MATHEMATICAL ANALYSIS 3 (NMAI056)
 summer term 2022/23
 lecturer: Martin Klazar

LECTURE 5 (March 15, 2023) A PROOF OF WEAK JORDAN'S (CIRCUIT) THEOREM A LÀ THOMASSEN

I show you a proof modeled after the remarkable proof Carsten Thomassen (1948) gave in 1992 for the classical and famous theorem of Camille Jordan (1838-1922) in plane topology. Namely, I shall prove that any topological circuit disconnects the plane \mathbb{R}^{2}. Instead of Thomassen's original article I follow, to some extent, the article The Jordan Curve Theorem, Formally and Informally, Amer. Math. Monthly 114 (2007), 882-894 by Thomas C. Hales (1958).

Exercise 1 Learn about achievements of these three excellent mathematicians.

- Arcs, circuits, PL maps and two theorems. Let $I=I_{a, b}:=[a, b]$ where $a<b$ are real numbers. An arc is an injective continuous map

$$
f: I \rightarrow \mathbb{R}^{2}
$$

Here I is a subspace of the $\operatorname{MS}\left(\mathbb{R}, e_{1}\right)$ and \mathbb{R}^{2} is the $\operatorname{MS}\left(\mathbb{R}^{2}, e_{2}\right)$. We call the points $f(a)$ and $f(b)$ in \mathbb{R}^{2} the endpoints of f and say that f joins $f(a)$ to $f(b)$. If $f[I] \subset X \subset \mathbb{R}^{2}$, we say that f joins $f(a)$ to $f(b)$ in X. The set $f^{0}=f[I]^{0}:=f[(a, b)]$ is the interior (of the arc f).

We define the distance between two sets $A, B \subset \mathbb{R}^{2}$ as the infimum

$$
e_{2}(A, B):=\inf \left(\left\{e_{2}(\bar{x}, \bar{y}) \mid \bar{x} \in A, \bar{y} \in B\right\}\right)
$$

If A and B are disjoint and compact, their distance is positive.
A circuit is any continuous map $f: I=I_{a, b} \rightarrow \mathbb{R}^{2}$
such that $\forall x<y$ in $I(f(x)=f(y) \Longleftrightarrow x=a$ and $y=b)$.
We extend f to the $(b-a)$-periodic function $f_{\mathrm{e}}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ which coincides with f on $[a, b]$.

A map $f: I \rightarrow \mathbb{R}^{2}$ is PL (piece-wise linear) if there exist a partition $a=t_{0}<t_{1}<\cdots<t_{n}=b, n \in \mathbb{N}$, of I and n constants $\overline{s_{i}}, \overline{c_{i}} \in \mathbb{R}^{2}, i=1,2, \ldots, n$ and no $\overline{s_{i}}=(0,0)$, such that

$$
\forall i \in[n] \forall t \in\left[t_{i-1}, t_{i}\right]\left(f(t)=t \cdot \overline{s_{i}}+\overline{c_{i}}\right) .
$$

The points $f\left(t_{i}\right) \in \mathbb{R}^{2}, i=0,1, \ldots, n$, are the corners (of f). The plane straight segments $f\left[\left[t_{i-1}, t_{i}\right]\right]$ are called segments (of f). For any two points $\bar{p}, \bar{q} \in \mathbb{R}^{2}$ we denote by $s(\bar{p}, \bar{q})$ the straight segment joining them. An axis of a corner $f\left(t_{i}\right)$ with $0<i<n$ is the line going through $f\left(t_{i}\right)$ that halves both angles at $f\left(t_{i}\right)$ (determined by the two segments of f incident with the corner). If $f\left(t_{0}\right)=f\left(t_{n}\right)$, this corner also has an axis. An oriented PL circuit is one where all segments are oriented consistently in one of the two ways.

Exercise 2 Show that any PL map is continuous.
Two famous theorems about images of arcs and circuits are
Theorem 3 (Arc T.) For any arc $f: I \rightarrow \mathbb{R}^{2}$ the set $\mathbb{R}^{2} \backslash f[I]$ is connected.
and (https://kam.mff.cuni.cz/~klazar/JordanPic1.pdf)
Theorem 4 (Weak Jordan's T.) For any circuit $f: I \rightarrow \mathbb{R}^{2}$ the set $\mathbb{R}^{2} \backslash f[I]$ is disconnected.

