) because IRn(g) = 0 by
part 1 of this proposition. Now |h(z)| < εp(Rn) for z ∈ Rn. Thus (by part 2 of
Proposition 1)

|IR|/4n ≤ |IRn
| = |IRn

(h)| < εp(Rn)2 = εp(R)2/4n

and |IR| < εp(R)2. So IR(f) = 0. 2

Proposition 3. Let R ⊂ C be the square with vertices ±1 ± i. Then ρ :=
IR(1/z) 6= 0.

Proof. Now a = −1 − i, b = 1 − i, c = 1 + i, and d = −1 + i. Let P be an
equipartition of Sa,b. Then

R(P, 1/z) =

k∑
j=1

2/k

a+ 2j/k
=

k∑
j=1

(2/k)(2j/k − 1 + i)

(2j/k − 1)2 + 1

and we see that Im(R(P, 1/z)) ≥ 1. Thus Im(Ia,b(1/z)) ≥ 1 and in particular
Ia,b(1/z) 6= 0. Now comes perhaps the crucial point of the whole proof. Since

2/k
a+2j/k = 2i/k

ai+2ij/k = 2i/k
b+2ij/k and c − b = 2i, we have R(P, 1/z) = R(iP, 1/z)
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where iP is the partition of Sb,c obtained by rotating P around 0 by i. Thus
Ib,c(1/z) = Ia,b(1/z), and similar arguments (extending the fraction by −1 and
−i) show that also Ic,d(1/z) = Ia,b(1/z) and Id,a(1/z) = Ia,b(1/z). Hence
IR(1/z) = 4Ia,b(1/z) 6= 0 (and Im(IR(1/z)) ≥ 4). 2

For a ∈ C we set Ca = C\{a} and denote by Ha the set of all holomorphic
functions f : Ca → C. Let H =

⋃
a∈CHa. We define the functional

I : H → C, I(f) = IR(f), f ∈ Ha, a ∈ int(R)

— R ⊂ C is any rectangle containing a in its interior.

Proposition 4. The mapping I : H → C is correctly defined, its value does
not depend on the choice of R, and has the following properties.

1. If α, β ∈ C and f, g ∈ Ha then I(αf + βg) = αI(f) + βI(g).

2. If f ∈ Ha and is bounded near a then I(f) = 0.

3. For (z − a)−1 ∈ Ha one has I((z − a)−1) = ρ 6= 0 (ρ is defined in Propo-
sition 3).

4. Suppose that r > 0 is a constant and f ∈ Ha and fn ∈ Hb, n = 1, 2, . . . ,
are such that fn(z) → f(z) uniformly in z ∈ A for every bounded set A
lying in |z| > r. Then I(fn)→ I(f).

Proof. Let f ∈ Ha and R,S ⊂ C be two rectangles with a in their interiors.
Assume first that S lies in the interior of R. Using lines extending the sides of S
we divide R in nine rectangles R1, . . . , R9 with S being one of them, say S = R5.
As in the proof of part 2 of Proposition 2 we have IR(f) = IR1(f)+ · · ·+IR9(f).
For i 6= 5 we have IRi

(f) = 0 by part 2 of Proposition 2 because Ri ⊂ Ca. So
IR(f) = IR5

(f) = IS(f). The general position of R and S reduces to two
applications of the just discussed situation simply by sufficiently shrinking one
of the rectangles. So IR(f) = IS(f) whenever a ∈ int(R) ∩ int(S).

1. This follows from part 1 of Proposition 1.
2. Immediate from the bound in part 2 of Proposition 1 and the indepen-

dence of I on R.
3. This follows from Proposition 3 by the shift z 7→ z + a.
4. Let R be any rectangle containing both a and b in its interior and with

boundary lying in |z| > r. Then I(f)− I(fn) = IR(f − fn)→ 0 for n→∞ by
the assumption on fn and the modulus–perimeter bound on |IR(f −fn)|. (Note
that I(f − fn) is syntactically incorrect because f − fn 6∈ H when a 6= b.) 2

Proposition 5 (Cauchy’s formula). Let f : C → C be entire. Then for
every a ∈ C we have

f(a) =
I(f(z)/(z − a))

ρ
.
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Proof. Let a ∈ C be fixed. By parts 1, 3 and 2 of Proposition 4,

I(f(z)/(z − a)) = I(f(a)/(z − a)) + I((f(z)− f(a))/(z − a)) = ρf(a) + 0 .

2

Proposition 6. Let f : C→ C be entire. Then for every a ∈ C we have

f(a) =

∞∑
n=0

I(f(z)/zn+1)

ρ
an (ρ is defined in Proposition 3) .

Proof. Let a ∈ C be fixed. By the geometric series, we have uniformly in z ∈ C
with |a/z| < 1− δ, δ ∈ (0, 1), that

1

z − a
=

1

z
· 1

1− a/z
=

∞∑
n=0

an

zn+1
.

Substituting it in Cauchy’s formula and using part 1 and part 4 of Proposition 4
(with b = 0 and functions f(z)/(z−a) and fn(z) = f(z)

∑n
k=0 a

k/zk+1, we also
use that f(z) is bounded on any bounded set) we get the stated power series
expansion. 2

We are done! Theorem is proven, the coefficients are an = I(f(z)/zn+1)/ρ.

Concluding comments

The basic property of holomorphic functions stated in Theorem enters the
game in Bak and Newman [1] at page 60, in Henrici [4] at page 329, in Kriz
and Pultr [5] at page 248 (complex analysis is not the main topic of this book),
in Rudin [7] at page 207, in Veselý [9] at page 106, and we could continue with
many more monographs. But certainly one does not need 60 pages to prove it?
How complicated and long would be a selfcontained proof from first principles?
Our aim was to provide such a proof and now the reader may judge it and try
to improve upon it. In the proof we followed (critically) [1], with a look in [5].
The proof of part 2 of Proposition 2 is taken from [1, Theorem 4.14] (where
no attribution is given). The transition from Proposition 5 to Proposition 6 is
classical. For formalized proofs of Cauchy’s theorem and formula see Harrison
[3] (Theorem is not considered). Much of path integration is completely unnec-
essary to prove Theorem and very little suffices, as we demonstrated. The use
of Cauchy’s sums to define integrals is indeed due to Cauchy, see [2, lectures 21
and 23] (we learned it in Schwabik and Šarmanová [8]). As is well known, in
the real domain Theorem fails (f(x) = 0 for x ≤ 0 and f(x) = x2 for x ≥ 0
has derivative everywhere, f ′(x) = 0 for x ≤ 0 and f ′(x) = 2x for x ≥ 0, but
is not analytic in any neighborhood of 0) nor it holds in the p-adic domain,
see Robert [6]. Perhaps unusual in our approach is Proposition 3. Of course,
I(1/z) = IR(1/z) = 2πi but to prove it explicitly one would have to make ex-
plicit the machinery of exponential function (or trigonometric functions) and
Riemann integration, which is unnecessary — nonvanishing fully suffices. The
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nonvanishing in Proposition 3 is equally crucial for the proof as the vanishing
in Cauchy’s theorem (Proposition 2). Without it there would be no Cauchy’s
formula to be expanded in power series. Our proof of Proposition 3 by integra-
tion over the boundary of a square demonstrates the fundamental role of the
algebraic rotational 4-fold symmetry of C = R[i], stemming from the fact that
i is a (primitive) 4th root of unity, i4 = 1.
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