Alimov's theorem: any ordered semigroup without infinitesimals is commutative

Martin Klazar*

August 31, 2016

Among other results, Alimov [2] proved the following interesting theorem.
Theorem (Alimov, 1950). Every ordered semigroup $A=(A,+,<)$ with no pair of infinitesimally close elements is commutative.

In his theorem, $+: A \times A \rightarrow A$ is an associative binary operation - for every $a, b, c \in A$ one has $a+(b+c)=(a+b)+c-<\subset A \times A$ is a transitive and trichotomic binary relation - for every $a, b, c \in A$ one has $a<b<c \Rightarrow a<c$ and exactly one of $a<b, a=b$, and $b<a$ - and + is monotonous to $<$ in the sense that for every $a, b, c \in A$ one has $a<b \Rightarrow c+a<c+b$, $a+c<b+c$. One does not assume commutativity of + and the theorem says that it is forced, under the stated assumption of absence of pairs $a, b \in A$ such that $(\mathbb{N}=\{1,2, \ldots\})$

$$
\forall n \in \mathbb{N}: n a<n b<(n+1) a \quad \text { or } \forall n \in \mathbb{N}: n a>n b>(n+1) a .
$$

Here $n a$ abbreviates $a+a+\cdots+a$ with n summands. Such a pair of elements $a, b \in A$ is called an anomalous pair, and A is non-anomalous if it has none. The theorem thus says that every non-anomalous ordered semigroup is commutative.

An obvious interpretation of an anomalous pair, satisfying for example the first system of inequalities, is that $(0<) a<b$ but b is larger than a only by an infinitesimal amount that cannot be magnified to exceed a by multiplication with any $n \in \mathbb{N}$, no matter how big. In the ordered semigroup $(\mathbb{R},+,<)$ with the ordinary addition and comparison of real numbers clearly no anomalous pair exists because $0<a<b$ implies that $n b>(n+1) a$ whenever $n>a /(b-a)$. And, of course, the ordinary addition of reals is commutative. Thus the theorem shows that commutativity of addition of real numbers follows from the axioms of an ordered, and generally non-commutative, semigroup and the absence of infinitesimally small positive elements. On the other hand, the non-commutative ordered semigroup $\left(\{a, b\}^{*},+,<\right)$, where $\{a, b\}^{*}$ is the set of words over the twoelement alphabet $\{a, b\},+$ is concatenation of words, and $<$ is the comparison

[^0]first by length and then, for words with equal lengths, lexicographically (from the left and setting $a<b$), has anomalous pairs: a, b is one as
$$
a<b<a a<b b<a a a<b b b<a a a a<\ldots .
$$

We learned Alimov's theorem from the interesting preprint of Binder [4] in which he constructs \mathbb{R} as the terminal object in the category of pointed nonanomalous ordered semigroups. Algebra contains a number of results asserting commutativity of an apriori possibly non-commutative operation, caused by its interplay with other operation(s) or, as in Alimov's theorem which is perhaps the simplest example of these results, relation(s).

