MATHEMATICAL STRUCTURES (NMAI064)
summer term 2024 /25
lecturer: Martin Klazar

LECTURE 10 (April 23, 2025)
AXIOM OF CHOICE AND ITS CONSEQUENCES:
NON-MEASURABLE SETS, THE WELL ORDERING
THEOREM, THE PROPHET PARADOX

o The Axiom of Choice (AC) is the set-theoretic axiom that
VA: 0 ¢ A=3F: (F:A—-UJAAN(BeA=F(B)eB).

As you certainly know, the sum (J A of A, is the set | J A such that
Be|JA < dC € A: B e C. The notation F: A — B, ie., Fis
a function (map) from A to B, abbreviates the fact that F'is a set of
ordered pairs (C, D) such that always C € A, D € B, and for every
C' € A there exists exactly one D € B with (C,D) € F.

Exercise 1 Show that the AC is equivalent with the claim that for
every surjection F': A — B there is a map G: B — A such that

Exercise 2 Show that the AC is equivalent with the claim that for
every set system {A;: i € I}, A; # 0, there is a map

F:I— Uie[ Az
such that F(i) € A; for everyi € I.

e Fquivalences and partitions. First let us review equivalence relations
and set partitions. R C A x A is an equivalence relation on A if it is

e reflexive — Va € A: aRa,
e symmetric — Va,b € A: aRb = bRa, and
e transitive — Va,b,c € A: aRbANbRc = aRc

A set partition of a set A is a set B such that () € B, the elements of
B are mutually disjoint and |J B = A. For any equivalence relation
R on a set A we define the blocks of R to be the sets

lalg ={b€ A: aRb}, a€ A.
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Exercise 3 For every set A and every equivalence relation R on A,
A/R = {[a]g: a € A}
1S a partition of A.
Exercise 4 For every set A and every partition P of A,
R(P):={(a,b) € A*>: 3B P: a,be B}
is an equivalence relation on A.

Exercise 5 For every set A, every equivalence relation S on A and
every partition P of A,
R(A/S)=S and A/R(P)=P.

Exercise 6 Forn € N={1,2,...} let B,, the Bell number?, be the
number of equivalence relations on an n-element set X. Why does B,
depend only on the cardinality of X and not on the elements of X ¢

Prove that for every n,
Bn < Bn+1 .

e Non-measurable sets. Let
S={(x,y) e R* 22 +¢* =1}

be the unit circle in the Euclidean plane R?. For any angle ¢ € [0, 27)
we denote by
Fo,: S—= 8, (z,y)— (72, 7)),

the counter-clockwise rotation around the origin by the angle . It is
clearly a bijection. An angle ¢ € [0,27) is rational if £ € Q. We
denote the set of rational angles by [0,27)gp. Obviously, [0,27)q is
a countable set.

Exercise 7 Define the additive Abelian group
([07 27T)Q? +>

of addition modulo 2w. Find the above formulas 7, and 7, in the
definition of I, and show that for any ¢, ¢’ € [0,2m)qg,

FooFy = Foyy .

INamed after Eric T. Bell (1883-1960).




Show that for any fivred x € S, the function F,(x) is injective in the
variable ¢ € [0, 2m).

For the unit circle S we denote by P(.5) the set of subsets of S. For
a subset X C P(S) with S € X, we say that a map

A X — [0, +00)
is an arc length on X if the following three conditions hold.

1. A(S) > 0—the whole unit circle has positive arc length.

2. For every pairwise disjoint sets A, € X, n € N, with [~ A, € X
one has that

A(U?ﬂ A,) = Zzoﬂ A(4y) -
We say that the arc length is o-additive.

3. For every ¢ € [0,27) and every A € X, if F,,[A] € X then
A(FL[A]) = A(A) .
We say that the arc length is invariant under rotations.

Theorem 8 (a troublesome set) There exists a set X C S such
that the set

{Fo[X]: ¢ €0,2m)g}

s a partition of S.
Proof. By Exercise 9, the relation ~ on S, defined by
a~b <<= Jpel0,2m)g: Fyla)=0,

is an equivalence relation. We define X C S by means of the AC
by taking one representative element from each block of ~. We show
that for ¢ running in [0,27)g the sets F,[X]| are disjoint and form
a partition of S. Their union is S because each s € S lies in a block B
of ~ and thus F,(r) = s for some ¢ € [0, 27)q for the representative
r € X of B. If F,[X]N Fy[X] # 0 for two distinct rational angles ¢
and ¢, then

F,(r)=Fy(r") for some r,r' € X .



Then r # r' by the injectivity of F,,(x) in ¢ for fixed = (Exercise 7).
Also,

Fop(r)=1"for ¢ —¢' €0, 2m)g
(again by Exercise 7) and therefore r ~ r’. This is impossible for two
distinct elements of X. It is clear that always F,,[X] # 0. Ll

Exercise 9 Prove that the relation ~ on S defined in the previous
proof is an equivalence relation.

