Lecture 2. The result of Liouville and the Hermite–Hilbert theorem

M. Klazar

Oct 11, 2024

We say that $\alpha \in \mathbb{C}$ is an *algebraic* number if there is a nonzero polynomial $p \in \mathbb{Q}[x]$ such that $p(\alpha) = 0$. It is clear that we may take p(x) to be monic (with the leading coefficient 1) or to be integral (in $\mathbb{Z}[x]$). If $\alpha \in \mathbb{C}$ is not algebraic, we say that it is a *transcendental* number. Today we prove the result of Liouville that for every $k \in \mathbb{N}, k \geq 2$, the number

$$\lambda(k) = \sum_{n=0}^{\infty} k^{-n!}$$

is transcendental, and we give the proof due to Hilbert of the theorem due to Hermite that the Euler number e = 2.71828... is transcendental.

Liouville's result follows from the next so called *Liouville's inequality*.

Theorem 1 (J. Liouville, 1844) For every algebraic number $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ there exist an $n \in \mathbb{N}$ and a constant c > 0 such that for every $\frac{p}{q} \in \mathbb{Q}$ it holds that

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{c}{q^n}$$

Proof. We assume that $f \in \mathbb{Z}[x]$ is nonzero and has the minimum degree $n = \deg f(x)$ with respect to $f(\alpha) = 0$. Clearly, $n \ge 2$. We denote $I = [\alpha - 1, \alpha + 1]$ and take any fraction $\frac{p}{q}$; we may assume that $q \in \mathbb{N}$. The trivial case is when $\frac{p}{q} \notin I$. Then

$$\left|\alpha - \frac{p}{q}\right| \ge 1 \ge \frac{1}{q^n} \,.$$

The remaining case when $\frac{p}{q} \in I$ is more interesting. By the Lagrange mean value theorem there is a real number ζ that lies between α and $\frac{p}{q}$ and satisfies the equality

$$f(\alpha) - f(\frac{p}{q}) = f'(\zeta) \cdot (\alpha - \frac{p}{q}).$$

We denote $d = \max(\{|f'(x)| : x \in I\})$ (> 0), recall that $f(\alpha) = 0$ and get the bound

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{f(\frac{p}{q})}{d}.$$

We claim that $f(\frac{p}{q}) \neq 0$. If $f(\frac{p}{q}) = 0$ then for an appropriate number $N \in \mathbb{N}$ the product $g(x) = N \cdot \frac{f(x)}{x-p/q} \in \mathbb{Z}[x]$ would be an integral polynomial with $g(\alpha) = 0$ and deg $g(x) = \deg f(x) - 1 = n - 1$, contradicting the definition of f(x). Hence for $f(x) = \sum_{i=0}^{n} a_i x^i$ (where $a_i \in \mathbb{Z}$) we get the bound

$$\left|f(\frac{p}{q})\right| = q^{-n} \cdot \left|\sum_{i=0}^{n} a_{i} p^{i} q^{n-i}\right| \ge q^{-n}$$

and $|\alpha - \frac{p}{q}| \geq \frac{1/d}{q^n}$. Combining the trivial bound and this bound, we get the desired bound that for every fraction $\frac{p}{q}$ it holds that

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{\min(\{1, 1/d\})}{q^n}.$$

Corollary 2 (J. Liouville, 1844) For every $k \in \mathbb{N}, k \geq 2$, the number

$$\lambda(k) = \sum_{n=0}^{\infty} k^{-n!}$$

is transcendental.

Proof.

Transcendence of the Euler number e had been proven first by Hermite and then Hilbert simplified the proof. His proof rests on the property (E) of the Euler number that $(e^x)' = e^x$.

Theorem 3 (Ch. Hermite, 1873) The Euler number e = 2.71... is transcendental.

Proof. (D. Hilbert, 1890) It is not hard to compute using (E) and integration by parts that for every $n \in \mathbb{N}_0$,

$$\int_0^{+\infty} x^n \cdot \mathrm{e}^{-x} \, dx = n! \, .$$

We have more generally for any integral polynomial $p(x) = \sum_{i=0}^{n} a_i x^i$, where $a_i \in \mathbb{Z}$ and $n \in \mathbb{N}_0$, that $I = \int_0^{+\infty} p(x) \cdot e^{-x} dx = \sum_{i=0}^{n} a_i \cdot i! \in \mathbb{Z}$. If $a_0 = a_1 = \cdots = a_k = 0$ then $I \equiv 0 \pmod{(k+1)!}$.

Suppose for the contrary that e is algebraic and there is a nonzero integral polynomial $p \in \mathbb{Z}[x]$ such that p(e) = 0. It follows that then there exist integers a_0, a_1, \ldots, a_n with $n \in \mathbb{N}_0$ and $a_0 \neq 0$ such that

$$\sum_{i=0}^{n} a_i \mathbf{e}^i = 0$$

	_	_	-
I			1
I			
Ŀ			

References

- [1] V. M. Schmidt, Diophantine Approximation, Springer-Verlag, Berlin 1980
- [2] V. Šmidt, Diofantovy priblizheniya, Mir, Moskva 1983