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1 Introduction

In 1967 B.J. Birch, later of the Birch and Swinnerton-Dyer conjecture fame,
proved in [2] a most interesting result.

Theorem (Birch, 1967). The only multiplicative functions f : N — Rxq that
are unbounded and have a non-decreasing normal order are the powers of n, the
functions f(n) =n® for a constant o > 0.

Multiplicativity means that f(mn) = f(m)f(n) for every two coprime numbers
m,n € N (thus f(1) =1 unless f =0), N={1,2,...}, and the clause about a
non-decreasing normal order means that a non-decreasing function g : N — Ry ¢
exists such that for every € > 0, #(n < z | % Z(1l—¢e14¢)) = o(x) as
T — +00.

In this write-up I present the proof of Birch’s theorem, as given in Birch [2]
and Narkiewicz [13, pp. 98-102] (see also [14]). It is a beautiful proof in the
erddsian style. To be honest, I started with the intention to correct two errors I
thought I had discovered in the argument. Fortunately, in the process of writing
everything clarified and the errors disappeared. Still, I will point out the two
steps I struggled with. To the interested reader, much smarter than me, they
will certainly pose no difficulty.

2 The proof with two conundrums

We use notation of [2], so let
b(n) =log f(n) and c¢(n) =logg(n) .

Birch [2, p. 149] writes just “If f is unbounded, then g(n) tends to infinity
with n, so we may suppose that ¢(n) > 0 for all n.” but Narkiewicz [13,

*klazar@kam.mff.cuni.cz



Lemat 2.5 on p. 98] gives more details. Assume for contrary that g(n) has a
finite limit @ > 0. Then, by the relation bounding f and g, there are constants
0 < A < a < B such that for every z > 0 and n < z we have A < f(n) < B,
with o(z) exceptions. Let E C N be the exceptions; F has density 0. Fix any
M > B. Since f is unbounded, there is an m € N with f(m) > M/A. The sets
{nm+ 1| n € N} and {(nm + 1)m | n € N} have positive densities and thus
sohas X ={n e N|nm+1,(nm+ 1)m € E}. For any n € X we get the
contradiction B > f((nm + 1)m) = f(nm +1)f(m) > Af(m) > M.

Thus indeed lim g(n) = 400. Changing finitely many values of g(n) we may
assume that always g(n) > 1 and ¢(n) > 0. By Birch [2], “Using the three
conditions

given € > 0, |b(n) — ¢(n)| < ¢ for all but o(x) integers n < x;
b(mn) = b(m) + b(n) if (m,n) =1,
c(n) > ¢(m) > 0 for n > m;

we gradually deduce more and more till everything collapses.” Let m,n € N
and € > 0 be arbitrary with |b(m) — ¢(m)], |b(n) — ¢(n)| < €. We assume that
m,n > 2. It follows that for any 7 € (0, %) there is an S > 0 such that for every
R > S there are s,t € N satisfying

(I1-nR<s<R<t<(l4+nR, s=t=1 (mod mn)
and
[b(s) = ¢(s)l, [b(ms) — c(ms)], [b(t) — c(t)], [b(nt) —c(nt)] <e .

(Only o(R) of the integers s € ((1 — n)R, R) violate the first or the second
lastly displayed inequality, and so for large R we certainly find there an s =
1 (mod mn) satisfying both. The same for t.) From b(ms) = b(m) + b(s) and
b(nt) = b(n) + b(t) we get

le(ms) —c(m) — c(s)], |e(nt) —e(n) —c(t)] < 3e.

We define by induction numbers sp < s7 < ... and tg < t; < ... in N, all
congruent to 1 modulo mn, such that

(I-mS<sy<S<ty<(l+n)S
and, for every i,j € Ng,
(1 —n)ms; < si41 <ms;, nt; <tjp1 < (1+n)nt;,
and
[b(si) = c(si)l, [b(msi) — c(msi)l, [b(t;) — c(t;)]; [b(nt;) — c(nt;)] <e .

(In the previous claim we first set R = S and get sy = s, then we set R =
mso(> S) and get s; = s, and so on. Since m > 2 and 1 < %, we stay above S



and s; increase. Similarly and more easily for ¢;.) Then, as we know, for every
1 € Ny one has
le(ms;) — e(m) — e(s;)] < 3e.