Corollary 10 (impossible arc length) There is no arc length A on
the whole power set P(S).

Proof. Indeed, suppose in the way of contradiction that
A: P(S) = [0, +00)

is an arc length and consider the set X C S of the previous theorem.
Then we get by the theorem and by the three properties of any arc
length that

A(S) = Z¢e[o,2w)Q AMF,[X]) = Z@G[O,QW)Q A(X) =0 or +oo.
But this is a contradiction because A(S) € (0, +00). O

Exercise 11 Show that if property 1 of arc length is not required,
then the previous corollary does not hold.

o Well orderings. Let X be a set. A relation
<xC X*

is a linear order on X if it is reflexive, transitive, weakly asymmetric
(a <x bAb<x a= a=0>)and total (Va,b e X: a <xbVb<yx
a). We say that a linear order <y on X is a well ordering if every
nonempty set Y C X has a minimum element y € Y: for every z € Y
we have y <y z.

Exercise 12 Prove that minimum elements are unique.

Exercise 13 A linear order (X, <x) is a well ordering if and only if
there is no infinite strictly descending chain

r1>x To>x ..., Ty € X

Here x >x y means that y <x x and y # x.
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Exercise 14 Assume that there is a well ordering on every set and
deduce from this the AC.

Theorem 15 (Zermelo) The azxiom of choice holds if and only if
every set has a well ordering.

Proof. The “if” part is proven in Exercise 14. We prove the other
implication: if AC holds then every set has a well ordering. Let X # ()
and f: P(X)\ {0} — X be a selector on X, i.e., a function satisfying
f(A) € A (it is guaranteed by AC). We consider the set

L={R: RC D(R)* D(R) C X, Ris a linear order on D(R)}
of linear orders R on sets D(R) C X. For any R € L we set
Dr={ACD(R): z,ye D(R),y€ A, xRy = x € A}.
So Dp is the set of downsets in the linear order R. Let further

C={ReL: A€ Dr, A# D(R) = f(X\ A) = min(D(R) \ 4)}

be those linear orders R on subsets D(R) of X, for which for every
proper downset A in R the selector f chooses from its complement to
X an element that is also the minimum element of the complement of
A to D(R). We show that C contains (as an element) a well ordering
on X. The set C' # (), for example {(f(X), f(X))} € C.

Firstly we show that every R € C' is a well ordering on D(R). Let
R € C. For any nonempty B C D(R) we set

A={ye D(R)\B: € B= yRz}.

The set D(R) \ A contains B and is therefore nonempty. Clearly, A
is a downset in R. Thus

v = F(X\ 4) = min(D(R)\ A).

From the facts that D(R)\ A D B and that y is the minimum element
in D(R) \ A we get that yRz for every z € B. If y ¢ B, we would
have y € A by the definition of A, which is impossible. Hence y is in
B and is the minimum element of B, even of the superset D(R) \ A.



Secondly we show that for every two linear orders R, S € C one of

them extends the other: D(R) € DgAR C Sor D(S) € DrpAS CR.
Let R, S € C be given; we set

A={x e D(R)ND(S) | Rx = St ARN(Rx x Rx) = SN (Sz x Sx)}

(here Rx = {y € D(R) | yRx} and similarly for Sx). The set A
consists exactly of the elements that determine the same downset in
R and in S, that is moreover ordered in R and in S in the same way.
We claim that A € Dy N Dg— A is a downset both in R and in 5).
Let

z,y, x € X with x € A and yRzx .

Then ySz because Rx = Sz. If zRy then zSy and vice-versa (in both
cases y,z € Rx = Sx and this set is ordered in the same way in R
and in S). Thus Ry = Sy. This set is contained in Rr = Sz, and
therefore it is ordered in the same way both in R and in S. Hence
y € A and A is a downset in R. One shows in the same way that A
is a downset in S.

Now if both D(R) \ A and D(S) \ A are nonempty, y = f(X \ A)
is the minimum element of D(R) \ A with respect to R and it is
also the minimum element of D(S) \ A with respect to S, and so
Ry = AU{y} = Sy. It is also clear that R and S give AU {y} the
same order (they add a new element y at the end), and so y € A,
which is a contradiction. Thus for example A = D(R), R C S and S
extends R.

Thirdly we show that

T=CeCC,

and therefore C' has (unique) inclusion-wise maximum element. By
the previous paragraph, T is a linear order on D(T) = Uz D(R)
and for z,y € D(T') we have Ty, if and only if 2Ry for some R € C
with z,y € D(R). We check that T has the property defining C.
Let A C D(T) be a proper downset in T and let b € D(T) \ A be
arbitrary. Thus b € D(R) for some R € C. We show that A C D(R).
If a € A is arbitrary, then a € D(S) for some S € C. If D(S) € Dp,
then a € D(R). If D(R) € Dg and aSb, then again a € D(R). The
case bSa does not occur (for then one would have b € A). Hence
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A C D(R) and D(R) \ A # (). Therefore the element y = f(X \ A) is
the minimum element in D(R) \ A and yRb. Since b was arbitrary, y
is the minimum element in D(T") \ A and we see that T € C.

