The Basel problem $\left(1+\frac{1}{4}+\frac{1}{9}+\cdots=\frac{\pi^{2}}{6}\right)$ and the Riemann-Lebesgue lemma

Martin Klazar*

December 8, 2015

In this write-up we give a (detailed and self-contained) proof of the famous formula of L. Euler,

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

It follows from the following integral representation of the series tail.
Theorem. For all integers $n>0$,

$$
\sum_{k=1}^{n} \frac{1}{k^{2}}-\frac{\pi^{2}}{6}=\frac{1}{2 \pi} \int_{0}^{\pi} x(x-2 \pi) \frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{2 \sin (x / 2)} d x \rightarrow 0, n \rightarrow \infty
$$

Proof. We derive the identity and then prove the convergence to 0 . From $\exp (i x)=\cos x+i \sin x, x \in \mathbb{R}$, and properties of the exponential function we get

$$
\begin{aligned}
1+2 \sum_{k=1}^{n} \cos (k x)=\sum_{k=-n}^{n} \exp (i k x) & =\exp (-i n x) \frac{\exp (i(2 n+1) x)-1}{\exp (i x)-1} \\
& =\frac{\exp \left(i\left(n+\frac{1}{2}\right) x\right)-\exp \left(-i\left(n+\frac{1}{2}\right) x\right)}{\exp (i x / 2)-\exp (-i x / 2)} \\
& =\frac{2 i \sin \left(\left(n+\frac{1}{2}\right) x\right)}{2 i \sin (x / 2)}
\end{aligned}
$$

and so

$$
\frac{1}{2}+\sum_{k=1}^{n} \cos (k x)=\frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{2 \sin (x / 2)}, x \in \mathbb{R}
$$

where for $x=2 m \pi, m \in \mathbb{Z}$, the fraction $\frac{0}{0}$ is set to its limit value. We compute the integrals $I_{k}=\int_{0}^{\pi} x \cos (k x) d x$ and $J_{k}=\int_{0}^{\pi} x^{2} \cos (k x) d x, k \in \mathbb{N}$. Integration

[^0]by parts gives
\[

$$
\begin{aligned}
I_{k} & =[x \sin (k x) / k]_{0}^{\pi}-\frac{1}{k} \int_{0}^{\pi} \sin (k x) d x=\left[\cos (k x) / k^{2}\right]_{0}^{\pi} \\
& =\frac{(-1)^{k}-1}{k^{2}} \text { and } \\
J_{k} & =\left[x^{2} \sin (k x) / k\right]_{0}^{\pi}-\frac{2}{k} \int_{0}^{\pi} x \sin (k x) d x \\
& =\left[2 x \cos (k x) / k^{2}\right]_{0}^{\pi}-\frac{2}{k^{2}} \int_{0}^{\pi} \cos (k x) d x \\
& =\frac{2 \pi(-1)^{k}}{k^{2}}
\end{aligned}
$$
\]

The integral of the theorem therefore equals

$$
\begin{aligned}
\int_{0}^{\pi} \ldots & =\frac{1}{2} \int_{0}^{\pi}\left(x^{2}-2 \pi x\right) d x+\sum_{k=1}^{n} J_{k}-2 \pi \sum_{k=1}^{n} I_{k} \\
& =-\frac{\pi^{3}}{3}+2 \pi \sum_{k=1}^{n} \frac{1}{k^{2}}
\end{aligned}
$$

and the identity is proven.
To prove that for $n \rightarrow \infty$ the integral approaches 0 we write it as

$$
\int_{0}^{\pi} x(x-2 \pi) \frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{2 \sin (x / 2)} d x=\int_{0}^{\pi} f(x) \sin ((n+1 / 2) x) d x
$$

where the function $f(x)=x(x-2 \pi) / 2 \sin (x / 2)$ is continuous on $[0, \pi]$ (it has a finite limit at 0). Thus the convergence to 0 follows from
the Riemann-Lebesgue lemma (type result). If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \sin ((n+1 / 2) x) d x=0
$$

We prove it. If $f \equiv c$ is constant then

$$
\left|\int_{a}^{b} \cdots\right|=|c| \cdot\left|\left[\frac{-\cos ((n+1 / 2) x)}{n+1 / 2}\right]_{a}^{b}\right| \leq \frac{2|c|}{n+1 / 2} .
$$

In general f is even uniformly continuous because $[a, b]$ is compact, and for given $\varepsilon>0$ there is a $\delta>0$ such that $x, y \in[a, b],|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon$. We divide $[a, b]$ by points $a=a_{0}<a_{1}<\cdots<a_{k}=b$ into subintervals $I_{i}=\left[a_{i}, a_{i+1}\right]$ with lengths $\left|I_{i}\right|=a_{i+1}-a_{i}<\delta$. Then for $x \in I_{i}$ we have $f(x)=f\left(a_{i}\right)+\Delta_{i}(x)$
with $\left|\Delta_{i}(x)\right|<\varepsilon$. So

$$
\begin{aligned}
\left|\int_{a}^{b} \cdots\right| \leq & \sum_{i=0}^{k-1}\left|\int_{I_{i}}\left(f\left(a_{i}\right)+\Delta_{i}(x)\right) \sin ((n+1 / 2) x) d x\right| \\
\leq & \sum_{i=0}^{k-1}\left|\int_{I_{i}} f\left(a_{i}\right) \sin ((n+1 / 2) x) d x\right|+ \\
& +\sum_{i=0}^{k-1}\left|\int_{I_{i}} \Delta_{i}(x) \sin ((n+1 / 2) x) d x\right| \\
\leq & \sum_{i=0}^{k-1} \frac{2\left|f\left(a_{i}\right)\right|}{n+1 / 2}+\sum_{i=0}^{k-1} \varepsilon\left|I_{i}\right|=\frac{2}{n+1 / 2} \sum_{i=0}^{k-1}\left|f\left(a_{i}\right)\right|+\varepsilon(b-a) \\
< & \varepsilon(b-a+1), n>n_{0} .
\end{aligned}
$$

Thus the integral goes to 0 for $n \rightarrow \infty$ and Euler's formula is proven.

The above proof is somewhat expanded and modified proof of Moreno [1] who gives more than 80 references to various other proofs of Euler's formula. But wait, what have we actually proven? What is π ? How is this number defined? As the root of six times the sum of reciprocal squares? Then we would just claim the triviality $A=A$. Strictly speaking, without specifying the definition of π it is not clear whether anything nontrivial was achieved at all. But, surely, it was. Reflection upon the above proof shows that it in fact proves the identity

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{1}{6}\left(\inf \left(\left\{x \in(0,+\infty) \mid x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+\cdots=0\right\}\right)\right)^{2}
$$

References

[1] S. G. Moreno, A one-sentence and truly elementary proof of the Basel problem, ArXiv:1502.07667v1, 7 pages (2015).

[^0]: *klazar@kam.mff.cuni.cz

