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We use ≡ as the defining equality sign; x ≡ y defines the new symbol x by
the already known expression y. Sometimes x and y may exchange their roles.
N = {1, 2, . . . }, N0 = {0, 1, . . . }, Z are the integers, Q are the fractions and R
are the real numbers. For n ∈ N we set [n] ≡ {1, 2, . . . , n}. For m,n ∈ Z we
write (m,n) = 1 to express that m and n are coprime, their largest common
divisor is 1. Every number α ∈ R decomposes uniquely as the sum

α = ⌊α⌋+ {α}

of the (lower) integer part ⌊α⌋ ∈ Z and the fractional part {α} ∈ [0, 1). By
⌈α⌉ we denote the upper integer part, the smallest integer ≥ α. Let ∥α∥ ≡
min({{α}, ⌈α⌉ − α}) (∈ [0, 1

2 ]) be the distance of α from the nearest integer.
The next theorem and corollary are due to Dirichlet in [2].

Theorem 1 (P. Dirichlet, 1842) For every α ∈ R and every Q ∈ N with
Q ≥ 2 there exist p, q ∈ Z such that 1 ≤ q < Q and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

Qq
.

Proof. We consider Q numbers {nα} (∈ [0, 1)) for n = 0, 1, . . . , Q− 1. We can
think of them as points lying on a circle with circumference 1. Two of them have
arc distance ≤ 1

Q . It means that for some m,n, r, s ∈ Z with 0 ≤ n < m < Q,

|mα− r − (nα− s)| ≤ 1

Q
.

We set p ≡ r − s, q ≡ m− n, divide the inequality by q and get that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

Qq
with 1 ≤ q < Q .

□

Corollary 2 For every α ∈ R \Q there exist infinitely many distinct fractions
p
q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.
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Proof. We construct infinitely many fractions p1

q1
, p2

q2
, . . . such that for each

the displayed inequality holds and |α− p1

q1
| > |α− p2

q2
| > · · · > 0. We begin with

p1 ≡ ⌊α⌋ and q1 ≡ 1. If p1

q1
, . . . , pn

qn
are already constructed, we take any Q ∈ N

such that |α − pn

qn
| > 1

Q (this is possible, α is irrational) and use Dirichlet’s

theorem. We get a fraction p
q such that 1 ≤ q < Q and |α − p

q | ≤
1
Qq < 1

q2 .

Also, |α− p
q | ≤

1
Q < |α− pn

qn
|. Thus we can set pn+1 ≡ p and qn+1 ≡ q. □

In the proof of Theorem 1 we used the obvious (?) fact that among any n
points on the circle C with unit circumference always some two have arc distance
at most 1

n . We mention an interesting, fifty six years old (still younger than
me), related problem which is still unsolved. It is called the Lonely Runner
Conjecture, see the interesting survey article [6].

Conjecture 3 (LRC) If n runners start in the origin and run on C with
distinct speeds then for each of them there is a moment when the n − 1 arc
distances to other runners are all at least 1

n . Formally, for every n distinct real
numbers v1, v2, . . . , vn for every i ∈ [n] there is a real number ti ≥ 0 such that
for every j ∈ [n] \ {i} we have that ∥viti − vjti∥ ≥ 1

n .

In [6] we read that the LRC is proven for every n ≤ 7 and that it is due to
Wills [9] and Cusick [1]. You can prove as an exercise that the next simpler
formulation is equivalent to the previous one.

Conjecture 4 (LRC) For every n nonzero real numbers v1, v2, . . . , vn there
exists a real number t such that for every i ∈ [n] we have that ∥vit∥ ≥ 1

n+1 .

To obtain an optimum strengthening of Corollary 2, which is Theorem 6
below, we need Farey fractions. For every n ∈ N we consider the ordered list

Fn ≡
(
0
1 = p1

q1
< p2

q2
< · · · < pm

qm
= 1

1

)
of all m = m(n) fractions p

q ∈ [0, 1] such that 0 < q ≤ n and (p, q) = 1. These

are the Farey fractions (of order n). For example,

F5 =
(
0
1 < 1

5 < 1
4 < 1

3 < 2
5 < 1

2 < 3
5 < 2

3 < 3
4 < 4

5 < 1
1

)
.

We read in the interesting and thorough survey [5] that the correct attribution
of the next theorem is to Haros in [3].

Theorem 5 (Ch. Haros, 1802) If a
b < c

d are two consecutive fractions in the
list Fn then

c

d
− a

b
=

1

bd

—in other words, bc− ad = 1.

Proof. Let a
b ,

c
d and n be as stated. We need to show that the Diophantine

equation
bx− ay = 1

has solution x = c and y = d. Since (a, b) = 1, there is at least one solution
x0, y0 ∈ Z. Indeed, the set I ≡ {bx + ay : x, y ∈ Z} is an ideal in the ring Z,
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both a, b ∈ I and division with remainder shows that c ≡ min({x ∈ I : x > 0})
divides every element of I, thus c = 1 and 1 ∈ I.

So bx0 − ay0 = 1 and we see that for any r ∈ Z the pair x = x0 − ra and
y = y0 − rb is also a solution. It follows that there is a solution x1, y1 ∈ Z such
that

n− b < y1 ≤ n .

From bx1 − ay1 = 1 we get the equality

x1

y1
=

1

by1
+

a

b
.

We claim that x1

y1
∈ Fn. Indeed, from the above we see that 1 ≤ y1 ≤ n and

that (x1, y1) = 1. From bx1−ay1 = 1 and 0 < a < b it follows that 0 < x1 ≤ y1.
Since x1

y1
∈ Fn and x1

y1
> a

b , it follows that
x1

y1
≥ c

d . We assume that x1

y1
> c

d
and obtain a contradiction. By adding the trivial inequalities

x1

y1
− c

d
≥ 1

dy1
and

c

d
− a

b
≥ 1

bd

we get that

1

by1
=

x1

y1
− a

b
≥ 1

dy1
+

1

bd
=

b+ y1
bdy1

and hence d ≥ b+ y1 .