In conclusion we show that D(T) = X, and T is therefore the
sought-for well ordering of X. If D(T') # X, then we could extend T
by the element x := f(X \ D(T)) to R:

D(R) := D(T)U{z} and yRz for every y € D(R) (1)

—we add to T" a new maximum element. It is clear that R € C
(Exercise 16). Since R properly extends 7', we have a contradiction
with the maximality of T'. O]

The previous proof is taken from a manuscript of A. Pultr.

Exercise 16 Show that the linear order R defined in equation (1)
indeed belongs to C.

e The prophet paradox. Let (X, <x) be a linear order. For any a € X
and any map f: X — Y we denote by f|, the restriction of f to the
set

{b e X: b<yx a} .

For a linear order (X, <x) and a family F of functions f: X — Y,
an (X, F)-prophet is a map

P:{fu: feF,acX} =Y.

The value P(f|,) € Y is the guess of P for the value f(a). The prophet
tries to guess from the values f(b) for all b <x a the value of f at a.
If P(f,) = f(a) then P succeeds for f at a, else P errs for f at a.

Exercise 17 Let (X,<x) = (R, <) be the standard linear order of
real numbers and let

F=CMR)={f:R—=R: fis continuous}

be the set of continuous real functions defined on R. The exercise is to
find an (R, C(R))-prophet that succeeds for f at a for every f € C(R)
and every a € R.

On the other hand we have the following equally simple result.
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Proposition 18 (all prophets err) Forn € N, let
(X, <x)=(n], <) =({L, 2, ..., n}, <)

be the usual linear order on the first n natural numbers and let
F =YW = {all maps from [n] to Y},

where Y 1s a set with at least two elements. Then it is true that for
every ([n], Y")-prophet P there exists a function f € Y such that

Vael: P(fi) # fla).
Thus P errs for f at its every argument a € [n].
Proof. Let
P:{g: g:[m|—-Y, me{0,1,....n—1}} =Y

be an ([n], Y")-prophet. We set [0] = (). We define the values f(m)
of the required function f: [n] — Y by induction on m = 1,2,...,n.
At the start we take f(1) € Y so that f(1) # P()), which is possible
as |Y]| > 2. If m € [n], m > 1 and f(1), f(2),..., f(m—1) are already
defined, we take

f(m) € Y \{P(fin)}-
Again, this is possible as |Y| > 2. It is clear that P errs for the
function f at its every argument. (]

Exercise 19 What happens when |Y| < 17

One might think that when in Exercise 17 the family of continuous
functions is extended to the family F = R of all real function, one
obtains a result similar to the previous proposition, namely that every
prophet has to err for a troublesome function very often. Surprisingly,
quite the opposite is the case under the assumption of AC. There exists
a prophet that for every real function almost never errs.

Theorem 20 (the prophet paradox) Let (X, <x) = (R, <) be the
usual linear order of real numbers and let

F = R® = {all functions from R to R} .
Then there exists an (R, R®)-prophet P such that
VfeR®: the set {a € R: P errs for f at a} is at most countable .
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Proof. We define P by means of the well ordering
(R, =)

that exists by Theorem 15 under the assumption of AC. For g € RF
and a € R we set

P(91a) = go(a) where gy = mjn({h e RR: hlo = gja}) -

Now let an f € RR be given. We take the set
X = {aeR: P(fi) # f(a)}

of errors of P for f. Let a < b with a € X be two real numbers,

9o =min({g € R*: g, = f,}) and gy :=min({g € R*: g; = fj}).

M, My

From a < b we get that M, C M, and g, = ¢g,. From

ga(a) = P(fa) # f(a) = go(a)

we see that g, # g». Thus g, < g5 We see that the linear order (X, <)
(with the usual order < of real numbers) is a well ordering. Else, by
Exercise 13, we would have in (X, <) an infinite strictly descending
chain a1 > a9 > ..., which would yield by the last argument an
infinite strictly descending chain g,, > g, > ... in (R¥, <). But the
last chain does not exist because (R¥, <) is a well ordering. Since
(X, <) is a well ordering, by the next Exercise 21 the set X is at most
countable. O

Exercise 21 Let (R, <) be the usual linear order of real numbers and
let X C R be such that the linear suborder (X, <) is a well ordering.
Show that then X is at most countable.

The last theorem is taken from the book

Ch.S. Hardin and A.D. Taylor, The Mathematics of Coordi-
nated Inference, Springer, 2013.

THANK YOU FOR YOUR ATTENTION!



HOMEWORK: Exercises 6, 7, 13 and 21. Deadline is the end of
the coming Monday. Please, send me your solutions by e-mail to
klazar@kam.mff.cuni.cz. To get credits for the tutorial, you should
solve (or at least send in attempted solutions of) at least half of the
homework exercises.
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