Our goal for this lecture is to prove the latter theorem. We discuss the full Jordan's Theorem in the concluding remarks. Not very convincing outline of a proof of the Arc Theorem is given in the article of Hales on pp. 890-891.

Exercise 5 Prove that the complements in the two theorems are open sets in the plane.

- Two results on connected sets. Recall that $X \subset \mathbb{R}^{2}$ is connected if there do not exist two open (or closed) sets $A, B \subset \mathbb{R}^{2}$ cutting X, i.e., such that $X \subset A \cup B$, both intersections $X \cap A$ and $X \cap B$ are nonempty and $X \cap A \cap B=\emptyset$. We say that $X \subset \mathbb{R}^{2}$ is PLconnected if for every two distinct points $x, y \in X$ there is a PL arc $f: I \rightarrow \mathbb{R}^{2}$ such that f joins x to y in X.

Theorem 6 (conn. \leftrightarrow PL-conn.) Any open set $X \subset \mathbb{R}^{2}$ is connected if and only if it is PL-connected.

Proof. $\neg \Rightarrow \neg$. Suppose that A and B cut $X, x \in X \cap A$, $y \in X \cap B$ and that the PL arc $f: I \rightarrow \mathbb{R}^{2}$ with $f[I] \subset X$ joins x to y. Then A and B cut $f[I]$ and $f[I]$ is disconnected. This is impossible because $f[I]$ is connected as a continuous image of the connected interval I. Hence f does not exist.
$\neg \Leftarrow \neg$. Consider the partition X / \sim of X by the equivalence relation \sim on X (Exercise 8) defined by $x \sim y$ iff a PL arc joins x to y in X. It is not hard to see that every block $A \in X / \sim$ is open. We assume that X is not PL-connected: $|X / \sim| \geq 2$. We take any block $A \in X / \sim$ and define

$$
B:=\bigcup((X / \sim) \backslash\{A\}) .
$$

Then A and B are open sets cutting X and X is disconnected.

Exercise 7 Describe a set $X \subset \mathbb{R}^{2}$ such that (i) X is a countable union of plane segments, (ii) X is connected and (iii) X is not PL-connected.

Exercise 8 Show that the relation ~ in the previous proof is transitive. Or, better, prove the next more general proposition.

Proposition 9 (PL maps and PL arcs) For every PL map $f: I=I_{a, b} \rightarrow \mathbb{R}^{2}$ there is a PL arc $g: I^{\prime} \rightarrow \mathbb{R}^{2}$ such that $g\left[I^{\prime}\right] \subset f[I]$ and g joins $f(a)$ to $f(b)$.

- (PL) configurations. A C-configuration, abbreviated C-conf, is any circuit $f: I \rightarrow \mathbb{R}^{2}$ such that $\mathbb{R}^{2} \backslash f[I]$ is connected. Our goal is to prove that no C-conf exists, i.e., that Theorem 4 holds. A $K_{3,3^{-}}$ configuration, abbreviated $K_{3,3}$-conf, is any nine-tuple of arcs $f_{i, j}$, $i, j \in[3]$, such that their endpoints form a six-element set

$$
K:=\left\{\overline{p_{1}}, \overline{p_{2}}, \overline{p_{3}}, \overline{q_{1}}, \overline{q_{2}}, \overline{q_{3}}\right\} \subset \mathbb{R}^{2},
$$

for every pair $i, j \in[3]$ the arc $f_{i, j}$ joins $\overline{p_{i}}$ to $\overline{q_{j}}$, and the nine interiors $f_{i, j}^{0}$ are pairwise disjoint and disjoint to K. Graph-theoretically, a $K_{3,3}$-conf is a plane drawing (i.e., without crossings) of the complete bipartite graph $K_{3,3}$.

Exercise 10 Explain why no $K_{3,3}$-conf exists. Hint: recall the course Discrete Mathematics.

