
MATHEMATICAL STRUCTURES (NMAI064)
summer term 2024/25

lecturer: Martin Klazar

LECTURE 12 (May 14, 2025). TOPOLOGY: COMPACT
SPACES

(based on the lecture notes of A. Pultr, Chapter V.6)

• Compactness. A cover of a topological space (X, τ) is any subset
U ⊆ τ such that

⋃
U = X. For Y ⊆ X, a cover of Y is any subset

U ⊆ τ such that
⋃
U ⊇ Y . The space (X, τ) is compact if

∀ cover U ∃ finite V ⊆ U :
⋃
V = X .

We say that every cover (of the space X) has a finite subcover. Sim-
ilarly, Y ⊆ X is a compact subset if every cover of Y has a finite
subcover of Y .

Exercise 1 Let Y ⊆ X where (X, τ) is a topological space. Prove
that Y is compact if and only if the subspace (Y, τ |Y ) is compact.

Exercise 2 Show that every finite discrete topological space is com-
pact.

Theorem 3 (two properties of compactness) These are as fol-
lows.

1. Every closed subset in a compact space is compact.

2. Continuous image of a compact set is always compact.

Proof. 1. So let (X, τ) be a compact space, Y ⊆ X be a closed set
and U ⊆ τ be a cover of Y . Then U ∪ {X \ Y } is a cover of X. We
take from it a finite subcover V of X. Clearly, V \ {X \ Y } ⊆ U is
a finite subcover of Y .

2. So let f : (X, τ) → (Y, σ) be a continuous map, defined on
a compact space X (cf. Exercise 1), and let U ⊆ σ be a cover of f [X].
Then

{f−1[U ] | U ∈ U}
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is a cover of X. Since X is compact, there exists a finite subset V ⊆ U
such that

{f−1[U ] | U ∈ V}
is still a cover of X. Since f [f−1[U ]] = U , it follows that V ⊆ U is
a finite subcover of f [X]. �

Exercise 4 Can an open set be compact?

• Alexander’s lemma. This is a useful result: to prove that a topology
is compact, it suffices to check the condition on covers only for any
subbasis.

Theorem 5 (Alexander’s lemma) Suppose that (X, τ) is a topo-
logical space and that S ⊆ τ is a subbasis such that every cover U ⊆ S
has a finite subcover. Then X is compact.

Proof. We proceed by contradiction; thus we assume that X is not
compact but that every cover taken from a subbasis S has a finite
subcover. We say that a cover U ⊆ τ is large if it has no finite
subcover. By our assumption there exists a large cover. We prove:

there exist an inclusion-wise maximal large cover A; that is,
a large cover A such that by adding any U ∈ τ \A to A yields
a cover that has a finite subcover.

This follows by a standard argument using Zorn’s lemma; we review
it below in Exercise 6. So we take the set of all large covers and the
order by inclusion on it, and check that the upper bound assumption
of Zorn’s lemma is satisfied. Suppose that Y is a chain of large covers.
We claim that U ′ :=

⋃
Y is a large cover, which is then an upper

bound of Y . Indeed, if U ′ had a finite subcover V ⊆ U ′, there would
be a U ′′ ∈ Y such that V ⊆ U ′′ (because Y is a chain and in any chain
any finite subset has a largest element), in contradiction with the
fact that U ′′ is a large cover. Thus the hypothesis of Zorn’s lemma is
satisfied in our situation and, by Zorn’s lemma, there exists a maximal
large cover A.

We set B := τ \ A. Then for all U ∈ τ ,

U ∈ B ⇐⇒ ∃U1, . . . , Un ∈ A : U ∪ U1 ∪ · · · ∪ Un = X .
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The implication⇒ follows from the maximality ofA, and the opposite
one ⇐ from the fact that A is a large cover. We show that the set
system B is closed under taking supersets and finite intersections.
Indeed, if V, U ∈ τ are such that V ⊇ U ∈ B, then U∪U1∪· · ·∪Un = X
for some Ui ∈ A, thus also V ∪ U1 ∪ · · · ∪ Un = X and V ∈ B; and if
U1, U2 ∈ B then U1 ∪ U ′1 ∪ · · · ∪ U ′n = X and U2 ∪ U ′′1 ∪ · · · ∪ U ′′m = X
for some U ′i , U

