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Lecture 1, February 28, 2017

This year I plan to cover (at least) two topics: 1. Dirichlet’s theorem on
primes in arithmetic progression and 2. combinatorial and asymptotic theory
of integer partitions. After that we will see.

Dirichlet’s theorem (DT ) says: if a,m ∈ N = {1, 2, . . . } satisfy that (a,m) =
1 (a and m are coprime) then the infinite arithmetic progression

a, a+m, a+ 2m, a+ 3m, a+ 4m, . . .

contains infinitely many prime numbers. We reserve letters p and q to denote
primes.

DT was proved by P. L. Dirichlet in 1837, indisputedly in the case m = p.
Before I give an analytic proof of the general case I will tell you an elementary
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proof of P. Erdős from 1935 (when Erdős was 22 years old) of a particular case
of DT. Erdős’s proof (EP ) works for moduli m such that

σ = σ(m) :=
∑

p<m, (p,m)=1

1

p
< 1 .

For example, m = 5 has σ = 1
2 + 1

3 = 5
6 < 1, m = 6 has σ = 1

5 < 1 and EP
works for these two moduli. For m = 7 we have σ = 1

2 + 1
3 + 1

5 = 31
30 > 1 and

EP seems not to work for modulus 7. But things get better for m = 14 = 2 · 7
as σ = 1

3 + 1
5 + 1

11 + 1
13 = 1504

2145 < 1, EP works for modulus 14 and hence we get
an elementary proof of DT for modulus 7 as well.

Which numbers m satisfy σ(m) < 1? Using asymptotics of
∑
p<x 1/p it is

easy to show that the set of such m is (unfortunately) finite. In 1993 P. Moree
determined all m with σ(m) < 1: their set M has 55 elements,

M = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, . . . , 390, 420, 630, 840}

(at the end of the lecture I give references listing M in full). If some multiple of
m lies in M , we have an elementary proof of DT for modulus m. The smallest
m ∈ N when this fails and km 6∈M for every k ∈ N is m = 29.

Problem 1. Is it possible to strengthen the elementary method of Erdős and
cover larger set of moduli than M? Can one give an elementary proof of DT
for the modulus m = 29?

So I will prove, after Erdős and in an elementary way,

Theorem 2. If a,m ∈ N are coprime and σ(m) =
∑
p<m, (p,m)=1

1
p < 1 then

a+ nm is a prime number for infinitely many n ∈ N.

For the proof we need some notation. We assume that 1 ≤ a < m, (a,m) = 1,
p1, . . . , ph are the primes smaller than m and not dividing it (so the sum of their
reciprocals is σ(m)), and for i = 1, 2, . . . , h we define qi ∈ N, 1 ≤ qi < m, by

piqi ≡ a (mod m) ,

so qi = a/pi modulo m. Clearly, (qi,m) = 1. For n ∈ N we set

Pn(a,m) :=
(a+m)(a+ 2m) . . . (a+ nm)

n!

and if n is divisible by p1p2 . . . ph we define

Qn(a,m) :=
Pn(a,m)

Pn/p1(q1,m)Pn/p2(q2,m) . . . Pn/ph(qh,m)
.

The heart of EP rests in prime factorizations of the fractions Qn(a,m). Let
us review the order function ordp. For nonzero n ∈ Z (Z denotes the ring of
integers) we set ordp(n) = k ∈ N0 = {0, 1, 2, . . . } where k is maximum with
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pk |n. We define ordp(0) = +∞. For α = a
b ∈ Q (Q denotes the field of

fractions) we define
ordp(α) = ordp(a)− ordp(b) .

Thus ordp(α) ∈ Z ∪ {+∞} and does not depend on the particular fraction
representation of α (since ordp is additive on Z). It is not hard to prove the
following three basic properties of the order function: the first is that for every
nonzero α ∈ Q we have

α =
∏
p

pordp(α) ,

the second is additivity, ordp(αβ) = ordp(α) + ordp(β) for every α, β ∈ Q, and
the third says that

ordp(α+ β) ≥ min(ordp(α), ordp(β)) ,

with equality if ordp(α) 6= ordp(β). For k ∈ Z we say that pk divides α ∈ Q if
ordp(α) ≥ k.

Proposition 3. Let a,m, σ = σ(m), pi, qi, Pn(a,m), and Qn(a,m) be as above.

1. For n→∞ and divisible by p1p2 . . . ph,

Qn(a,m) = m(1−σ)n+o(n) .

2. If (p,m) = 1 and k = ordp(Pn(a,m)) then 1 ≤ pk < (n+ 1)m.

3. If p |m and σ ≤ 1 then ordp(Qn(a,m)) ≤ 0.

4. If n ≥ m and is divisible by p1p2 . . . ph, p >
√

(n+ 1)m and is not a
modulo m, and p = p1 divides Pn(a,m) then there is an i ∈ {1, 2, . . . , h}
such that p divides Pn/pi(qi,m).

We prove the proposition later. Now we deduce DT for the arithmetic pro-
gression a + nm when σ(m) < 1. Let n ∈ N be at least m and a multiple of
p1p2 . . . ph. Then, for any prime p and k = ordp(Qn(a,m)),

p ≥ (n+ 1)m ⇒ k = 0 (by 2 of Prop. 3)

p >
√

(n+ 1)m ⇒ k ≤ 1 (dtto)

p >
√

(n+ 1)m & p 6≡ a (mod m) ⇒ k ≤ 0 (by 2 and 4 of Prop. 3)

p ≤
√

(n+ 1)m ⇒ pk < (n+ 1)m

(by 2 and 3 of Prop. 3) .

So, by 1 of Prop. 3 and these bounds on the exponents in the prime factorization
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of Qn(a,m) we have

m(1−σ)n+o(n) = Qn(a,m) =
∏
p

pordp(Qn(a,m))

≤
∏

p≤
√

(n+1)m

(n+ 1)m
∏

p<(n+1)m, p≡a (modm)

p

≤ ((n+ 1)m)
√

(n+1)m
∏

p<(n+1)m, p≡a (modm)

p .

The last power is mo(n) and so∏
p<(n+1)m, p≡a (modm)

p > m(1−σ)n+o(n)

as n → ∞ through the multiples of p1p2 . . . ph. As 1− σ > 0, the lower bound
goes to +∞ and therefore the set of p with p ≡ a (modm) must be infinite.

It remains to prove Proposition 3. We utilize the next lemma.

Lemma 4. Let a ∈ Z, d,m, n ∈ N, (d,m) = 1,

A = {a+m, a+ 2m, . . . , a+ nm}

and A(d) := #k ∈ A such that d | k.

1. A(d) = bn/dc or bn/dc+ 1.

2. A(d) = bn/dc+ 1 iff d divides a+ jm for some j ∈ N with j ≤ n− dbn/dc
(= the residue of n after division by d).

3. If A = {1, 2, . . . , n} (a = 0,m = 1) then always A(d) = bn/dc.

4. ordp(
∏
k∈A k) =

∑
i≥1A(pi). This in fact holds for any finite set A ⊂ Z.

Proof. 1 and 2. If j, k ∈ Z are non-congruent modulo d then so are a+jm, a+km
(since d and m are coprime). Hence every interval I ⊂ Z of length d contains
exactly one j ∈ I such that a + jm is a multiple of d, and shorter intervals
contain at most one such j. We partition {1, 2, . . . , n} into the short interval
R = {1, 2, . . . , n − dbn/dc} and bn/dc intervals with length d each. The result
on general intervals I implies that A(d) = bn/dc + δ where δ ∈ {0, 1} and is 1
iff there is a j ∈ R with d | a+ jm.

3. This follows from 1 and 2 but also is clear by itself.
4. Immediate from∑
i≥1A(pi) = #{(i, k) ∈ N×A | pi | k} =

∑m
k=1 ordp(k) = ordp(

∏
k∈A k) .

2
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Parts 3 and 4 give the well-known formula

ordp(n!) =
∑
i≥1

bn/pic

of A.-M. Legendre. Parts 1+2 and 4 extend it to general n-term arithmetic
progression A. I leave for you to prove the following as an exercise.

Corollary 5. Let k ∈ N0 and a, n ∈ N with a ≥ n. Then

pk |
(
a

n

)
⇒ pk ≤ a and even pk |n

(
a

n

)
⇒ pk ≤ a .

In the next lecture we prove by means of the lemma Proposition 3 and finish
thereby EP of the particular case of DT. References:

• G. Lejeune Dirichlet, Beweis des Satzes, dass jede unbegrenzte arith-
metische Progression, deren erstes Glied und Differenz ganze Zahlen ohne
gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Abh.
der Königlich Preuss. Akad. der Wiss. (1837), 45–81.

• P. Erdős, Über die Primzahlen gewisser arithmetischer Reihen, Math. Z.
39 (1935), 473–491.

• M. Klazar, Analytic and Combinatorial Number Theory II, KAM-DIMATIA-
Series 2010-969, iv+46 pp.

• P. Moree, Bertrand’s postulate for primes in arithmetical progressions,
Computers Math. Applic. 26 (1993), 35–43.

As I mentioned, Dirichlet’s argument proving DT is complete only for prime
modulus m and he extended it to general modulus later. I adapted EP from the
article of P. Erdős in the above preprint of mine which contains the complete
list of 55 m ∈ N with σ(m) < 1, taken from the article of P. Moree.

Lecture 2, March 7, 2017

The last corollary implies a lower bound on the prime counting function
π(x) := #p ≤ x: since pk |

(
2n
n

)
⇒ pk ≤ 2n and (by induction)

(
2n
n

)
≥ 2n, we

have

2n ≤
(

2n

n

)
≤ (2n)π(2n) and

(2−1 log 2)(2n)

log(2n)
≤ π(2n) ,

hence π(x)� x/ log x for every real x > 2.
Let us prove Proposition 3. 1. Multiplying over j = 1, 2, . . . , n the inequali-

ties jm < a+ jm < (j + 1)m and dividing the result by n! we get

mn =
n!mn

n!
< Pn(a,m) <

(n+ 1)!mn

n!
= (n+1)mn and Pn(a,m) = mn+o(n) .
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Substituting this asymptotics for Pn(a,m) and Pn/pi(qi,m) in Qn(a,m) we get

Qn(a,m) =
mn+o(n)

mn/p1+o(n)mn/p2+o(n) . . .mn/ph+o(n)
= mn(1−σ)+o(n) .

2. If p is coprime to m, A = {a+m, a+2m, . . . , a+nm} and B = {1, 2, . . . , n}
then Lemma 4 gives that

k = ordp(Pn(a,m)) =
∑
i≥1

(A(pi)−B(pi)) =
∑
i≥1

(bn/pic+ δi − bn/pic)

where δi ∈ {0, 1} and δi = 0 if pi > a + nm. Thus we have a finite sum of
0s and 1s with the number of summands equal to the maximum i satisfying
pi ≤ a+ nm. Thus k ≥ 0 and pk ≤ a+ nm < (1 + n)m.

3. Now p divides m and σ ≤ 1. Since (a,m) = (qi,m) = 1, the prime p
divides none of the numbers a+ jm and qi + jm for j ∈ Z and therefore

ordp(Qn(a,m)) = −ordp(n!/((n/p1)!(n/p2)! . . . (n/ph)!)) ≤ 0

because
n!

(n/p1)!(n/p2)! . . . (n/ph)!
∈ N .

This follows from n
p1

+ n
p2

+ · · · + n
ph

= σn ≤ n (every multinomial coefficient
n!

m1!m2!...mk! , with n,mi ∈ N0 and m1 +m2 + · · ·+mk = n, is a natural number).

4. The assumptions imply that (p,m) = 1 as p > m and that p2 > (n+1)m >
a + nm. Since ordp(Pn(a,m)) ≥ 1 (in fact = 1), Lemma 4 gives that for some
j ∈ N,

a+ jm = pb, b ∈ N and 1 ≤ j ≤ l := n− pbn/pc .