A PL C-configuration, abbreviated PL C-conf, is any C-conf in which the circuit f is a PL map. Similarly, a PL $K_{3,3}$-configuration, abbreviated PL $K_{3,3}$-conf, is any $K_{3,3}$-conf in which all nine arcs $f_{i, j}$ are PL maps. We begin our proof of Theorem 4.

- Thomassen's reduction(s). We divide it in four reductions (implications).

1. $\exists C$-conf $\Rightarrow \exists K_{3,3}$-conf
2. $\exists K_{3,3}$-conf $\Rightarrow \exists$ PL $K_{3,3}$-conf
3. \exists PL $K_{3,3}$-conf $\Rightarrow \exists$ PL C-conf
4. $\exists \mathrm{PL} C$-conf $\Rightarrow 0=1$

When we prove these four implications, Theorem 4 will follow. The main invention of Thomassen is the first reduction.

Exercise 11 Exercise 10 says that $\exists K_{3,3}$-conf $\Rightarrow 0=1$. Does not this simplify our proof?

- The first reduction $\exists C$-conf $\Rightarrow \exists K_{3,3}$-conf. See the picture https://kam.mff.cuni.cz/~klazar/JordanPic2.pdf
Let $f: I=I_{a, b} \rightarrow \mathbb{R}^{2}$ be a C-conf, i.e., f is a circuit such that the open set $\mathbb{R}^{2} \backslash f[I]$ is connected. We enclose $f[I]$ in a rectangle $R \supset f[I]$ (Exercise 12) such that

$$
\partial R \cap f[I]=\left\{\overline{p_{1}}, \overline{p_{2}}\right\}
$$

where ∂R is the (rectangular) boundary of R and $\overline{p_{1}}$ (resp. $\overline{p_{2}}$) is an interior point of the bottom (resp. top) side of R. Let U be the part of ∂R between $\overline{p_{1}}$ and $\overline{p_{2}}$ containing the right side of R. We may assume that

$$
a \leq t:=f^{-1}\left(\overline{p_{1}}\right)<t^{\prime}:=f^{-1}\left(\overline{p_{2}}\right) \leq b
$$

where at least one \leq is strict. We split f in two halves, the arcs

$$
f_{1}:=f \mid I^{\prime}:=\left[t, t^{\prime}\right] \text { and } f_{2}:=f_{\mathrm{e}} \mid I^{\prime \prime}:=\left[t^{\prime}, t+b-a\right] .
$$

Let $S \subset R$ be any segment parallel to the bottom side of R and with endpoints in the interiors of the left and right sides of R. It
follows (Exercise 13) that there exists a subsegment $T \subset S$ with endpoints $\overline{q_{2}} \in f_{1}\left[I^{\prime}\right]$ and $\overline{q_{3}} \in f_{2}\left[I^{\prime \prime}\right]$ and with interior disjoint to $f[I]$. From the assumption that $\mathbb{R}^{2} \backslash f[I]$ is connected and from Theorem 6 it follows (Exercise 14) that there is a PL arc $f_{3,1}$ with image disjoint to $f[I]$, interior disjoint to $T \cup U$ and joining a point $\overline{p_{3}}$ in the interior of T to a point $\overline{q_{1}}$ in the interior of U.

We describe the nine arcs forming a $K_{3,3}$-conf. The arc $f_{1,1}$ is the part of U from $\overline{p_{1}}$ to $\overline{q_{1}}, f_{1,2}$ is the initial part of f_{1} from $\overline{p_{1}}$ to $\overline{q_{2}}, f_{1,3}$ is the reversed final part of f_{2} from $\overline{q_{3}}$ to $\overline{p_{1}}, f_{2,1}$ is the the part of U from $\overline{p_{2}}$ to $\overline{q_{1}}, f_{2,2}$ is the reversed final part of f_{1} from $\overline{q_{2}}$ to $\overline{p_{2}}, f_{2,3}$ is the initial part of f_{2} from $\overline{p_{2}}$ to $\overline{q_{3}}, f_{3,1}$ was already defined above, and $f_{3,2}$ (resp. $f_{3,3}$) is the straight segment joining $\overline{p_{3}}$ to $\overline{q_{2}}$ (resp. $\overline{q_{3}}$). It follows from these definitions that the required disjointness conditions hold and we indeed have a $K_{3,3}$-conf.

