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In the last lecture we introduced the family of Pell equations. They are
Diophantine equations

x2 − dy2 = 1

where d ∈ N is a non-square number. In today’s lecture we prove that every Pell
equation has a nontrivial solution. We saw in the last lecture that this implies
that every Pell equation has infinitely many solutions. By “solutions” we mean,
in the context of Diophantine equations, always solutions in integers, in Z.

An automorphism of a field

We begin by making explicit the trick we used last time. Let d be as in Pell
equation and

Q[
√
d] := {a+ b

√
d : a, b ∈ Q} (⊂ R) .

Note that representations of elements of Q[
√
d] in this form are unique: for every

a, b, a′, b′ ∈ Q we have

a+ b
√
d = a′ + b′

√
d ⇐⇒ a = a′ ∧ b = b′ .

It is also not hard to show that

Q[
√
d]fi := ⟨Q[

√
d], 0, 1, +, ·⟩ ,

where + and · is the usual addition and multiplication of real numbers, is a field.

Lemma 1. The map f : Q[
√
d] → Q[

√
d],

f(a+ b
√
d) := a− b

√
d ,

is an automorphism of the field Q[
√
d]fi.

Proof. We show that for every α, β ∈ Q[
√
d] we have f(α± β) = f(α)± f(β)

(same signs), f(α · β) = f(α) · f(β) and f(α/β) = f(α)/f(β) (for β, f(β) ̸= 0).
We also show that f is a bijection. Let α := a + b

√
d and β := a′ + b′

√
d

(a, b, a′, b′ ∈ Q). Then indeed,

f(α± β) = f((a± a′) + (b± b′)
√
d) = (a± a′)− (b± b′)

√
d

= (a− b
√
d)± (a′ − b′

√
d) = f(α)± f(β)
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(same signs),

f(α · β) = f(aa′ + bb′d+ (ab′ + a′b)
√
d) = aa′ + bb′d− (ab′ + a′b)

√
d

= (a− b
√
d) · (a′ − b′

√
d) = f(α) · f(β)

and

f(α/β) = f((a+ b
√
d)/(a′ + b′

√
d)) = f

( (a+b
√
d)(a′−b′

√
d)

(a′)2−(b′)2d

)
= (a−b

√
d)(a′+b′

√
d)

(a′)2−(b′)2d = (a− b
√
d)/(a′ − b′

√
d) = f(α)/f(β) .

In the last computation we used the two previous identities for ± and ·. Injec-
tivity and surjectivity of f follow easily from its definition. □

Lagrange’s theorem

Theorem 2 (Lagrange, 1770). Every Pell equation has a nontrivial solution.
In more detail, for every non-square number d ∈ N there exist numbers p, q ∈ Z
such that q ̸= 0 and

p2 − dq2 = 1 .

Proof. Let d ∈ N be a non-square number. By Corollary 3 in Lecture 1 there
exist infinitely many distinct numbers p

q ∈ Q such that∣∣∣∣√d− p

q

∣∣∣∣ < 1

q2
.

For each of these fractions p
q we have∣∣p2 − dq2

∣∣ = q2 ·
∣∣√d− p

q

∣∣ · ∣∣√d+ p
q

∣∣ ≤ 2
√
d+ 1 .

Using the pigeonhole principle (with infinitely many pigeons and finitely many
pigeonholes) we see that there exists a nonzero number m ∈ Z (|m| ≤ 2

√
d+1)

and infinitely many numbers p
q ∈ Q such that

p2 − dq2 = m.

By the same pigeonhole principle there exist two distinct fractions p1/q1 and
p2/q2 such that

p21 − dq21 = p22 − dq22 = m

and
p1 ≡ p2, q1 ≡ q2 (mod |m|) .

We define p, q ∈ Q by the relation

p+ q
√
d :=

p1 + q1
√
d

p2 + q2
√
d
=

(p1 + q1
√
d)(p2 − q2

√
d)

m

=
p1p2 − q1q2d

m
+

p2q1 − p1q2
m

√
d .
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Modulo |m| we have
p1p2 − q1q2d ≡ p21 − dq21 = m

and
p2q1 − p1q2 ≡ p2q2 − p2q2 = 0 .

Thus the numerators p1p2 − q1q2d and p2q1 − p1q2 are divisible by m and we
see that p, q ∈ Z.

We show that p, q is a solution of x2 − dy2 = 1. Indeed, using the automor-
phism f in Lemma 1, we get from

p+ q
√
d =

p1 + q1
√
d

p2 + q2
√
d

that

p− q
√
d = f(p+ q

√
d) = f

(
p1+q1

√
d

p2+q2
√
d

)
= f(p1+q1

√
d)

f(p2+q2
√
d)

= p1−q1
√
d

p2−q2
√
d
,

and therefore

p2 − dq2 = (p+ q
√
d)(p− q

√
d) = p1+q1

√
d

p2+q2
√
d
· p1−q1

√
d

p2−q2
√
d
=

p2
1−dq21

p2
2−dq22

= m
m = 1 .

