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Let N = {1, 2, . . . }, N0 = {0, 1, . . . }, Z be the integers, Q be the fractions
and R be the real numbers. For m,n ∈ Z we write (m,n) = 1 to say that m
and n are coprime, their largest common divisor is 1. Every number α ∈ R
decomposes uniquely as the sum

α = ⌊α⌋+ {α}

of its (lower) integer part ⌊α⌋ ∈ Z and its fractional part {α} ∈ [0, 1).

Theorem (P. Dirichlet, 1842) For every α ∈ R and every Q ∈ N with Q ≥ 2
there exist p, q ∈ Z such that 1 ≤ q < Q and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

Qq
.

To prove it we consider Q numbers {nα} ∈ [0, 1) for n = 0, 1, . . . , Q − 1. We
can think of them as points lying on a circle with circumference 1. Two of them
have arc distance ≤ 1/Q, which means that

|mα− r − (nα− s)| ≤ 1/Q

for some m,n, r, s ∈ Z with 0 ≤ n < m < Q. We set p := r − s, q := m − n,
divide the inequality by q and get that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

Qq
and 1 ≤ q < Q .

QED

Corollary For every α ∈ R\Q there exist infinitely many distinct fractions p/q
such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

We prove it by constructing infinitely many fractions pn/qn for n ∈ N such
that for each the displayed inequality holds and |α − p1/q1| > |α − p2/q2| >

1



· · · > 0. We begin with p1 := ⌊α⌋ and q1 := 1. If p1/q1, . . . , pn/qn are
already constructed, we take any Q ∈ N such that |α − pn/qn| > 1/Q (this is
possible, α is irrational and always | · · · | > 0) and use Dirichlet’s theorem. We
get a fraction p/q such that 1 ≤ q < Q and |α − p/q| < 1/Qq < 1/q2. Also,
|α− p/q| < 1/Q < |α− pn/qn|. Thus we can set pn+1 := p and qn+1 := q.
QED

To obtain an ultimate strengthening of this corollary, the theorem of Hur-
witz, we need so called Farey fractions and their properties. For every n ∈ N
we consider the ordered list

Fn :=
(
0
1 = p1

q1
< p2

q2
< · · · < pm

qm
= 1

1

)
of all m = m(n) fractions p/q ∈ [0, 1] such that 0 < q ≤ n and (p, q) = 1. These
are the Farey fractions (of order n). For example,

F5 =
(
0
1 < 1

5 < 1
4 < 1

3 < 2
5 < 1

2 < 3
5 < 2

3 < 3
4 < 4

5 < 1
1

)
.

Theorem (Ch. Haros, 1802) If a
b < c

d are two consecutive fractions in the
list Fn then

c

d
− a

b
=

1

bd
, that is, bc− ad = 1 .

In the proof we show that the Diophantine equation

bx− ay = 1

is solved by x = c, y = d. Since (a, b) = 1, there is at least one solution
x0, y0 ∈ Z. This follows from the fact that in the ring Z every ideal, such as
{ua+vb | u, v ∈ Z}, is principal, is generated by a single element; it follows from
the division with remainder. Thus bx0 − ay0 = 1 and we see that x = x0 − ra
and y = y0−rb is also a solution for any r ∈ Z. It follows that there is a solution
x1, y1 ∈ Z such that

n− b < y1 ≤ n .

From bx1 − ay1 = 1 we get the equality

x1

y1
=

1

by1
+

a

b
.

We show that x1/y1 is in the list Fn: from the above we see that 1 ≤ y1 ≤ n
and that (x1, y1) = 1, and from bx1 − ay1 = 1 and 0 < a < b it follows that
0 < x1 ≤ y1. From x1/y1 > a/b we thus get that x1/y1 ≥ c/d.

We assume that x1/y1 > c/d and deduce a contradiction. By adding the
trivial inequalities

x1

y1
− c

d
≥ 1

dy1
and

c

d
− a

b
≥ 1

bd
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we get
1

by1
=

x1

y1
− a

b
≥ 1

dy1
+

1

bd
=

b+ y1
bdy1

and d ≥ b+ y1 .

But above we see that b+y1 > n and have the contradiction d > n, as c/d ∈ Fn.
Thus x1/y1 = c/d. These are fractions in lowest terms and x1 = c, y1 = d is

a solution of bx− ay = 1.
QED

The distance between two consecutive fractions a
b < c

d in Fn is therefore min-
imum possible (for two distinct fractions). Clearly, 0 < c

d − a
b ≤ 1

n . It is
interesting that their mediant a+c

b+d , which need not be a Farey fraction, lies in
the minimum distance to each:

(a+ c)b− (b+ d)a = cb− da = 1 and (b+ d)c− (a+ c)d = bc− ad = 1 .

If a
b < c

d < e
f are three consecutive fractions in Fn then, again interestingly,

a+ e

b+ f
=

c

d
,

the middle fraction is the mediant of the outer two — prove it as an exercise.

Theorem (A. Hurwitz, 1891) For every α ∈ R\Q there exist infinitely many
distinct fractions p/q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5 · q2

.

On the other hand, for every real c >
√
5, the inequality∣∣∣∣√5− 1

2
− p

q

∣∣∣∣ < 1

cq2

has only finitely many solutions p/q ∈ Q.

In the proof of the first claim we make use of Farey fractions. We may assume
(by replacing α with {α}) that 0 < α < 1. Like in the proof of the above
corollary, we construct a sequence of fractions pn/qn ∈ [0, 1] for n ∈ N such that
for each the first displayed inequality holds and |α − p1/q1| > |α − p2/q2| >
· · · > 0. We claim that p1

q1
can be always one of the three fractions 0

1 ,
1
2 and

1
1 . It follows from the fact that the sum of lengths of the intervals [0, 1√

5
] and

[ 12 −
1

4
√
5
, 1
2 ] is larger than the length of [0, 1

2 ]:
1√
5
+ 1

4
√
5
> 1

2 as 5
16 > 1

4 . If p1/q1,

. . . , pn/qn are constructed, we take m ∈ N so large that |α− pn/qn| > 1/m > 0
(recall that α is irrational), take two consecutive fractions in the list Fm such
that

a

b
< α <

c

d
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and show that one of these two Farey fractions or their mediant e
f := a+c

b+d has
the required properties.
QED

Remarks The first theorem in this lecture appeared in [1], the second one in
[2] and the third one in [3]. It goes without saying that their proofs here may
differ from the original ones.
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[4] P. Pavĺıková, O Fareyových zlomćıch, Pokroky matematiky, fyziky a as-
tronomie 55 (2010), 97–110

[5] V.M. Schmidt, Diophantine Approximation, Springer-Verlag, Berlin 1980
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