Exercise 12 Explain how to find the rectangle R.
Exercise 13 Show that the subsegment T exists. Hint: intermediate values of continuous functions.

Exercise 14 Show that the arc $f_{3,1}$ exists.

- The second reduction $\exists K_{3,3}$-conf $\Rightarrow \exists \mathrm{PL} K_{3,3}-$ conf. See https://kam.mff.cuni.cz/~klazar/JordanPic3.pdf Suppose that $f_{i, j}, i, j \in[3]$, is a $K_{3,3}$-conf as obtained above, with the endpoints $\overline{p_{i}}$ and $\overline{q_{j}}$. Let $O_{i, j} \subset \mathbb{R}^{2}$ be the image of $f_{i, j}$ and $d>0$ be the minimum of the distances between two of the six endpoints and between $O_{i, j}$ and an endpoint different from $\overline{p_{i}}$ and $\overline{q_{j}}$. We take the six closed discs

$$
D(i):=\bar{B}\left(\overline{p_{i}}, d / 3\right) \text { and } E(j):=\bar{B}\left(\overline{q_{j}}, d / 3\right), i, j \in[3] .
$$

Any two discs have distance $\geq d / 3$. It follows (Exercise 15) that for every $i, j \in[3]$ there exists the last time $t_{i, j} \in \mathbb{R}$ when $f_{i, j}$ exits $D(i)$ and the first following time $u_{i, j}>t_{i, j}$ when $f_{i, j}$ enters $E(j)$. It follows that for every $k, l \in[3]$,

$$
f_{i, j}\left[\left(t_{i, j}, u_{i, j}\right)\right] \cap(D(k) \cup E(l))=\emptyset .
$$

The exit and entrance points (which lie on the boundaries of $D(i)$ and $E(j)$, respectively) are

$$
\overline{l_{i, j}}:=f_{i, j}\left(t_{i, j}\right) \in \partial D(i) \text { and } \overline{e_{i, j}}:=f_{i, j}\left(u_{i, j}\right) \in \partial E(j)
$$

For $i, j \in[3]$ we define the arc

$$
f_{i, j}^{(1)}: J_{i, j}:=\left[t_{i, j}^{\prime}, u_{i, j}^{\prime}\right] \rightarrow \mathbb{R}^{2}, \text { for some } t_{i, j}^{\prime}<t_{i, j} \text { and } u_{i, j}^{\prime}>u_{i, j},
$$

so that on $\left[t_{i, j}^{\prime}, t_{i, j}\right]$ the $\operatorname{arc} f_{i, j}^{(1)}$ is the segment $s\left(\overline{p_{i}}, \overline{l_{i, j}}\right)$, on $I_{i, j}:=$ [$\left.t_{i, j}, u_{i, j}\right]$ it coincides with $f_{i, j}$ and on $\left[u_{i, j}, u_{i, j}^{\prime}\right]$ it is the segment $s\left(\overline{e_{i, j}}, \overline{q_{j}}\right)$. We consider the minimum distance

$$
\begin{aligned}
& e:=\min \left(\left\{e_{2}\left(f_{i, j}\left[I_{i, j}\right], f_{k, l}^{(1)}\left[J_{k, l}\right]\right) \mid\right.\right. \\
& \mid i, j, k, l \in[3],(i, j) \neq(k, l)\})>0
\end{aligned}
$$

(Exercise 16). The restricted arcs $f_{i, j}: I_{i, j} \rightarrow \mathbb{R}^{2}$ are uniformly continuous (Exercise 17) and therefore $\exists \delta>0$ such that for every $i, j \in[3]$ and every $t, u \in I_{i, j}$,

$$
|t-u| \leq \delta \Rightarrow e_{2}\left(f_{i, j}(t)-f_{i, j}(u)\right) \leq \min (\{e / 6, d / 6\})
$$