It remains to show that q ̸= 0. This is clear,

0 = q =
p2q1 − p1q2

m

yields the contradiction that p2

q2
= p1

q1
. □

Generalized Pell equations

Generalized Pell equations are Diophantine equations

x2 − dy2 = m

with unknowns x, y and parameters d ∈ N and m ∈ Z such that d is a non-
square number. The equation x2 − dy2 = 0 has clearly just one solution 0, 0.
For nonzero m we have the following dichotomy.

Corollary 3. For every non-square d ∈ N and nonzero m ∈ Z the equation

x2 − dy2 = m

has either no solution or infinitely many solutions x, y ∈ Z.

Proof. Suppose that d and m are as stated and that numbers a, b ∈ Z are such
that a2 − db2 = m. For every of the infinitely many solutions x, y ∈ N of the
Pell equation x2 − dy2 = 1 we define numbers a(x), b(y) ∈ Z by the relation

a(x) + b(y)
√
d := (a+ b

√
d) · (x+ y

√
d) .
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Using the automorphism f in Lemma 1, we get

a(x)− b(y)
√
d = f

(
a(x) + b(y)

√
d
)
= · · · = (a− b

√
d) · (x− y

√
d) .

Thus

a(x)2 − d · b(y)2 =
(
a(x) + b(y)

√
d
)
·
(
a(x)− b(y)

√
d
)

= (a+ b
√
d) · (x+ y

√
d) · (a− b

√
d) · (x− y

√
d)

(a2 − db2) · (x2 − dy2) = m · 1 = m

and we see that a(x), b(y) is a solution of the equation x2 − dy2 = m. It
remains to show that if x′, y′ ∈ N is another solution of the Pell equation, so
that (x′)2 − d(y′)2 = 1, then

⟨x′, y′⟩ ≠ ⟨x, y⟩ ⇒ ⟨a(x′), b(y′)⟩ ≠ ⟨a(x), b(y)⟩

and we really get infinitely many distinct solutions of x2 − dy2 = m. This
implication in fact fails for m = 0. For m ̸= 0 it holds because a+ b

√
d ̸= 0. □

For example, since 102 − 2 · 72 = 2, the equation

x2 − 2y2 = 2

has infinitely many solutions. On the other hand, for example, since x2 modulo
5 is 0, 1 or 4, for every m ∈ Z that is 2 or 3 modulo 5 the equation

x2 − 5y2 = m

has no solution. Can one decide for which pairs d and m there is a solution,
and hence infinitely many solutions? Yes, one can, and the late result [2] of the
German mathematician Carl Ludwig Siegel (1896–1981) is much more general.

Theorem 4 (C. L. Siegel, 1972). There is an algorithm A that for every n
and every input polynomial

p ∈ Z[x1, x2, . . . , xn]

with deg p ≤ 2 decides if Z(p) ̸= ∅.

Last time we proved Skolem’s theorem that solvability of any Diophantine equa-
tion is reducible to solvability of an equation with degree at most 4. What about
cubic, i.e. degree 3, equations? The recent preprint [1] claims to prove that their
solvability is also undecidable.

The infinite cyclic group

In the last result on Pell equations that we discuss we show that their solution
sets have a simple group structure. For non-square d ∈ N let

Md := {a+ b
√
d ∈ (0, +∞) : a, b ∈ Z, a2 − db2 = 1} (⊂ R+) .
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Theorem 5. The set Md is an Abelian group with respect to multiplication of
real numbers. In fact, every group

Md,gr = ⟨Md, 1, ·⟩

is isomorphic to the infinite cyclic group Zgr = ⟨Z, 0,+⟩.

Proof. Let Md be as stated. We have 1 = 1 + 0
√
d ∈ Md and Md is closed to

multiplication and division. We proved the former in the last lecture. Division
is easy: if a+ b

√
d ∈ Md, then

1

a+ b
√
d
=

a− b
√
d

a2 − db2
= a− b

√
d ∈ Md .

Thus ⟨Md, 1, ·⟩ is an Abelian group, the remaining group properties are inherited
from the group ⟨R+, 1, ·⟩.

We complete the proof by defining

α := min(Md ∩ (1, +∞))

and showing that
Md = {αn : n ∈ Z} .

Then
g : Md → Z, g(αn) := n ,

is an isomorphism of groups Md,gr and Zgr.
The intersection Md ∩ (1, +∞) is nonempty by Lagrange’s theorem. It is

not hard to see that if α := a + b
√
d and α′ := a′ + b′

√
d lie in Md ∩ (1,+∞),

then a, b, a′, b′ ∈ N and

α < α′ ⇐⇒ a < a′ ⇐⇒ b < b′ .

Thus the minimum exists. Finally, let β ∈ Md. We show that β = αn for some
n ∈ Z. If β = 1 then n = 0. If β < 1, we replace β with 1/β. So let β > 1 and
n ∈ N0 be maximum such that

αn ≤ β < αn+1 .

For strict inequality here we would get from αn < β < αn+1 that 1 < βα−n < α.
Since βα−n is in Md, we have a contradiction with the definition of α. Thus
β = αn. □
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