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Among other results, Alimov [2] proved the following interesting theorem.

Theorem (Alimov, 1950). Every ordered semigroup A = (A,+, <) with no
pair of infinitesimally close elements is commutative.

In his theorem, + : A× A→ A is an associative binary operation — for every
a, b, c ∈ A one has a + (b + c) = (a + b) + c — <⊂ A × A is a transitive and
trichotomic binary relation — for every a, b, c ∈ A one has a < b < c ⇒ a < c
and exactly one of a < b, a = b, and b < a — and + is monotonous to
< in the sense that for every a, b, c ∈ A one has a < b ⇒ c + a < c + b,
a + c < b + c. One does not assume commutativity of + and the theorem says
that it is forced, under the stated assumption of absence of pairs a, b ∈ A such
that (N = {1, 2, . . . })

∀n ∈ N : na < nb < (n + 1)a or ∀n ∈ N : na > nb > (n + 1)a .

Here na abbreviates a + a + · · ·+ a with n summands. Such a pair of elements
a, b ∈ A is called an anomalous pair, and A is non-anomalous if it has none. The
theorem thus says that every non-anomalous ordered semigroup is commutative.

An obvious interpretation of an anomalous pair, satisfying for example the
first system of inequalities, is that (0 <) a < b but b is larger than a only by
an infinitesimal amount that cannot be magnified to exceed a by multiplication
with any n ∈ N, no matter how big. In the ordered semigroup (R,+, <) with
the ordinary addition and comparison of real numbers clearly no anomalous pair
exists because 0 < a < b implies that nb > (n + 1)a whenever n > a/(b − a).
And, of course, the ordinary addition of reals is commutative. Thus the theorem
shows that commutativity of addition of real numbers follows from the axioms
of an ordered, and generally non-commutative, semigroup and the absence of
infinitesimally small positive elements. On the other hand, the non-commutative
ordered semigroup ({a, b}∗,+, <), where {a, b}∗ is the set of words over the two-
element alphabet {a, b}, + is concatenation of words, and < is the comparison
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first by length and then, for words with equal lengths, lexicographically (from
the left and setting a < b), has anomalous pairs: a, b is one as

a < b < aa < bb < aaa < bbb < aaaa < . . . .

We learned Alimov’s theorem from the interesting preprint of Binder [4] in
which he constructs R as the terminal object in the category of pointed non-
anomalous ordered semigroups. Algebra contains a number of results asserting
commutativity of an apriori possibly non-commutative operation, caused by its
interplay with other operation(s) or, as in Alimov’s theorem which is perhaps
the simplest example of these results, relation(s).

• Well known is Wedderburn’s theorem: every finite division ring (algebra)
(R,+, ·) is commutative. It should be properly called the Maclagan-
Wedderburn–Dickson theorem (note the hyphens) because Wedderburn
was actually Joseph H. Maclagan-Wedderburn, his proof [13] contained a
gap, and the first correct proof appears to be that of Dickson [8]. A short
proof based on cyclotomic polynomials was found by Witt [15]. Adam and
Mutschler [1] provide interesting material on Wedderburn’s original proof
and history of Wedderburn’s theorem; we draw information and references
from their preprint. Another curiosity is Ted Kaczynski’s publication [11]
on the topic, see [1] for an annotation of his work.

• Jacobson’s theorem [10] says that a ring R = (R,+, ·) is commutative if
for every x ∈ R there is an n ∈ N such that n ≥ 2 and xn = x. This
clearly holds in a finite division ring and we have therefore a generalization
of Wedderburn’s theorem. Another theorem of this type, taken from the
survey article of Pinter-Lucke [14] that lists many more such results, is
the theorem of Bell [3]: R is commutative if and only if for every x, y ∈ R
there exist m,n ∈ N with xy = ymxn.

• The Eckmann–Hilton argument [9, 16] concerns two binary operations
+ and × on the same set A that are unital (0 ∈ A exists such that
a + 0 = 0 + a = a for every a ∈ A and similarly for ×) and mutual
homomorphisms ((a+b)×(c+d) = (a×c)+(b×d) for every a, b, c, d ∈ A).
Their interplay forces that they coincide, + = ×, are commutative and
associative. See Kock [12] and Bremner and Madariaga [7] for more results
on this algebraic structure of double semigroups.

• An abelian variety is commutative (stated in Bombieri and Gubler [6,
Corollary 8.2.10] but who did prove it first?). An abelian variety is a ge-
ometrically irreducible and geometrically reduced complete group variety.
A group variety is an apriori possibly non-commutative group that is also
a variety and the group operation and inverse are morphisms. See [6] for
more details and further unfolding of the terminology and definitions.