For any $i, j \in[3]$ we take a partition $t_{i, j}=v_{0}<v_{1}<\cdots<$ $v_{n}=u_{i, j}$ of $I_{i, j}$ (its dependence on i, j is not marked) such that $v_{k}-v_{k-1} \leq \delta$ and define

$$
f_{i, j}^{(2)}: J_{i, j} \rightarrow \mathbb{R}^{2}
$$

as $f_{i, j}^{(2)}=f_{i, j}^{(1)}$ on $\left[t_{i, j}^{\prime}, t_{i, j}\right] \cup\left[u_{i, j}, u_{i, j}^{\prime}\right]$ and as the PL map with the segments $s\left(f_{i, j}\left(v_{r-1}\right), f_{i, j}\left(v_{r}\right)\right), r=1,2, \ldots, n$, on $\left[t_{i, j}, u_{i, j}\right]$. It follows from the choice of δ that the interiors $f_{i, j}^{(2)}\left[I_{i, j}\right]^{0}$ are pairwise disjoint, because for every $i, j, k, l \in[3]$ with $(i, j) \neq(k, l)$ one has that

$$
e_{2}\left(f_{i, j}^{(2)}\left[I_{i, j}\right], f_{k, l}^{(2)}\left[J_{k, l}\right]\right) \geq e / 3,
$$

and that they are also disjoint to all six endpoints (Exercise 18). Finally, using Proposition 9 we replace the PL maps $f_{i, j}^{(2)}$ with the PL arcs

$$
f_{i, j}^{(3)}: J_{i, j} \rightarrow \mathbb{R}^{2}
$$

such that $f_{i, j}^{(3)}\left[J_{i, j}\right] \subset f_{i, j}^{(2)}\left[J_{i, j}\right]$ and that $f_{i, j}^{(3)}$ joins $\overline{p_{i}}$ to $\overline{q_{j}}$. It follows that the PL arcs $f_{i, j}^{(3)}, i, j \in[3]$, form a PL $K_{3,3}$ configuration.

Exercise 15 Prove that the exit and entrance times for the arcs $f_{i, j}$ with respect to the discs $D(i)$ and $E(j)$ exist.

Exercise 16 Prove that the distance e is positive.
Exercise 17 Why are the restricted arcs $f_{i, j}: I_{i, j} \rightarrow \mathbb{R}^{2}$ uniformly continuous?

Exercise 18 Explain why are the interiors $f_{i, j}^{(2)}\left[I_{i, j}\right]^{0}$ pairwise disjoint and disjoint to the six endpoints.

- The third reduction $\exists \mathrm{PL} K_{3,3}$-conf $\Rightarrow \exists \mathrm{PL} C$-conf. See https://kam.mff.cuni.cz/~klazar/JordanPic4.pdf
We show that any PL $K_{3,3}$-conf contains as a subgraph a PL C-conf.
Let f be an oriented PL circuit. Each segment s of f then determines the right open halfplane $\operatorname{rp}(s) \subset \mathbb{R}^{2}$ of points in \mathbb{R}^{2} lying to
the right of the line extending s. We similarly define the left open halfplane $\operatorname{lp}(s) \subset \mathbb{R}^{2}$. For $n \in \mathbb{N}$ the right shadow $r(s, n)$ of s is the segment $s^{\prime} \subset \operatorname{rp}(s)$ whose endpoints are the two points in $\operatorname{rp}(s)$ that lie on the two axes of the two endpoints (corners) of s in distance $1 / n$ from the endpoint of s. We define the left shadow $l(s, n), n \in \mathbb{N}$, of s in the same way, only $\operatorname{rp}(s)$ is replaced with $\operatorname{lp}(s)$. For $n \in \mathbb{N}$ we define the right shadow $r(f, n)$ and the left shadow $l(f, n)$ of the oriented PL circuit f by

$$
r(f, n):=\bigcup_{s \in S(f)} r(s, n) \text { and } l(f, n):=\bigcup_{s \in S(f)} l(s, n)
$$

where $S(f)$ is the set of segments of f.
Proposition 19 (on shadows 1) \forall oriented PL circuit f and $\forall n$, both shadows $r(f, n)$ and $l(f, n)$ are images of PL maps.

