Solutions to HW 10

M. Klazar

December 29, 2023

1. The function $f:[0,1] \rightarrow \mathbb{R}, f\left(\frac{1}{n}\right)=1$ for $n \in \mathbb{N}$ and $f(x)=0$ for other $x \in[0,1]$, is Riemann-integrable by the Lebesgue theorem because it is bounded (its image is just $\{0,1\}$) and the set of points of discontinuity of f is the countable set $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ which has measure 0 (can be covered by intervals with the total length $\frac{\varepsilon}{2}+\frac{\varepsilon}{4}+\frac{\varepsilon}{8}+\cdots=\varepsilon$).

Every lower sum $s(f, P) \stackrel{ }{=} 0$ because $\inf _{x \in I} f(x)=0$ for any nontrivial interval $I \subset[0,1]$. Hence $\underline{\int_{0}^{1}} f=0$ (it is the supremum of lower sums). We show that for any $\delta>0$ there is a partition P of $[0,1]$ for which the upper sum $S(f, P)=\delta$. This shows that also $\overline{\int_{0}^{1}} f=0$ (it is the infimum of upper sums). Hence $\int_{0}^{1} f=0$.

For the given δ we define the partition $P=\left(0=a_{0}<a_{1}<\cdots<a_{n}=1\right)$ in the following way. We set $a_{1}:=\delta / 2$ and take the other points $a_{i}, 1<i<n$, so that every subinterval $I_{i}:=\left[a_{i-1}, a_{i}\right]$ contains at most one reciprocal $\frac{1}{n}, n \in \mathbb{N}$, with $a_{1}<\frac{1}{n} \leq a_{n}=1$ and that the total length of the subintervals $\left\{I_{i} \mid i \in X\right\}$ containing these (finitely many!) reciprocals is $\delta / 2$. It is easy to see that this can be done and that then

$$
\begin{aligned}
S(f, P) & =\left(a_{1}-a_{0}\right) \sup _{x \in I_{1}} f(x)+\sum_{i=2}^{n}\left(a_{i}-a_{i-1}\right) \sup _{x \in I_{i}} f(x) \\
& =\frac{\delta}{2} \cdot 1+\sum_{i=2, i \notin X}^{n}\left|I_{i}\right| \cdot 0+\sum_{i \in X}\left|I_{i}\right| \cdot 1=\frac{\delta}{2}+0+\frac{\delta}{2}=\delta .
\end{aligned}
$$

2. The simplest proof uses the Lebesgue theorem. If $f, g \in \mathcal{R}(a, b)$ then both functions are bounded, $|f|,|g| \leq c$ on $[a, b]$, and their sets of discontinuities $\mathrm{DC}(f)$ and $\mathrm{DC}(g)$ have measure 0 . Thus $f+g$ is bounded too, $|f+g| \leq 2 c$ on $[a, b]$, and $\mathrm{DC}(f+g)$ has measure 0 too because $\mathrm{DC}(f+g) \subset \mathrm{DC}(f) \cup \mathrm{DC}(g)$. Thus, by the L. theorem, $f+g \in \mathcal{R}(a, b)$.

It is not hard to prove this also by the Darboux definition of the R. integral (lower and upper sums), and in fact to prove in this way more strongly that $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$.
3. The proof via the L. theorem is the same as in 2. Again one can prove it by the Darboux definition, but now it is more complicated: one first proves (by
lower and upper sums) that $f \in \mathcal{R}(a, b) \Rightarrow f^{2} \in \mathcal{R}(a, b)$ and then one uses the formula $f g=\frac{1}{2}\left((f+g)^{2}-f^{2}-g^{2}\right)$.
4. See Chapter XVI in prof. A. Pultr's lecture notes
https://kam.mff.cuni.cz/~pultr/analysiscourse.pdf
5. If (M, d) and (N, e) are metric spaces then a map $f: M \rightarrow N$ is uniformly continuous if (and only if)

$$
\forall \varepsilon>0 \exists \delta>0(x, y \in M, d(x, y)<\delta \Rightarrow e(f(x), f(y))<\varepsilon) .
$$