We assume that j is minimum with this property. Since the congruence a ≡ px
modulo m has a solution x ∈ {1, 2, . . . ,m − 1} (as (p,m) = 1) we see that
1 ≤ b < m. But b = 1 is not possible as p is not a modulo m. So 1 < b < m
and since (b,m) = 1 (as (a,m) = 1), there is an i ∈ {1, 2, . . . , h} such that pi
divides b and b = pic with c ∈ N. Substituting this for b and for a the expression
a = piqi + tm, t ∈ Z, from the definition of qi we get

piqi + (t+ j)m = ppic and qi + j′m = pc

where j′ = (t+ j)/pi ∈ Z (since (pi,m) = 1, pi divides t+ j). Since qi < m and
p > m, j′ ≥ 1. If we show that

j′ ≤ l′ := n/pi − p
⌊
n/pi
p

⌋
we will be done because then ordp(Pn/pi(qi,m)) = 1 by Lemma 4. Suppose for
the contrary that 0 ≤ l′ < j′. Then, since t ≤ 0 (a < m and piqi > 0),

l′ < j′ =
t+ j

pi
≤ j

pi
and 0 ≤ pil′ < j ≤ l < p .
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But the equality defining l′ shows that pil
′ is also n minus an integral multiple

of p and hence pil
′ is the unique remainder of n after division by p and pil

′ = l.
But this contradicts the above bound pil

′ < l. Thus j′ ≤ l′ and we are done. 2

As an algebraic intermezzo before the analytic proof of full DT we prove its
another particular case, this time for infinitely many cases.

Proposition 6. For every m ∈ N there exist infinitely many n ∈ N such that
1 + nm is a prime number.

Proof. We assume, as we may, that m ≥ 3 and use the factorization

xm − 1 = f(x)g(x), f, g ∈ Z[x] ,

where

f(x) =

m∏
j=1, (j,m)=1

(
x− e2πij/m

)
and g(x) =

m∏
j=1, (j,m)>1

(
x− e2πij/m

)
.

Thus we just split the linear factors in xm − 1 =
∏m
j=1(x − e2πij/m) into two

groups, depending on whether (j,m) = 1 or not. It is not immediately clear
from the definition that f, g ∈ Z[x] and we will prove it in a lemma later.

In fact,

f(x) = Φm(x) and g(x) =
∏

d |m, d<m

Φd(x)

where for n ∈ N,

Φn(x) :=

n∏
j=1, (j,n)=1

(
x− e2πij/n

)
is the n-th cyclotomic polynomial. In Lemma 7 below (in the next lecture) we
show that every Φn ∈ Z[x] and hence f, g ∈ Z[x]. The factorization

xn − 1 =
∏
d |n

Φd(x)

is clear (we split j ∈ {1, 2, . . . , n} into groups according to (j, n)) and since
deg Φn = ϕ(n) (= |{j ∈ N | 1 ≤ j ≤ n, (j, n) = 1}|), comparison of degrees
yields the identity

n =
∑
d |n

ϕ(d)

which is also immediate without use of cyclotomic polynomials.
Now f and g have no common root and are coprime elements of Q[x]. Ba-

chet’s identity gives
α(x)f(x) + β(x)g(x) = 1
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for some α, β ∈ Q[x] (the ring Q[x] is Euclidean and hence every ideal in it
is principal). Clearing denominators in the coefficients in α(x) and β(x), for
appropriate c ∈ N with a = cα and b = cβ we have

a(x)f(x) + b(x)g(x) = c, a, b ∈ Z[x] .

Clearly, we may assume that c ≥ 2.
We shall finish the proof in the next lecture.

Lecture 3, March 14, 2017

Since m ≥ 3, ϕ(m) = deg f(x) ≥ 2 and |f(x)| > 1 whenever |x| ≥ 2. Thus
there exists a prime p dividing the integer f(c). We show that p ≡ 1 (mod m)
(and then we show how to produce infinitely many such p). Since f(c) divides
cm − 1, so does p. We show that m is minimum with cm ≡ 1 (mod p) and so c
has order m modulo p. If not there would be a divisor d of m, d < m, such that
cd ≡ 1 (mod p). Since cd − 1 =

∏
e | d Φe(c), the definition of g(x) implies that

cd − 1 divides g(c) and so does p. But then the last displayed equation gives
that p divides c and so p divides 1, a contradiction. Hence m is the order of c
modulo p. The little theorem of Fermat says that cp−1 ≡ 1 (mod p) and thus
m divides p− 1 and p ≡ 1 (mod m).

For every k ∈ N we take a prime p(km) that is 1 modulo km. Then, as
p(km) > km, the sequence (p(m), (p(2m), (p(3m), . . . ) goes to +∞ and contains
infinitely many distinct primes, all congruent to 1 modulo m. 2

But it still remains to prove integrality of cyclotomic polynomials, which I
forgot to do in the lecture. Let us do it in the write-up.

Lemma 7. For every n ∈ N, Φn(x) ∈ Z[x].

Proof. We prove by induction on n the stronger result that Φn(x) ∈ Z[x] and
Φn(0) = ±1. For n = 1 it holds as Φ1(x) = x − 1. For n > 1 we denote the
coefficient of xk in Φn(x) as ak, in

∏
d |n, d<n Φd(x) as bk, and in xn − 1 as ck.

We have ck ∈ Z and c0 = −1 and, by induction, bk ∈ Z and b0 = ±1. Then

c0 + c1x+ · · · = xn − 1 =
∏
d |n

Φd(x) = (a0 + a1x+ . . . )(b0 + b1x+ . . . )

and comparison of coefficients gives the system of equations c0 = a0b0, c1 =
a1b0 +a0b1, . . . with the unknowns ak. It solves uniquely for a0, a1, . . . and due
to b0 = ±1 and c0 = −1 we see that each ak ∈ Z and a0 = ±1. 2

Proof of general Dirichlet’s theorem

We prove Dirichlet’s theorem in the following stronger form.
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Theorem 8 (Dirichlet, 1837). If a,m ∈ N with (a,m) = 1 then∑
p=a+mn≤x

log p

p
=

log x

ϕ(m)
+O(1) for x > 1 .

We obtain the proof by a series of propositions.
The von Mangoldt function Λ : N → [0,+∞) has values Λ(n) = log p if

n = pk for k ∈ N, and Λ(n) = 0 else.

Proposition 9. For every n ∈ N,∑
d |n

Λ(d) = log n .

Proof. Let n = pa11 . . . pakk be the prime decomposition of n. By the definition
of Λ and the properties of logarithm the sum indeed equals

k∑
i=1

ai∑
j=1

log pi =

k∑
i=1

log(paii ) = log(pa11 . . . pakk ) .

2

Proposition 10. ∑
p≤x

log p < (2 log 2)x for x > 1 .

Proof. For every n ∈ N,∏
n+1<p≤2n+1

p ≤
(

2n+ 1

n

)
< 4n, hence

∑
n+1<p≤2n+1

log p < (2 log 2)n

— every prime in the range divides
(

2n+1
n

)
= (2n+1)2n...(n+1)

n! , and
(

2n+1
n

)
=(

2n+1
n+1

)
are two binomial coefficients in the expansion of 2 · 4n = (1 + 1)2n+1.

We use the last displayed inequality to prove by induction on m = bxc ∈ N the
bound ∑

p≤m

log p < (2 log 2)m ,

from which the stated bound follows. For m = 1, 2 it holds, and it holds by
induction for even m > 2 because then the sum is the same as for m−1. Suppose
that m = 2n+ 1 > 1 is odd. By induction and the inequality,∑

p≤m

log p =
∑

p≤n+1

log p +
∑

n+1<p≤2n+1

log p

< (2 log 2)(n+ 1) + (2 log 2)n = (2 log 2)m .

2
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Proposition 11 ∑
n≤x

Λ(n) < 3x for x > 1 .

Proof. Using the bound in Proposition 10 and the fact that the maximum of
(log x)/

√
x for x > 1 equals 2/e, we have∑
n≤x

Λ(n) =
∑
p≤x

log p+
∑

pk≤x, k≥2

log p

< (2 log 2)x+ (2 log 2)

blog x/ log 2c∑
k=2

x1/k

< (2 log 2)x+ 2x1/2 log x < (2 log 2 + 4/e)x < 3x .

2

Proposition 12. ∑
n≤x

log n = x log x+O(x) for x > 1 .

Proof. This follows from the inequalities∫ bxc
1

log t dt ≤
∑
n≤x

log n ≤
∫ bxc+1

2

log t dt

and from
∫

log t = t log t− t. 2

In the next proposition we prove Theorem 8 for m = 1, 2.

Proposition 13. ∑
p≤x

log p

p
= log x+O(1) for x > 1 .

Proof. We have

x log x+O(x) =
∑
n≤x

log n =
∑
n≤x

∑
d |n

Λ(d) (Propositions 12 and 9)

=
∑
d≤x

Λ(d)
∑

n≤x, d |n

1 =
∑
d≤x

Λ(d)bx/dc (swapping sums)

= x
∑
d≤x

Λ(d)

d
+ δ

∑
d≤x

Λ(d), −1 ≤ δ ≤ 0 (bαc = α− {α})

= x

(∑
p≤x

log p

p
+

∑
pk≤x, k≥2

log p

pk

)
+O(x) (Λ, Prop. 11)

= x
∑
p≤x

log p

p
+O(x) (

∑
n,k≥2(log n)/nk converges)
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and dividing by x gives the result. 2

For a,m ∈ N we define the indicator functions

χ0, Ia,m : N→ {0, 1}

by χ0(n) = 1 ⇐⇒ (n,m) = 1 and Ia,m(n) = 1 ⇐⇒ n ≡ a (mod m). A
function χ : N→ C is completely multiplicative if χ(1) = 1 and χ(ab) = χ(a)χ(b)
for every a, b ∈ N. It is strongly bounded if

∑
n≤x χ(n) = O(1) for x > 1, that

is, there is a constant c > 0 such that |
∑n
i=1 χ(i)| < c for every n ∈ N. By χ

we denote the conjugate function

χ(n) := χ(n) .

Note that strong boundedness implies boundedness, and that if χ is completely
multiplicative and (strongly) bounded then |χ(n)| ≤ 1 for every n ∈ N. The
heart of the proof of Dirichlet’s theorem is the following expression of Ia,m
as a linear combination of completely multiplicative and, with one exception,
strongly bounded functions. Interestingly, even though Ia,m has values just 0
and 1, the functions in the combination are complex-valued.

Proposition 14. For every m ∈ N there is a finite set D = Dm of functions
χ : N→ C with the following properties.

1. χ0 ∈ D, χ ∈ D ⇒ χ ∈ D, every χ ∈ D is completely multiplicative and,
except χ0, strongly bounded.

2. For every a ∈ N, (a,m) = 1, there exist coefficients cχ = ca,χ ∈ C, χ ∈ D,
such that cχ0

= 1/ϕ(m) and

Ia,m =
∑
χ∈D

cχχ =
χ0

ϕ(m)
+

∑
χ∈D\{χ0}

cχχ .

If a ≡ 1 modulo m then cχ = 1/ϕ(m) for every χ ∈ D.

We postpone the proof for a while.

Lecture 4, March 21, 2017

Proposition 15. For every m ∈ N and χ ∈ Dm\{χ0},

L(1, χ) :=

∞∑
n=1

χ(n)

n
6= 0 .

We postpone the proof for a while and proceed to the proof of Dirichlet’s theo-
rem. The next inequality is a key tool for bounding sums in that proof. It is in
fact needed to prove that the previous infinite series L(1, χ), χ 6= χ0, converges.
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Proposition 16 (Abel’s inequality). Let ai ∈ C, bi ∈ R, i = 1, 2, . . . , n,
with b1 ≥ b2 ≥ · · · ≥ bn ≥ 0. Let Ai = a1 + a2 + · · ·+ ai. Then

|a1b1 + a2b2 + · · ·+ anbn| ≤ max
1≤i≤n

|Ai| · b1 .

Proof. We set A0 = b0 = bn+1 = 0. Then∣∣∣∣ n∑
i=1

aibi

∣∣∣∣ =

∣∣∣∣ n∑
i=1

(Ai −Ai−1)bi

∣∣∣∣ =

∣∣∣∣ n∑
i=0

Aibi −
n∑
i=0

Aibi+1

∣∣∣∣
=

∣∣∣∣ n∑
i=1

Ai(bi − bi+1)

∣∣∣∣ ≤ n∑
i=1

|Ai|(bi − bi+1)

≤ max
1≤i≤n

|Ai|
n∑
i=1

(bi − bi+1) = max
1≤i≤n

|Ai| · b1 .

2

Proposition 17. For every m ∈ N and χ ∈ Dm\{χ0},

L(1, χ) 6= 0⇒
∑
n≤x

χ(n)Λ(n)

n
= O(1), x > 1 .