Proof. This is immediate from their definitions.
Proposition 20 (on shadows 2) Let $f: I \rightarrow \mathbb{R}^{2}$ be an oriented PL circuit. There is an n_{0} such that for every $n \geq n_{0}$,

$$
r(f, n) \cap f[I]=\emptyset=l(f, n) \cap f[I] .
$$

Proof. Let f be as stated and $d:=\min _{s, s^{\prime}} e_{2}\left(s, s^{\prime}\right)>0$ where s, s^{\prime} run through all pairs of segments of f with $s \cap s^{\prime}=\emptyset$. Let s be any segment of f. It suffices to prove that for n large enough, $r(s, n) \cap f[I]=\emptyset$; for $l(s, n)$ the arguments is similar. Let s^{\prime} and $s^{\prime \prime}$ be the two segments of f adjacent to s. It is easy to see that $r(s, n) \cap s=\emptyset$ for every n and that $r(s, n) \cap\left(s^{\prime} \cup s^{\prime \prime}\right)=\emptyset$ for every large n (Exercise 21). Also,

$$
r(s, n) \subset\left\{\bar{p} \in \mathbb{R}^{2} \mid e_{2}(\{\bar{p}\}, s) \leq 1 / n\right\}
$$

Thus it suffices to take n so large that $r(s, n) \cap\left(s^{\prime} \cup s^{\prime \prime}\right)=\emptyset$ and that $1 / n \leq d / 3$.

Exercise 21 Show that for $n \geq n_{0}$, neither $r(s, n)$ nor $l(s, n)$ intersects the two segments of the PL circuit adjacent to s.

Proposition 22 (on shadows 3) Let $f: I \rightarrow \mathbb{R}^{2}$ be an oriented PL circuit. Then for any point $\bar{p} \in \mathbb{R}^{2} \backslash f[I]$ one of two cases occurs.
(L) For every $n \geq n_{0}$ a PL arc in $\mathbb{R}^{2} \backslash f[I]$ joins the point \bar{p} to a point in $l(f, n)$.
(R) For every $n \geq n_{0}$ a PL arc in $\mathbb{R}^{2} \backslash f[I]$ joins the point \bar{p} to a point in $r(f, n)$.

Proof. Let f and \bar{p} be as stated and let u be any segment realizing the distance between \bar{p} and $f[I]$. Then \bar{p} is one endpoint of u, the other one $\bar{q} \in f[I]$ and $u^{0} \subset \mathbb{R}^{2} \backslash f[I]$. Considering u near \bar{q}, we see that (L) or (R) occurs.

For an oriented PL circuit f we define $A_{f, R} \subset \mathbb{R}^{2}$ (resp. $A_{f, L} \subset \mathbb{R}^{2}$) as those points \bar{p} in the complement of the image of f for which the above case (R) (resp. (L)) holds.

Corollary 23 (left and right sides) Let $f: I \rightarrow \mathbb{R}^{2}$ be an oriented PL circuit. Then

$$
\mathbb{R}^{2} \backslash f[I]=A_{f, R} \cup A_{f, L}
$$

and $A_{f, R}$ and $A_{f, L}$ are connected open sets.

Proof. It is clear that $A_{f, R}$ and $A_{f, L}$ are open sets. Indeed, let $\bar{p} \in A_{f, R}$, say, witnessed by a PL arc g joining \bar{p} in the complement of $f[I]$ to a point in $r(f, n)$. Let the ball $B:=B(\bar{p}, r)$ have radius $r>0$ so small that $B \subset \mathbb{R}^{2} \backslash f[I]$ and that B intersect only one segment of g. Then for every $\bar{q} \in B$ we can easily modify g to a PL arc joining \bar{q} in the complement of $f[I]$ to the same point in $r(f, n)$.

Let $\bar{p}, \bar{q} \in A_{f, R}$ be two distinct points (for $A_{f, L}$ the argument is similar). We show that there is a PL arc g that joins \bar{p} to \bar{q} in $\mathbb{R}^{2} \backslash f[I]$. Then $A_{f, R}$ is connected by Theorem 7 . We use Propositions 20 and 22 and the definition of the set $A_{f, R}$ and take large enough n such that $r(f, n) \cap f[I]=\emptyset$ and that there are PL arcs joining, respectively, \bar{p} and \bar{q} in $\mathbb{R}^{2} \backslash f[I]$ to points in $r(f, n)$. By Propositions 9 and 19 there exists the required PL arc g.