• In their interesting preprint Blasiak and Fomin [5] “study the phenomenon
in which commutation relations for sequences of elements in a ring are im-
plied by similar relations for subsequences involving at most three indices
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at a time.” For example, they prove that if g1, . . . , gn, h1, . . . , hn are invert-
ible elements in a ring then for every m-tuple 1 ≤ s1 < s2 < · · · < sm ≤ n
the product gsm . . . g1 commutes with both hsm . . . h1 and hsm + · · ·+ h1

⇐⇒ this holds for any m ≤ 3.

The proof of Alimov’s theorem (after [2])

Let A = (A,+, <) be an ordered semigroup. We do not assume commuta-
tivity of + but eventually deduce it for non-anomalous A. Trichotomy of < and
monotonicity of + imply the cancellation law: for every a, b, c ∈ A if a+c < b+c
then a < b, and the same for < replaced with = and for exchanged summands.

Let a, b ∈ A be arbitrary, then exactly one of b + a > b, b + a = b, and
b+a < b occurs. In the first case when b+a > b monotonicity and associativity
of + and the cancellation law imply that for every c ∈ A,

b + (a + c) = (b + a) + c > b + c ; a + c > c .

In the other two cases we get similarly that a + c = c, respectively a + c < c,
for every c ∈ A. Hence for every a ∈ A, exactly one of the three cases occurs:
a + c > c for every c ∈ A, a + c = c for every c ∈ A, and a + c < c for every
c ∈ A. In the first case we say that a is positive, in the second we call it a zero
element, and in the third we say that a is negative.

Thus A partitions into negative elements, zero elements, and positive ele-
ments; these sets may be empty. We defined this partition by adding a from the
left but it follows from the beginning of the argument that addition of a from
the right gives the same result, the same partition. In particular, if a, b ∈ A
are two zero elements then a + b = a and a + b = b, hence a = b. Thus A has
at most one zero element, which we then denote as 0 ∈ A. If A has no zero
element, for simplicity we add it to A. It follows that a ∈ A is negative if a < 0
and positive if a > 0 (and zero element if a = 0).

We start the proper proof of Alimov’s theorem. We assume that A is non-
anomalous, take any two elements a, b ∈ A, and prove that

a + b = b + a .

If a = 0 or b = 0 then it clearly holds. Thus we need to distinguish three cases,
(i) a, b > 0, (ii) a, b < 0, and (iii) a < 0 < b.

Let (i) occur and a, b be positive. We show that if a+b 6= b+a then a+b, b+a
is an anomalous pair. Indeed, then we may assume that a + b < b + a and for
every n ∈ N get

(n + 1)(a + b) = a + n(b + a) + b > n(b + a) + b > n(b + a) > n(a + b)

— the first = is by associativity, the second > is by positivity of a, the third >
is by positivity of b, and the fourth > is by the assumption that a + b < b + a
and monotonicity of addition (r, s, t, u ∈ A with r < s, t < u gives r+ t < s+u).
So a + b = b + a
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The case (ii) with both a, b negative is treated as (i), we only start with
a + b > b + a and reverse the inequalities in the last displayed calculation.

Let the case (iii) occur with a negative and b positive. Now we have three
subcases: (a) a + b = 0, (b) a + b > 0, and (c) a + b < 0. In the subcase (a) we
get by associativity a + (b + a) = a and so b + a = 0 and a + b = b + a.

In the subcase (b) we have b, a + b > 0. If a + b 6= b + a, say a + b < b + a,
we get the contradiction

2(b + a) = (b + (a + b)) + a = ((a + b) + b) + a = (a + b) + (b + a)

< (b + a) + (b + a) = 2(b + a)

— by associativity, the case (i) applied to b, a+b, associativity, and monotonicity
and the assumption that a + b < b + a. If a + b > b + a, we get a similar
contradiction, only the last inequality in the calculation gets reversed. We see
that in the subcase (b) we have a + b = b + a.

We consider the last subcase (c) of the case (iii). Now a + b, a < 0. If
a + b 6= b + a, say a + b < b + a, we get similarly to the subcase (b) the
contradiction

2(b + a) = b + ((a + b) + a) = b + (a + (a + b)) = (b + a) + (a + b)

< (b + a) + (b + a) = 2(b + a) ,

and similarly if a + b > b + a. Thus also in the final subcase (c) we have
a + b = b + a and are done. 2

The above proof is a slight simplification of that in [2, p. 573]. In the subcase
(b) of the case (iii) when b and a+ b are positive, Alimov first derives that also
b + a is positive and only then obtains a contradiction similar to ours. This
detour is unnecessary and it suffices to know just that b, a + b > 0.
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