MATHEMATICAL ANALYSIS 3 (NMAI056)
 summer term 2022/23
 lecturer: Martin Klazar

LECTURE 6 (March 22, 2023) APPLICATIONS OF
 BAIRE'S THEOREM: NON-DIFFERENTIABLE CONTINUOUS FUNCTIONS, TRANSCENDENTAL GROWTH RATES OF PERMUTATION CLASSES

- Non-differentiable continuous functions. Let $I:=[0,1]$. By $C(I)$ we denote the set of all continuous functions from I to \mathbb{R}. Recall that for $x \in \mathbb{R}$ and $\delta>0$,

$$
P(x, \delta)=(x-\delta, x+\delta) \backslash\{x\}=(x-\delta, x) \cup(x, x+\delta)
$$

is the deleted δ-neighborhood of x. In this lecture we prove the following theorem.

Theorem 1 (wild functions) There exists a function f in $C(I)$ such that $\forall x \in I \forall \delta>0$,

$$
\sup \left(\left\{\left.\left|\frac{f(y)-f(x)}{y-x}\right| \right\rvert\, y \in P(x, \delta) \cap I\right\}\right)=+\infty
$$

Recall that $f: I \rightarrow \mathbb{R}$ is differentiable at $x \in I$ if there exists finite derivative $f^{\prime}(x) \in \mathbb{R}$.

Exercise 2 The function f in Theorem 1 is continuous on I but is not differentiable at any point of I.

- Four lemmas. We prove Theorem 1 with the help of four lemmas.

Lemma 3 (1st lemma) If $f \in C(I)$ has the property that $\forall x \in I$,

$$
\sup \left(\left\{\left.\left|\frac{f(y)-f(x)}{y-x}\right| \right\rvert\, y \in I \backslash\{x\}\right\}\right)=+\infty
$$

then f has the property in Theorem 1. Hence the parameter δ in Theorem 1 is superfluous.

Proof. We assume that $f \in C(I)$ has for every $x \in I$ the stated property. $\forall x \in I \forall \delta>0$ the set

$$
Q(x, \delta):=I \backslash U(x, \delta)=[0,1] \backslash(x-\delta, x+\delta)
$$

is compact (Exercise 4). Let $M(x, \delta)$ be the minimum value of the continuous function $y \mapsto\left|\frac{f(y)-f(x)}{y-x}\right| \geq 0$ on $Q(x, \delta)$. For every given $x \in I$ and $\delta>0$ and every $c>M(x, \delta)$, by the assumption there is a $y \in I \backslash\{x\}$ such that

$$
\left|\frac{f(y)-f(x)}{y-x}\right|>c
$$

But then $y \notin Q(x, \delta)$, thus $y \in P(x, \delta)$ and wee see that f has the property in Theorem 1.

Exercise 4 Show that the set $Q(x, \delta)$ is compact.
Exercise 5 Why is the function $y \mapsto\left|\frac{f(y)-f(x)}{y-x}\right|$ continuous?
Recall that for any set X, the infinity-norm

$$
\|f\|_{\infty}:=\sup (\{|f(x)| \mid x \in X\})
$$

on the set B of bounded functions $f: X \rightarrow \mathbb{R}$ makes B a MS

$$
\left(B,\|f-g\|_{\infty}\right) .
$$

Exercise 6 Show that this is a MS.
Lemma 7 (2nd lemma) Let (M, d) be a MS, $\left(x_{n}\right) \subset M$ be a sequence with $\lim x_{n}=x_{0} \in M$ and let $\left(f_{n}\right), f_{n}: M \rightarrow \mathbb{R}$, be a sequence of functions converging in the norm $\|\cdot\|_{\infty}$ to a continuous function $f: M \rightarrow \mathbb{R}$. Then

$$
\lim f_{n}\left(x_{n}\right)=f\left(x_{0}\right)
$$

Proof. By the triangle inequality,

$$
\left|f_{n}\left(x_{n}\right)-f\left(x_{0}\right)\right| \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|
$$

