Lecture 1

M. Klazar

Oct 6, 2023

Let $\mathbb{N}=\{1,2, \ldots\}, \mathbb{N}_{0}=\{0,1, \ldots\}, \mathbb{Z}$ be the integers, \mathbb{Q} be the fractions and \mathbb{R} be the real numbers. For $m, n \in \mathbb{Z}$ we write $(m, n)=1$ to say that m and n are coprime, their largest common divisor is 1 . Every number $\alpha \in \mathbb{R}$ decomposes uniquely as the sum

$$
\alpha=\lfloor\alpha\rfloor+\{\alpha\}
$$

of its (lower) integer part $\lfloor\alpha\rfloor \in \mathbb{Z}$ and its fractional part $\{\alpha\} \in[0,1$).
Theorem (P. Dirichlet, 1842) For every $\alpha \in \mathbb{R}$ and every $Q \in \mathbb{N}$ with $Q \geq 2$ there exist $p, q \in \mathbb{Z}$ such that $1 \leq q<Q$ and

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{Q q}
$$

To prove it we consider Q numbers $\{n \alpha\} \in[0,1)$ for $n=0,1, \ldots, Q-1$. We can think of them as points lying on a circle with circumference 1. Two of them have arc distance $\leq 1 / Q$, which means that

$$
|m \alpha-r-(n \alpha-s)| \leq 1 / Q
$$

for some $m, n, r, s \in \mathbb{Z}$ with $0 \leq n<m<Q$. We set $p:=r-s, q:=m-n$, divide the inequality by q and get that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{Q q} \text { and } 1 \leq q<Q
$$

QED
Corollary For every $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ there exist infinitely many distinct fractions p / q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}} .
$$

We prove it by constructing infinitely many fractions p_{n} / q_{n} for $n \in \mathbb{N}$ such that for each the displayed inequality holds and $\left|\alpha-p_{1} / q_{1}\right|>\left|\alpha-p_{2} / q_{2}\right|>$
$\cdots>0$. We begin with $p_{1}:=\lfloor\alpha\rfloor$ and $q_{1}:=1$. If $p_{1} / q_{1}, \ldots, p_{n} / q_{n}$ are already constructed, we take any $Q \in \mathbb{N}$ such that $\left|\alpha-p_{n} / q_{n}\right|>1 / Q$ (this is possible, α is irrational and always $|\cdots|>0$) and use Dirichlet's theorem. We get a fraction p / q such that $1 \leq q<Q$ and $|\alpha-p / q|<1 / Q q<1 / q^{2}$. Also, $|\alpha-p / q|<1 / Q<\left|\alpha-p_{n} / q_{n}\right|$. Thus we can set $p_{n+1}:=p$ and $q_{n+1}:=q$.
QED
To obtain an ultimate strengthening of this corollary, the theorem of Hurwitz, we need so called Farey fractions and their properties. For every $n \in \mathbb{N}$ we consider the ordered list

$$
F_{n}:=\left(\frac{0}{1}=\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}}<\cdots<\frac{p_{m}}{q_{m}}=\frac{1}{1}\right)
$$

of all $m=m(n)$ fractions $p / q \in[0,1]$ such that $0<q \leq n$ and $(p, q)=1$. These are the Farey fractions (of order n). For example,

$$
F_{5}=\left(\frac{0}{1}<\frac{1}{5}<\frac{1}{4}<\frac{1}{3}<\frac{2}{5}<\frac{1}{2}<\frac{3}{5}<\frac{2}{3}<\frac{3}{4}<\frac{4}{5}<\frac{1}{1}\right) .
$$

Theorem (Ch. Haros, 1802) If $\frac{a}{b}<\frac{c}{d}$ are two consecutive fractions in the list F_{n} then

$$
\frac{c}{d}-\frac{a}{b}=\frac{1}{b d}, \text { that } i s, b c-a d=1
$$

In the proof we show that the Diophantine equation

$$
b x-a y=1
$$

is solved by $x=c, y=d$. Since $(a, b)=1$, there is at least one solution $x_{0}, y_{0} \in \mathbb{Z}$. This follows from the fact that in the ring \mathbb{Z} every ideal, such as $\{u a+v b \mid u, v \in \mathbb{Z}\}$, is principal, is generated by a single element; it follows from the division with remainder. Thus $b x_{0}-a y_{0}=1$ and we see that $x=x_{0}-r a$ and $y=y_{0}-r b$ is also a solution for any $r \in \mathbb{Z}$. It follows that there is a solution $x_{1}, y_{1} \in \mathbb{Z}$ such that

$$
n-b<y_{1} \leq n
$$

From $b x_{1}-a y_{1}=1$ we get the equality

$$
\frac{x_{1}}{y_{1}}=\frac{1}{b y_{1}}+\frac{a}{b}
$$

We show that x_{1} / y_{1} is in the list F_{n} : from the above we see that $1 \leq y_{1} \leq n$ and that $\left(x_{1}, y_{1}\right)=1$, and from $b x_{1}-a y_{1}=1$ and $0<a<b$ it follows that $0<x_{1} \leq y_{1}$. From $x_{1} / y_{1}>a / b$ we thus get that $x_{1} / y_{1} \geq c / d$.