′′
j ∈ A, but then

X \
(⋃n

i=1 U
′
i ∪
⋃m

j=1 U
′′
j

)
⊆ U1 ∩ U2

and U1 ∩ U2 ∈ B.
Now we finish the proof by deriving a contradiction from our as-

sumptions. For any x ∈ X there is a U ∈ A such that x ∈ U , because
A is a cover. Thus there are S1, . . . , Sn ∈ S such that

x ∈
n⋂

i=1

Si ⊆ U ∈ A

because S is a subbasis. By the above closure properties of B = τ \A
we see that not all Si are in B. Thus some Si = Si(x) ∈ A. By our
assumption on S the cover

{Si(x) | x ∈ X}

has a finite subcover. But it is also a subcover of A, in contradiction
with the fact that A is large. �

Exercise 6 (Zorn’s lemma) Recall that this is a result on orders
(X,≤X) that is equivalent to the axiom of choice and says the follow-
ing. If every chain Y ⊆ X (i.e., ≤X restricted to Y is a liner order)
has an upper bound (an x ∈ X such that y ≤X x for every y ∈ Y ),
then for every x ∈ X there is a maximal element x′ ∈ X with x ≤X x′

(the maximality means that x′ <X x′′ for no x′′ ∈ X).

Corollary 7 (on intervals) Every interval [a, b] is compact (in the
Euclidean topology).

Proof. We assume that a < b (for a ≥ b the result is trivial) and
check the cover condition for the subbasis

S = {[a, c) | c ∈ (a, b)} ∪ {(c, b] | c ∈ (a, b)}

3



of the Euclidean topology on [a, b]. Let U ⊆ S be a cover and let

d := sup({c ∈ (a, b) | [a, c) ∈ U}) ∈ [a, b]

(the set is nonempty as a cannot be covered by any interval (c, b]).
The point d has to be covered by some interval (c, b] ∈ U , hence
c < d. By the definition of supremum there is a c′ ∈ (a, b) such that
[a, c′) ∈ U and c < c′. We got a finite (actually two-element) subcover

[a, c′) ∪ (c, b] = [a, b]

of U . �

• Tikhonov’s (Tichonov’s, Tychonoff’s, . . . ) theorem. This is one the
most important and useful results on compact spaces, or even in the
whole topology.

Theorem 8 (A. N. Tikhonov, 1935) Every product of compact topo-
logical spaces is a compact space.

Proof. The proof is in fact easy; we again apply Alexander’s lemma.
Let (Xi, τi), i ∈ J , be compact spaces and let U be a cover of

∏
i∈J Xi,

taken from the definitoric subbasis

S = {p−1i [U ] | i ∈ J, U ∈ τi} .

For any i ∈ J we set

Ui := {U ∈ τi | p−1i [U ] ∈ U} .

We claim that there is a k ∈ J such that Uk covers Xk. For if not,
then we could choose for every i ∈ J a point xi ∈ Xi \

⋃
Ui, but then

the point (xi)i∈J in the product would not be covered by U . Since Xk

is compact, we have a finite subcover V ⊆ Uk. Then

{p−1i [U ] | U ∈ V}

is a finite subcover of U (of the product space). �

Wikipedia says on the theorem that it was first stated and proved
by Andrey Nikolayevich Tikhonov (1906–1993) (who besides being
a mathematician was also a geophysicist) in a particular case in 1935,
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and that for the general form of the theorem the “earliest known
published proof is contained in a 1937 paper of Eduard Čech”. Eduard
Čech (1893–1960) was a world-famous Czech mathematician, mainly
topologist.

We present an application of Tikhonov’s theorem on proper color-
ings of infinite graphs. We begin by restating the definition of com-
pactness; we leave it to you as an exercise.

Exercise 9 A topological space (X, τ) is compact if and only if every
system {Ai | i ∈ J} of closed sets in X has the finite intersections
property: (

∀ finite I ⊆ J :
⋂

i∈I Ai 6= ∅
)
⇒
⋂

i∈J Ai 6= ∅ .