Proof. Let m and χ be as stated, x > 1 and L(1, χ) 6= 0. Then

O(1) =
∑
n≤x

χ(n) log n

n
(Abel’s inequality, χ is strongly bounded)

=
∑
n≤x

χ(n)

n

∑
d |n

Λ(d) (Proposition 9)

=
∑
d≤x

χ(d)Λ(d)

d

∑
e≤x/d

χ(e)

e
(χ is c. multiplicative, swapping sums)

=
∑
d≤x

χ(d)Λ(d)

d
(L(1, χ)−O(d/x)) (Abel’s inequality, χ s. bounded)

= L(1, χ)
∑
d≤x

χ(d)Λ(d)

d
−O(1/x)

∑
d≤x

Λ(d) (χ is bounded)

= L(1, χ)
∑
d≤x

χ(d)Λ(d)

d
+O(1) (Proposition 11)

and dividing by L(1, χ) we get the result. 2

(This proposition was inserted and the proof of the next one was modified after
the course was finished to make logical dependence between propositions clear.)

12



Proposition 18. For every m ∈ N and χ ∈ Dm\{χ0},

L(1, χ) 6= 0⇒
∑
p≤x

χ(p) log p

p
= O(1), x > 1 .

Proof. Let m and χ be as stated, x > 1 and L(1, χ) 6= 0. Then

O(1) =
∑
d≤x

χ(d)Λ(d)

d
(Proposition 17)

=
∑
p≤x

χ(p) log p

p
+

∑
pk≤x, k≥2

χ(pk) log p

pk
(definition of Λ)

=
∑
p≤x

χ(p) log p

p
+O(1) (χ(n) = O(1),

∑
n,k≥2(log n)/nk converges) .

2

Proposition 19. If χ0 ∈ Dm then∑
p≤x

χ0(p) log p

p
= log x+O(1), x > 1 .

Proof. For x > 1 the sum equals∑
p≤x

log p

p
−

∑
p≤x, p |m

log p

p
= log x+O(1) (Proposition 13) .

2

Proof of Theorem 8 and hence of Dirichlet’s theorem. Let a,m ∈ N be
coprime numbers and x > 1. Then∑

p=a+mn≤x

log p

p
=

∑
p≤x

Ia,m(p) log p

p

=
∑
p≤x

∑
χ∈D

cχχ(p)
log p

p
(Proposition 14)

=
∑
χ∈D

cχ
∑
p≤x

χ(p) log p

p
(swapping sums)

=
1

ϕ(m)

∑
p≤x

χ0(p) log p

p
+

∑
χ∈D\{χ0}

cχ
∑
p≤x

χ(p) log p

p

(Proposition 14)

=
log x

ϕ(m)
+O(1) (Propositions 19 and 18) .
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2

We prove Proposition 15, assuming Proposition 14. We first treat the case
when χ is a real function. Then Proposition 14 is not needed.

Proposition 20 (Proposition 15 for real χ). If χ : N → R is completely
multiplicative and strongly bounded then

∞∑
n=1

χ(n)

n
6= 0 .

For the proof we need two lemmas.

Lemma 21 (the AGM inequality). If a1, a2, . . . , an are nonnegative real
numbers then (a1 + a2 + · · ·+ an)/n ≥ (a1a2 . . . an)1/n.

Proof. Derivatives show that ex−1 ≥ x for every x ≥ 0. Let a = (a1 +a2 + · · ·+
an)/n > 0. For i = 1, 2, . . . , n we set xi = ai/a and multiply the n inequalities
exi−1 ≥ xi:

1 = exp((a1 + a2 + · · ·+ an)/a− n) ≥ a1a2 . . . an/a
n .

This is, after rearrangement, the AGM inequality. 2

Lemma 22. If t ∈ [0, 1) and bn = (n(1 − t))−1 − tn/(1 − tn), n ∈ N, then
1 = b1 ≥ b2 ≥ · · · ≥ 0.

Proof. Since bn → 0, it suffices to prove that bn − bn+1 ≥ 0 for every n. Now
(1− t)(bn − bn+1) equals

1

n(n+ 1)
− tn = t(n−1)/2 · tn/2 · t1/2

(1 + t+ t2 + · · ·+ tn−1)(1 + t+ t2 + · · ·+ tn)
.

The AGM inequality gives (1 + t + t2 + · · · + tn−1)/n ≥ (t0+1+2+···+n−1)1/n =
t(n−1)/2 and (1 + t+ t2 + · · ·+ tn)/(n+ 1) ≥ tn/2. It follows that the displayed
difference is indeed nonnegative. 2

Proof of Proposition 20. Assume for contradiction that
∑
χ(n)/n = 0 and

14



take for t ∈ [0, 1) the bn from the previous lemma. Then for t ∈ [0, 1),

O(1) = −
∞∑
n=1

χ(n)bn (Abel’s ineq., χ strongly bounded, Lemma 22)

=

∞∑
n=1

χ(n)tn

1− tn
− 1

1− t

∞∑
n=1

χ(n)

n
(the definition of bn)

=

∞∑
n=1

χ(n)

∞∑
k=1

tkn (L(1, χ) = 0, geometric series)

=

∞∑
m=1

tm
∑
n |m

χ(n) (swapping sums by absolute convergence)

=

∞∑
m=1

tm
r∏
i=1

ai∑
j=0

χ(pi)
j (χ is c. multiplicative, m = pa11 . . . parr ) .

For χ(pi) 6= 1 the last sum equals (1−χ(pi)
ai+1)/(1−χ(pi)), and for χ(pi) = 1

it is ai + 1. But |χ(pi)| ≤ 1 and thus each of the last sums is nonnegative and
so is the last product. For m = p2 the last product is even 1 + χ(p) + χ(p)2 =
(1/2 + χ(p))2 + 3/4 ≥ 3/4. Thus we have a power series

∑
m≥1 cmt

m that is
on the one hand bounded for t ∈ [0, 1) but on the other hand its coefficients
cm ≥ 0 for every m ∈ N and cm ≥ 3/4 for infinitely many m, hence for t→ 1−

its sum goes to +∞. This is a contradiction. 2

It remains to prove Proposition 15 for nonreal χ ∈ Dm. We will treat all χ ∈
Dm together, using part 2 of Proposition 14. We use properties of the Möbius
function µ : N → {−1, 0, 1} that has values µ(1) = 1, µ(p1p2 . . . pk) = (−1)k

(the pi are distinct), and µ(n) = 0 if n is not a product of distinct primes.

Proposition 23. The Möbius function has the following properties.

1. For n ∈ N,
∑
d |n µ(d) is 1 for n = 1 and 0 else.

2. If f, g : N → C are related by f(n) =
∑
d |n g(d), then this relation is

inverted by g(n) =
∑
d |n µ(n/d)f(d).

3. For n ∈ N and x > 0,
∑
d |n µ(d) log(x/d) is log x for n = 1 and Λ(n)

else.

Lecture 5, March 28, 2017

Proof. 1. The case n = 1 is trivial, let n ≥ 2 and n = pa11 . . . pakk be its prime
factorization with k ≥ 1. The stated sum then, by the definition of µ, equals

∑
X⊂[k]

(−1)|X| =

k∑
i=0

(
k

i

)
(−1)i = (1− 1)k = 0 .

15



2. Let f and g be as given and n ∈ N. Then∑
d |n

µ(n/d)f(d) =
∑
ab=n

µ(a)f(b) =
∑
acd=n

µ(a)g(c) =
∑
c |n

g(c)
∑
a |n/c

µ(a) = g(n) ,

expressing f in terms of g and using part 1.
3. For n = 1 this is true, let n ≥ 2. We invert by part 2 the identity in

Proposition 9 and use also part 1:

Λ(n) =
∑
d |n

µ(d) log(n/d) = (log n)
∑
d |n

µ(d)−
∑
d |n

µ(d) log d = −
∑
d |n

µ(d) log d .

This equals to the stated sum; expand it by log(x/d) = log x − log d and use
again part 1. 2

Proposition 24. Let m ∈ N. For χ ∈ D, where D is given in Proposition 14,
and x > 1 we define S(χ, x) :=

∑
n≤x χ(n)Λ(n)/n. Then

1. S(χ0, x) = log x+O(1),

2. if χ 6= χ0 and L(1, χ) 6= 0 then S(χ, x) = O(1), and

3. if χ 6= χ0 and L(1, χ) = 0 then S(χ, x) = − log x+O(1).

Proof. 1. This follows from Proposition 19. Its sum differs from the present one
at most by the sum of the convergent series

∑
n,k≥2 χ0(nk)(log n)/nk.

2. This was proved by Proposition 17.
3. Let χ 6= χ0, L(1, χ) = 0 and x > 1, then

S(χ, x) = − log x+
∑
n≤x

χ(n)

n

∑
d |n

µ(d) log(x/d) (3 of Prop. 23)

= − log x+
∑
d≤x

χ(d)µ(d) log(x/d)

d

∑
e≤x/d

χ(e)

e

(c. multiplicativity of χ, swapping sums)

= − log x+
∑
d≤x

χ(d)µ(d) log(x/d)

d
(L(1, χ)−O(d/x))

(Abel’s inequality, χ strongly bounded)

= − log x+
1

x
O

(∑
d≤x

log(x/d)

)
(|χ(d)µ(d)| ≤ 1, L(1, χ) = 0)

= − log x+O(1) .

The last bound follows from Proposition 12:
∑
d≤x log(x/d) = bxc log x −∑

d≤x log d = x log x+O(log x)− (x log x+O(x)) = O(x). 2
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Proof of Proposition 15 for nonreal χ. We assume for contradiction that
χ ∈ D\{χ0} is such that χ 6= χ and L(1, χ) = 0. By the definition of L(1, χ),
also L(1, χ) = 0. Thus N := |{χ ∈ D\{χ0} | L(1, χ) = 0}| ≥ 2. But, for x > 1,

0 ≤
∑

n=1+mk≤x

Λ(n)

n
=
∑
n≤x

I1,m(n)Λ(n)

n
(Λ is nonnegative)

=
∑
n≤x

1

ϕ(m)

∑
χ∈D

χ(n)Λ(n)

n
(2 of Proposition 14)

=
∑
χ∈D

S(χ, x)

ϕ(m)
=

(1−N) log x

ϕ(m)
+O(1) <

− log x

ϕ(m)
+O(1)

(swapping sums, Proposition 24, N ≥ 2) .

For large x we get a contradiction. 2

Now it only remains to prove Proposition 14. We show that the existence of
the functions Dm is due to a general algebraic construction of group characters.
Here a group G = (G, ·) means a finite Abelian group. If G is such a group,
its character is a homomorphism χ : G → C× to the multiplicative group of
nonzero complex numbers. We denote the set of characters of G by G∗. It is
easy to see that for every χ ∈ G∗, χ(1G) = 1 and every value χ(g) is an |G|-th
root of 1. In particular, always |χ(g)| = 1 and thus 1/χ = χ. Every G possesses
the character χ0 ∈ G∗ that is constantly 1 and is called principal character. The
set G∗ is a group too, with the operation (χψ)(g) := χ(g)ψ(g). The inverse is
χ−1 = 1/χ and χ0 is the neutral element. The next proposition implies that
group characters other than χ0 exist.

Proposition 25. If G ⊂ H is an extension of groups such that H/G is a
cyclic group (i.e., is generated by a single element), then every χ ∈ G∗ has
exactly |H/G| extensions to a ψ ∈ H∗ and |H∗|/|G∗| = |H/G|.

Proof. Let n = |H/G| and jG, j ∈ H\G, be a generator of H/G. Every h ∈ H
has then a unique expression h = jrg with 0 ≤ r < n and g ∈ G. If ψ ∈ H∗
extends χ ∈ G∗ then ψ(h) = ψ(j)rχ(g); also ψ(j)n = χ(jn) since jn ∈ G. So
for a fixed χ ∈ G∗ each ψ ∈ H∗ extending it is given by the formula

ψ(h) = ψα(h) = αrχ(g)

where h = jrg is the unique expression for h and α ∈ C is an n-th root of
the number χ(jn) ∈ C. There are exactly n numbers α and α 6= β implies
ψα 6= ψβ (take h = j). However, we have to show that each mapping ψα
is a character of H. Let h1 = jr1g1 and h2 = jr2g2 be two elements of H
with 0 ≤ r1, r2 < n and g1, g2 ∈ G, and let α ∈ C satisfy αn = χ(jn). So
ψα(h1)ψα(h2) = αr1χ(g1)αr2χ(g2) = αr1+r2χ(g1g2). If r1 + r2 < n then

ψα(h1h2) = ψα(jr1+r2g1g2) = αr1+r2χ(g1g2) = ψα(h1)ψα(h2) .
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Else r1 + r2 = n+ s with 0 ≤ s < n, but then again

ψα(h1h2) = ψα(jsjng1g2) = αsχ(jn)χ(g1g2) = αsαnχ(g1g2) = ψα(h1)ψα(h2) .