We assume that $x_{1} / y_{1}>c / d$ and deduce a contradiction. By adding the trivial inequalities

$$
\frac{x_{1}}{y_{1}}-\frac{c}{d} \geq \frac{1}{d y_{1}} \text { and } \frac{c}{d}-\frac{a}{b} \geq \frac{1}{b d}
$$

we get

$$
\frac{1}{b y_{1}}=\frac{x_{1}}{y_{1}}-\frac{a}{b} \geq \frac{1}{d y_{1}}+\frac{1}{b d}=\frac{b+y_{1}}{b d y_{1}} \text { and } d \geq b+y_{1} .
$$

But above we see that $b+y_{1}>n$ and have the contradiction $d>n$, as $c / d \in F_{n}$.
Thus $x_{1} / y_{1}=c / d$. These are fractions in lowest terms and $x_{1}=c, y_{1}=d$ is a solution of $b x-a y=1$.
QED
The distance between two consecutive fractions $\frac{a}{b}<\frac{c}{d}$ in F_{n} is therefore minimum possible (for two distinct fractions). Clearly, $0<\frac{c}{d}-\frac{a}{b} \leq \frac{1}{n}$. It is interesting that their mediant $\frac{a+c}{b+d}$, which need not be a Farey fraction, lies in the minimum distance to each:

$$
(a+c) b-(b+d) a=c b-d a=1 \text { and }(b+d) c-(a+c) d=b c-a d=1 .
$$

If $\frac{a}{b}<\frac{c}{d}<\frac{e}{f}$ are three consecutive fractions in F_{n} then, again interestingly,

$$
\frac{a+e}{b+f}=\frac{c}{d},
$$

the middle fraction is the mediant of the outer two - prove it as an exercise.
Theorem (A. Hurwitz, 1891) For every $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ there exist infinitely many distinct fractions p / q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{\sqrt{5} \cdot q^{2}} .
$$

On the other hand, for every real $c>\sqrt{5}$, the inequality

$$
\left|\frac{\sqrt{5}-1}{2}-\frac{p}{q}\right|<\frac{1}{c q^{2}}
$$

has only finitely many solutions $p / q \in \mathbb{Q}$.
In the proof of the first claim we make use of Farey fractions. We may assume (by replacing α with $\{\alpha\}$) that $0<\alpha<1$. Like in the proof of the above corollary, we construct a sequence of fractions $p_{n} / q_{n} \in[0,1]$ for $n \in \mathbb{N}$ such that for each the first displayed inequality holds and $\left|\alpha-p_{1} / q_{1}\right|>\left|\alpha-p_{2} / q_{2}\right|>$ $\cdots>0$. We claim that $\frac{p_{1}}{q_{1}}$ can be always one of the three fractions $\frac{0}{1}, \frac{1}{2}$ and $\frac{1}{1}$. It follows from the fact that the sum of lengths of the intervals $\left[0, \frac{1}{\sqrt{5}}\right]$ and $\left[\frac{1}{2}-\frac{1}{4 \sqrt{5}}, \frac{1}{2}\right]$ is larger than the length of $\left[0, \frac{1}{2}\right]: \frac{1}{\sqrt{5}}+\frac{1}{4 \sqrt{5}}>\frac{1}{2}$ as $\frac{5}{16}>\frac{1}{4}$. If p_{1} / q_{1}, $\ldots, p_{n} / q_{n}$ are constructed, we take $m \in \mathbb{N}$ so large that $\left|\alpha-p_{n} / q_{n}\right|>1 / m>0$ (recall that α is irrational), take two consecutive fractions in the list F_{m} such that

$$
\frac{a}{b}<\alpha<\frac{c}{d}
$$

and show that one of these two Farey fractions or their mediant $\frac{e}{f}:=\frac{a+c}{b+d}$ has the required properties.

QED

Remarks The first theorem in this lecture appeared in [1], the second one in [2] and the third one in [3]. It goes without saying that their proofs here may differ from the original ones.

References

[1] L. P. G. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen, S. B. Preuss. Akad. Wiss. (1842), 93-95
[2] C. Haros, Tables pour évaluer une fraction ordinaire avec autand de decimals qu'on voudra; et pour trouver la fraction ordinaire la plus simple, et dui a approche sensiblement d'une fraction décimale, Journal de l'École Polytechnique 4 (1802), 364-368
[3] A. Hurwitz, Über die angenäherte Darstellung der Irrationalen durch rationale Brüche, Math. Annalen 39 (1891), 279-284
[4] P. Pavlíková, O Fareyových zlomcích, Pokroky matematiky, fyziky a astronomie 55 (2010), 97-110
[5] V. M. Schmidt, Diophantine Approximation, Springer-Verlag, Berlin 1980
[6] V. Šmidt, Diofantovy približenija, Mir, Moskva 1983