For a graph G = (V,E), so E ⊆
(
V
2

)
, its proper X-coloring is any

map f : V → X such that f(u) 6= f(v) whenever {u, v} ∈ E. Without
the last restriction, the map f is called simply an X-coloring (of G).
The chromatic number χ(G) ∈ N of G is defined as

χ(G) := min({k ∈ N | ∃ proper [k]-coloring of G}) ,

where [k] = {1, 2, . . . , k}. For example, the 5-cycle

C5 := ({1, 2, 3, 4, 5}, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}})

has χ(C5) = 3. We say that a graph G′ = (V ′, E ′) is a subgraph of
another graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.

Theorem 10 (compactness of χ) Let k ∈ N and let G = (V,E) be
a graph, where the vertex set V may be arbitrary (i.e., of any cardi-
nality). Then

χ(G) ≤ k ⇐⇒ ∀ finite subgraph H of G : χ(H) ≤ k .

Proof. In other words, G has a proper [k]-coloring if and only if
every finite subgraph of G has it too. The “only if” part is clear,
and we have to prove: if every finite subgraph H of G has a proper
[k]-coloring, then G has it too. For every v ∈ V we take a copy
Xv := ([k],P([k])) of the discrete space on [k] (where every subset of
[k] is open and closed) and consider the product space

X = (X, τ) :=
∏
v∈V

Xv .
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Note that every point in it, x := (xv)v∈V with xv ∈ [k], is a [k]-coloring
of G. For any edge e = {u, v} ∈ E of G we consider the set

Ae := {x ∈ X | xu 6= xv} .

These are exactly the [k]-colorings of G that restrict to proper [k]-
colorings of the one-edge subgraph ({u, v}, {{u, v}}) of G. Since every
space Xv is discrete and by the definition of the product topology
τ , it is clear that every set Ae is closed in X (Exercise 13). Since
every finite subgraph of G has a proper [k]-coloring, it follows that
the hypothesis of the implication in Exercise 9 is satisfied in X for
the system {Ae | e ∈ E} (note that a proper coloring of a subgraph
trivially extends to a coloring of the whole graph). Since X is compact
by Exercise 2 and Tikhonov’s theorem, by Exercise 9 we have that⋂

e∈E

Ae 6= ∅

and the whole graph G has a proper [k]-coloring. �

Exercise 11 Prove the previous equivalence directly, without using
Tikhonov’s theorem, for k = 1.

Exercise 12 Prove the previous equivalence directly, without using
Tikhonov’s theorem, for k = 2.

Exercise 13 Explain why the sets Ae in the previous proof are closed.

• Compactness and Hausdorffness.

Theorem 14 (compacts in Hausdorff spaces) Compact sets in Haus-
dorff spaces (i.e., T2-spaces) are closed.

Proof. Let Y ⊆ X be a compact set in a Hausdorff space (X, τ). It
suffices to show that for every point x ∈ X \ Y there exists a Ux ∈ τ
such that x ∈ Ux ⊆ X \ Y . For then X \ Y =

⋃
x∈X\Y Ux is open

and Y is closed. We fix an x ∈ X \ Y and take for any y ∈ Y sets
Ux,y, Vy ∈ τ such that

x ∈ Ux,y ∧ y ∈ Vy ∧ Ux,y ∩ Vy = ∅ .
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This is possible because X is a Hausdorff space. Since {Vy | y ∈ Y }
is a cover of Y and Y is compact, there exist finitely many points
y1, . . . , yn ∈ Y such that {Vyi | i = 1, 2, . . . , n} is a cover of Y . We set

Ux :=
n⋂

i=1

Ux, yi .

This set is as required: it is open, contains x and is disjoint to Y
because it is disjoint even to the superset

⋃n
i=1 Vyi of Y . �

Corollary 15 (on inverse maps) The inverse map to a continuous
injection from a compact space to a Hausdorff space is continuous.

Proof. Suppose that (X, τ) is a compact space, (Y, σ) is a Hausdorff
space and f : X → Y is a continuous injection. Then for every closed
set A ⊆ X we have that

(f−1)−1[A] = f [A] ⊆ Y .

By part 1 of Theorem 3, the set A is compact and by part 2 of the
same theorem, f [A] is compact too. By the previous theorem, f [A]
is closed. Thus the inverse image of any closed set in X by the map
f−1 is closed. Hence f−1 is continuous. �

Theorem 16 (compact Hausdorff is . . . ) Every compact Hausdorff
space (X, τ) is normal (i.e., a T4-space).