Thus ψα ∈ H∗.
The equality |H∗|/|G∗| = |H/G| follows from the fact that the mapping

H∗ 3 ψ 7→ ψ |G is a mapping from H∗ to G∗ that is, as we have just proved,
|H/G| to 1. 2

Proposition 26. Let G be a group. Then |G∗| = |G| and for every g ∈ G
different from 1G there is a ξ ∈ G∗ with ξ(g) 6= 1.

Proof. We set G0 = {1G}. If G = G0, we finish. Else we take a g ∈ G\G0

and set G1 = 〈G0 ∪ {g}〉. If G = G1, we finish. Else we take a g ∈ G\G1, set
G2 = 〈G1 ∪ {g}〉, and continue in the suggested way. After finitely many steps
we finish because |G0| < |G1| < · · · ≤ |G|. In this way we get a chain of group
extensions {1G} = G0 ⊂ G1 ⊂ . . . ⊂ Gk = G such that each factor Gi+1/Gi is
cyclic. Hence

|G| =

k−1∏
i=0

|Gi+1|/|Gi| (telescoping product)

=

k−1∏
i=0

|Gi+1/Gi| (cardinality of factorgroups)

=

k−1∏
i=0

|G∗i+1|/|G∗i | (Proposition 25)

= |G∗| (telescoping product) .

If g ∈ G is not 1G, then there is a χ ∈ 〈g〉∗ with χ(g) 6= 1 because |〈g〉∗| =
|〈g〉| ≥ 2. We use 〈g〉 = G1 in the above chain of extensions and extend by it,
using Proposition 25, χ ∈ G∗1 to a ξ ∈ G∗. This ξ is as required. 2

Lecture 6, April 4, 2017

Proposition 27 (orthogonal relations). Let G be a group, g ∈ G, and
χ ∈ G∗. Then

∑
h∈G χ(h) is |G| if χ is principal and 0 else, and

∑
ψ∈G∗ ψ(g)

is |G| if g = 1G and 0 else.

Proof. The first halves of the two claims are trivial since each summand equals
1 (and |G∗| = |G| by Proposition 26). Let χ 6= χ0. Thus χ(j) 6= 1 for some
j ∈ G. The mapping h 7→ jh permutes G. Thus∑

h∈G

χ(h) =
∑
h∈G

χ(jh) = χ(j)
∑
h∈G

χ(h) ,

18



which implies that the considered sum is 0. For the second claim we assume
that g 6= 1G and argue in the same way in the group G∗. We need a ξ ∈ G∗
with ξ(g) 6= 1, which exists by Proposition 26. 2

Proof of Proposition 14. For a given m ∈ N we take the multiplicative group
Gm of residues modulo m coprime to m; |Gm| = ϕ(m). We extend each χ ∈ G∗m
to residues r mod m not coprime to m by χ(r) = 0. For χ ∈ G∗m we define
χ′ : N→ C by χ′(n) = χ(n mod m). We set

Dm = {χ′ | χ ∈ G∗m} .

These mappings are called Dirichlet characters modulo m. Clearly, χ′0 ∈ Dm

and Dm is closed to complex conjugation because G∗m is. In the same way every
χ′ ∈ Dm inherits complete multiplicativity from χ. The numbers coprime to m
in any interval I ⊂ N, |I| = m, are exactly the ϕ(m) representatives of Gm. By
Proposition 27, for any χ′ ∈ Dm, χ′ 6= χ′0, one has

∑
n∈I χ

′(n) =
∑
g∈Gm χ(g) =

0. Thus for every n ∈ N and such χ′ one has∣∣∣∣ n∑
i=1

χ′(i)

∣∣∣∣ =

∣∣∣∣ n∑
i=r

χ′(i)

∣∣∣∣ ≤ n∑
i=r

|χ′(i)| ≤ m− 1

by splitting 1, 2, . . . , n into bn/mc intervals of length m and the residual interval
r, r + 1, . . . , n of length at most m − 1. Thus every χ′ ∈ Dm\{χ′0} is strongly
bounded. Let a ∈ N be coprime to m; we take a b ∈ N such that ab ≡ 1 modulo
m. Then, by Proposition 27, for every n ∈ N we have∑

χ′∈Dm

(χ′(b)/ϕ(m))χ′(n) =
1

ϕ(m)

∑
χ′∈Dm

χ′(bn)

=
1

|Gm|
∑
χ∈G∗m

χ(bn mod m) = Ia,m(n) ,

which gives the required coefficients cχ′ = χ′(b)/ϕ(m). Clearly,

cχ′0 = χ′0(b)/ϕ(m) = 1/ϕ(m) .

Finally, if a ≡ 1 modulom then b ≡ 1 as well and each coefficient is χ′(b)/ϕ(m) =
1/ϕ(m). 2

This completes the proof of Theorem 8. The general Dirichlet’s theorem is
proven. 2

We mention reference for the proof that is due to H. N. Shapiro (1922–2013)
and its characteristic feature is Proposition 24 —

• H. N. Shapiro, On primes in arithmetic progression. II, Ann. of Math. (2)
52 (1950), 231–243
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— and conclude the part of the course on DT by three lose problems.
The first problem asks if one can prove Dirichlet’s theorem by a purely alge-

braic argument based on formal Dirichlet series. One easily proves in this way
that the set of prime numbers is infinite. By part 1 of Proposition 23 we have
the formal identity

∞∑
n=1

1

ns
·
∞∑
n=1

µ(n)

ns
= 1 .

If there are finitely many primes then the second series is finite because µ(u) 6= 0
only for those finitely many n that are products of distinct primes. But formal
equalities of the type

∞∑
n=1

1

ns
·
k∑

n=1

an
ns

=

l∑
n=1

bn
ns

,

with an, bn ∈ C and a1 = · · · = ai−1 = 0 6= ai, are impossible: on the left side
after multiplying the two series, infinitely many coefficients of 1/ns are nonzero
(for example if n = k! + i, 2 · k! + i, 3 · k! + i, . . . when the coefficient equals
ai) but the right side has only finitely many nonzero coefficients. Could not we
prove in a similar fashion the whole Dirichlet’s theorem?

The second lose problem asks about the role of complex numbers C in proofs
of DT. Their main role is not in using complex analysis in some proofs of DT
when L-functions L(s, χ) =

∑
χ(n)/ns, s ∈ C are treated analytically, but in

the remarkable identity (a,m, n ∈ N and (a,m) = 1)

Ia,m(n) =
∑
χ∈Dm

cχ · χ(n)

that has a real, in fact 0-1 function on the left side but complex coefficients
cχ and complex-valued functions χ on the right side; every χ is completely
multiplicative and, except χ0, strongly bounded (Proposition 14). Could one in
some precise sense prove that complex linear combinations like this cannot be
avoided and replaced with real ones? What if Dm may be infinite?

The third problem is not lose but quite concrete. Is it true that if χ : N→ C
is completely multiplicative, not identically zero (hence χ(1) = 1) and strongly
bounded then

L(1, χ) =

∞∑
n=1

χ(n)

n
6= 0 ?

I stress that χ here are more general than Dirichlet characters, for example
we may set χ(2) = 1 and χ(p) = (−1)(p−1)/2/(p − 1) for p > 2 (and extend
multiplicatively to χ(n)). Proposition 20 proves it for real χ.

Asymptotic and combinatorial theory of (integer) partitions

A partition of n ∈ N is any ordered tuple λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) of
natural numbers such that λ1 + λ2 + · · · + λk = n. Let p(n), n ∈ N, be the
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partition function, the number of such partitions of n. We define p(0) = 1. For
example, p(6) = 11 as the partitions of 6 are

6, 51, 42, 411, 33, 321, 3111, 222, 2211, 2111, and 111111 .

We will prove

Theorem 28 (Hardy–Ramanujan, 1918; Uspensky, 1920). For n→∞,

p(n) ∼ 1

4
√

3n
eπ(2/3)1/2n1/2

.

But we start with something easier. The number of compositions of n ∈ N
with k ∈ N parts, c(n, k), is the number of the above tuples without order, and
c(n) is the total number compositions of n, with any number of parts. Then, as
is well known,

c(n, k) =

(
n− 1

k − 1

)
and c(n) = 2n−1 .

One easily proves it by bijecting compositions of n with the placements of sepa-
rators in n−1 gaps in a row of n dots. The order of λi makes counting partitions
much more difficult. For a set A ⊂ N we denote by pA(n) the number of parti-
tions of n with all parts λi ∈ A. For finite A it is not hard to derive asymptotics
of such restricted partition function.

Theorem 29 (Schur, 1926). Suppose A = {a1, a2, . . . , ak} ⊂ N and gcd(A) =
1. Then for n ∈ N,

pA(n) =
nk−1

a1a2 . . . ak · (k − 1)!
+O(nk−2) .

The case gcd(A) = d > 1 easily reduces to d = 1 by cancelling the common
factor d.

We base the proof on the following two auxiliary results.

Proposition 30 (generalized geometric series). If m ∈ N and α ∈ C then,
formally,

1

(1− αx)m
=

∞∑
n=0

(
n+m− 1

m− 1

)
(αx)n =

∞∑
n=0

(
nm−1

(m− 1)!
+O(nm−2)

)
(αx)n

(for n = 0 the expression in big brackets is 1).

Proof. Differentiate formally

1

1− x
= 1 + x+ x2 + x3 + . . .

m− 1 times, divide the result by (m− 1)!, and substitute αx for x. 2
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Proposition 31 (partial fractions). Let p1, . . . , pk ∈ C[x] be pairwise co-
prime nonzero polynomials.

1. For some q1, . . . , qk ∈ C[x],

1

p1p2 . . . pk
=
q1

p1
+
q2

p2
+ · · ·+ qk

pk
.

2. If in addition each pi = rmii where each ri ∈ C[x] has degree 1 and mi ∈ N
then for some βi,j ∈ C,

1

p1p2 . . . pk
=

k∑
i=1

mi∑
j=1

βi,j

rji
.

Proof. 1. Since C[x] is an Euclidean ring, it is PID and Bachet’s identity holds
in it: if p1, p2 ∈ C[x] are coprime then for some q1, q2 ∈ C[x],

1 = q2p1 + q1p2 and so
1

p1p2
=
q1

p1
+
q2

p2
.

Iterating gives the identity for k polynomials instead of two.
2. Express the reciprocal of p1p2 . . . pk as in part 1, write each qi as a

linear combination with coefficients in C of the powers 1, ri, r
2
i , . . . , r

l
i, . . . (this is

possible since ri are linear), and cancel the common powers of ri in the resulting
fractions rli/r

mi
i . You get the stated identity plus possibly an additional term

q ∈ C[x] on the right side, coming from the fractions with l ≥ mi. But sending
x to +∞ shows that q is in fact identically zero and is not present. 2

Lecture 7, April 11, 2017

Proof of Theorem 29. For d, e ∈ N we denote αd,e = e2πi·e/d ∈ C, the
d-th root of 1 lying on |z| = 1 at the e-th position, counted modulo d counter-
clockwise from the point 1. Then, for a ∈ N,

1− xa =

a−1∏
j=0

(1− αa,jx) .

For the generating function of the numbers pA(n), A = {a1, . . . , ak} ⊂ N (k
distinct numbers), we have the formula

∞∑
n=0

pA(n)xn =
1

(1− xa1)(1− xa2) . . . (1− xak)
=:

1

DA(x)
.

This identity follows from the geometric series expansion (1−xa)−1 = 1 +xa +
x2a + . . . and the definition of pA(n) and holds formally in the ring C[[x]] of
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formal power series (and the condition gcd(A) = 1 is not needed for it). Using
the above factorization of 1 − xa, we split the denominator DA(x) in pairwise
coprime powers of linear polynomials:

DA(x) =

k∏
l=1

al−1∏
j=0

(1− αal,jx) =
∏

(d, ∃ l: d | al)

∏
(e, 0≤e<d, (d,e)=1)

(1− αd,ex)md

where md ∈ N counts the parts al divisible by d ∈ N. This follows by bringing
each fraction j/al in αal,j to the lowest terms and grouping together identical
factors. Applying part 2 of Proposition 31 we get the identity

∞∑
n=0

pA(n)xn =
∑
d, ...

