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In the last lecture we introduced the family of Pell equations. They are
Diophantine equations
2 —dy? =1

where d € N is a non-square number. In today’s lecture we prove that every Pell
equation has a nontrivial solution. We saw in the last lecture that this implies
that every Pell equation has infinitely many solutions. By “solutions” we mean,
in the context of Diophantine equations, always solutions in integers, in Z.

An automorphism of a field

We begin by making explicit the trick we used last time. Let d be as in Pell
equation and

Q[Vd] :={a+bVd: a,bcQ} (CR).

Note that representations of elements of Q[v/d] in this form are unique: for every
a,b,a’,b’ € Q we have

a+bVd=d +VVd < a=d ANb=1V.
It is also not hard to show that
Q[\/;l]ﬁ = <Q[\/&L 07 17 +, '>7

where + and - is the usual addition and multiplication of real numbers, is a field.

Lemma 1. The map f: Q[vd] — Q[Vd],
fla+bVd) :=a—bVd,

is an automorphism of the field Q[v/d]g.

Proof. We show that for every «, 3 € Q[v/d] we have f(a + ) = f(a) £ f(B)

f
(same signs), f(a-B) = f(a) - f(B) and f(a/B) = f(a)/f(B) (for B, f(B) # 0).
We also show that f is a bijection. Let o := a + bv/d and S := o’ + b/'\V/d

(a,b,ad’,b’ € Q). Then indeed,

fla+p) fllaxta)+ObEV)Wd) = (a+d)— (b+b)Vd

= (a—bVd) £ (d —VVd) = f(a) = f(B)



(same signs),

fla-B) = flad' +bb'd+ (ab + a'b)Vd) = ad’ + bb'd — (ab' + a'b)Vd
= (a—bVd)-(d ~V'Vd) = f(a) f(B)
and
fla/B) = Fla+bVd)/(a +HVd)) = f(“HReEYD)

(DD (4 p/d)/( —BVA) = F(0)/£(5).

In the last computation we used the two previous identities for + and -. Injec-
tivity and surjectivity of f follow easily from its definition. O

Lagrange’s theorem

Theorem 2 (Lagrange, 1770). Every Pell equation has a nontrivial solution.
In more detail, for every non-square number d € N there exist numbers p,q € Z
such that g # 0 and

p?—dg® =1.

Proof. Let d € N be a non-square number. By Corollary 3 in Lecture 1 there

exist infinitely many distinct numbers % € Q such that

1
‘\/Ep‘<2.
q q

For each of these fractions % we have

P —dg’| =¢*- [Vd - B| - [Vd+ B <2vd +1.

Using the pigeonhole principle (with infinitely many pigeons and finitely many
pigeonholes) we see that there exists a nonzero number m € Z (|m| < 2v/d+ 1)
and infinitely many numbers % € Q such that

p?—dg®> =m.

By the same pigeonhole principle there exist two distinct fractions p;/q; and
p2/q2 such that
pi —dgi = p5 —dgs =m
and
P1 =p2, q1 = q2 (mod|m|).
We define p, ¢ € Q by the relation

p1+qVd _ (p1 + 1 Vd)(p2 — g2/d)
po + q2Vd m

_ d _
_ P1ip2 — 4142 +p2£11 p1QQ\/g_
m m

ptavd =




Modulo |m/| we have
pip2 — 1g2d = pi — dg; =m
and
P2q1 — P1G2 = p2g2 — p2q2 = 0.
Thus the numerators p1ps — q1g2d and paq; — p1go are divisible by m and we
see that p,q € Z.

We show that p, ¢ is a solution of 22 — dy? = 1. Indeed, using the automor-
phism f in Lemma 1, we get from

p+q\/a:p1+Q1\/g
P2+CI2\/&

that

_ _ _ pi+aVd) _ fpitaavVd) _ pi—qVd
p—gVd= f(p—i—q\/g) - f(pz+q2\/3) T f(p2tgaVd) T pa—qaVd’

and therefore

2 _ g2 _ _ _ p+avd pi—qVd _ pi—dqi _ m _
p dq - (p-i-qﬂ)(p q\/ﬁ) - P2+Q2\/E pz-qm/a - p%—dq%’ T om L.