Now suppose that the nine arcs $f_{i, j}, i, j \in[3]$, form a PL $K_{3,3-}$ conf. Let $k: I \rightarrow \mathbb{R}^{2}$ be the oriented PL circuit formed by the six $\operatorname{arcs} f_{1,1}, f_{2,1}, f_{2,2}, f_{3,2}, f_{3,3}$ and $f_{1,3}$. We denote the remaining three arcs by $e:=f_{1,2}, g:=f_{2,3}$ and $h:=f_{3,1}$. We write $\mathbb{R}^{2} \backslash k[I]=$ $A_{k, R} \cup A_{k, L}$ as in Corollary 23. If $A_{k, R}$ and $A_{k, L}$ intersect then k is a PL C-conf and we are done. Hence these sets are disjoint. Then the interior of each of the arcs e, g and h lies completely in $A_{k, R}$ or completely in $A_{k, L}$ (else $A_{k, R}$ and $A_{k, L}$ would cut the interior of the arc, which is however a connected set). Thus two of these interiors lie in the same set, for example (other cases are similar) the interiors of e and h lie in $A_{k, R}$. We consider the oriented PL circuit $l: I^{\prime} \rightarrow \mathbb{R}^{2}$ formed by the arcs $f_{1,3}, f_{3,3}, f_{3,2}$ and e; we orient the segments in e consistently with those in the other three PL arcs. But we see that the interior h^{0} of h intersects both $A_{l, R}$ and $A_{l, L}$
(Exercise 24). By Corollary 23,

$$
\mathbb{R}^{2} \backslash l\left[I^{\prime}\right]=A_{l, R} \cup h^{0} \cup A_{l, L}
$$

is connected and l is a PL C-conf (Exercise 25).
Exercise 24 Why does h^{0} intersect both the right and the left side of the oriented PL circuit l?

Exercise 25 Why is the set $A_{l, R} \cup h^{0} \cup A_{l, L}$ connected?

- The fourth reduction $\exists \mathrm{PL} C$-conf $\Rightarrow 0=1$. See the picture https://kam.mff.cuni.cz/~klazar/JordanPic5.pdf
We suppose that $f: I \rightarrow \mathbb{R}^{2}$ is a PL circuit with connected complement $\mathbb{R}^{2} \backslash f[I]$ and deduce a contradiction. It easily follows from the next proposition.

Proposition 26 (inside or outside?) Let $f: I \rightarrow \mathbb{R}^{2}$ be a PL circuit and $D:=\mathbb{R}^{2} \backslash f[I]$. There exists a continuous map

$$
g: D \rightarrow\{0,1\} \subset \mathbb{R}
$$

such that $g[D]=\{0,1\}$.
Proof. Let f and D be as stated. We may assume (Exercise 28) that none of the finitely many segments of $f[I]$ is vertical. For any point $\bar{p}=\left(p_{x}, p_{y}\right) \in D$ we denote by

$$
r(\bar{p})=\left(x=p_{x}, y \geq p_{y}\right) \subset \mathbb{R}^{2}
$$

the vertical ray (half-line) emanating upwards from \bar{p}. We define the function $g: D \rightarrow\{0,1\}$ as the parity of the finite sum (Exercise 29)

$$
g(\bar{p}):=\sum_{\bar{q} \in r(\bar{p}) \cap f[I]} m(\bar{q}) \bmod 2
$$

(for empty intersection the sum is 0), where the multiplicity $m(\bar{q}) \in$ $\{0,1\}$ of the intersection \bar{q} of the ray $r(\bar{p})$ and the graph $f[I]$ of the circuit f is defined as follows. If \bar{q} is transversal, meaning that $f[I]$ lies locally near \bar{q} on both sides of $r(\bar{p})$, we set $m(\bar{q}):=1$. Else, when $f[I]$ lies locally near \bar{q} only on one side of $r(\bar{p})$, we set $m(\bar{q}):=0$. It follows that $m(\bar{q})=0$ iff \bar{q} is the common corner of two consecutive segments of $f[I]$ lying on the same side of $r(\bar{p})$ (Exercise 30).
We prove that g is continuous. Let $\bar{p}=\left(p_{x}, p_{y}\right) \in D$ be an arbitrary point and $X \subset \mathbb{R}$ be the finite set of the x-coordinates of all corners of f, minus the number $\left\{p_{x}\right\}$. Let

$$
\delta:=\min \left(\left\{\left|p_{x}-a\right| \mid a \in X\right\} \cup\left\{e_{2}(\{\bar{p}\}, f[I])\right\}\right)>0 .
$$