- Well known is Wedderburn's theorem: every finite division ring (algebra) $(R,+, \cdot)$ is commutative. It should be properly called the Maclagan-Wedderburn-Dickson theorem (note the hyphens) because Wedderburn was actually Joseph H. Maclagan-Wedderburn, his proof [13] contained a gap, and the first correct proof appears to be that of Dickson [8]. A short proof based on cyclotomic polynomials was found by Witt [15]. Adam and Mutschler [1] provide interesting material on Wedderburn's original proof and history of Wedderburn's theorem; we draw information and references from their preprint. Another curiosity is Ted Kaczynski's publication [11] on the topic, see [1] for an annotation of his work.
- Jacobson's theorem [10] says that a ring $R=(R,+, \cdot)$ is commutative if for every $x \in R$ there is an $n \in \mathbb{N}$ such that $n \geq 2$ and $x^{n}=x$. This clearly holds in a finite division ring and we have therefore a generalization of Wedderburn's theorem. Another theorem of this type, taken from the survey article of Pinter-Lucke [14] that lists many more such results, is the theorem of Bell [3]: R is commutative if and only if for every $x, y \in R$ there exist $m, n \in \mathbb{N}$ with $x y=y^{m} x^{n}$.
- The Eckmann-Hilton argument $[9,16]$ concerns two binary operations + and \times on the same set A that are unital $(0 \in A$ exists such that $a+0=0+a=a$ for every $a \in A$ and similarly for \times) and mutual homomorphisms $((a+b) \times(c+d)=(a \times c)+(b \times d)$ for every $a, b, c, d \in A)$. Their interplay forces that they coincide, $+=\times$, are commutative and associative. See Kock [12] and Bremner and Madariaga [7] for more results on this algebraic structure of double semigroups.
- An abelian variety is commutative (stated in Bombieri and Gubler [6, Corollary 8.2 .10] but who did prove it first?). An abelian variety is a geometrically irreducible and geometrically reduced complete group variety. A group variety is an apriori possibly non-commutative group that is also a variety and the group operation and inverse are morphisms. See [6] for more details and further unfolding of the terminology and definitions.
- In their interesting preprint Blasiak and Fomin [5] "study the phenomenon in which commutation relations for sequences of elements in a ring are implied by similar relations for subsequences involving at most three indices
at a time." For example, they prove that if $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n}$ are invertible elements in a ring then for every m-tuple $1 \leq s_{1}<s_{2}<\cdots<s_{m} \leq n$ the product $g_{s_{m}} \ldots g_{1}$ commutes with both $h_{s_{m}} \ldots h_{1}$ and $h_{s_{m}}+\cdots+h_{1}$ \Longleftrightarrow this holds for any $m \leq 3$.

The proof of Alimov's theorem (after [2])

Let $A=(A,+,<)$ be an ordered semigroup. We do not assume commutativity of + but eventually deduce it for non-anomalous A. Trichotomy of $<$ and monotonicity of + imply the cancellation law: for every $a, b, c \in A$ if $a+c<b+c$ then $a<b$, and the same for $<$ replaced with $=$ and for exchanged summands.

Let $a, b \in A$ be arbitrary, then exactly one of $b+a>b, b+a=b$, and $b+a<b$ occurs. In the first case when $b+a>b$ monotonicity and associativity of + and the cancellation law imply that for every $c \in A$,

$$
b+(a+c)=(b+a)+c>b+c \leadsto a+c>c .
$$

In the other two cases we get similarly that $a+c=c$, respectively $a+c<c$, for every $c \in A$. Hence for every $a \in A$, exactly one of the three cases occurs: $a+c>c$ for every $c \in A, a+c=c$ for every $c \in A$, and $a+c<c$ for every $c \in A$. In the first case we say that a is positive, in the second we call it a zero element, and in the third we say that a is negative.

Thus A partitions into negative elements, zero elements, and positive elements; these sets may be empty. We defined this partition by adding a from the left but it follows from the beginning of the argument that addition of a from the right gives the same result, the same partition. In particular, if $a, b \in A$ are two zero elements then $a+b=a$ and $a+b=b$, hence $a=b$. Thus A has at most one zero element, which we then denote as $0 \in A$. If A has no zero element, for simplicity we add it to A. It follows that $a \in A$ is negative if $a<0$ and positive if $a>0$ (and zero element if $a=0$).

We start the proper proof of Alimov's theorem. We assume that A is nonanomalous, take any two elements $a, b \in A$, and prove that

$$
a+b=b+a .
$$

If $a=0$ or $b=0$ then it clearly holds. Thus we need to distinguish three cases, (i) $a, b>0$, (ii) $a, b<0$, and (iii) $a<0<b$.

Let (i) occur and a, b be positive. We show that if $a+b \neq b+a$ then $a+b, b+a$ is an anomalous pair. Indeed, then we may assume that $a+b<b+a$ and for every $n \in \mathbb{N}$ get

$$
(n+1)(a+b)=a+n(b+a)+b>n(b+a)+b>n(b+a)>n(a+b)
$$

- the first $=$ is by associativity, the second $>$ is by positivity of a, the third $>$ is by positivity of b, and the fourth $>$ is by the assumption that $a+b<b+a$ and monotonicity of addition $(r, s, t, u \in A$ with $r<s, t<u$ gives $r+t<s+u)$. So $a+b=b+a$

The case (ii) with both a, b negative is treated as (i), we only start with $a+b>b+a$ and reverse the inequalities in the last displayed calculation.

