Lecture 1. Theorems of Dirichlet and Hurwitz
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We use = as the defining equality sign; x = y defines the new symbol = by
the already known expression y. Sometimes x and y may exchange their roles.
N={1,2,...}, Ng = {0,1,...}, Z are the integers, Q are the fractions and R
are the real numbers. For n € N we set [n] = {1,2,...,n}. For m,n € Z we
write (m,n) = 1 to express that m and n are coprime, their largest common
divisor is 1. Every number o € R decomposes uniquely as the sum

a = la) +{a}

of the (lower) integer part |a] € Z and the fractional part {a} € [0,1). By

[a] we denote the upper integer part, the smallest integer > «a. Let |jaf =

min({{a}, [a] — a}) (€ [0, 3]) be the distance of a from the nearest integer.
The next theorem and corollary are due to Dirichlet in [2].

Theorem 1 (P. Dirichlet, 1842) For every a € R and every Q € N with

Q > 2 there exist p,q € Z such that 1 < g < Q and

a— p‘ < L .
Qq

Proof. We consider @ numbers {na} (€ [0,1)) forn =0,1,...,Q — 1. We can

think of them as points lying on a circle with circumference 1. Two of them have

arc distance < % It means that for some m,n,r,s € Z with 0 <n <m < Q,

ma —r — (na — s)| <

Q| =

We set p =r — s, ¢ = m — n, divide the inequality by ¢ and get that

1
'aplgwith1§q<Q.
q] ~ Qq

O

Corollary 2 For every a € R\ Q there exist infinitely many distinct fractions
% such that




Proof. We construct infinitely many fractions %7 p—z, ... such that for each
the displayed inequality holds and |a — ’;—H > la— ’;—;| > --- > 0. We begin with
p1 = |aland ¢ = 1. If %, cel ’;—: are already constructed, we take any Q € N

1

such that [a — E2[ > 7 (this is possible, o is irrational) and use Dirichlet’s
1

theorem. We get a fraction g such that 1 < ¢ < Q and | — §| < é < =
P

Also, |a— §| < % <|a-— Be]. Thus we can set pny1 = p and gni1 = ¢ O

In the proof of Theorem 1 we used the obvious (7) fact that among any n
points on the circle C' with unit circumference always some two have arc distance
at most % We mention an interesting, fifty six years old (still younger than
me), related problem which is still unsolved. It is called the Lonely Runner
Conjecture, see the interesting survey article [6].

Conjecture 3 (LRC) If n runners start in the origin and run on C with
distinct speeds then for each of them there is a moment when the n — 1 arc
distances to other runners are all at least % Formally, for every n distinct real
numbers vy, va, ..., vy, for every i € [n] there is a real number t; > 0 such that
for every j € [n] \ {i} we have that |[v;t; — v;t;|| > L.

In [6] we read that the LRC is proven for every n < 7 and that it is due to
Wills [9] and Cusick [1]. You can prove as an exercise that the next simpler
formulation is equivalent to the previous one.

Conjecture 4 (LRC) For every n nonzero real numbers vy, v, ..., v, there

exists a real number t such that for every i € [n] we have that ||v;t| > %—H

To obtain an optimum strengthening of Corollary 2, which is Theorem 6
below, we need Farey fractions. For every n € N we consider the ordered list

— (0 _p1 p2 Pm _ 1
F"_(l_Q1<Q2< <Q7n 1)

of all m = m(n) fractions 2 € [0,1] such that 0 < ¢ <n and (p,q) = 1. These

are the Farey fractions (of order n). For example,
_(0_1_1_1_2_1_3_2_3_4_1
Fy=(1<5<i<3<i<z<i<i<i<i<i)
We read in the interesting and thorough survey [5] that the correct attribution
of the next theorem is to Haros in [3].

Theorem 5 (Ch. Haros, 1802) If § < § are two consecutive fractions in the
list F,, then

Ul o
e

bd
—in other words, bc —ad = 1.
Proof. Let 7, 5 and n be as stated. We need to show that the Diophantine
equation

br—ay=1
has solution = ¢ and y = d. Since (a,b) = 1, there is at least one solution
Z0,Y0 € Z. Indeed, the set I = {bx + ay : =,y € Z} is an ideal in the ring Z,



both a,b € I and division with remainder shows that ¢ = min({z € I : = > 0})
divides every element of I, thus c=1and 1 € I.
So bxg — ayp = 1 and we see that for any r € Z the pair z = xg — ra and
y = yo — rb is also a solution. It follows that there is a solution z1,y; € Z such
that
n—b<y; <n.