We claim that

$$
\bar{q} \in B(\bar{p}, \delta) \Rightarrow g(\bar{q})=g(\bar{p}) .
$$

To see it, compare for such \bar{q} the finite intersections $X_{1}:=r(\bar{p}) \cap f[I]$ and $X_{2}:=r(\bar{q}) \cap f[I]$. By the choice of δ, when we move the point \bar{p} to the position \bar{q} every transversal intersection $\bar{r} \in X_{1}$ transforms in a transversal intersection $\overline{r^{\prime}} \in X_{2}$, and every nontransversal intersection $\bar{r} \in X_{1}$ either disappears or remains the same non-transversal intersection $\bar{r} \in X_{2}$ or transforms in two distinct transversal intersections $\left\{\overline{r^{\prime}}, \overline{r^{\prime \prime}}\right\} \subset X_{2}$. Also, all intersections in X_{2} arise in these ways, no new intersection can appear. Thus $g(\bar{q})=g(\bar{p})$ by the definition of g.

It remains to show that $g[D]=\{0,1\}$. Let $\bar{q} \in f[I]$ be one of the highest corners of $f[I]$, i.e., with the maximum y-coordinate, and let ℓ be the axis of \bar{q}. Then it is easy to see that $g(\bar{p})=0$ for every point $\bar{p} \in \ell$ lying above \bar{q} and that $g(\bar{p})=1$ for every point $\bar{p} \in \ell$ lying below \bar{q} and sufficiently close to \bar{q}.

To obtain a contradiction for a PL circuit f possessing connected complement $D=\mathbb{R}^{2} \backslash f[I]$, we take the function $g: D \rightarrow\{0,1\}$ guaranteed by the previous proposition and take two points \bar{p} and \bar{q} in D such that $g(\bar{p})=0$ and $g(\bar{q})=1$. By Theorem 6 there is a PL arc $h: J \rightarrow \mathbb{R}^{2}$ with $h[J] \subset D$ and joining \bar{p} to \bar{q}. But then $g(h): J \rightarrow\{0,1\}$ is a continuous function that maps the connected interval J to the disconnected set $g(h)[J]=\{0,1\} \subset \mathbb{R}$, which is indeed a contradiction.

This completes the proof of Theorem 4.
Exercise 27 Where do we run in difficulties when we attempt to define the function g in the same way for a PL arc? By Theorem 3, it has to fail somewhere.

Exercise 28 Why can we assume that none of the segments of the PL circuit f is vertical?

Exercise 29 Why is the displayed sum in the proof finite?
Exercise 30 Prove the equivalence characterizing geometricly the intersection points \bar{q} with multiplicity zero.

- Concluding and other remarks. The full Jordan's theorem, which Jordan published and basically correctly proved (see http://mizar . org/trybulec65/4.pdf for detailed discussion by Hales of Jordan's proof) in his textbook Course d'analyse de l'École Polytechnique, Paris, 1893, is as follows.

Theorem 31 (Full Jordan's T.) For any circuit $f: I \rightarrow \mathbb{R}^{2}$,

$$
\mathbb{R}^{2} \backslash f[I]=A_{\text {int }} \cup A_{\mathrm{ext}}
$$

where $A_{\text {int }}$ and $A_{\text {ext }}$ are nonempty open connected sets that are disjoint. Moreover, A_{int} is bounded and $A_{\text {ext }}$ is unbounded.

Exercise 32 How does the fact that $\mathbb{R}^{2} \backslash f[I]$ is disconnected (i.e., Theorem 4 we have just proven) follow from the theorem?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to Mgr. J. Rondoš, Ph.D. by the end of the coming Monday by e-mail (jakub.rondos@gmail.com) solutions to the Exercises 1, 5, 13, 16 and 27.