∑
e, ...

md∑
j=1

βd,e,j
(1− αd,ex)j

=
1

DA(x)
, βd,e,j ∈ C

(we sum over the same sets of d and e as in the products). We expand the
fractions in the middle according to Proposition 30 and compare coefficients of
xn with the left side. The asymptotically largest contribution comes from the
fractions with maximum j, which under the condition gcd(A) = 1 is attained
uniquely: j = m1 = k but md < k for d > 1. Thus, as α1,0 = 1 and |αd,e| = 1,

pA(n) =
β1,0,kn

k−1

(k − 1)!
+O(nk−2) .

It remains to determine β1,0,k. Since

DA(x) = (1− x)k(
∑a1−1
i=0 xi) . . . (

∑ak−1
i=0 xi) ,

for x→ 1 we have
1

DA(x)
∼ 1

(1− x)ka1 . . . ak
.

The second equality in the above identity then implies β1,0,k = 1
a1...ak

. 2

We can get from the partial fractions decomposition of 1/DA(x) much more
than just an asymptotics, we get an effective formula for pA(n). We have in mind
a quite concrete meaning of “effective”: since the number pA(n) has Θ(log n) (bi-
nary, decadic) digits, an effective algorithm computing the function n 7→ pA(n)
is one working in time polynomial in log n. As we show now, such an algorithm
is implicit in the partial fractions decomposition of 1/DA(x) =

∑
n≥0 pA(n)xn.

Recall that a quasipolynomial (with period m ∈ N) is a function f : Z→ C for
which there exist m polynomials p0, p1, . . . , pm−1 ∈ C[x] such that

n ≡ i (mod m)⇒ f(n) = pi(n) .

Equivalently,
f(n) = a0(n) + a1(n)n+ · · ·+ ar(n)nr

for some m-periodic functions a0, . . . , ar : Z → C. A prototypical example is
(m = 2)

p{1,2}(n) = bn/2c+ 1 = a0(n) + (1/2)n

where a0(n) = 1 for even n and a0(n) = 1/2 for odd n.
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Theorem 32 (Bell, 1943). For every finite set A = {a1, a2, . . . , ak} ⊂ N the
function

N→ N0, n 7→ pA(n) ,

is a quasipolynomial with period m = lcm(A) and rational coefficients. Hence
n 7→ pA(n) can be computed in O(log2 n) steps.

Proof. The above identity and Proposition 30 give the formula

pA(n) =
∑
d, ...

∑
e, ...

md∑
j=1

βd,e,j

(
n+ j − 1

j − 1

)
αnd,e .

Since the binomial coefficients are polynomials in n (with degree j−1) and n 7→
αnd,e are m = lcm(A)-periodic functions, we see that pA(n) is a quasipolynomial
with period m. It has coefficients in Q (we know that they lie in C) because one
can express coefficients of a polynomial from its values by Lagrange interpolation
and two polynomials with sufficiently many equal values coincide.

For a rational polynomial

f(x) = a0 + a1x+ · · ·+ arx
r = (. . . ((arx+ ar−1)x+ ar−2)x+ . . . )x+ a0

and n ∈ N we compute the value f(n) by 2r multiplications and additions of
two fractions whose numerators and denominators have size O(f(n)) = O(nr).
This takes time O(log2 n) (we multiply and add two integers as in elementary
school). 2

I give credit to E. T. Bell (1883–1960)

• E. T. Bell, Interpolated denumerants and Lambert series, Amer. J. Math.
65 (1943), 382–386

only for the first half of the theorem (and even this had been known before,
to J. Sylvester in the 19th century), polynomial time algorithms were of course
unheard of in Bell’s time.

We return to the unrestricted partition function p(n) counting all partitions
of n.

Proposition 33. For every n > 1,

log p(n) = Θ(n1/2) .

We defer the proof for a while and look at the question of computing p(n). An
effective computation in this case is one taking time polynomial in n because
p(n) has roughly n1/2 digits.

Proposition 34. The partition function

N→ N, n 7→ p(n) ,

can be computed in time O(n5/2).
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Proof. For k, n ∈ N let pk(n) be the number of partitions λ of n with k parts.
Then pk(n) ∈ N0, pk(n) = 0 if k > n, p1(n) = pn(n) = 1 for every n ∈ N,
p(n) = p1(n) + p2(n) + · · · + pn(n) and, crucially, for 1 < k < n we have the
recurrence

pk(n) = pk(n− k) + pk−1(n− 1) .

Indeed, the first summand counts the λ with smallest part ≥ 2 (decrease each
part by 1), and the second the λ with the smallest part 1 (delete it). Thus for
the input n ∈ N we can generate the array

(pk(m) | 1 ≤ k ≤ m ≤ n)

with n(n + 1)/2 terms by (n − 2)(n − 1)/2 additions of numbers with size
≤ p(n). Further n− 1 additions of such numbers produce p(n). This takes time
O(n2 · n1/2) = O(n5/2). 2

Other recurrences for p(n) (e.g. the pentagonal recurrence) are more elegant
and efficient but also take more effort to derive. In fact, F. Johansson in

• F. Johansson, Efficient implementation of the Hardy–Ramanujan–Rademacher
formula, LMS J. Comput. Math. 15 (2012), 341–359

gave an algorithm computing p(n) in time n1/2+o(1). It is an almost optimum
algorithm as it takes � n1/2 steps just to write p(n) down.

Proof of Proposition 33. We first lowerbound p(n), which is easy. For
n ≥ 4 we take the maximum m ∈ N such that 1+2+· · ·+m = m(m+1)/2 < n/2,
thus m = Θ(n1/2). Then p(n) ≥ 2m, which gives the lower bound, because for
every subset X ⊂ [m] = {1, 2, . . . ,m} there is a partition λX of n, and λX 6= λY
if X 6= Y , namely the partition

∑
i∈X i+ (n−

∑
i∈X i) = n.

I started proving the upper bound on log p(n) but will repeat it in the next
lecture.

Lecture 8, April 18, 2017

We prove the upper bound in two ways and in fact we prove two slightly
different bounds.

The first proof. We prove by the generating function

∞∑
n=0

p(n)tn = F (t) :=

∞∏
k=1

1

1− tk
, t ∈ (0, 1) ,

the upper bound

p(n) <
π√

6(n− 1)
ec
√
n, n ≥ 2 ,

where c = 2
√
ζ(2) = π

√
2/3 (since ζ(2) = π2/6).
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Since F (t) > p(n)tn + p(n+ 1)tn+1 + · · · > p(n)(tn + tn+1 + . . . ) = p(n) tn

1−t
(p(n) increases), we have

log p(n) < logF (t)− n log t+ log(1− t)

=

∞∑
k=1

log
1

1− tk
− n log t+ log(1− t)

=

∞∑
k=1

∞∑
j=1

tjk

j
− n log t+ log(1− t)

=

∞∑
j=1

tj

j(1− tj)
− n log t+ log(1− t)

<
t

1− t

∞∑
j=1

1

j2
− n log t+ log(1− t) =

tζ(2)

1− t
− n log t+ log(1− t)

=
ζ(2)

u
+ n log(1 + u) + log

u

1 + u
(t = 1/(1 + u), u > 0)

<
ζ(2)

u
+ (n− 1)u+ log u

where on the third line we used the Taylor expansion of logarithm, on the
fourth we exchanged summation by absolute convergence and summed the inner

geometric series, on the fifth we used the bound 1−tj
1−t = 1 + t+ t2 + · · ·+ tj−1 >

jtj−1 for j ∈ N, and on the last we applied the bound log(1 + u) < u for u > 0.
Setting u =

√
ζ(2)/(n− 1) and applying exp(·) we get the stated bound.

The second proof. We prove by a recurrence the upper bound,

p(n) ≤ ec
√
n, n ∈ N0 ,

where again c = 2
√
ζ(2) = π

√
2/3. The recurrence we use is

p(n) =
1

n

∑
i,j≥1

ip(n− ij) =
1

n

∑
l≥1

σ(l)p(n− l)

where σ(l) =
∑
d | l d is the sum of divisors function, p(0) = 1 and p(m) = 0 if

m < 0. For example,

p(6) =
σ(1)p(5) + σ(2)p(4) + σ(3)p(3) + σ(4)p(2) + σ(5)p(1) + σ(6)p(0)

6

=
1 · 7 + 3 · 5 + 4 · 3 + 7 · 2 + 6 · 1 + 12 · 1

6
=

34 + 32

6
= 11 .

To prove the recurrence, for given n, j ∈ N with j ≤ n and λ ∈ P (n) (where
P (n) is the set of all partitions of n) we denote by fλ(j) the number of parts j
in λ and by f(j) =

∑
λ∈P (n) fλ(j) the number of parts j in all partitions of n.

We claim that
f(j) =

∑
i≥1

p(n− ij) .
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This follows by counting in two ways the pairs

A = {(λ, i) | λ ∈ P (n), 1 ≤ i ≤ fλ(j)}

— f(j) =
∑
λ∈P (n) fλ(j) = |A| =

∑
i≥1 #{λ ∈ P (n) | fλ(j) ≥ i} =

∑
i≥1 p(n−

ij) because the partitions of n containing at least i parts j are in bijection,
by deleting i parts j, with P (n − ij). Thus, summing all p(n) partitions λ =
λ1 + λ2 + · · ·+ λk = n, we get

np(n) =
∑

λ∈P (n)

λ =
∑
j≥1

j · f(j) =
∑
j≥1

j
∑
i≥1

p(n− ij) ,

our recurrence.
We apply this recurrence by means of the bounds (l, n ∈ N and l ≤ n)

√
n− l ≤

√
n− l

2
√
n

—
√
n−
√
n−l

1 = l√
n+
√
n−l — and (x > 0)

e−x

(1− e−x)2
=

1

(ex/2 − e−x/2)2
<

1

x2

— ex/2− e−x/2 = x+
∑
k≥1 ckx

2k+1 with all ck > 0. We also use the expansion∑
k≥1 kx

k = x
(1−x)2 (see Proposition 30).

Now p(n) ≤ ec
√
n obviously holds for n = 0, 1, and we may assume that

n ≥ 2. Then

p(n) =
1

n

∑
i,j≥1

ip(n− ij) ≤ 1

n

∑
ij≤n

iec
√
n−ij

≤ ec
√
n

n

∑
i,j≥1

ie−cij/2
√
n =

ec
√
n

n

∑
j≥1

e−cj/2
√
n(

1− e−cj/2
√
n
)2

<
ec
√
n

n

∑
j≥1

1

(cj/2
√
n)2

=
ec
√
n

n
· 4n

c2

∑
j≥1

1

j2

= ec
√
n .

The first = is from the recurrence, the second ≤ is by induction, the third ≤ is
by the above bound on the root, the fourth = is by summing the generalized
geometric series, the fifth < is by the above bound on the exponential, and the
last = follows from

∑
j≥1 1/j2 = ζ(2) and c2 = 4ζ(2). 2

The first proof is taken from

• J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge
University Press, Cambridge, UK, 1992, p. 140
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and the second from

• M. B. Nathanson, Elementary Methods in Number Theory, Springer, New
York, 2000, pp. 457 and 465–469.

Proof of the asymptotics p(n) ∼ 1
4
√

3n
ec
√
n

with c = 2
√
ζ(2) = π

√
2/3 = 2.56509 . . . . Now we will prove Theorem 28.

Proposition 35. Let z ∈ (−1, 1),

Φ(z) =
√

(1− z)/2π · eπ
2(1+z)/12(1−z) ,

and qn ∈ R be the Taylor coefficients of this function, Φ(z) =
∑
n≥0 qnz

n. Then,
for n→∞,

qn ∼
1

4
√

3n
eπ
√

2n/3

(the same asymptotics as for p(n)).

Proof. We begin with the Laplace integral∫ +∞

−∞
e−t

2

dt =
√
π .

Linear substitution t := at− b, a, b ∈ R and a > 0, in it gives the formula∫ +∞

−∞
e−a

2t2e2abt dt =
eb

2√
π

a
.

Setting a2 = 1− z and b2 = π2/6(1− z) we get∫ +∞

−∞
ezt

2

eπt
√

2/3−t2 dt =
√
π/(1− z) · eπ

2/6(1−z)

and represent Φ(z) by an integral:

Φ(z) =
e−π

2/12(1− z)
π
√

2

∫ +∞

−∞
ezt

2

eπt
√

2/3−t2 dt .