From bxy — ay; = 1 we get the equality

T 1 a

- 4+ .
y1 by b
We claim that % € F,,. Indeed, from the above we see that 1 < y; < n and
that (z1,y1) = 1. From bzy —ay; = 1 and 0 < a < b it follows that 0 < z1 < ;.
Since I—i € F,, and m—i > 7, it follows that % > 5. We assume that % > g
and obtain a contradiction. By adding the trivial inequalities

1

X
1 >

c c
y1d Y1 d

(Sl s}
fual

we get that

and hence d > b+ y; .

But we know that b+ y; > n, and get the contradiction that d > n (recall that
S EF,).

Thus ;—i = §. Since these are fractions in lowest terms, ry = ¢ and y; = d.
Hence z = ¢ and y = d is a solution of bz — ay = 1. ]

The distance between two consecutive fractions § < £ in F), is therefore mini-

mum possible for two distinct fractions. Clearly, 0 < §—¢ < % It is interesting
that their mediant gié of # and ¢, which need not be in F,, lies in the minimum
distance to each fraction:

(a+e)b—(b+dja=cb—da=1 and (b+d)c—(a+c)d=bc—ad=1.
Fy<e< ? are three consecutive fractions in F}, then

a+te [

b+f d
— the middle fraction is the mediant of the outer two — prove it as an exercise.
The next optimum strengthening of Corollary 2 is due to Hurwitz in [4].
I learned the proof long time ago in [8] (the English original is [7]).

Theorem 6 (A. Hurwitz, 1891) 1. For every o € R\ Q there exist infinitely
many distinct fractions % such that




2. On the other hand, for every real ¢ > \/5, the inequality

5—1 1
‘f _p’<

2 q q3c

has only finitely many solutions g € Q.

Proof. 1. We make use of Farey fractions. We may assume, by replacing «
with {a}, that 0 < ow < 1. Asin the proof of Corollary 2 we construct a sequence

of fractions ’;—i, 5—2, ... in [0, 1] such that for each the inequality in 1 holds and
la = B> Ja— 2] > .- > 0.

We claim that ’q’—i may be one of the three fractions %, % and % This follows
from the fact that the sum of the lengths of the intervals [0, %,)] and [1 — ﬁ, 1]
is larger than the length of [0, 1]: % + ﬁ >1las 2> 1

If %’ R 5—: are defined, we take an m € N such that |a — p—n > % >0

1
(recall that « is irrational), take two consecutive fractions § < £ in the list F),

such that ¢ < a < 5 and show that for a fraction

Do coate o)
q b f  b+d d

alo

the inequality in 1 holds. Since \ozfg\ < %, it also holds that | — §| < |la— ’;—:|,
and we may set p,+1 =p and ¢,+1 = q.

Suppose for the contrary that none of the three fractions satisfies the in-
equality in 1,

a79> 1 /\:l:(ae)> 1 /\Efa> 1
b~ b2V/5 f)=fprvs  d T a5

If the sign is + we add the first and third, and the second and third, inequality
and get that (+): b—ldzgf%zﬁ(b%er%) and;—fzgf% Z%(#wL%).
If the sign is — we add the first and second, and the first and third, inequality
and get that (—): ﬁ:%_%zﬁ(b%‘*‘#) and 5 = ¢ — ¢ Z%(b%"‘d%)-
In (+) and (—) the equalities follow from Theorem 5 and the definition of .

We show that the two inequalities in (4) are contradictory. We multiply the
first one by b2d?v/5, the second one by d?f2y/5, and add the results. We get
that

dV5(20 +d) = dV5(b+ f) > b2+ 2d* + f? = 2b% + 3d* + 2bd .

This is equivalent with 0 > £((v/5 — 1)d — 2b)2. Hence (v/5 — 1)d — 2b = 0 and
V5 € Q, which is a contradiction.

We obtain the same contradiction in (—). We multiply the first inequality
by b2 f2v/5, the second one by b?d?/5, and add the results. We get that

W5(b+ 2d) = bV5(f +d) > 20> + f2 + d? = 3b% + 2d* + 2bd .

It is the same contradiction as before, only b and d are interchanged.



2. Let g = ‘/“?’271 and ¢ > /5. Suppose for the contrary that there exist

infinitely many (distinct) fractions £ such that [8—£| < ﬁ. Thus the equation

p 0
==+
qa g
has infinitely many solutions 2 € Q and 6 € (=1, 1). We rewrite it as
0 a5 _ (s, B\ _ a4
. 32 WB-p-= 5P

We square the equation, subtract % and get that

62
2 0Ve=rtm-g.

It follows that there is a solution % and ¢ such that the left side is in absolute

value less than 1. Then p?+pg—q? = 0 which is equivalent with (2p+¢)? = 5¢°.
This is the familiar contradiction that v/5 € Q. O
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