For a given $\varepsilon>0$, we can make the first $|\cdot|$ on the right side $<\varepsilon / 2$ for $n \geq n_{0}$ due to the assumption that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$. The same holds for the second $|\cdot|$ on the right side if $n \geq n_{1}$ due to Heine's definition of continuity of f at the point x_{0}. Hence $n \geq \max \left(\left\{n_{0}, n_{1}\right\}\right) \Rightarrow\left|f_{n}\left(x_{n}\right)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

A broken line going through the points $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots$, $\left(a_{k}, b_{k}\right)$ in \mathbb{R}^{2} in this order, where $a_{0}<a_{1}<\cdots<a_{k}$, is the function $f:\left[a_{0}, a_{k}\right] \rightarrow \mathbb{R}$ which is on every interval $\left[a_{i-1}, a_{i}\right], i=$ $1,2, \ldots, k$, defined by

$$
f(x)=\frac{\left(b_{i}-b_{i-1}\right)\left(x-a_{i-1}\right)}{a_{i}-a_{i-1}}+b_{i-1}
$$

(thus $f\left(a_{i-1}\right)=b_{i-1}$ and $f\left(a_{i}\right)=b_{i}$). Its graph on the interval $\left[a_{i-1}, a_{i}\right]$ is the segment joining the points $\left(a_{i-1}, b_{i-1}\right)$ and $\left(a_{i}, b_{i}\right)$. We call these segments just segments (of the broken line).

Exercise 8 Every broken line is a continuous function.

The slope of a plane line given by the equation $y=a x+b$ is the number a. The slope of a segment is the slope of the line extending the segment. The secant (line) of a function $f: M \rightarrow \mathbb{R}, M \subset \mathbb{R}$, is a line going through two distinct points on the graph of f.

Lemma 9 (3rd lemma) It is true that

$$
\begin{aligned}
& \forall \varepsilon>0 \forall f \in C(I) \exists g \in C(I) \exists M>0 \\
& \left(\|f-g\|_{\infty}<\varepsilon \wedge(x, y \in I, x \neq y \Rightarrow\right. \\
& \Rightarrow|(g(y)-g(x)) /(y-x)|<M))
\end{aligned}
$$

In words, every function $f \in C(I)$ can be arbitrarily closely approximated by a function $g \in C(I)$ with bounded slopes of secant lines.

Proof. Let $f \in C(I)$ and let an $\varepsilon>0$ be given. Since the interval I is compact, the function f is uniformly continuous (Exercise 10). Hence for every sufficiently large m and every $i=0,1, \ldots, m$ the implication

$$
\frac{i}{m} \leq x \leq \frac{i+1}{m} \Rightarrow\left|f\left(\frac{i}{m}\right)-f(x)\right|,\left|f\left(\frac{i+1}{m}\right)-f(x)\right|<\frac{\varepsilon}{2}
$$

holds. We draw the broken line g through the points $(i / m, f(i / m))$, $i=0,1, \ldots, m$. For g the above implication holds too and with the same m (Exercise 11). Thus

$$
\forall x \in I(|f(x)-g(x)|<\varepsilon / 2+\varepsilon / 2=\varepsilon)
$$

(Exercise 12). This means that g has the first required property. By Exercise 13 we have that for every two distinct numbers $x, y \in I$,

$$
\left|\frac{g(y)-g(x)}{y-x}\right| \leq s
$$

where s is the largest, in absolute value, slope of a segment of the broken line g. Hence g has also the second required property.

Exercise 10 Why is any $f \in C(I)$ uniformly continuous?
Exercise 11 Show that the displayed implication holds for the broken line g.

Exercise 12 Prove the displayed inequality that $\forall x \ldots$.
Exercise 13 Prove the inequality $\cdots \leq s$.
Lemma 14 (4th lemma) It is true that

$$
\begin{aligned}
& \forall \varepsilon>0 \forall T>0 \exists g \in C(I)\left(\|g\|_{\infty}<\varepsilon \wedge(x \in I \Rightarrow\right. \\
& \Rightarrow \exists y \in I \backslash\{x\}(|(g(y)-g(x)) /(y-x)|>T))) .
\end{aligned}
$$

In words, there exist a continuous and $\|\cdot\|_{\infty}$-small function g defined on I such that one can lead through every point on its graph a secant line with a large slope.

