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Let N ={1,2,...}, Ng = {0,1,...}, Z be the integers, Q be the fractions
and R be the real numbers. For m,n € Z we write (m,n) = 1 to say that m
and n are coprime, their largest common divisor is 1. Every number a € R
decomposes uniquely as the sum

a=la] +{a}
of its (lower) integer part o] € Z and its fractional part {a} € [0,1).

Theorem (P. Dirichlet, 1842) For every o € R and every Q € N with Q > 2
there exist p,q € 7 such that 1 < g < Q) and

To prove it we consider  numbers {na} € [0,1) for n = 0,1,...,Q — 1. We
can think of them as points lying on a circle with circumference 1. Two of them
have arc distance < 1/Q, which means that

|ma —r — (na—s)| <1/Q

for some m,n,r,s € Z with 0 <n<m< Q. Weset p:=r—s, ¢:=m—n,
divide the inequality by ¢ and get that

1
a—p'g and 1<¢g<@.
q| ~ Qq

QED

Corollary For every a € R\ Q there exist infinitely many distinct fractions p/q
such that

We prove it by constructing infinitely many fractions p, /g, for n € N such
that for each the displayed inequality holds and |a — p1/q1| > |a — p2/qe| >



- > 0. We begin with p; := |a] and ¢ := 1. If p1/q1, ..., Pn/qn are
already constructed, we take any @ € N such that |a — p,/qn| > 1/Q (this is
possible, « is irrational and always |---| > 0) and use Dirichlet’s theorem. We
get a fraction p/q such that 1 < ¢ < Q and |a — p/q| < 1/Qq < 1/¢>. Also,
loo —p/ql <1/Q < | —pn/qn|. Thus we can set p,11 :=p and gy41:=g.
QED

To obtain an ultimate strengthening of this corollary, the theorem of Hur-
witz, we need so called Farey fractions and their properties. For every n € N
we consider the ordered list

(0 _p1L P2 ... Pm_1
F’”'_(l_q1<qz< <Qm 1>

of all m = m(n) fractions p/q € [0, 1] such that 0 < ¢ < n and (p,q) = 1. These
are the Farey fractions (of order n). For example,

_ (0 1 1 1 2 1 3 2 3 4 1
Fy=(1<5<i<3<i<3<i<i<i<i<i)

Theorem (Ch. Haros, 1802) If § < § are two consecutive fractions in the
list F,, then

1
ol that is, bc — ad

Sal RS

c
d
In the proof we show that the Diophantine equation
bxr —ay=1

is solved by © = ¢,y = d. Since (a,b) = 1, there is at least one solution
Z0,Yo € Z. This follows from the fact that in the ring Z every ideal, such as
{ua+vb | u,v € Z}, is principal, is generated by a single element; it follows from
the division with remainder. Thus bxg — ayo = 1 and we see that x = x¢y — ra
and y = yo—rb is also a solution for any r € Z. It follows that there is a solution
Z1,Yy1 € Z such that

n—-b<y<n.

From bxy — ay; = 1 we get the equality

T 1 a

= 4+ .
y1 byr b
We show that x1/y; is in the list F),: from the above we see that 1 <y < n
and that (x1,y1) = 1, and from bz; —ay; = 1 and 0 < a < b it follows that
0 <z <yi. From z1/y1 > a/b we thus get that z,/y; > ¢/d.
We assume that z1/y1 > ¢/d and deduce a contradiction. By adding the

trivial inequalities
T

c 1
y1 d

bd

> and

>

Ul o
(Sl is

s
dy



we get
1 T a> 1 1 bty

byp  y1 b dyr bd bdy
But above we see that b+y; > n and have the contradiction d > n, as ¢/d € F,,.
Thus x1/y1 = ¢/d. These are fractions in lowest terms and 7 = ¢, y; = d is
a solution of bz — ay = 1.
QED

and d>b+yq .

The distance between two consecutive fractions 7 < 7 in F, is therefore min-
imum possible (for two distinct fractions). Clearly, 0 < § — ¢ < % It is
interesting that their mediant ZI;, which need not be a Farey fraction, lies in

the minimum distance to each:

(a+e)b—(b+dja=cb—da=1 and (b+d)c—(a+c)d=bc—ad=1.
If <5< % are three consecutive fractions in F), then, again interestingly,

a-+e c

b+f d’
the middle fraction is the mediant of the outer two — prove it as an exercise.

Theorem (A. Hurwitz, 1891) For every o € R\ Q there exist infinitely many
distinct fractions p/q such that

< .
V5 - ¢?
On the other hand, for every real ¢ > /5, the inequality

5—1 1
1)

2 q| cq?

has only finitely many solutions p/q € Q.

In the proof of the first claim we make use of Farey fractions. We may assume
(by replacing o with {a}) that 0 < a < 1. Like in the proof of the above
corollary, we construct a sequence of fractions p,,/q, € [0,1] for n € N such that
for each the first displayed inequality holds and | — p1/q1| > |a — pa/q2] >

-++ > 0. We claim that % can be always one of the three fractions %, % and
1. It follows from the fact that the sum of lengths of the intervals [0, %] and

[%—4—\1/5, 3] is larger than the length of [0, 3]: %—&—ﬁ >1as 5 > 1 Ifpi/gu,

.+, Dn/qn are constructed, we take m € N so large that |a — p,/qn| > 1/m >0
(recall that « is irrational), take two consecutive fractions in the list F,,, such
that
a

<a<

a ¢
b d



and show that one of these two Farey fractions or their mediant ? = %

the required properties.
QED

has

Remarks The first theorem in this lecture appeared in [1], the second one in
[2] and the third one in [3]. It goes without saying that their proofs here may
differ from the original ones.
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