It remains to show that ¢ # 0. This is clear,

_ P2q1 — P1q2
m

0=gq

yields the contradiction that f]’—j = %. O

Generalized Pell equations

Generalized Pell equations are Diophantine equations

2 —dy* =m

with unknowns x,y and parameters d € N and m € Z such that d is a non-
square number. The equation x? — dy? = 0 has clearly just one solution 0, 0.
For nonzero m we have the following dichotomy.

Corollary 3. For every non-square d € N and nonzero m € 7 the equation
2 —dy* =m
has either no solution or infinitely many solutions x,y € Z.

Proof. Suppose that d and m are as stated and that numbers a,b € Z are such
that a®> — db®> = m. For every of the infinitely many solutions z,y € N of the
Pell equation 22 — dy? = 1 we define numbers a(x), b(y) € Z by the relation

a(w) +b(y)Vd = (a+bVd) - (z +yVd).



Using the automorphism f in Lemma 1, we get

a(z) —b(y)Vd = f(a(z) +b(y)\/g) =.o=(a—bVd) - (x—yVd).

Thus
a(x)® —d-b(y)* = (a(z) + b(y)Vd) - (a(z) - b(y)Vd)
(a+b\f) (z +yVd) - (a—bVd) - (x — yVd)
(a®> —db?®) - (z* —dy*) =m-1=m
and we see that a(x),b(y) is a solution of the equation 2? — dy? = m. It

remains to show that if z’,y" € N is another solution of the Pell equation, so
that (z')? — d(y')? = 1, then

(@', y) # (z, y) = (a(@’), b(y)) # (a(x), by))

and we really get infinitely many distinct solutions of 2 — dy?> = m. This
implication in fact fails for m = 0. For m # 0 it holds because a 4+ bv/d # 0. O

For example, since 102 — 2 - 72 = 2, the equation
=22 =2

has infinitely many solutions. On the other hand, for example, since 22 modulo
51is 0, 1 or 4, for every m € Z that is 2 or 3 modulo 5 the equation

51:2—5y2:m

has no solution. Can one decide for which pairs d and m there is a solution,
and hence infinitely many solutions? Yes, one can, and the late result [2] of the
German mathematician Carl Ludwig Siegel (1896-1981) is much more general.

Theorem 4 (C. L. Siegel, 1972). There is an algorithm A that for every n
and every input polynomial

p E L[z, za, ..., Ty)

with degp < 2 decides if Z(p) # 0.

Last time we proved Skolem’s theorem that solvability of any Diophantine equa-
tion is reducible to solvability of an equation with degree at most 4. What about
cubic, i.e. degree 3, equations? The recent preprint [1] claims to prove that their
solvability is also undecidable.

The infinite cyclic group

In the last result on Pell equations that we discuss we show that their solution
sets have a simple group structure. For non-square d € N let

My :={a+bVd e (0, 4+00): a,beZ, a®> —db* =1} (CRT).



Theorem 5. The set My is an Abelian group with respect to multiplication of
real numbers. In fact, every group

Md,gr = <Mda 17 >
is isomorphic to the infinite cyclic group Zgy = (Z,0,+).

Proof. Let M, be as stated. We have 1 =1 + 0v/d € My and My is closed to
multiplication and division. We proved the former in the last lecture. Division
is easy: if a 4+ bv/d € My, then

1 _a— bv/d
a+b/d a?—db?
Thus (Mg, 1, -) is an Abelian group, the remaining group properties are inherited
from the group (R*,1,-).
We complete the proof by defining

—a—bV/de M,.

a :=min(My N (1, +00))
and showing that
Md:{a”: TLGZ}
Then
g: Mg —7Z, g(a™) :==n,

is an isomorphism of groups Mg g and Zg,.

The intersection My N (1, +00) is nonempty by Lagrange’s theorem. It is
not hard to see that if o := a + bv/d and o' := o’ + ¥'V/d lie in My N (1, +o0),
then a,b,a’,b’ € N and

a<d <= a<d <= b<¥.

Thus the minimum exists. Finally, let 8 € My;. We show that 8 = a™ for some
ne€Z If =1then n=0. If 8 <1, we replace g with 1/5. So let § > 1 and
n € Ny be maximum such that

a" < p<a™t.

For strict inequality here we would get from " < 8 < o™t that 1 < Ba™ < a.
Since fa~" is in My, we have a contradiction with the definition of . Thus
B =a™ O
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