Proof. Let $\varepsilon>0$ and $T>0$ be given. We take a large even $m \in \mathbb{N}$ such that $2 m \varepsilon / 3>T$, take the $m+1$ points in the plane

$$
\left(i / m,(\varepsilon / 3)\left(1-(-1)^{i}\right), i=0,1 \ldots, m\right.
$$

and draw the broken line g through them. It starts in $(0,0)$, finishes in $(1,0)$ and consists of $m / 2$ hills with height $2 \varepsilon / 3$ and bases of width $2 / m$. Thus $\|g\|_{\infty}=2 \varepsilon / 3<\varepsilon$. Let a point u on the graph of g be given. We lead through it the secant line extending the segment containing u (if u lies in two segments, we choose any of them). In absolute value it has the slope larger than T because both sides of any hill have in absolute value slope $\frac{2 \varepsilon / 3}{1 / m}=\frac{2 m \varepsilon}{3}>T$.

- Proof of Theorem 1. We prove that there exists a continuous function $f: I \rightarrow \mathbb{R}$ that is not differentiable at any point of I.

Proof of Theorem 1. For $n \in \mathbb{N}$ we define the set

$$
A_{n}:=\left\{f \in C(I) \left\lvert\, \exists x \in I \forall y \in I \backslash\{x\}\left(\left|\frac{f(y)-f(x)}{y-x}\right| \leq n\right)\right.\right\}
$$

We show that every set A_{n} is a sparse subset of the MS

$$
\left(C(I),\|f-g\|_{\infty}\right)
$$

and by this we will be done. Indeed, by Proposition 17 below this MS is complete and therefore by Baire's theorem there exists a function

$$
f \in C(I) \backslash \bigcup_{n=1}^{\infty} A_{n}
$$

Thus f is continuous and has the property described in the first Lemma 3 and therefore, by this lemma, has the property in Theorem 1 and by Exercise 2 the function f is not differentiable at any point of I.

We show that every set $A_{n} \subset C(I)$ is closed and contains no ball, i.e., that for every ball $B(f, r)$ in the $\mathrm{MS}, B(f, r) \not \subset A_{n}$. It follows from this that A_{n} is a sparse set (Exercise 15).

We prove that A_{n} is closed by showing its closedness to limits. Let $\left(f_{k}\right) \subset A_{n}$ be a sequence with $\lim _{k \rightarrow \infty} f_{k}=f \in C(I)$; we show that $f \in A_{n}$. Since $f_{k} \in A_{n}$, there is a number $x_{k} \in I$ such that for every $y \in I \backslash\left\{x_{k}\right\}$,

$$
\left|\frac{f_{k}(y)-f_{k}\left(x_{k}\right)}{y-x_{k}}\right| \leq n
$$

We know from Mathematical Analysis 1 that $\left(x_{k}\right)$ has a convergent subsequence with a limit in I. To simplify notation, we assume that
already $\lim _{k \rightarrow \infty} x_{k}=x_{0} \in I$. For every $y \in I \backslash\left\{x_{0}\right\}$ we have, by the property of the point x_{k} and the second Lemma 7, that

$$
n \geq \lim _{k \rightarrow \infty}\left|\frac{f_{k}(y)-f_{k}\left(x_{k}\right)}{y-x_{k}}\right|=\left|\frac{f(y)-f\left(x_{0}\right)}{y-x_{0}}\right|
$$

(non-strict inequalities are preserved in limits). The number x_{0} therefore witnesses that $f \in A_{n}$ and A_{n} is a closed subset of the MS.

