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In this write-up we give a (detailed and self-contained) proof of the famous
formula of L. Euler,

∞∑
k=1

1

k2
=
π2

6
.

It follows from the following integral representation of the series tail.

Theorem. For all integers n > 0,

n∑
k=1

1

k2
− π2

6
=

1

2π

∫ π

0

x(x− 2π)
sin((n+ 1

2 )x)

2 sin(x/2)
dx→ 0, n→∞ .

Proof. We derive the identity and then prove the convergence to 0. From
exp(ix) = cosx + i sinx, x ∈ R, and properties of the exponential function we
get

1 + 2

n∑
k=1

cos(kx) =

n∑
k=−n

exp(ikx) = exp(−inx)
exp(i(2n+ 1)x)− 1

exp(ix)− 1

=
exp(i(n+ 1

2 )x)− exp(−i(n+ 1
2 )x)

exp(ix/2)− exp(−ix/2)

=
2i sin((n+ 1

2 )x)

2i sin(x/2)

and so
1

2
+

n∑
k=1

cos(kx) =
sin((n+ 1

2 )x)

2 sin(x/2)
, x ∈ R ,

where for x = 2mπ, m ∈ Z, the fraction 0
0 is set to its limit value. We compute

the integrals Ik =
∫ π
0
x cos(kx) dx and Jk =

∫ π
0
x2 cos(kx) dx, k ∈ N. Integration
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by parts gives

Ik = [x sin(kx)/k]
π
0 −

1

k

∫ π

0

sin(kx) dx =
[
cos(kx)/k2

]π
0

=
(−1)k − 1

k2
and

Jk =
[
x2 sin(kx)/k

]π
0
− 2

k

∫ π

0

x sin(kx) dx

=
[
2x cos(kx)/k2

]π
0
− 2

k2

∫ π

0

cos(kx) dx

=
2π(−1)k

k2
.

The integral of the theorem therefore equals∫ π

0

. . . =
1

2

∫ π

0

(x2 − 2πx) dx+

n∑
k=1

Jk − 2π

n∑
k=1

Ik

= −π
3

3
+ 2π

n∑
k=1

1

k2

and the identity is proven.
To prove that for n→∞ the integral approaches 0 we write it as∫ π

0

x(x− 2π)
sin((n+ 1

2 )x)

2 sin(x/2)
dx =

∫ π

0

f(x) sin((n+ 1/2)x) dx

where the function f(x) = x(x− 2π)/2 sin(x/2) is continuous on [0, π] (it has a
finite limit at 0). Thus the convergence to 0 follows from

the Riemann–Lebesgue lemma (type result). If f : [a, b] → R is a continuous
function then

lim
n→∞

∫ b

a

f(x) sin((n+ 1/2)x) dx = 0 .

We prove it. If f ≡ c is constant then∣∣∣∣ ∫ b

a

. . .

∣∣∣∣ = |c| ·
∣∣∣∣ [− cos((n+ 1/2)x)

n+ 1/2

]b
a

∣∣∣∣ ≤ 2|c|
n+ 1/2

.

In general f is even uniformly continuous because [a, b] is compact, and for given
ε > 0 there is a δ > 0 such that x, y ∈ [a, b], |x− y| < δ ⇒ |f(x)− f(y)| < ε. We
divide [a, b] by points a = a0 < a1 < · · · < ak = b into subintervals Ii = [ai, ai+1]
with lengths |Ii| = ai+1− ai < δ. Then for x ∈ Ii we have f(x) = f(ai) + ∆i(x)
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with |∆i(x)| < ε. So∣∣∣∣ ∫ b

a

. . .

∣∣∣∣ ≤ k−1∑
i=0

∣∣∣∣ ∫
Ii

(f(ai) + ∆i(x)) sin((n+ 1/2)x) dx

∣∣∣∣
≤

k−1∑
i=0

∣∣∣∣ ∫
Ii

f(ai) sin((n+ 1/2)x) dx

∣∣∣∣+

+

k−1∑
i=0

∣∣∣∣ ∫
Ii

∆i(x) sin((n+ 1/2)x) dx

∣∣∣∣
≤

k−1∑
i=0

2|f(ai)|
n+ 1/2

+

k−1∑
i=0

ε|Ii| =
2

n+ 1/2

k−1∑
i=0

|f(ai)|+ ε(b− a)

< ε(b− a+ 1), n > n0 .

Thus the integral goes to 0 for n→∞ and Euler’s formula is proven. 2

The above proof is somewhat expanded and modified proof of Moreno [1] who
gives more than 80 references to various other proofs of Euler’s formula. But
wait, what have we actually proven? What is π? How is this number defined?
As the root of six times the sum of reciprocal squares? Then we would just
claim the triviality A = A. Strictly speaking, without specifying the definition
of π it is not clear whether anything nontrivial was achieved at all. But, surely,
it was. Reflection upon the above proof shows that it in fact proves the identity

∞∑
k=1

1

k2
=

1

6

(
inf({x ∈ (0,+∞) | x− x3/3! + x5/5!− x7/7! + · · · = 0})

)2
.
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