But we know that b+ y1 > n, and get the contradiction that d > n (recall that
c
d ∈ Fn).

Thus x1

y1
= c

d . Since these are fractions in lowest terms, x1 = c and y1 = d.
Hence x = c and y = d is a solution of bx− ay = 1. □

The distance between two consecutive fractions a
b < c

d in Fn is therefore mini-
mum possible for two distinct fractions. Clearly, 0 < c

d−
a
b ≤ 1

n . It is interesting
that their mediant a+c

b+d of a
b and c

d , which need not be in Fn, lies in the minimum
distance to each fraction:

(a+ c)b− (b+ d)a = cb− da = 1 and (b+ d)c− (a+ c)d = bc− ad = 1 .

If a
b < c

d < e
f are three consecutive fractions in Fn then

a+ e

b+ f
=

c

d

—the middle fraction is the mediant of the outer two — prove it as an exercise.
The next optimum strengthening of Corollary 2 is due to Hurwitz in [4].

I learned the proof long time ago in [8] (the English original is [7]).

Theorem 6 (A. Hurwitz, 1891) 1. For every α ∈ R \Q there exist infinitely
many distinct fractions p

q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
√
5
.
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2. On the other hand, for every real c >
√
5, the inequality∣∣∣∣√5− 1

2
− p

q

∣∣∣∣ < 1

q2c

has only finitely many solutions p
q ∈ Q.

Proof. 1. We make use of Farey fractions. We may assume, by replacing α
with {α}, that 0 < α < 1. As in the proof of Corollary 2 we construct a sequence
of fractions p1

q1
, p2

q2
, . . . in [0, 1] such that for each the inequality in 1 holds and

|α− p1

q1
| > |α− p2

q2
| > · · · > 0.

We claim that p1

q1
may be one of the three fractions 0

1 ,
1
2 and 1

1 . This follows

from the fact that the sum of the lengths of the intervals [0, 1√
5
] and [ 12 −

1
4
√
5
, 1
2 ]

is larger than the length of [0, 1
2 ]:

1√
5
+ 1

4
√
5
> 1

2 as 5
16 > 1

4 .

If p1

q1
, . . . , pn

qn
are defined, we take an m ∈ N such that |α − pn

qn
| > 1

m > 0

(recall that α is irrational), take two consecutive fractions a
b < c

d in the list Fm

such that a
b < α < c

d and show that for a fraction

p

q
∈
{a

b
,
e

f
≡ a+ c

b+ d
,
c

d

}
the inequality in 1 holds. Since |α− p

q | ≤
1
m , it also holds that |α− p

q | < |α− pn

qn
|,

and we may set pn+1 ≡ p and qn+1 ≡ q.
Suppose for the contrary that none of the three fractions satisfies the in-

equality in 1,

α− a

b
≥ 1

b2
√
5

∧ ±
(
α− e

f

)
≥ 1

f2
√
5

∧ c

d
− α ≥ 1

d2
√
5
.

If the sign is + we add the first and third, and the second and third, inequality
and get that (+): 1

bd = c
d − a

b ≥ 1√
5
( 1
b2 + 1

d2 ) and
1
df = c

d − e
f ≥ 1√

5
( 1
f2 + 1

d2 ).

If the sign is − we add the first and second, and the first and third, inequality
and get that (−): 1

bf = e
f − a

b ≥ 1√
5
( 1
b2 + 1

f2 ) and
1
bd = c

d − a
b ≥ 1√

5
( 1
b2 + 1

d2 ).

In (+) and (−) the equalities follow from Theorem 5 and the definition of e
f .

We show that the two inequalities in (+) are contradictory. We multiply the
first one by b2d2

√
5, the second one by d2f2

√
5, and add the results. We get

that

d
√
5(2b+ d) = d

√
5(b+ f) ≥ b2 + 2d2 + f2 = 2b2 + 3d2 + 2bd .

This is equivalent with 0 ≥ 1
2 ((

√
5− 1)d− 2b)2. Hence (

√
5− 1)d− 2b = 0 and√

5 ∈ Q, which is a contradiction.
We obtain the same contradiction in (−). We multiply the first inequality

by b2f2
√
5, the second one by b2d2

√
5, and add the results. We get that

b
√
5(b+ 2d) = b

√
5(f + d) ≥ 2b2 + f2 + d2 = 3b2 + 2d2 + 2bd .

It is the same contradiction as before, only b and d are interchanged.
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2. Let β ≡
√
5−1
2 and c >

√
5. Suppose for the contrary that there exist

infinitely many (distinct) fractions p
q such that |β− p

q | <
1

q2c . Thus the equation

β =
p

q
+

δ

q2

has infinitely many solutions p
q ∈ Q and δ ∈ (− 1

c ,
1
c ). We rewrite it as

δ

q
− q

√
5

2
=

(
qβ − p− q

√
5

2

)
= −q

2
− p .

We square the equation, subtract 5q2

4 and get that

δ2

q2
− δ

√
5 = p2 + pq − q2 .

It follows that there is a solution p
q and δ such that the left side is in absolute

value less than 1. Then p2+pq−q2 = 0 which is equivalent with (2p+q)2 = 5q2.
This is the familiar contradiction that

√
5 ∈ Q. □

References

[1] T.W. Cusick, View-obstruction problems, Aequationes Math. 9 (1973),
165–170

[2] L. P.G. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von den
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