Monotonicity of ¢ gives
c(s;) > c(ms;) — c(m) — 3e > ¢(8i41) — c(m) — 3¢

and so ¢(sp) < ¢(S) + he(m) + 3he for every h € N by iteration. On the other
hand, sp, > (1 —n)"T'm"S by iterating the above inequalities. Similarly for ¢;
we get c(tg) > ¢(S) + ke(n) — 3ke for every k € N and 5, < (1 +n)FTinks,

Now if h, k € N are such that m” > n*, equivalently hlogm > klogn (recall
that logm # 0), we may select 7 > 0 so small that still

(1 _ n)h+1mh > (1 +n)k+1nk )

This implies that s, > t; and c(sp) > c(tx) (by monotonicity of ¢), hence
he(m) + 3he > ke(n) — 3ke and

c(n) — 3¢

h
5 c(m)+3e

It follows that

logn < c(n) — 3¢

logm — ¢(m)+ 3¢’
(But how come? This is the first step I struggled with. Don’t we assume that
h/k > (logn)/(logm)? To combine inequalities by transitivity we would need

this one be opposite!)
Nevertheless, we get

c(n)c(m)<35<1+1>

logn B logm — logm ~ logn

and, changing the roles of m and n, the reverse inequality --- > —3¢.... So we

have proved that
1 1
c(n)  c(m) <3 n
logn logm logm  logn

whenever |b(m) — ¢(m)| < ¢ and |b(n) — ¢(n)| < e. This implies

cn)  c(m)
logn logm

’<<|b<m>—c<m)|+b(n)—c<n>|>( " Tor )

logm = logn
for all m,n. (But how come? This is the second step I struggled with. Let’s say
that the penultimate displayed inequality holds for every m, n as an equality for

3e replaced with 2¢, and that we have m, n such that |b(m)—c(m)|, |b(n)—c(n)| <
€/4. The last two displayed inequalities then contradict each other!).



Nevertheless, we conclude the proof. Obviously, |b(n;) — ¢(n;)| — 0 for a
sequence N1 < ng < ... . The last displayed inequality shows that the values
¢(n;)/logn; are bounded. Passing to a subsequence we get lim; ¢(n;)/logn; =
a, with a finite limit a. Setting n = n; and letting ¢+ — oo gives

le(m) — alogm| < 3|b(m) — ¢(m)| and |b(m) — alogm| < 4|b(m) — c(m)]

for every m € N (well, m > 2). Thus, given any £ > 0, |[b(m) — alogm| < ¢
for all but o(x) numbers m < z. Let E C N be the set of exceptional m; it has
density 0. We take any m € N. The set X = {n € N| (n,m) = 1,n,mn ¢ E}
has positive density. For any n € X we have

|b(n) — alognl, |b(mn) — alog(mn)| < ¢ .

So, by the additivity of the functions b and log, € > |b(mn) — alog(mn)| >
[b(m) — alogm| — |b(n) — alogn| and |b(m) — alogm| < 2¢. As this holds for
any € > 0, we get the desired equality

b(m) = alogm or f(m)=m*"

for every m € N. We are done. Well, ...

3 Concluding remarks

How do we resolve the two conundrums? In the first we have three real quantities
a = h/k, b = (logn)/(logm), and ¢ = (¢(n) — 3¢)/(c(m) + 3¢) and we know
that a > b = a > ¢. From b > a,a > ¢ we would get b > ¢ by transitivity.
However, in our situation also a > b = a > ¢ implies b > ¢, via a more subtle
argument relying on the density of @ in R. The point is that we may select
a larger than b and as close to b as we wish. Assume for contrary that ¢ > b.
Then we select a in-between as ¢ > a > b, and a > b = a > c gives a > c,
a contradiction. Thus b > ¢. The second conundrum is more psychological
and stems from assuming ¢ > 0 to be a fixed thing. But if we drop it and
regard £ as a variable on par with m,n, everything is clear. We know that
[b(m) — c(m)], [b(n) — c(n)] < & = |2 — Q0| < 3( Lo + L), Thus for
m,n € N (and m,n > 2) we just set ¢ = |b(m) — c(m)| + |b(n) — ¢(n)| and the
implication yields the stated conclusion (perturbing g a little bit we may assume
that |b(n) — ¢(n)| > 0 for every n € N).

Birch’s article [2] is cited in [1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14].

It all started when I read the recent preprint of Shiu [18] that reproves Segal’s
result [16, 17] that Euler’s function ¢(n) does not have non-decreasing normal
order, as a corollary of the next nice theorem.

Theorem (Shiu, 2016; Segal, 1964). If f : N — R has a non-decreasing
normal order, f(n) = O(n), and >, . f(n) ~ Ax?/2 and Y on<a f(n)? ~
Bx3/3 as x — +oo for some constants A, B > 0, then A? > B.



For f(n) = ¢(n) (which is O(n)) we have A = J[ (1 — p~?) and B = [L,(1—
2p~2 + p=3) (see [18] for proofs of these average orders). Since A? < B, we
conclude that ¢(n) does not have non-decreasing normal order. It follows also
from Birch’s theorem, since ¢(n) is multiplicative (and unbounded). For results
on sets where ¢(n) itself is monotonous see Pollack, Pomerance, and Trevino
[15].

Finally, T was inspired by all this and the discussion at [19] to pose the
following problem.

Problem (MK, 2016). Does p(n) have an effective normal order? That is,
is there a function g : N — N such that for every e > 0, #(n < x| % &
(1-e,14¢)) =o0(x) as x — 400, and

one can compute n — g(n) in time polynomial in logn ?
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