Let the case (iii) occur with a negative and b positive. Now we have three subcases: (a) $a+b=0$, (b) $a+b>0$, and (c) $a+b<0$. In the subcase (a) we get by associativity $a+(b+a)=a$ and so $b+a=0$ and $a+b=b+a$.

In the subcase (b) we have $b, a+b>0$. If $a+b \neq b+a$, say $a+b<b+a$, we get the contradiction

$$
\begin{aligned}
& 2(b+a)=(b+(a+b))+a=((a+b)+b)+a=(a+b)+(b+a) \\
& <(b+a)+(b+a)=2(b+a)
\end{aligned}
$$

- by associativity, the case (i) applied to $b, a+b$, associativity, and monotonicity and the assumption that $a+b<b+a$. If $a+b>b+a$, we get a similar contradiction, only the last inequality in the calculation gets reversed. We see that in the subcase (b) we have $a+b=b+a$.

We consider the last subcase (c) of the case (iii). Now $a+b, a<0$. If $a+b \neq b+a$, say $a+b<b+a$, we get similarly to the subcase (b) the contradiction

$$
\begin{aligned}
& 2(b+a)=b+((a+b)+a)=b+(a+(a+b))=(b+a)+(a+b) \\
& <(b+a)+(b+a)=2(b+a)
\end{aligned}
$$

and similarly if $a+b>b+a$. Thus also in the final subcase (c) we have $a+b=b+a$ and are done.

The above proof is a slight simplification of that in [2, p. 573]. In the subcase (b) of the case (iii) when b and $a+b$ are positive, Alimov first derives that also $b+a$ is positive and only then obtains a contradiction similar to ours. This detour is unnecessary and it suffices to know just that $b, a+b>0$.

References

[1] M. Adam and B. J. Mutschler, On Wedderburn's theorem about finite division algebras, preprint, University of Bielefeld, 2003, 10 pages (available on the Internet).
[2] N. G. Alimov, On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 569-576 (Russian).
[3] H. E. Bell, A commutativity condition for rings, Canad. J. Math. 28 (1976), 986-991.
[4] D. Binder, Non-anomalous semigroups and real numbers, ArXiv:1607.05997v1, July 2016, 21 pages.
[5] J. Blasiak and S. Fomin, Rules of three for commutation relations, ArXiv:1608.05042v1, August 2016, 23 pages.
[6] E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Cambridge University Press, Cambridge, UK, 2006.
[7] M. Bremner and S. Madariaga, Permutation of elements in double semigroups, Semigroup Forum 92 (2016), 335-360.
[8] L. E. Dickson, On finite algebras, Nachr. Gesell. Wissen. Gött., 1905, 358393.
[9] B. Eckmann and P. J. Hilton, Group-like structures in general categories. I. Multiplications and comultiplications, Math. Ann. 145 (1962), 227-255.
[10] N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. Math. 46 (1945), 695-707.
[11] T. J. Kaczynski, Another proof of Wedderburn's theorem, Amer. Math. Monthly 71 (1964), 652-653.
[12] J. Kock, Note on commutativity in double semigroups and two-fold monoidal categories, J. Homotopy and Related Structures 2 (2007), 217228.
[13] J. H. Maclagan-Wedderburn, A theorem on finite algebras, Trans. Amer. Math. Soc. 6 (1905), 349-352.
[14] J. Pinter-Lucke, Commutativity conditions for rings: 1950-2005, Expo. Math. 25 (2007), 165-174.
[15] E. Witt, Über die Kommutativität endlicher Schiefkörper, Abh. Mathem. Sem. Hamburg. Uni. 8 (1931), 413 (German).
[16] Eckmann-Hilton argument, Wikipedia article, //en. wikipedia.org

Charles University, KAM MFF UK, Malostranské nám. 25, 11800 Praha, Czechia

[^0]: *klazar@kam.mff.cuni.cz