Expanding Φ(z) and ezt
2

and comparing coefficients of zn we get an integral
formula for qn. From it we will extract, by exchanging n→∞ and

∫
, the stated

asymptotic relation for qn.

Lecture 9, April 25, 2017
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So, as ezt
2

=
∑
n≥0 z

nt2n/n!, comparison of coefficients gives

qn =
e−π

2/12

π
√

2

∫ +∞

−∞

(
t2n

n!
− t2n−2

(n− 1)!

)
eπt
√

2/3−t2 dt .

Let t = s+
√
n. The exponent in the integrand then is

πt
√

2/3− t2 = π2/12 + π
√

2n/3− n− 2s
√
n+ s2 − 2(s− π/2

√
6)2

and the difference in the brackets becomes

t2n

n!

(
1− n

t2

)
=

nn(1 + s/
√
n)2n

n!
· s

2 + 2s
√
n

(s+
√
n)2

=
nn+1/2

n · n!
(1 + s/

√
n)2n · 2s · 1 + s/2

√
n

(1 + s/
√
n)2

.

Thus with

Cn =
eπ
√

2n/3

πn
√

2
· n

n+1/2

enn!

and

Kn(s) =
1 + s/2

√
n

(1 + s/
√
n)2

(
(1 + s/

√
n)e−s/

√
n+s2/2n

)2n

we get

qn = Cn

∫ +∞

−∞
Kn(s) · 2s · e−2(s−π/2

√
6)2 ds .

The point of this transformation is that limn→∞Kn(s) = 1 for any fixed s
because

(1 + s/
√
n)e−s/

√
n+s2/2n = elog(1+s/

√
n)−s/

√
n+s2/2n = eOs(n

−3/2) .

If we can exchange n→∞ and
∫

, the claimed asymptotics for qn follows:

Cn ∼
eπ
√

2n/3

2π3/2n

by the Stirling asymptotics n! ∼
√

2πn(n/e)n,∫ +∞

−∞
2s · e−2(s−π/2

√
6)2 ds =

∫ +∞

−∞
(u+ π/2

√
3) · e−u

2

du

=
π

2
√

3

∫ +∞

−∞
e−u

2

du =
π3/2

2
√

3

by the Laplace integral again (
∫ +∞
−∞ ue−u

2

du = 0 since the integrand is an odd
function), and so

qn = Cn

∫ +∞

−∞
Kn(s) · 2s · e−2(s−π/2

√
6)2 ds

∼ eπ
√

2n/3

2π3/2n
· π

3/2

2
√

3
=
eπ
√

2n/3

4n
√

3
.
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The exchange of the limit and integral is justified by the dominated conver-
gence theorem. We find a nonnegative real function f(s) such that

∫ +∞
−∞ f <∞

and |In(s)| ≤ f(s) for every s ∈ R and n ∈ N, where In(s) = Kn(s) · 2s ·
e−2(s−π/2

√
6)2 is the integrand. For x ≥ 0 the function xe1−x attains maximum

1 at x = 1. If s ≥ 0 we set x = 1+s/
√
n and see that |Kn(s)| ≤ | ······ | · |(· · · )

2n| <
1 · (es2/2n)2n = es

2

. Hence for s ≥ 0 we have the bound

|In(s)| ≤ 2s|Kn(s)|e−2(s−π/2
√

6)2 ≤ 2s · e−s
2+O(s) =: f(s) .

For s ≤ 0 we set x = (1 + s/
√
n)2 and get (1 + s/

√
n)2e−2s/

√
n ≤ es

2/n, hence

|1 + s/
√
n|e−s/

√
n ≤ es2/2n and

|Kn(s)| ≤ | · · · |
| · · · |

(
|1 + s/

√
n| · e−s/

√
n+s2/2n

)2n
≤ |s|
| · · · |

|1 + s/
√
n|2es

2−2s/
√
n
(
|1 + s/

√
n| · e−s/

√
n
)2n−2

≤ |s|es
2−2s/

√
ne(n−1)s2/n = |s|e2s2+1−(1+s/

√
n)2 ≤ |s|e2s2+1 .

So, for s ≤ 0,

|In(s)| ≤ 2|s| · |Kn(s)|e−2(s−π/2
√

6)2 ≤ 2s2e2πs/
√

6+O(1) =: f(s) .

Clearly, this f(s) has a finite integral over R and the dominated convergence
theorem applies. 2

But what has Φ(z) to do with the numbers p(n)? It approximates their
generating function

F (z) :=
∑
n≥0

p(n)zn =
∏
n≥1

1

1− zn
, z ∈ C with |z| < 1

(this basic Euler’s identity, which we used already for z ∈ (0, 1), should have
been proven but we skip the proof now). The functions Φ(z) and F (z) are close
when z ∈ C with |z| < 1 is near to 1.

Proposition 36. If z ∈ C with |z| < 1 and |1− z| ≤ 2(1− |z|) then, as z → 1,

F (z) = (1 +O(1− z))Φ(z) .

We defer the proof of this key result for some time and proceed to show how it
implies that p(n) ∼ qn. We need an easy lemma.

Lemma 37. If z ∈ C with |z| < 1 then

|F (z)| < e(1−|z|)−1+|1−z|−1

.
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Proof. In fact, this lemma turns out not so easy, but let us first ‘prove’ it and
then discuss where is the problem. Taking logarithm of Euler’s identity yields

logF (z) =
∑
n,m≥1

znm

m
=
∑
m≥1

zm

m(1− zm)

(by the Taylor expansion of the logarithm, exchange of summation by absolute
convergence, and summation of the geometric series). So for z ∈ C with |z| < 1
we get, by the triangle inequality and since |1− zm| ≥ 1− |z|m,

| logF (z)| ≤ |z|
|1− z|

+
∑
m≥2

|z|m

m(1− |z|m)

<
1

|1− z|
+

1

1− |z|
∑
m≥2

1

m2
· m

|z|−1 + |z|−2 + · · ·+ |z|−m

<
1

|1− z|
+

1

1− |z|
∑
m≥2

1

m2
<

1

|1− z|
+

1

1− |z|
.

As | logF (z)| = | log |F (z)| + i arg(F (z))| ≥ log |F (z)|, by applying exp(·) we
get the stated bound.

The problem is of course in the application of complex logarithm, in logF (z).
We did not introduce this function and it is tricky to justify its required prop-
erties. The way around it is to show instead that

F (z) = exp
(∑

m≥1 z
m/m(1− zm)

)
— the function exp(z) =

∑
m≥0 z

m/m! is unproblematic. I return to it later. 2

Recall that Φ(z) =
∑
n≥0 qnz

n where Φ(z) is defined in Proposition 35. The
next result and Proposition 35 clearly prove the Hardy–Ramanujan–Uspensky
asymptotics for p(n) in Theorem 28.

Proposition 38. For n→∞,

p(n) = qn +O
(
n−5/4eπ

√
2n/3

)
.

Proof. Let C = Cn be the circle |z| = 1−π/
√

6n. By the Cauchy formula (from
complex analysis),

p(n)− qn =
1

2πi

∫
C

F (z)− Φ(z)

zn+1
dz .

We split C in the two arcs

A = {z ∈ C | |1− z| < π
√

2/3n} and B = C\A .

For z ∈ C, |z|−n = e−n log(1−(1−|z|)) = eπ(n/6)1/2+O(1) and |z|−1 � 1. Thus by
the definition of Φ(z), the previous lemma and triangle inequality we have

31



Lecture 10, May 2, 2017

∫
B

F (z)− Φ(z)

zn+1
dz �

∫
B

|z|−n
(
e|1−z|

−1+(1−|z|)−1

+ eπ
2/6|1−z|

)
|dz|

(z ∈ B and z ∈ C) � eπ
√
n/6
(
e(
√

3n/2+
√

6n)/π + e(π/6)
√

3n/2
)

= e
√
n(π/

√
6+(1/π)(

√
3/2+

√
6)) + eπ

√
n
√

3/8

� e
√
nπa ,

where 0 < a <
√

2/3 because 3/8 < 2/3 and, since 1/π < π/9, π/
√

6 +

(1/π)(
√

3/2 +
√

6) < π(1/
√

6 + (1/9)(
√

3/2 +
√

6)) = · · · = π
√

2/3.
The main contribution to the integral comes from the arc A and we bound it

by means of the definition of Φ(z), Proposition 36 (note that the arc A satisfies
its assumption) and the bound |A| � n−1/2 on the length of A (in the previous
bound we used the trivial |B| � 1):∫

A

F (z)− Φ(z)

zn+1
dz �

∫
A

|z|−n · |1− z|3/2 · eπ
2/6|1−z| |dz|

� eπ
√
n/6 · n−3/4 · eπ

√
n/6 · n−1/2

= n−5/4eπ
√

2n/3

(|1− z| � n−1/2 by z ∈ A and |1− z| ≥ 1− |z| = π/
√

6n by z ∈ C). Hence

p(n)− qn =
1

2πi

∫
C

F (z)− Φ(z)

zn+1
dz =

1

2πi

∫
A

. . . +
1

2πi

∫
B

. . .

= O
(
n−5/4eπ

√
2n/3

)
.

2

We return to the proof of Lemma 37 and show how to circumvent complex
logarithm. It suffices to show that for every z ∈ C with |z| < 1 we have

1

1− z
= exp

(∑
m≥1

zm

m

)

where, of course, exp(z) = ez =
∑
n≥0

zn

n! (for every z ∈ C). Then, using the
basic identity exp(y) exp(z) = exp(y + z), we get (more precisely, we use limit
form of the identity in the infinite product)

F (z) =
∏
n≥1

1

1− zn
= exp

(∑
n≥1

∑
m≥1

znm

m

)
= exp

(∑
m≥1

∑
n≥1

znm

m

)

= exp

(∑
m≥1

zm

m(1− zm)

)
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and, since for every z ∈ C one has |ez| = ere(z) ≤ e|z|,

|F (z)| ≤ exp(| · · · |) < · · · < exp
(
|1− z|−1 + (1− |z|)−1

)
,

as in the previous proof of Lemma 37.

Let f(z) = 1
1−z (z ∈ C\{1}) and g(z) = exp

(∑
m≥1

zm

m

)
(|z| < 1). Clearly,

f ′

f
=

(1− z)−2

(1− z)−1
=

1

1− z
and

g′

g
=

exp(· · · )
∑
m≥1 z

m−1

exp(· · · )
=

1

1− z
.

So f ′

f = g′

g which implies that (f/g)′ = 0 and f(z) = cg(z) for some constant

c ∈ C. Since f(0) = g(0) = 1, c = 1 and f(z) = g(z) and we complete the
alternative proof of Lemma 37.

But it still remains to prove Proposition 36. For the proof we need three
lemmas. First we recall the notion of total variation of a function. If L ⊂ C is a
halfline (or a straight segment or a line) and f : L→ C is a function, we define
the total variation VL(f) ∈ [0,+∞] of f over L as

VL(f) = sup (|f(a2)− f(a1)|+ |f(a3)− f(a2)|+ · · ·+ |f(an)− f(an−1)|)

where (a1 < a2 < · · · < an) ⊂ L runs through all finite tuples of points on L,
ordered according to the direction of L.

Lemma 39. Suppose g : L→ C is an integrable function defined on a halfline
L ⊂ C going from the origin and 0 6= w ∈ L. Then∣∣∣∣w ∞∑

n=1

g(nw)−
∫
L

g(u) du

∣∣∣∣ ≤ |w|VL(g) .

Lemma 40. Let

g(x) =
1

x(ex − 1)
− 1

x2
+
e−x

2x

and L ⊂ C be a halfline going from the origin and lying in the halfplane re(z) >
0. Then ∫

L

g =

∫ +∞

0

g(x) dx = − log(2π)

2
.

Lemma 41. Suppose that L and g are as in the previous lemma, and in addi-
tion L lies in the sector |arg(z)| < K < π/2. Then

VL(g)�K 1 .

Proof. It follows that

VL(g) =

∫
L

|g′(z)| · |dz| .

(We justify this formula for total variation later.)
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Lecture 11, May 9, 2017

Since

g′(z) = − 1

z2(ez − 1)
− ez

z(ez − 1)2
+

2

z3
− e−z

2z
− e−z

2z2

and |ez| = ere(z), for z ∈ L and z →∞ the middle term | · · · | � |z|−3 dominates
because each of the other four terms goes to 0 exponentially fast, as � e−c|z|

for a constant c = c(K) > 0. Thus the portion of the integral for z ∈ L with

|z| ≥ 1, say, converges (as
∫ +∞

1
x−3 dx <∞).