Proof. Let A ⊆ X be a closed set and x ∈ X \ A be a point. By
part 1 of Theorem 3, the set A is compact. Arguing like in the proof of
the previous theorem, we obtain open sets U, V ∈ τ such that x ∈ U ,
A ⊆ V and U ∩ V = ∅ (Exercise 17). Now let A,B ⊆ X be two
disjoint closed sets. Using the previous step, we take for any x ∈ A
sets Ux, Vx ∈ τ such that

x ∈ Ux ∧B ⊆ Vx ∧ Ux ∩ Vx = ∅ .
By part 1 of Theorem 3, the set A is compact. We select a finite
subcover from the cover {Ux | x ∈ A} of A and get points x1, . . . , xn ∈
A such that A is covered by the Uxi

, i = 1, 2, . . . , n. Then
n⋃

i=1

Uxi
⊇ A and

n⋂
i=1

Vxi
⊇ B
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are disjoint open sets separating A and B. �

Exercise 17 Explain in detail how we get in the previous proof the
open sets U and V .

• Locally compact spaces and Lindelöf spaces. A topological space
(X, τ) is locally compact, if for every point x ∈ X and every open set
U 3 x there is a compact neighborhood K of x such that x ∈ K ⊆ U .
That is, there is an open set V and a compact set K such that

x ∈ V ⊆ K ⊆ U .

Local compactness is sufficient in many situations when the whole
space is not compact and plays an important role in mathematics.

Exercise 18 Is the Euclidean interval (0, 1) locally compact?

Compact space need not be locally compact, but we have the fol-
lowing result.

Exercise 19 Show that every compact Hausdorff space is locally com-
pact.

A topological space (X, τ) is a Lindelöf space if every cover has an
at most countable subcover.

Theorem 20 (regular Lindelöf is . . . ) Every regular space (i.e., a
T3-space) that is Lindelöf is normal (i.e., a T4-space).

Proof. We suppose that (X, τ) is a regular Lindelöf space and that
A,B ⊆ X are two disjoint closed sets; we will separate them by
disjoint open sets U and V .

Using regularity of X, we separate any point x ∈ A and the set B
by two disjoint open sets. Thus we get a set Ux ∈ τ such that

x ∈ Ux ⊆ Ux ⊆ X \B .

Using Exercise 21, we select from the cover {Ux | x ∈ A} of A an
at most countable subcover U1, U2, . . . of A. We may assume that
U1 ⊆ U2 ⊆ . . . (by replacing these sets by the unions U1, U1∪U2, . . . ).
Thus

U1 ⊆ U2 ⊆ · · · ∧ A ⊆
⋃∞

i=1 Ui ∧ ∀ i : Ui ∩B = ∅ .
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Similarly we get sets Vi ∈ τ such that

V1 ⊆ V2 ⊆ · · · ∧B ⊆
⋃∞

i=1 Vi ∧ ∀ i : Vi ∩ A = ∅ .

Let

U :=
∞⋃
i=1

Ui ∩ (X \ Vi)︸ ︷︷ ︸
U ′
i

and V :=
∞⋃
i=1

Vi ∩ (X \ Ui)︸ ︷︷ ︸
V ′
i

.

It is easy to see that these are the required sets. Namely, U, V ∈ τ ,
A ⊆ U , B ⊆ V and U ∩ V = ∅, because for every pair of indices i, j
one has that U ′i ∩ V ′j = ∅ (since the sequences of sets (Ui) and (Vi)

increase, for i ≤ j one has that Ui ∩ (X \ Uj) = ∅, and for j ≤ i
similarly that Vj ∩ (X \ Vi) = ∅). �

Exercise 21 Prove that any closed subspace of a Lindelöf space is
a Lindelöf space.

THANK YOU!

HOMEWORK: Exercises 1, 9, 12 and 21. This is the last set of home-
works. Deadline is the end of the coming Sunday. Please, send me
your solutions by e-mail to klazar@kam.mff.cuni.cz. To get credits for
the tutorial, you should solve (or at least send in attempted solutions
of) at least half of the homework exercises.
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