It remains to find in the given ball $B(f, r) \subset C(I)$ a point (i.e., a function) $g \in B(f, r) \backslash A_{n}$. We define it as $g=g_{1}+g_{2}$ where we find the functions g_{1} and g_{2} using the third and fourth Lemma 9 and 14, respectively. First we use Lemma 9 and obtain a function $g_{1} \in C(I)$ and a constant $M>0$ such that $\left\|f-g_{1}\right\|_{\infty}<r / 2$ and that all secants of the graph of g_{1} have slope in absolute value $<M$. Then we use Lemma 14 and obtain a function $g_{2} \in C(I)$ such that $\left\|g_{2}\right\|_{\infty}<r / 2$ and that through every point on the graph of g_{2} there goes a secant line with slope in absolute value $>M+n$. By the triangle inequality,

$$
\|f-g\|_{\infty} \leq\left\|f-g_{1}\right\|_{\infty}+\left\|g_{2}\right\|_{\infty}<r / 2+r / 2=r
$$

and $g \in B(f, r)$. Let $x \in I$ be arbitrary. By the property of the function g_{2} we take a $y \in I \backslash\{x\}$ such that $\left|\frac{g_{2}(y)-g_{2}(x)}{y-x}\right|>M+n$. Then

$$
\begin{aligned}
\left|\frac{g(y)-g(x)}{y-x}\right| & =\left|\frac{g_{2}(y)-g_{2}(x)}{y-x}+\frac{g_{1}(y)-g_{1}(x)}{y-x}\right| \\
& \geq\left|\frac{g_{2}(y)-g_{2}(x)}{y-x}\right|-\left|\frac{g_{1}(y)-g_{1}(x)}{y-x}\right| \\
& >(M+n)-M=n
\end{aligned}
$$

and $g \notin A_{n}$. On the first line we used the definition of g, on the second the inequality from Exercise 16 and on the third the properties
of the functions g_{1} and g_{2}.
Exercise 15 Prove that every closed set X (in a MS) with empty interior (i.e., X contains no ball) is sparse.

Exercise 16 Prove that for every two real numbers a and b,

$$
|a-b| \geq|a|-|b| .
$$

- Completeness of the MS of continuous functions with the infinity-norm metric.

Proposition 17 The metric space

$$
\left(C(I),\|f-g\|_{\infty}\right)
$$

is complete.
Proof. Let $\left(f_{n}\right) \subset C(I)$ be a Cauchy sequence in this MS, i.e.,

$$
\forall \varepsilon>0 \exists m\left(n, n^{\prime} \geq m \Rightarrow\left\|f_{n}-f_{n^{\prime}}\right\|_{\infty}<\varepsilon\right) .
$$

Then for every $x \in I$ the sequence $\left(f_{n}(x)\right) \subset \mathbb{R}$ is Cauchy, therefore convergent, and we can define

$$
f(x):=\lim f_{n}(x) .
$$

Thus we have a function $f: I \rightarrow \mathbb{R}$ with the property that $f_{n} \rightarrow f$ pointwisely. Let us prove the uniform convergence, i.e., that $\| f-$ $f_{n} \|_{\infty} \rightarrow 0$. Let $x \in I$ and $\varepsilon>0$ be given. We take an m (it is independent of x) such that the above displayed Cauchy condition holds with $\varepsilon / 2$. Then we take a $k \geq m$ such that $\left|f_{k}(x)-f(x)\right|<$ $\varepsilon / 2$ and get that $n \geq m \Rightarrow$

$$
\left|f_{n}(x)-f(x)\right| \leq\left|f_{n}(x)-f_{k}(x)\right|+\left|f_{k}(x)-f(x)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Thus $\lim f_{n}=f$ in this MS.
It remains to show that f is continuous (i.e., is an element of this MS). Let an $x_{0} \in I$ and an $\varepsilon>0$ be given. We take an n_{0} such that

$$
n \geq n_{0} \Rightarrow\left\|f-f_{n}\right\|_{\infty} \leq \varepsilon / 2 .
$$

We take a $\delta>0$ such that

$$
x \in U\left(x_{0}, \delta\right) \cap I \Rightarrow\left|f_{n_{0}}(x)-f_{n_{0}}\left(x_{0}\right)\right| \leq \varepsilon / 2
$$

(we are using continuity of $f_{n_{0}}$ at x_{0}). Then $\forall x \in U\left(x_{0}, \delta\right) \cap I$, $\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{n_{0}}(x)\right|+\left|f_{n_{0}}(x)-f_{n_{0}}\left(x_{0}\right)\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ and f is continuous at x_{0}.