The function g(z) is holomorphic for |z| < 2π, hence |g′(z)| is bounded for
|z| < 1, because the poles at z = 0 of the three summands cancel out and
singularities closest to the origin are z = ±2πi. Indeed,

1

x(ex − 1)
=

1

x2 + x3/2 + . . .
= x−2 − x−1

2
+ . . . and

e−x

2x
=
x−1

2
− . . . .

Thus also the portion of the integral for z ∈ L with |z| < 1 converges. 2

Proof. (Proof of Lemma 39.) Without loss of generality L = [0,+∞). Let
w > 0 and N ∈ N. Then∣∣∣∣w N∑

n=1

g(nw)−
∫ Nw

0

g(u) du

∣∣∣∣
= w

∣∣∣∣ ∫ 1

0

(N−1∑
n=0

(g(nw + w)− g(nw + uw))

)
du

∣∣∣∣
≤ w

∫ 1

0

(N−1∑
n=0

|g(nw + w)− g(nw + uw)|
)
du ≤ w

∫ 1

0

VL(g) du

= wVL(g) .

Sending N →∞ we get the stated bound. 2

Proof. (Proof of Lemma 40.) The first equality follows as usual from Cauchy’s
theorem. In more details, for R > 0 we denote by LR the initial segment of
L of length R (going from 0 to z ∈ L with |z| = R), by KR the arc of the
circle |z| = R going from the end of LR to the point R on the real axis, and by
CR the closed curve formed by LR, KR, and the interval [R, 0] ([0, R] traversed
backwards). Then∫

LR

g =

∫ R

0

g(x) dx+

∫
CR

g −
∫
KR

g =

∫ R

0

g(x) dx+O(1/R)

because
∫
CR

g = 0 by Cauchy’s theorem (g is holomorphic on CR and its interior)

and |
∫
KR

g| ≤ maxKr |g| · |KR| � R−2R = 1/R. For R → +∞ we get equality
of both integrals.
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By the dominated convergence theorem we have∫ +∞

0

g(x) dx = lim
N→∞

∫ +∞

0

(1− e−Nx)g(x) dx .

We evaluate the last integral:∫ +∞

0

(1− e−Nx)g(x) dx

=

∫ +∞

0

1− e−Nx

ex − 1
· 1 + x− ex

x2
dx+

∫ +∞

0

(1− e−Nx)
e−x

2x
dx

=

N∑
k=1

∫ +∞

0

e−kx
1 + x− ex

x2
dx+

1

2

∫ +∞

0

e−x − e−(N+1)x

x
dx

= −
N∑
k=1

∫ +∞

0

e−kx
(∫ 1

0

te(1−t)x dt

)
dx+

1

2

∫ +∞

0

(∫ N+1

1

e−tx dt

)
dx

= −
N∑
k=1

∫ 1

0

(∫ +∞

0

te(1−t−k)x dx

)
dt+

1

2

∫ N+1

1

(∫ +∞

0

e−tx dx

)
dt

= −
N∑
k=1

∫ 1

0

t dt

k + t− 1
+

1

2

∫ N+1

1

dt

t

=

N∑
k=1

((k − 1) log(k/(k − 1))− 1) +
log(N + 1)

2

= N logN −
N∑
k=1

log k −N +
log(N + 1)

2
= − log(

√
2π) + o(1)

because of the Stirling asymptotics
∑N
k=1 log k = log(N !) = N logN − N +

1
2 logN + log(

√
2π) + o(1) and because log(N + 1) = logN + log(1 + 1/N) =

logN +O(1/N). We note that in the fourth equality we used Fubini’s theorem
to exchange order of integration but we will not prove it here. However, later
we will prove the Stirling asymptotics for factorial. 2

We come to the last proof that completes derivation of the partition function
asymptotics.

Proof. (Proof of Proposition 36.) We want to show that

F (z)

Φ(z)
= 1 +O(1− z) for z → 1 via |z| < 1 with |1− z| ≤ 2(1− |z|)

where F (z) =
∏∞
n=1 1/(1 − zn) and Φ(z) = ( 1−z

2π )1/2 exp(π
2(1+z)

12(1−z) ). We change

the variable to w by z = e−w, w = a + bi ∈ C. This is always possible if
z 6= 0. By 2πi-periodicity of the exponential function and since |z| < 1, we can
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take w with |b| ≤ π and a > 0. The conditions that |z| < 1, z is near 1, and
|1 − z| ≤ 2(1 − |z|) imply that | arg(w)| = | arctan(b/a)| < K < π/2 for some
constant K. Indeed, then both a and b are close to 0 and we have

|z| = e−a = 1− a+O(a2) and |1− z| ≥ |im(z)| = e−a| sin b| = |b|+O(b2) ,

thus 2 ≥ |1−z|
1−|z| ≥ (1 + o(1))|b/a| and for z as stated and sufficiently near to 1

the point w = a+ bi lies in the angular sector with K = arctan 3, say. Further,
for z → 1 with |z| < 1 we have relations

w = O(1− z) and
1

w
=

1

1− z
− 1

2
+O(1− z) .

Indeed, z = e−w = 1− w +O(w2) = 1− w(1 + o(1)) yields

w =
1− z

1 + o(1)
= (1− z)(1 + o(1)) = O(1− z) ,

and z = e−w = 1− w + w2

2 +O(w3) gives

1

1− z
=

1

w(1− w/2 +O(w2))
=

1 + w/2 +O(w2)

w
=

1

w
+

1

2
+O(w) .

We finish the proof with the help of the familiar expression

F (z) = exp

(∑
m≥1

zm

m(1− zm)

)
= exp

(∑
m≥1

1

m(emw − 1)

)
, |z| < 1 .

Using the function g(x) of Lemma 40 and expansions π2

6 =
∑
n≥1

1
n2 and 1−z =

exp(−
∑
n≥1 z

n/n), |z| < 1, we have

F (z) = e
π2

6w · (1− e−w)
1
2 · exp

(
w
∑
m≥1

(
1

mw(emw − 1)
− 1

m2w2
+
e−mw

2mw

))

= eπ
2/6w · (1− z)1/2 · exp

(
w
∑
m≥1

g(mw)

)
= eπ

2/6w · (1− z)1/2 · e− log(2π)/2+O(w)

— the last line by Lemmas 39–41 applied to the halfline L ⊂ C starting at the
origin and going through w. Finally, by the above relations between w and z,

F (z)

Φ(z)
=

eπ
2/6w · (1− z)1/2 · e− log(2π)/2+O(w)

((1− z)/2π)1/2 · eπ2(1+z)/12(1−z)

= exp

(
π2

6

(
1

1− z
− 1

2
+O(1− z)

)
− π2(1 + z)

12(1− z)
+O(1− z)

)
= eO(1−z) = 1 +O(1− z), z → 1 with |z| < 1 .

2

The proof of Theorem 28 on asymptotics of p(n) from lecture 6 is finished.
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Lecture 12, May 16, 2017

Well, not completely. We used quite a few tools and results from analysis
and now we at least recapitulate them, if we do not prove them (we will deduce
Stirling’s formula, though).

1. The Laplace or Gauss integral
∫ +∞
−∞ e−t

2

dt =
√
π (Wikipedia says that it

is the Gaussian or Euler–Poisson integral).

2. Exchange of
∫

and
∑

(in deducing the asymptotics of qn), justified by
uniform convergence.

3. Stirling’s formula n! ∼
√

2πn(n/e)n. Later we give three proofs for it.

4. Dominated convergence theorem — if (fn), fn : X → R, is a sequence
of measurable functions defined on a measure space (X,Σ, µ) such that
fn → f (pointwise convergence) and there is an integrable function g :
X → R such that for every n ∈ N and x ∈ X one has |fn(x)| ≤ g(x), then∫
X
|f − fn| → 0.

5.
∑
n≥0 p(n)zn =

∏
n≥1 1/(1− zn), for every z ∈ C with |z| < 1.

6. Cauchy’s formula — if f : D → C is holomorphic on a domain D ⊂ C
containing 0 and C ⊂ D is a closed curve that winds once in the positive
sense around 0 and the interior of C is contained in D, then the coefficients
an in f(z) =

∑
n≥0 anz

n are given by

an =
1

2πi

∫
C

f(z) dz

zn+1
.

This is a theory in itself that includes other results, for example Cauchy’s
theorem

∫
C
f = 0.

7. The formula for total variation of a nice function f on a halfline L ⊂ C:
VL(f) =

∫
L
|f ′(z)| · |dz|.

8. Fubini’s theorem: ∫ ∫
=
∫ ∫

.

9. Euler’s formula ζ(2) =
∑∞
n=1 1/n2 = π2/6.

We could include here the Laplace method for deriving asymptotics for integrals
of the type

∫
f(n, x) dx, n → ∞. This is explained in the Wikipedia article or

in an appendix of the (online available) book

• P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge Uni-
versity Press, Cambridge, 2009.

The asymptotics p(n) ∼ eπ
√

2n/3/4n
√

3 was proven first by G. Hardy (1877–
1947) and S. Ramanujan (1887–1920) in
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• Asymptotic formulæ in combinatory analysis, Proc. London Math. Soc,
17 (1918), 75–115

and, independently, by Ja. V. Uspenskij (1883–1947) in

• Asimptotičeskije vyraženija čislovych funkcij, vstrečajuščichsja v zadačach
o razbienii čisel na slagaemye, Izvestija Rossijskoj Akademii Nauk, 14
(1920), 199–218.

In the article of Hardy and Ramanujan the circle method was born. Uspenskij
was born in the town Urga in outer Mongolia and died in San Francisco. For
that matter, Hardy was born in Cranleigh, England and died in Cambridge,
and Ramanujan was born in Erode, India and died in Kumbakonam, India.
It is worth to look in the two articles, both are available on-line. Hardy and
Ramanujan aim not only on asymptotics but for an explicit formula for p(n) in
terms of an infinite series (more precisely, asymptotic series). Uspenskij’s goal
is the asymptotics but he also derives it for other two partition functions, for
the number of partitions in distinct parts, and in distinct odd parts.

The proof we presented in the previous lectures belongs to D. J. Newman
(1930–2007):

• A simplified proof of the partition formula, Michigan Math. J., 9 (1962),
283–287

and Chapter II in

• Analytic Number Theory, Springer, Berlin, 1998.

Newman is best known for his simplification of the proof of Prime Number
Theorem (see his book).

P. Erdős (1913–1996) gave an elementary proof, based on a recurrence, of

the incomplete asymptotics p(n) ∼ ceπ
√

2n/3/
√
n and Newman completed it by

calculating that c = 1/4
√

3.

Three proofs of Stirling’s asymptotics n! ∼
√

2πn(n/e)n

The 1st proof, by sum of logarithms. We use the expression

log(n!) =

∫ n+1/2

1/2

log x dx+ c1 +O(1/n), n ∈ N ,

where c1 is a real constant. To prove it, note that for m ∈ N we have the formula∫ m+1/2

m−1/2

log x dx = logm+O(m−2) .
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Indeed,∫ ...

...

. . . = [x log x− x]
m+1/2
m−1/2

= m log

(
m+ 1

2

m− 1
2

)
+

log(m2 − 1
4 )

2
− 1

= m log

(
1 +

1

m− 1
2

)
+

1

2
log

(
1− 1

4m2

)
+ logm− 1

=
m

(m− 1/2)
− m

2(m− 1/2)2
− 1 +O(m−2) + logm

=
−1/2

2(m− 1/2)2
+O(m−2) + logm = logm+O(m−2) ,

by the Taylor expansion log(1 + x) =
∑
n≥1(−1)n+1xn/n, |x| < 1. Since∑n

m=1O(m−2) =
∑∞
m=1O(m−2)−

∑n
m>nO(m−2) = −c1 +O(1/n),

n∑
m=1

logm = log(n!) ,

and integral is additive in integration intervals, summation of the formula for
m = 1, 2, . . . , n gives the expression for log(n!).

Thus

log(n!) =

∫ n+1/2

1/2

log x dx+ c1 +O(1/n)

= [x log x− x]
n+1/2
1/2 + c1 +O(1/n)

= (n+ 1/2) log(n+ 1/2)− (n+ 1/2) + c2 +O(1/n)

= n log n− n+ (log n)/2 + c3 +O(1/n)

as log(n+ 1/2) = log n+ 1/2n+O(1/n2) and

n! = elog(n!) = c(1 +O(1/n))
√
n

(
n

e

)n
where c = ec3 > 0.