Only now is the proof of Theorem 1 in fact complete.

- An application of Baire's theorem in enumeration of permutations. For $m \leq n$ in $\mathbb{N}=\{1,2, \ldots\}$ and two permutations (i.e., bijections) $\pi:[m] \rightarrow[m]$ and $\rho:[n] \rightarrow[n]$ we write $\pi \preceq \rho$, and say that π is contained in ρ, if there exist numbers $i_{1}<i_{2}<\cdots<i_{m}$ in $[n]$ such that

$$
\forall j, k \in[m]\left(\pi(j)<\pi(k) \Longleftrightarrow \rho\left(i_{j}\right)<\rho\left(i_{k}\right)\right) .
$$

Let \mathcal{S} be the set of all finite permutations $\pi:[n] \rightarrow[n]$ for n running in \mathbb{N} and let $\mathcal{S}_{n} \subset \mathcal{S}$ be the $n!$-element set of permutations of $[n]$.

Exercise 18 Show that $(\mathcal{S}, \underline{)}$ is a non-strict partial order.
We say that a set $X \subset \mathcal{S}$ is a permutation class if for every two permutations π and ρ,

$$
\pi \preceq \rho \in X \Rightarrow \pi \in X .
$$

In the last roughly 20 years, many results on enumeration of permutation classes X, i.e., on the counting functions of the form

$$
n \mapsto\left|X \cap \mathcal{S}_{n}\right|
$$

$(|A|$ denotes the cardinality of a finite set A), were obtained. One of the basic ones is the next theorem.

Theorem 19 (A. Marcus and G. Tardos, 2004) Let X be a permutation class. Then

$$
X \neq \mathcal{S} \Rightarrow \exists c>1 \forall n\left(\left|X \cap \mathcal{S}_{n}\right| \leq c^{n}\right)
$$

In words, any permutation class, with the exception of the class of all permutations, grows only at most exponentially.

Exercise 20 Let $\pi \in \mathcal{S}_{2}$ be the identical permutation $\pi(1)=1$, $\pi(2)=2$ and let X be any permutation class such that $\pi \notin X$. Show that then $\left|X \cap \mathcal{S}_{n}\right| \leq 1$ for every n.

By the Marcus-Tardos theorem, for every permutation class X different from \mathcal{S} one can define its finite growth rate

$$
c(X):=\limsup _{n \rightarrow \infty}\left|X \cap \mathcal{S}_{n}\right|^{1 / n} \in[0,+\infty)
$$

For example, it is known that $c(\{\rho \in \mathcal{S} \mid \rho \nsucceq \pi\})=4$ for any $\pi \in \mathcal{S}_{3}$. In fact,

$$
\left|X \cap \mathcal{S}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}
$$

for every n for any of these six permutations classes X.
For some time there was a conjecture that every growth rate of a permutation class is an algebraic number. It was refuted by the following result.

Theorem 21 (M. Albert and S. Linton, 2009) There is a non-empty closed set $A \subset[0,+\infty)$ such that A has no isolated point and every element of A is the growth rate of a permutation class.

As we saw in the lecture before the last lecture, by Baire's theorem such set A is uncountable. Consequently, there exist uncountably many transcendental (i.e., non-algebraic) growth rates of permutation classes.

Exercise 22 How does it exactly follow from Baire's theorem that the above set A is uncountable?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to Mgr. J. Rondoš, Ph.D. by the end of the coming Monday by e-mail (jakub.rondos@gmail.com) solutions to the Exercises 2, 4, 15, 20 and 22.