It remains to show that c =
√

2π. Newman remarks at the end of Chapter II

in his book that in the derivation of p(n) ∼ eπ
√

2n/3/4n
√

3 Stirling’s asymptotics
is used twice so that the constant c cancels out, and hence the weaker form with
undetermined c suffices. But we determine c, by means of the integral

In =

∫ π/2

0

(cosx)n dx, n ∈ N0 .

39



Clearly, I0 = π/2 and I1 = 1. Integration by parts shows that, for n ≥ 2,

In =

∫ π/2

0

(sinx)′(cosx)n−1 dx

= [. . . ]
π/2
0 + (n− 1)

∫ π/2

0

(sinx)2(cosx)n−2 dx

= 0− 0 + (n− 1)(In−2 − In) (sin2 x = 1− cos2 x)

and so, for n ≥ 2,

In =
n− 1

n
In−2 .

Since (cosx)n is positive and decreases with n on (0, π/2), we also have

In < In−1 < In−2 and 1 <
In−1

In
<
In−2

In
= 1 +

1

n− 1
.

Hence

lim
n→∞

In−1

In
= 1 .

On the other hand, solving the recurrence for In we get

I2n =
(2n− 1)!!

(2n)!!
· π

2
and I2n+1 =

(2n)!!

(2n+ 1)!!

(the double factorial is defined as the product x!! = x(x−2)(x−4) . . . , truncated
at the last positive term), and thus (using that (2n)!! = 2nn! and substituting
the incomplete Stirling’s formula)

I2n
I2n+1

=
(2n)!2(2n+ 1)

(2nn!)4
· π

2

∼
(
c
√

2n(2n/e)2n
)2

2n

(2nc
√
n(n/e)n)

4 · π
2

=
2π

c2
.

Hence 1 = 2π/c2 and c =
√

2π. 2

The 2nd proof, by Laplace’s method. Now we use the famous expres-
sion

n! =

∫ +∞

0

e−xxn dx, n ∈ N0 .

Denoting the integral by In we have I0 = 0 − (−1) = 1 and for n ≥ 1 by
integration by parts,

In =

∫ +∞

0

(
−e−x

)′
xn dx = [. . . ]+∞0 + n

∫ +∞

0

e−xxn−1 dx

= 0− 0 + nIn−1 .
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Thus In = nIn−1 and indeed In = n!. Substitution x = n(1 + y) gives

n! = In = e−nnn+1

∫ +∞

−1

(
e−y(1 + y)

)n
dy

— this transformation moves the peak of the integrand to zero (e−y(1 + y)
is on [−1,+∞) nonnegative, on [−1, 0] increases from 0 to 1, and on [0,+∞)
decreases exponentially fast from 1 to 0+). Near zero we moreover have

e−y(1 + y) = elog(1+y)−y = e−y
2/2+y3/3−y4/4+... = e−y

2/2ey
3/3−y4/4+...

= e−y
2/2(1 +O(y3)), |y| < 1/2

— the point is that the linear part in the exponent cancelled out.
We take a δ = δ(n) > 0 that goes sufficiently fast to 0 as n → ∞, namely

such that nδ(n)3 → 0 (later we will need to restrict δ(n) further so that it does
not go to 0 too fast). Then∫ +∞

−1

(
e−y(1 + y)

)n
dy =

∫ −δ
−1

· · ·+
∫ δ

−δ
· · ·+

∫ +∞

δ

· · · =: J1 + J + J2 .

We evaluate or estimate these integrals. Since, for |y| ≤ δ,

· · · =
(
e−y(1 + y)

)n
= e−ny

2/2(1 +O(y3))n = e−ny
2/2(1 +O(ny3))

— the last transformation is justified by nδ3 → 0 (we use that (1 + ∆)n =

en log(1+∆) = en(∆−∆2/2+... ) = eO(n∆) = 1 +O(n∆) if |n∆| < c < 1) — we may
write

J =

∫ δ

−δ
· · · = (1 +O(nδ3))

∫ δ

−δ
e−ny

2/2 dy

= (1 +O(nδ3))

(∫ +∞

−∞
e−ny

2/2 dy − 2

∫ +∞

δ

e−ny
2/2 dy

)
=: (1 +O(nδ3)) (J3 − 2J4)

(the integrand is an even function).

Lecture 13, May 23, 2017

J3 is up to a simple substitution the Gaussian integral, evaluated in Lemma 42
below:

J3 =

√
2

n

∫ +∞

−∞
e−t

2

dt =

√
2π

n
.

Note that J1, J2, J4 ≥ 0. Since (e−y(1 + y))
n

has for y ∈ [−1,−δ] maximum at
y = −δ,

J1 ≤ |(1 +O(nδ3))| · (1− δ) · e−nδ
2/2 � e−nδ

2/2 .
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Similarly, (e−y(1 + y))
n

has for y ∈ [δ,+∞) maximum at y = δ. For y → +∞
this function goes exponentially fast to 0 and therefore we again have

J2 �
∫ 1

δ

(
e−y(1 + y)

)n ≤ |(1 +O(nδ3))| · (1− δ) · e−nδ
2/2 � e−nδ

2/2

(as
∫ +∞
δ
· · · =

∫ 1

δ
· · · +

∫ 2

1
· · · +

∫ 3

2
· · · + · · · �

∫ 1

δ
. . . ). This applies to J4 too

and
J4 � e−nδ

2/2 .

For these bounds to go to 0 with n → ∞, we need nδ(n)2 → +∞. We set
δ = δ(n) = nε/3−1/2, for small ε ∈ (0, 1/2). Then both requirements on δ are
met and∫ +∞

−1

(
e−y(1 + y)

)n
dy = (1 +O(nδ3))

(√
2π

n
+O(e−nδ

2/2)

)
+O(e−nδ

2/2)

=

√
2π

n
+O(n−1+ε)

because O(nδ3)
√

2π/n = O(n−1+ε) and other error terms have much smaller

order O(e−n
2ε/3

). Thus, finally,

n! =
nn+1

en
(
√

2π/n+O(n−1+ε)) =
√

2πn(n/e)n(1 +O(nε−1/2)) .

This error term is worse than the O(n−1) term in the first proof 2

We evaluate the Gaussian integral, which was used several times.

Lemma 42 (Gaussian integral).∫ +∞

−∞
e−t

2

dt =
√
π .

Proof. It suffices to show that (
∫ +∞

0
e−t

2

dt)2 = π/4 because the integrand is
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an even function. Indeed,(∫ +∞

0

e−t
2

dt

)2

=

∫ +∞

0

e−t
2

dt

∫ +∞

0

e−u
2

du

=

∫ +∞

0

(∫ +∞

0

e−t
2−u2

du

)
dt

=

∫ +∞

0

(∫ +∞

0

te−t
2(1+v2) dv

)
dt

=

∫ +∞

0

(∫ +∞

0

te−t
2(1+v2) dt

)
dv

=

∫ +∞

0

[
−e−t2(1+v2)

2(1 + v2)

]+∞

t=0

dv

=

∫ +∞

0

dv

2(1 + v2)
=

[arctan v]+∞0

2

=
π/2− 0

2
=
π

4
.

On the third line we used the substitution u = tv, and on the fourth line Fubini’s
theorem. 2

The 3rd proof, by circle method. Another integral representation for
factorial is

1

n!
=

1

2πi

∫
C

ez dz

zn+1
, n ∈ N0 ,

for any counter-clockwise oriented circle C ⊂ C, centered at the origin. This
follows from the expansion ez =

∑
n≥0 z

n/n! and Cauchy’s formula (which is
an application of the residue theorem). If C has radius r > 0 then for z ∈ C we
have

z = reiθ, θ ∈ [−π, π) .

So
1

n!
=

1

2πi

∫ π

−π

ere
iθ

(reiθ)n+1
· d
dθ
reiθ =

1

2π

er

rn

∫ π

−π
er(e

iθ−1)−niθ dθ .

Denoting the exponent f(r, θ), for θ near 0 we have f(r, θ) = r(iθ − θ2/2 +
O(θ3)) − niθ and see that the linear part in θ vanishes if r = n. Thus we set
the radius of C to be n and get f(n, θ) = −nθ2/2 +O(nθ3).

To obtain asymptotics for the integral, we proceed as in the second proof
and split the integral in two at some ϕ = ϕ(n) ∈ (0, π),∫ π

−π
ef(n,θ) dθ =

∫ ϕ

−ϕ
ef(n,θ) dθ +

∫ π

ϕ

(
ef(n,θ) + ef(n,−θ)

)
dθ .

If nϕ(n)3 → 0, the same computation as in the 2nd proof gives∫ ϕ

−ϕ
ef(n,θ) dθ = (1 +O(nϕ3))

(√
2π/n+O(e−nϕ

2/2)
)
.
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Since for θ ∈ [ϕ, π],∣∣∣ef(n,θ)
∣∣∣ =

∣∣∣ef(n,−θ)
∣∣∣ = en(cos θ−1) ≤ en(cosϕ−1) � e−nϕ

2/2

(as cosϕ = 1− ϕ2/2 +O(ϕ3) for |ϕ| < 1/2), the second integral is O(e−nϕ
2/2).

We set again ϕ = n−1/2+ε/3, ε ∈ (0, 1/2), and have like before

1

n!
=

1

2π

en

nn

(√
2π

n
+O(n−1+ε)

)
=
(

1 +O(n−1/2+ε)
) 1√

2πn

( e
n

)n
.

Taking the reciprocal value, we have Stirling’s formula for n!. 2

The three proofs of n! ∼
√

2πn(n/e)n are taken from the book of Flajolet and
Sedgewick, mentioned in the previous lecture.

The 4th proof, by multidimensional circle method? This is just an
idea, but I have not seen it anywhere in the literature. Yet another integral
representation of factorial expresses it as

n! =
1

(2πi)n

∫
C1

. . .

∫
Cn

(x1 + x2 + · · ·+ xn)n

(x1x2 . . . xn)2
dx1 dx2 . . . dxn, n ∈ N ,

for some n counter-clockwise oriented circles Cj ⊂ C, given by |xj | = rj > 0.
The equality follows by expanding the power in the numerator and noting that
for j1, . . . , jn ∈ Z, ∫

C1

. . .

∫
Cn

xj11 x
j2
2 . . . xjnn dx1 dx2 . . . dxn

=

{
(2πi)n . . . j1 = j2 = · · · = jn = −1
0 . . . else .

This representation differs from the three previous ones, in three respects. The
integrand is not a transcendental function (log or exp) but is rational. The
equality follows not from the arithmetic definition of factorial (n! = n · (n− 1)!)
but from the combinatorial one (n! is the number of permutations of an n-
element set). Finally, n variables are involved and not just one.

Multidimensional circle method is used with success in enumerative com-
binatorics. For example, the number RT(n) of (labelled) regular tournaments
with n vertices, which is the number of those orientations of the

(
n
2

)
edges of

the complete graph Kn (out of all 2n(n−1)/2 orientations) for which exactly n−1
2

edges enter every vertex (and hence also exactly n−1
2 edges leave it), is expressed

by the multidimensional Cauchy integral (n ∈ N)

RT(n) =
1

(2πi)n

∫
C1

. . .

∫
Cn

∏
1≤j<k≤n(x−1

j xk + xjx
−1
k )

x1x2 . . . xn
dx1 dx2 . . . dxn .

After the above discussion for n!, this equality should be clear. B. D. McKay
could prove in
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by means of this integral formula that for any ε > 0, as n → ∞ through odd
values,

RT(n) = (1 +O(n−1/2+ε))

(
2n+1

πn

)(n−1)/2

(n/e)1/2 .

Of course, RT(n) = 0 for even n. For example, RT(3) = 2. The other two
asymptotics proven in this article concern numbers of Eulerian digraphs with n
vertices:

ED(n) = (1 +O(n−1/2+ε))

(
4n

πn

)(n−1)/2

n1/2e−1/4

EOG(n) = (1 +O(n−1/2+ε))

(
3n+1

4πn

)(n−1)/2

n1/2e−3/8 .

Precise definitions of graphs counted follow from integral formulas, in which the
above x−1

j xk +xjx
−1
k is replaced with, respectively, (1 +x−1

j xk)(1 +xjx
−1
k ) and

1 + x−1
j xk + xjx

−1
k .

And that’s all, thank you for your attention.
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